1
|
Molecular Mechanisms and Applications of N-Acyl Homoserine Lactone-Mediated Quorum Sensing in Bacteria. Molecules 2022; 27:molecules27217584. [PMID: 36364411 PMCID: PMC9654057 DOI: 10.3390/molecules27217584] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Microbial biodiversity includes biotic and abiotic components that support all life forms by adapting to environmental conditions. Climate change, pollution, human activity, and natural calamities affect microbial biodiversity. Microbes have diverse growth conditions, physiology, and metabolism. Bacteria use signaling systems such as quorum sensing (QS) to regulate cellular interactions via small chemical signaling molecules which also help with adaptation under undesirable survival conditions. Proteobacteria use acyl-homoserine lactone (AHL) molecules as autoinducers to sense population density and modulate gene expression. The LuxI-type enzymes synthesize AHL molecules, while the LuxR-type proteins (AHL transcriptional regulators) bind to AHLs to regulate QS-dependent gene expression. Diverse AHLs have been identified, and the diversity extends to AHL synthases and AHL receptors. This review comprehensively explains the molecular diversity of AHL signaling components of Pseudomonas aeruginosa, Chromobacterium violaceum, Agrobacterium tumefaciens, and Escherichia coli. The regulatory mechanism of AHL signaling is also highlighted in this review, which adds to the current understanding of AHL signaling in Gram-negative bacteria. We summarize molecular diversity among well-studied QS systems and recent advances in the role of QS proteins in bacterial cellular signaling pathways. This review describes AHL-dependent QS details in bacteria that can be employed to understand their features, improve environmental adaptation, and develop broad biomolecule-based biotechnological applications.
Collapse
|
2
|
The cis-2-dodecenoic acid (BDSF) quorum sensing system in Burkholderia cenocepacia. Appl Environ Microbiol 2022; 88:e0234221. [PMID: 34985987 DOI: 10.1128/aem.02342-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been demonstrated that quorum sensing (QS) is widely employed by bacterial cells to coordinately regulate various group behaviors. Diffusible signal factor (DSF)-type signals have emerged as a growing family of conserved cell-cell communication signals. In addition to the DSF signal initially identified in Xanthomonas campestris pv. campestris, Burkholderia diffusible signal factor (BDSF, cis-2-dodecenoic acid) has been recognized as a conserved DSF-type signal with specific characteristics in both signal perception and transduction from DSF signals. Here, we review the history and current progress of the research of this type of signal, especially focusing on its biosynthesis, signaling pathways, and biological functions. We also discuss and explore the huge potential of targeting this kind of QS system as a new therapeutic strategy to control bacterial infections and diseases.
Collapse
|
3
|
Oppy CC, Jebeli L, Kuba M, Oates CV, Strugnell R, Edgington-Mitchell LE, Valvano MA, Hartland EL, Newton HJ, Scott NE. Loss of O-Linked Protein Glycosylation in Burkholderia cenocepacia Impairs Biofilm Formation and Siderophore Activity and Alters Transcriptional Regulators. mSphere 2019; 4:e00660-19. [PMID: 31722994 PMCID: PMC6854043 DOI: 10.1128/msphere.00660-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
O-linked protein glycosylation is a conserved feature of the Burkholderia genus. The addition of the trisaccharide β-Gal-(1,3)-α-GalNAc-(1,3)-β-GalNAc to membrane exported proteins in Burkholderia cenocepacia is required for bacterial fitness and resistance to environmental stress. However, the underlying causes of the defects observed in the absence of glycosylation are unclear. Using proteomics, luciferase reporter assays, and DNA cross-linking, we demonstrate the loss of glycosylation leads to changes in transcriptional regulation of multiple proteins, including the repression of the master quorum CepR/I. These proteomic and transcriptional alterations lead to the abolition of biofilm formation and defects in siderophore activity. Surprisingly, the abundance of most of the known glycosylated proteins did not significantly change in the glycosylation-defective mutants, except for BCAL1086 and BCAL2974, which were found in reduced amounts, suggesting they could be degraded. However, the loss of these two proteins was not responsible for driving the proteomic alterations, biofilm formation, or siderophore activity. Together, our results show that loss of glycosylation in B. cenocepacia results in a global cell reprogramming via alteration of the transcriptional regulatory systems, which cannot be explained by the abundance changes in known B. cenocepacia glycoproteins.IMPORTANCE Protein glycosylation is increasingly recognized as a common posttranslational protein modification in bacterial species. Despite this commonality, our understanding of the role of most glycosylation systems in bacterial physiology and pathogenesis is incomplete. In this work, we investigated the effect of the disruption of O-linked glycosylation in the opportunistic pathogen Burkholderia cenocepacia using a combination of proteomic, molecular, and phenotypic assays. We find that in contrast to recent findings on the N-linked glycosylation systems of Campylobacter jejuni, O-linked glycosylation does not appear to play a role in proteome stabilization of most glycoproteins. Our results reveal that loss of glycosylation in B. cenocepacia strains leads to global proteome and transcriptional changes, including the repression of the quorum-sensing regulator cepR (BCAM1868) gene. These alterations lead to dramatic phenotypic changes in glycosylation-null strains, which are paralleled by both global proteomic and transcriptional alterations, which do not appear to directly result from the loss of glycosylation per se. This research unravels the pleiotropic effects of O-linked glycosylation in B. cenocepacia, demonstrating that its loss does not simply affect the stability of the glycoproteome, but also interferes with transcription and the broader proteome.
Collapse
Affiliation(s)
- Cameron C Oppy
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Miku Kuba
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Clare V Oates
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Richard Strugnell
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Laura E Edgington-Mitchell
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, Bluestone Center for Clinical Research, New York, New York, USA
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
4
|
Quorum Sensing as Antivirulence Target in Cystic Fibrosis Pathogens. Int J Mol Sci 2019; 20:ijms20081838. [PMID: 31013936 PMCID: PMC6515091 DOI: 10.3390/ijms20081838] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder which leads to the secretion of a viscous mucus layer on the respiratory epithelium that facilitates colonization by various bacterial pathogens. The problem of drug resistance has been reported for all the species able to colonize the lung of CF patients, so alternative treatments are urgently needed. In this context, a valid approach is to investigate new natural and synthetic molecules for their ability to counteract alternative pathways, such as virulence regulating quorum sensing (QS). In this review we describe the pathogens most commonly associated with CF lung infections: Staphylococcus aureus, Pseudomonas aeruginosa, species of the Burkholderia cepacia complex and the emerging pathogens Stenotrophomonas maltophilia, Haemophilus influenzae and non-tuberculous Mycobacteria. For each bacterium, the QS system(s) and the molecules targeting the different components of this pathway are described. The amount of investigations published in the last five years clearly indicate the interest and the expectations on antivirulence therapy as an alternative to classical antibiotics.
Collapse
|
5
|
Chapalain A, Groleau MC, Le Guillouzer S, Miomandre A, Vial L, Milot S, Déziel E. Interplay between 4-Hydroxy-3-Methyl-2-Alkylquinoline and N-Acyl-Homoserine Lactone Signaling in a Burkholderia cepacia Complex Clinical Strain. Front Microbiol 2017; 8:1021. [PMID: 28676791 PMCID: PMC5476693 DOI: 10.3389/fmicb.2017.01021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
Species from the Burkholderia cepacia complex (Bcc) share a canonical LuxI/LuxR quorum sensing (QS) regulation system named CepI/CepR, which mainly relies on the acyl-homoserine lactone (AHL), octanoyl-homoserine lactone (C8-HSL) as signaling molecule. Burkholderia ambifaria is one of the least virulent Bcc species, more often isolated from rhizospheres where it exerts a plant growth-promoting activity. However, clinical strains of B. ambifaria display distinct features, such as phase variation and higher virulence properties. Notably, we previously reported that under laboratory conditions, only clinical strains of the B. ambifaria species produced 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs) via expression of the hmqABCDEFG operon. HMAQs are the methylated counterparts of the 4-hydroxy-2-alkylquinolines (HAQs) produced by the opportunistic human pathogen Pseudomonas aeruginosa, in which they globally contribute to the bacterial virulence and survival. We have found that unlike P. aeruginosa's HAQs, HMAQs do not induce their own production. However, they indirectly regulate the expression of the hmqABCDEFG operon. In B. ambifaria, a strong link between CepI/CepR-based QS and HMAQs is proposed, as we have previously reported an increased production of C8-HSL in HMAQ-negative mutants. Here, we report the identification of all AHLs produced by the clinical B. ambifaria strain HSJ1, namely C6-HSL, C8-HSL, C10-HSL, 3OHC8-HSL, 3OHC10-HSL, and 3OHC12-HSL. Production of significant levels of hydroxylated AHLs prompted the identification of a second complete LuxI/LuxR-type QS system relying on 3OHC10-HSL and 3OHC12-HSL, that we have named CepI2/CepR2. The connection between these two QS systems and the hmqABCDEFG operon, responsible for HMAQs biosynthesis, was investigated. The CepI/CepR system strongly induced the operon, while the second system appears moderately involved. On the other hand, a HMAQ-negative mutant overproduces AHLs from both QS systems. Even if HMAQs are not classical QS signals, their effect on AHL-based QS system still gives them a part to play in the QS circuitry in B. ambifaria and thus, on regulation of various phenotypes.
Collapse
Affiliation(s)
- Annelise Chapalain
- CIRI, Centre International de Recherche en Infectiologie, Equipe Pathogénèse des Légionelles, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université LyonLyon, France
| | | | | | - Aurélie Miomandre
- CNRS, INRA, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | - Ludovic Vial
- CNRS, INRA, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | | | - Eric Déziel
- INRS-Institut Armand-Frappier, LavalQC, Canada
| |
Collapse
|
6
|
Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review. Genes (Basel) 2017; 8:genes8010043. [PMID: 28106859 PMCID: PMC5295037 DOI: 10.3390/genes8010043] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) bacteria emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Their eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. Bcc bacteria have large and complex genomes, composed of two to four replicons, with variable numbers of insertion sequences. The complexity of Bcc genomes confers a high genomic plasticity to these bacteria, allowing their adaptation and survival to diverse habitats, including the human host. In this work, we review results from recent studies using omics approaches to elucidate in vivo adaptive strategies and virulence gene regulation expression of Bcc bacteria when infecting the human host or subject to conditions mimicking the stressful environment of the cystic fibrosis lung.
Collapse
|
7
|
Mahenthiralingam E, Vandamme P. Taxonomy and pathogenesis of the Burkholderia cepacia complex. Chron Respir Dis 2016; 2:209-17. [PMID: 16541604 DOI: 10.1191/1479972305cd053ra] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Patients with cystic fibrosis (CF) are susceptible to chronic respiratory infection with a number of bacterial pathogens. The Burkholderia cepacia complex bacteria are problematic CF pathogens because (i) they are very resistant to antibiotics, making respiratory infection difficult to treat and eradicate; (ii) infection with these bacteria is associated with high mortality in CF; (iii) they may spread from one CF patient to another, leading to considerable problems for both patients and carers; and (iv) B. cepacia complex bacteria are difficult to identify and nine new species have now been found to constitute isolates originally identified as ‘B. cepacia’ based on their phenotypic properties. Here we review the changes that have occurred in the taxonomy of the B. cepacia complex and the pathogenic factors these bacteria possess. While the taxonomy of the B.cepacia complex has advanced considerably with the development of accurate methods for their identification, the pathogenic mechanisms employed by these CF pathogens are only just beginning to be explored at the molecular level. Several virulence factors have been defined for B. cenocepacia (the dominant CF pathogen within the complex); however, knowledge of the disease mechanisms employed by other B. cepacia complex species is limited. The recent determination of the complete genome sequences for several of the B. cepacia complex species should greatly enhance our ability to study these problematic CF pathogens.
Collapse
|
8
|
Lim YL, Ee R, How KY, Lee SK, Yong D, Tee KK, Yin WF, Chan KG. Complete genome sequencing of Pandoraea pnomenusa RB38 and Molecular Characterization of Its N-acyl homoserine lactone synthase gene ppnI. PeerJ 2015; 3:e1225. [PMID: 26336650 PMCID: PMC4556143 DOI: 10.7717/peerj.1225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/11/2015] [Indexed: 01/05/2023] Open
Abstract
In this study, we sequenced the genome of Pandoraea pnomenusa RB38 using Pacific Biosciences RSII (PacBio) Single Molecule Real Time (SMRT) sequencing technology. A pair of cognate luxI/R homologs was identified where the luxI homolog, ppnI, was found adjacent to a luxR homolog, ppnR1. An additional orphan luxR homolog, ppnR2, was also discovered. Multiple sequence alignment and phylogenetic analysis revealed that ppnI is an N-acyl homoserine lactone (AHL) synthase gene that is distinct from those of the nearest phylogenetic neighbor viz. Burkholderia spp. High resolution tandem mass spectrometry (LC-MS/MS) analysis showed that Escherichia coli BL21 harboring ppnI produced a similar AHL profile (N-octanoylhomoserine lactone, C8-HSL) as P. pnomenusa RB38, the wild-type donor strain, confirming that PpnI directed the synthesis of AHL in P. pnomenusa RB38. To our knowledge, this is the first documentation of the luxI/R homologs of the genus Pandoraea.
Collapse
Affiliation(s)
- Yan-Lue Lim
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Robson Ee
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Kah-Yan How
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Siew-Kim Lee
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Delicia Yong
- Department of Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Kok Keng Tee
- Department of Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
9
|
Michalska K, Chhor G, Clancy S, Jedrzejczak R, Babnigg G, Winans SC, Joachimiak A. RsaM: a transcriptional regulator of Burkholderia spp. with novel fold. FEBS J 2014; 281:4293-306. [PMID: 24916958 DOI: 10.1111/febs.12868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED Burkholderia cepacia complex is a set of closely related bacterial species that are notorious pathogens of cystic fibrosis patients, responsible for life-threatening lung infections. Expression of several virulence factors of Burkholderia cepacia complex is controlled by a mechanism known as quorum sensing (QS). QS is a means of bacterial communication used to coordinate gene expression in a cell-density-dependent manner. The system involves the production of diffusible signaling molecules (N-acyl-l-homoserine lactones, AHLs), that bind to cognate transcriptional regulators and influence their ability to regulate gene expression. One such system that is highly conserved in Burkholderia cepacia complex consists of CepI and CepR. CepI is AHL synthase, whereas CepR is an AHL-dependent transcription factor. In most members of the Burkholderia cepacia complex group, the cepI and cepR genes are divergently transcribed and separated by additional genes. One of them, bcam1869, encodes the BcRsaM protein, which was recently postulated to modulate the abundance or activity of CepI or CepR. Here, we show the crystal structure of BcRsaM from B. cenocepacia J2315. It is a single-domain protein with unique topology and presents a novel fold. The protein is a dimer in the crystal and in solution. This regulator has no known DNA-binding motifs and direct binding of BcRsaM to the cepI promoter could not be detected in in vitro assays. Therefore, we propose that the modulatory action of RsaM might result from interactions with other components of the QS machinery rather than from direct association with the DNA promoter. DATABASE The atomic coordinates and structure factors have been deposited in the Protein Data Bank under entry 4O2H. STRUCTURED DIGITAL ABSTRACT BcRsaM and BcRsaM bind by x-ray crystallography (View interaction) BcRsaM and BcRsaM bind by molecular sieving (View interaction).
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, Argonne National Laboratory, IL, USA; Structural Biology Center, Biosciences Division, Argonne National Laboratory, IL, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ Microbiol 2014; 16:1961-81. [PMID: 24592823 DOI: 10.1111/1462-2920.12448] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/12/2014] [Accepted: 02/28/2014] [Indexed: 01/28/2023]
Abstract
In the present review, we describe and compare the molecular mechanisms that are involved in the regulation of biofilm formation by Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas aeruginosa and Burkholderia cenocepacia. Our current knowledge suggests that biofilm formation is regulated by cyclic diguanosine-5'-monophosphate (c-di-GMP), small RNAs (sRNA) and quorum sensing (QS) in all these bacterial species. The systems that employ c-di-GMP as a second messenger regulate the production of exopolysaccharides and surface proteins which function as extracellular matrix components in the biofilms formed by the bacteria. The systems that make use of sRNAs appear to regulate the production of exopolysaccharide biofilm matrix material in all these species. In the pseudomonads, QS regulates the production of extracellular DNA, lectins and biosurfactants which all play a role in biofilm formation. In B.cenocepacia QS regulates the expression of a large surface protein, lectins and extracellular DNA that all function as biofilm matrix components. Although the three regulatory systems all regulate the production of factors used for biofilm formation, the molecular mechanisms involved in transducing the signals into expression of the biofilm matrix components differ between the species. Under the conditions tested, exopolysaccharides appears to be the most important biofilm matrix components for P.aeruginosa, whereas large surface proteins appear to be the most important biofilm matrix components for P.putida, P.fluorescens, and B.cenocepacia.
Collapse
Affiliation(s)
- Mustafa Fazli
- Department of International Health, Immunology, and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
11
|
Suppiger A, Schmid N, Aguilar C, Pessi G, Eberl L. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex. Virulence 2014; 4:400-9. [PMID: 23799665 PMCID: PMC3714132 DOI: 10.4161/viru.25338] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) consists of 17 closely related species that are problematic opportunistic bacterial pathogens for cystic fibrosis patients and immunocompromised individuals. These bacteria are capable of utilizing two different chemical languages: N-acyl homoserine lactones (AHLs) and cis-2-unsaturated fatty acids. Here we summarize the current knowledge of the underlying molecular architectures of these communication systems, showing how they are interlinked and discussing how they regulate overlapping as well as specific sets of genes. A particular focus is laid on the role of these signaling systems in the formation of biofilms, which are believed to be highly important for chronic infections. We review genes that have been implicated in the sessile lifestyle of this group of bacteria. The new emerging role of the intracellular second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) as a downstream regulator of the fatty acid signaling cascade and as a key factor in biofilm formation is also discussed.
Collapse
Affiliation(s)
- Angela Suppiger
- Department of Microbiology, University of Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Subramoni S, Sokol PA. Quorum sensing systems influence Burkholderia cenocepacia virulence. Future Microbiol 2013; 7:1373-87. [PMID: 23231487 DOI: 10.2217/fmb.12.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Burkholderia cepacia complex strains communicate using N-acyl homoserine lactones and BDSF-dependent quorum sensing (QS) systems. Burkholderia cenocepacia QS systems include CepIR, CciIR, CepR2 and BDSF. Analysis of CepR, CciIR, CepR2 and RpfF (BDSF synthase) QS regulons revealed that these QS systems both independently regulate and coregulate many target genes, often in an opposing manner. The role of QS and several QS-regulated genes in virulence has been determined using vertebrate, invertebrate and plant infection models. Virulence phenotypes are strain and model dependent, suggesting that different QS-regulated genes are important depending on the strain and type of infection. QS inhibitors in combination with antibiotics can reduce biofilm formation and virulence in infection models.
Collapse
Affiliation(s)
- Sujatha Subramoni
- Department of Microbiology, Immunology & Infectious Diseases, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
13
|
Chapalain A, Vial L, Laprade N, Dekimpe V, Perreault J, Déziel E. Identification of quorum sensing-controlled genes in Burkholderia ambifaria. Microbiologyopen 2013; 2:226-42. [PMID: 23382083 PMCID: PMC3633348 DOI: 10.1002/mbo3.67] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/18/2012] [Accepted: 12/26/2012] [Indexed: 01/23/2023] Open
Abstract
The Burkholderia cepacia complex (Bcc) comprises strains with a virulence potential toward immunocompromised patients as well as plant growth-promoting rhizobacteria (PGPR). Owing to the link between quorum sensing (QS) and virulence, most studies among Bcc species have been directed toward QS of pathogenic bacteria. We have investigated the QS of B. ambifaria, a PGPR only infrequently recovered from patients. The cepI gene, responsible for the synthesis of the main signaling molecule N-octanoylhomoserine lactone (C8 -HSL), was inactivated. Phenotypes of the B. ambifaria cepI mutant we observed, such as increased production of siderophores and decreased proteolytic and antifungal activities, are in agreement with those of other Bcc cepI mutants. The cepI mutant was then used as background strain for a whole-genome transposon-insertion mutagenesis strategy, allowing the identification of 20 QS-controlled genes, corresponding to 17 loci. The main functions identified are linked to antifungal and antimicrobial properties, as we have identified QS-controlled genes implicated in the production of pyrrolnitrin, burkholdines (occidiofungin-like molecules), and enacyloxins. This study provides insights in the QS-regulated functions of a PGPR, which could lead to beneficial potential biotechnological applications.
Collapse
Affiliation(s)
- Annelise Chapalain
- INRS-Institut Armand-Frappier, 531 bd des Prairies, Laval, Quebec H7V 1B7, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Aubert DF, O'Grady EP, Hamad MA, Sokol PA, Valvano MA. The Burkholderia cenocepacia sensor kinase hybrid AtsR is a global regulator modulating quorum-sensing signalling. Environ Microbiol 2012; 15:372-85. [PMID: 22830644 DOI: 10.1111/j.1462-2920.2012.02828.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Burkholderia cenocepacia is commonly found in the environment and also as an important opportunistic pathogen infecting patients with cystic fibrosis. Successful infection by this bacterium requires coordinated expression of virulence factors, which is achieved through different quorum sensing (QS) regulatory systems. Biofilm formation and Type 6 secretion system (T6SS) expression in B. cenocepacia K56-2 are positively regulated by QS and negatively regulated by the sensor kinase hybrid AtsR. This study reveals that in addition to affecting biofilm and T6SS activity, the deletion of atsR in B. cenocepacia leads to overproduction of other QS-regulated virulence determinants including proteases and swarming motility. Expression of the QS genes, cepIR and cciIR, was upregulated in the ΔatsR mutant and resulted in early and increased N-acylhomoserine lactone (AHL) production, suggesting that AtsR plays a role in controlling the timing and fine-tuning of virulence gene expression by modulating QS signalling. Furthermore, a ΔatsRΔcepIΔcciI mutant could partially upregulate the same virulence determinants indicating that AtsR also modulates the expression of virulence genes by a second mechanism, independently of any AHL production. Together, our results strongly suggest that AtsR is a global virulence regulator in B. cenocepacia.
Collapse
Affiliation(s)
- Daniel F Aubert
- Centre for Human Immunology, Department of Microbiology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
15
|
Singh BN, Singh HB, Singh A, Singh BR, Mishra A, Nautiyal CS. Lagerstroemia speciosa fruit extract modulates quorum sensing-controlled virulence factor production and biofilm formation in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2011; 158:529-538. [PMID: 22117007 DOI: 10.1099/mic.0.052985-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lagerstroemia speciosa (Lythraceae) is a south-east Asian tree more commonly known as 'Jarul'. Research on health benefits suggests that the L. speciosa plant contains phytomolecules that may have antioxidant, anti-diabetic and anti-obesity properties. However, antimicrobial activities have not been reported for this plant. The ability of L. speciosa fruit extract (LSFE) to antagonize cell-to-cell communication, expression of virulence genes and factors, and biofilm formation was evaluated in Pseudomonas aeruginosa strain PAO1. Our results suggested that LSFE caused downregulation of quorum sensing (QS)-related genes (las and rhl) and their respective signalling molecules, N-acylhomoserine lactones, without affecting the growth of P. aeruginosa PAO1. Significant inhibition of virulence factors: LasA protease, LasB elastase, and pyoverdin production, was also recorded. Application of LSFE to P. aeruginosa PAO1 biofilms increased bacterial susceptibility to tobramycin. These data suggest a possible role for quorum-quenching mechanisms unrelated to static or cidal effects, and also suggest that L. speciosa could serve as a cost-effective source in the development of new QS-based antibacterial drugs.
Collapse
Affiliation(s)
- Brahma N Singh
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, The University of Kansas Medical Center, The University of Kansas, Kansas City, 66160 KS, USA
| | - H B Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-211 005, India
| | - Akanksha Singh
- Department of Botany, Faculty of Sciences, Banaras Hindu University, Varanasi-211 005, India
| | - Braj R Singh
- DNA Research Chair, Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Aradhana Mishra
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, India
| | - C S Nautiyal
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, India
| |
Collapse
|
16
|
Affiliation(s)
- Mair E A Churchill
- Department of Pharmacology and Program in Structural Biology and Biophysics, The University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
17
|
McKeon SA, Nguyen DT, Viteri DF, Zlosnik JEA, Sokol PA. Functional quorum sensing systems are maintained during chronic Burkholderia cepacia complex infections in patients with cystic fibrosis. J Infect Dis 2010; 203:383-92. [PMID: 21208930 DOI: 10.1093/infdis/jiq054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Quorum sensing (QS) contributes to the virulence of Pseudomonas aeruginosa and Burkholderia cepacia complex lung infections. P. aeruginosa QS mutants are frequently isolated from patients with cystic fibrosis. The objective of this study was to determine whether similar adaptations occur over time in B. cepacia complex isolates. Forty-five Burkholderia multivorans and Burkholderia cenocepacia sequential isolates from patients with cystic fibrosis were analyzed for N-acyl-homoserine lactone activity. All but one isolate produced N-acyl-homoserine lactones. The B. cenocepacia N-acyl-homoserine lactone-negative isolate contained mutations in cepR and cciR. Growth competition assays were performed that compared B. cenocepacia clinical and laboratory defined wild-type and QS mutants. Survival of the laboratory wild-type and QS mutants varied, dependent on the mutation. The clinical wild-type isolate demonstrated a growth advantage over its QS mutant. These data suggest that there is a selective advantage for strains with QS systems and that QS mutations do not occur at a high frequency in B. cepacia complex isolates.
Collapse
Affiliation(s)
- Suzanne A McKeon
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
18
|
The Burkholderia cenocepacia LysR-type transcriptional regulator ShvR influences expression of quorum-sensing, protease, type II secretion, and afc genes. J Bacteriol 2010; 193:163-76. [PMID: 20971902 DOI: 10.1128/jb.00852-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia is a significant opportunistic pathogen in individuals with cystic fibrosis. ShvR, a LysR-type transcriptional regulator, has previously been shown to influence colony morphology, biofilm formation, virulence in plant and animal infection models, and some quorum-sensing-dependent phenotypes. In the present study, it was shown that ShvR negatively regulates its own expression, as is typical for LysR-type regulators. The production of quorum-sensing signal molecules was detected earlier in growth in the shvR mutant than in the wild type, and ShvR repressed expression of the quorum-sensing regulatory genes cepIR and cciIR. Microarray analysis and transcriptional fusions revealed that ShvR regulated over 1,000 genes, including the zinc metalloproteases zmpA and zmpB. The shvR mutant displayed increased gene expression of the type II secretion system and significantly increased protease and lipase activities. Both ShvR and CepR influence expression of a 24-kb genomic region adjacent to shvR that includes the afcA and afcC operons, required for the production of an antifungal agent; however, the reduction in expression was substantially greater in the shvR mutant than in the cepR mutant. Only the shvR mutation resulted in reduced antifungal activity against Rhizoctonia solani. ShvR, but not CepR, was shown to directly regulate expression of the afcA and afcC promoters. In summary, ShvR was determined to have a significant influence on the expression of quorum-sensing, protease, lipase, type II secretion, and afc genes.
Collapse
|
19
|
Coenye T. Social interactions in the Burkholderia cepacia complex: biofilms and quorum sensing. Future Microbiol 2010; 5:1087-99. [DOI: 10.2217/fmb.10.68] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Burkholderia cepacia complex bacteria are opportunistic pathogens that cause respiratory tract infections in susceptible patients, mainly people with cystic fibrosis. There is convincing evidence that B. cepacia complex bacteria can form biofilms, not only on abiotic surfaces (e.g., glass and plastics), but also on biotic surfaces such as epithelial cells, leading to the suggestion that biofilm formation plays a key role in persistent infection of cystic fibrosis lungs. This article presents an overview of the molecular mechanisms involved in B. cepacia complex biofilm formation, the increased resistance of sessile B. cepacia complex cells and the role of quorum sensing in B. cepacia complex biofilm formation.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium
| |
Collapse
|
20
|
Differential modulation of Burkholderia cenocepacia virulence and energy metabolism by the quorum-sensing signal BDSF and its synthase. J Bacteriol 2009; 191:7270-8. [PMID: 19801414 DOI: 10.1128/jb.00681-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia produces the molecule cis-2-dodecenoic acid (BDSF), which was previously shown to play a role in antagonism against the fungal pathogen Candida albicans by interfering with its morphological transition. In this study, we show that production of BDSF is under stringent transcriptional control and the molecule accumulates in a cell density-dependent manner, typically found with quorum-sensing (QS) signals. B. cenocepacia mutant strain J2315 with a deleted Bcam0581 gene, which encodes an enzyme essential for BDSF production, exhibited a growth defect in minimal medium but not in rich medium, decreased virulence gene expression, and attenuated virulence in a zebrafish infection model. Exogenous addition of BDSF to the mutant rescues virulence gene expression but fails to restore its growth defect in minimal medium. We show that Bcam0581, but not BDSF, is associated with B. cenocepacia ATP biogenesis. We also provide evidence that some of the BDSF-regulated genes are also controlled by the acyl-homoserine-lactone-dependent QS system and are thus coregulated by two cell-to-cell signaling systems. These data demonstrate that in addition to the role in cross-kingdom signal interference, BDSF and its synthase are also important for the virulence and physiology of B. cenocepacia.
Collapse
|
21
|
A Burkholderia cenocepacia orphan LuxR homolog is involved in quorum-sensing regulation. J Bacteriol 2009; 191:2447-60. [PMID: 19201791 DOI: 10.1128/jb.01746-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Burkholderia cenocepacia utilizes quorum sensing to control gene expression, including the expression of genes involved in virulence. In addition to CepR and CciR, a third LuxR homolog, CepR2, was found to regulate gene expression and virulence factor production. All B. cenocepacia strains examined contained this orphan LuxR homolog, which was not associated with an adjacent N-acyl-homoserine lactone synthase gene. Expression of cepR2 was negatively autoregulated and was negatively regulated by CciR in strain K56-2. Microarray analysis and quantitative reverse transcription-PCR determined that CepR2 did not influence expression of cepIR or cciIR. However, in strain K56-2, CepR2 negatively regulated expression of several known quorum-sensing-controlled genes, including genes encoding zinc metalloproteases. CepR2 exerted positive and negative regulation on genes on three chromosomes, including strong negative regulation of a gene cluster located adjacent to cepR2. In strain H111, which lacks the CciIR quorum-sensing system, CepR2 positively regulated pyochelin production by controlling transcription of one of the operons required for the biosynthesis of the siderophore in an N-acyl-homoserine lactone-independent manner. CepR2 activation of a luxI promoter was demonstrated in a heterologous Escherichia coli host, providing further evidence that CepR2 can function in the absence of signaling molecules. This study demonstrates that the orphan LuxR homolog CepR2 contributes to the quorum-sensing regulatory network in two distinct strains of B. cenocepacia.
Collapse
|
22
|
Van Nostrand JD, Arthur JM, Kilpatrick LE, Neely BA, Bertsch PM, Morris PJ. Changes in protein expression in Burkholderia vietnamiensis PR1 301 at pH 5 and 7 with and without nickel. MICROBIOLOGY-SGM 2009; 154:3813-3824. [PMID: 19047749 DOI: 10.1099/mic.0.2008/017178-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia vietnamiensis PR1(301) (PR1) exhibits pH-dependent nickel (Ni) tolerance, with lower Ni toxicity observed at pH 5 than at pH 7. The Ni tolerance mechanism in PR1 is currently unknown, and traditional mechanisms of Ni resistance do not appear to be present. Therefore, 2D gel electrophoresis was used to examine changes in protein expression in PR1 with and without Ni (3.4 mM) at pH 5 and 7. Proteins with both a statistically significant and at least a twofold difference in expression level between conditions (pH, Ni) were selected and identified using MALDI-TOF-MS or LC-MS. Results showed increased expression of proteins involved in cell shape and membrane composition at pH 5 compared with pH 7. Scanning electron microscopy indicated elongated cells at pH 5 and 6 compared with pH 7 in the absence of Ni. Fatty acid methyl ester analysis showed a statistically significant difference in the percentages of long- and short-chain fatty acids at pH 5 and 7. These findings suggest that changes in membrane structure and function may be involved in the ability of PR1 to grow at higher concentrations of Ni at pH 5 than at pH 7.
Collapse
Affiliation(s)
- Joy D Van Nostrand
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 221 Fort Johnson Rd, Charleston, SC 29412, USA
| | - John M Arthur
- Department of Medicine, Medical University of South Carolina, PO Box 250623, Charleston, SC 29425, USA
| | - Lisa E Kilpatrick
- NIST, Hollings Marine Laboratory, 331 Fort Johnson Rd, Charleston, SC 29412, USA
| | - Benjamin A Neely
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 221 Fort Johnson Rd, Charleston, SC 29412, USA
| | - Paul M Bertsch
- University of Kentucky, Department of Plant and Soil Sciences, 1405 Veterans Drive, Lexington, KY 40546, USA.,Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 221 Fort Johnson Rd, Charleston, SC 29412, USA
| | - Pamela J Morris
- National Ocean Service, Hollings Marine Laboratory, 331 Fort Johnson Rd, Charleston, SC 29412, USA.,Department of Cell Biology and Anatomy, Medical University of South Carolina, PO 173 Ashley Avenue, Charleston, SC 29425, USA.,Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 221 Fort Johnson Rd, Charleston, SC 29412, USA
| |
Collapse
|
23
|
De Soyza A, Silipo A, Lanzetta R, Govan JR, Molinaro A. Chemical and biological features of Burkholderia cepacia complex lipopolysaccharides. Innate Immun 2008; 14:127-44. [PMID: 18562572 DOI: 10.1177/1753425908093984] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Burkholderia cepacia complex comprises 10 closely related Gram-negative organisms all of which appear capable of causing disease in humans. These organisms appear of particular relevance to patients with cystic fibrosis. Lipopolysaccharide (LPS) is an important virulence determinant in Gram-negative pathogens. In this review, we highlight important data within the field commenting on LPS/lipid A structure-to-function relationships and cytokine induction capacity of Burkholderia strains studied so far.
Collapse
Affiliation(s)
- Anthony De Soyza
- Transplantation and Immunobiology Group, Institute of Cellular Medicine, Newcastle University and The Freeman Hospital, Newcastle-upon-Tyne, UK.
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Boon C, Deng Y, Wang LH, He Y, Xu JL, Fan Y, Pan SQ, Zhang LH. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME JOURNAL 2007; 2:27-36. [PMID: 18049456 DOI: 10.1038/ismej.2007.76] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In addition to producing lethal antibiotics, microorganisms may also use a new form of antagonistic mechanism in which signal molecules are exported to influence the gene expression and hence the ecological competence of their competitors. We report here the isolation and characterization of a novel signaling molecule, cis-2-dodecenoic acid (BDSF), from Burkholderia cenocepacia. BDSF is structurally similar to the diffusible signal factor (DSF) that is produced by the RpfF enzyme of Xanthomonas campestris. Deletion analysis demonstrated that Bcam0581, which encodes an RpfF homologue, was essential for BDSF production. The gene is highly conserved and widespread in the Burkholderia cepacia complex. Exogenous addition of BDSF restored the biofilm and extracellular polysaccharide production phenotypes of Xanthomonas campestris pv. campestris DSF-deficient mutants, highlighting its potential role in inter-species signaling. Further analyses showed that Candida albicans germ tube formation was strongly inhibited by either coculture with B. cenocepacia or by exogenous addition of physiological relevant levels of BDSF, whereas deletion of Bcam0581 abrogated the inhibitory ability of the bacterial pathogen. As B. cenocepacia and C. albicans are frequently encountered human pathogens, identification of the BDSF signal and its activity thus provides a new insight into the molecular grounds of their antagonistic interactions whose importance to microbial ecology and pathogenesis is now becoming evident.
Collapse
Affiliation(s)
- Calvin Boon
- Institute of Molecular and Cell Biology, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sokol PA, Malott RJ, Riedel K, Eberl L. Communication systems in the genus Burkholderia: global regulators and targets for novel antipathogenic drugs. Future Microbiol 2007; 2:555-63. [PMID: 17927476 DOI: 10.2217/17460913.2.5.555] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The genus Burkholderia not only contains the primary pathogens Burkholderia pseudomallei and Burkholderia mallei but also several species that have emerged as opportunistic pathogens in persons suffering from cystic fibrosis or chronic granulomatous disease and immunocompromised individuals. Burkholderia species utilize quorum-sensing (QS) systems that rely on N-acyl-homoserine lactone (AHL) signal molecules to express virulence factors and other functions in a population-density-dependent manner. Most Burkholderia species employ the CepIR QS system, which relies on N-octanoyl-homoserine lactone. However, some strains harbour multiple QS systems and produce numerous AHLs. QS systems have been demonstrated to be essential for full virulence in various infection models and, thus, these regulatory systems represent attractive targets for the development of novel therapeutics.
Collapse
Affiliation(s)
- Pamela A Sokol
- University of Calgary, Department of Microbiology and Infectious Diseases, Faculty of Medicine, 3330 Hospital Dr., NW Calgary, Alberta T2N 4N1, Canada.
| | | | | | | |
Collapse
|
27
|
Zhang L, Jia Y, Wang L, Fang R. A proline iminopeptidase gene upregulatedin plantaby a LuxR homologue is essential for pathogenicity ofXanthomonas campestrispv.campestris. Mol Microbiol 2007; 65:121-36. [PMID: 17581124 DOI: 10.1111/j.1365-2958.2007.05775.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Expression of bacterial genes is often regulated by complex mechanisms, some of which involve host cues. Analysis of the Xanthomonas campestris pv. campestris (Xcc) genome sequence revealed the presence of an xccR/pip locus. The upstream gene xccR is a luxR homologue, while pip codes for a proline iminopeptidase. A lux box-like element, named luxXc box, locates in the pip promoter region. In this work, we show that disruption of either xccR or pip resulted in significantly attenuated virulence of Xcc. Under medium culture conditions, the pip expression was significantly enhanced by overexpression of XccR and the luxXc box is necessary for this enhancement. We further show that expression of a pip promoter-gusA fusion either inserted in the bacterial chromosome or resided in a plasmid was markedly induced when the bacteria grew in planta. Disruption of either xccR or the luxXc box abolished the in planta induction, while disruption of pip enhanced the induction. Taken together, these data demonstrate that pip is indispensable for Xcc virulence and suggest a model for Xcc-host interaction in which the pathogen senses some host factor(s) to activate XccR that subsequently interacts with the luxXc box to induce the expression of pip for facilitating Xcc infection.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
28
|
Malott RJ, Sokol PA. Expression of the bviIR and cepIR quorum-sensing systems of Burkholderia vietnamiensis. J Bacteriol 2007; 189:3006-16. [PMID: 17277056 PMCID: PMC1855837 DOI: 10.1128/jb.01544-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia vietnamiensis has both the cepIR quorum-sensing system that is widely distributed among the Burkholderia cepacia complex (BCC) and the bviIR system. Comparison of the expression of cepI, cepR, bviI, and bviR-luxCDABE fusions in B. vietnamiensis G4 and the G4 cepR and bviR mutants determined that the expression of bviI requires both a functional cognate regulator, BviR, and functional CepR. The cepIR system, however, is not regulated by BviR. Unlike the cepIR genes in other BCC species, the cepIR genes are not autoregulated in G4. N-Acyl-homoserine lactone (AHL) production profiles in G4 cepI, cepR, bviI, and bviR mutants confirmed the regulatory organization of the G4 quorum-sensing systems. The regulatory network in strain PC259 is similar to that in G4, except that CepR positively regulates cepI and negatively regulates cepR. AHL production and the bviI expression levels in seven B. vietnamiensis isolates were compared. All strains produced N-octanoyl-homoserine lactone and N-hexanoyl-homoserine lactone; however, only one of four clinical strains but all three environmental strains produced the BviI synthase product, N-decanoyl-homoserine lactone (DHL). The three strains that did not produce DHL expressed bviR but not bviI. Heterologous expression of bviR restored DHL production in these strains. The bviIR loci of the non-DHL-producing strains were sequenced to confirm that bviR encodes a functional transcriptional regulator. Lack of expression of G4 bviI in these three strains indicated that an additional regulatory element may be involved in the regulation of bviIR expression in certain strains of B. vietnamiensis.
Collapse
Affiliation(s)
- Rebecca J Malott
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, 3330 Hospital Dr. N.W., Calgary, Alberta, Canada
| | | |
Collapse
|
29
|
Identification of potential CepR regulated genes using a cep box motif-based search of the Burkholderia cenocepacia genome. BMC Microbiol 2006; 6:104. [PMID: 17187664 PMCID: PMC1766932 DOI: 10.1186/1471-2180-6-104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 12/22/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Burkholderia cenocepacia CepIR quorum sensing system has been shown to positively and negatively regulate genes involved in siderophore production, protease expression, motility, biofilm formation and virulence. In this study, two approaches were used to identify genes regulated by the CepIR quorum sensing system. Transposon mutagenesis was used to create lacZ promoter fusions in a cepI mutant that were screened for differential expression in the presence of N-acylhomoserine lactones. A bioinformatics approach was used to screen the B. cenocepacia J2315 genome for CepR binding site motifs. RESULTS Four positively regulated and two negatively regulated genes were identified by transposon mutagenesis including genes potentially involved in iron transport and virulence. The promoter regions of selected CepR regulated genes and site directed mutagenesis of the cepI promoter were used to predict a consensus cep box sequence for CepR binding. The first-generation consensus sequence for the cep box was used to identify putative cep boxes in the genome sequence. Eight potential CepR regulated genes were chosen and the expression of their promoters analyzed. Six of the eight were shown to be regulated by CepR. A second generation motif was created from the promoters of these six genes in combination with the promoters of cepI, zmpA, and two of the CepR regulated genes identified by transposon mutagenesis. A search of the B. cenocepacia J2315 genome with the new motif identified 55 cep boxes in 65 promoter regions that may be regulated by CepR. CONCLUSION Using transposon mutagenesis and bioinformatics expression of twelve new genes have been determined to be regulated by the CepIR quorum sensing system. A cep box consensus sequence has been developed based on the predicted cep boxes of ten CepR regulated genes. This consensus cep box has led to the identification of over 50 new genes potentially regulated by the CepIR quorum sensing system.
Collapse
|
30
|
Subsin B, Chambers CE, Visser MB, Sokol PA. Identification of genes regulated by the cepIR quorum-sensing system in Burkholderia cenocepacia by high-throughput screening of a random promoter library. J Bacteriol 2006; 189:968-79. [PMID: 17122351 PMCID: PMC1797291 DOI: 10.1128/jb.01201-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Burkholderia cenocepacia cepIR quorum-sensing system regulates expression of extracellular proteases, chitinase, and genes involved in ornibactin biosynthesis, biofilm formation, and motility. In a genome-wide screen we identified cepIR-regulated genes by screening a random promoter library of B. cenocepacia K56-2 constructed in a luminescence reporter detection plasmid for differential expression in response to N-octanoyl-l-homoserine lactone (OHL). Eighty-nine clones were identified; in 58 of these clones expression was positively regulated by cepIR, and in 31 expression was negatively regulated by cepIR. The expression profiles of the 89 promoter clones were compared in the cepI mutant K56-dI2 in medium supplemented with 30 pM OHL and K56-2 to confirm that the presence of OHL restored expression to wild-type levels. To validate the promoter library observations and to determine the effect of a cepR mutation on expression of selected genes, the mRNA levels of nine genes whose promoters were predicted to be regulated by cepR were quantitated by quantitative reverse transcription-PCR in the wild type and cepI and cepR mutants. The expression levels of all nine genes were similar in the cepI and cepR mutants and consistent with the promoter-lux reporter activity. The expression of four selected cepIR-regulated gene promoters was examined in a cciIR mutant, and two of these promoters were also regulated by cciIR. This study extends our understanding of genes whose expression is influenced by cepIR and indicates the global regulatory effect of the cepIR system in B. cenocepacia.
Collapse
Affiliation(s)
- Benchamas Subsin
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, 3330 Hospital Dr. NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
31
|
Vial L, Cuny C, Gluchoff-Fiasson K, Comte G, Oger PM, Faure D, Dessaux Y, Bally R, Wisniewski-Dyé F. N-acyl-homoserine lactone-mediated quorum-sensing in Azospirillum: an exception rather than a rule. FEMS Microbiol Ecol 2006; 58:155-68. [PMID: 17064258 DOI: 10.1111/j.1574-6941.2006.00153.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Forty Azospirillum strains were tested for their ability to synthesize N-acyl-homoserine lactones (AHLs). AHL production was detected for four strains belonging to the lipoferum species and isolated from a rice rhizosphere. AHL molecules were structurally identified for two strains: Azospirillum lipoferum TVV3 produces 3O,C(8)-HSL (N-3-oxo-octanoyl-homoserine-lactone), C(8)-HSL (N-3-octanoyl-homoserine-lactone), 3O,C(10)-HSL (N-3-oxo-decanoyl-homoserine-lactone), 3OH,C(10)-HSL (N-3-hydroxy-decanoyl-homoserine-lactone) and C(10)-HSL (N-3-decanoyl-homoserine-lactone), whereas A. lipoferum B518 produced 3O,C(6)-HSL (N-3-oxo-hexanoyl-homoserine-lactone), C(6)-HSL (N-3-hexanoyl-homoserine-lactone), 3O,C(8)-HSL, 3OH,C(8)-HSL and C(8)-HSL. Genes involved in AHL production were characterized for A. lipoferum TVV3 by generating a genomic library and complementing an AHL-deficient strain with sensor capabilities. Those genes, designated alpI and alpR, were found to belong to the luxI and luxR families, respectively. When cloned in a suitable heterologous host, alpI and alpR could direct the synthesis of the five cognate AHLs present in A. lipoferum TVV3. These two adjacent genes were found to be located on a 85 kb plasmid. Southern hybridization experiments with probes alpI/R indicated that genes involved in AHL production in the three other AHL-producing strains were not closely related to alpI and alpR. This study demonstrates that AHL-based quorum-sensing is not widespread among the genus Azospirillum and could be found only in some A. lipoferum strains.
Collapse
Affiliation(s)
- Ludovic Vial
- UMR-CNRS 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kooi C, Subsin B, Chen R, Pohorelic B, Sokol PA. Burkholderia cenocepacia ZmpB is a broad-specificity zinc metalloprotease involved in virulence. Infect Immun 2006; 74:4083-93. [PMID: 16790782 PMCID: PMC1489746 DOI: 10.1128/iai.00297-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous studies we characterized the Burkholderia cenocepacia ZmpA zinc metalloprotease. In this study, we determined that B. cenocepacia has an additional metalloprotease, which we designated ZmpB. The zmpB gene is present in the same species as zmpA and was detected in B. cepacia, B. cenocepacia, B. stabilis, B. ambifaria, and B. pyrrocinia but was absent from B. multivorans, B. vietnamiensis, B. dolosa, and B. anthina. The zmpB gene was expressed, and ZmpB was purified from Escherichia coli by using the pPROEXHTa His(6) Tag expression system. ZmpB has a predicted preproenzyme structure typical of thermolysin-like proteases and is distantly related to Bacillus cereus bacillolysin. ZmpB was expressed as a 63-kDa preproenzyme precursor that was autocatalytically cleaved into mature ZmpB (35 kDa) and a 27-kDa prepropeptide. EDTA, 1,10-phenanthroline, and Zn(2+) cations inhibited ZmpB enzyme activity, indicating that it is a metalloprotease. ZmpB had proteolytic activity against alpha-1 proteinase inhibitor, alpha(2)-macrogobulin, type IV collagen, fibronectin, lactoferrin, transferrin, and immunoglobulins. B. cenocepacia zmpB and zmpA zmpB mutants had no proteolytic activity against casein and were less virulent in a rat agar bead chronic infection model, indicating that zmpB is involved in B. cenocepacia virulence. Expression of zmpB was regulated by both the CepIR and CciIR quorum-sensing systems.
Collapse
Affiliation(s)
- C Kooi
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada, USA
| | | | | | | | | |
Collapse
|
33
|
Adonizio AL, Downum K, Bennett BC, Mathee K. Anti-quorum sensing activity of medicinal plants in southern Florida. JOURNAL OF ETHNOPHARMACOLOGY 2006; 105:427-35. [PMID: 16406418 DOI: 10.1016/j.jep.2005.11.025] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 11/22/2005] [Accepted: 11/23/2005] [Indexed: 05/06/2023]
Abstract
Bacterial intercellular communication, or quorum sensing (QS), controls the pathogenesis of many medically important organisms. Anti-QS compounds are known to exist in marine algae and have the ability to attenuate bacterial pathogenicity. We hypothesized that terrestrial plants traditionally used as medicines may also produce anti-QS compounds. To test this hypothesis, 50 medicinal plants from southern Florida were screened for anti-QS activity using two biomonitor strains, Chromobacterium violaceum and Agrobacterium tumefaciens. Of these plants, six showed QS inhibition: Conocarpus erectus L. (Combretaceae), Chamaecyce hypericifolia (L.) Millsp. (Euphorbiaceae), Callistemon viminalis (Sol. ex Gaertn.) G. Don (Myrtaceae), Bucida burceras L. (Combretaceae), Tetrazygia bicolor (Mill.) Cogn. (Melastomataceae), and Quercus virginiana Mill. (Fagaceae). This study introduces not only a new mode of action and possible validation for traditional plant use, but also a potentially new therapeutic direction for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Allison L Adonizio
- Department of Biological Sciences, Center for Ethnobiology and Natural Products, CENaP, Florida International University, 11200 SW 8th Street, University Park, Miami, 33199, USA
| | | | | | | |
Collapse
|
34
|
Wopperer J, Cardona ST, Huber B, Jacobi CA, Valvano MA, Eberl L. A quorum-quenching approach to investigate the conservation of quorum-sensing-regulated functions within the Burkholderia cepacia complex. Appl Environ Microbiol 2006; 72:1579-87. [PMID: 16461713 PMCID: PMC1392939 DOI: 10.1128/aem.72.2.1579-1587.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Taxonomic studies of the past few years have shown that the Burkholderia cepacia complex, a heterogeneous group of B. cepacia-like organisms, consists of at least nine species. B. cepacia complex strains are ubiquitously distributed in nature and have been used for biocontrol, bioremediation, and plant growth promotion purposes. At the same time, B. cepacia complex strains have emerged as important opportunistic pathogens of humans, particularly those with cystic fibrosis. All B. cepacia complex species investigated thus far use quorum-sensing (QS) systems that rely on N-acylhomoserine lactone (AHL) signal molecules to express certain functions, including the production of extracellular proteases, swarming motility, biofilm formation, and pathogenicity, in a population-density-dependent manner. In this study we constructed a broad-host-range plasmid that allowed the heterologous expression of the Bacillus sp. strain 240B1 AiiA lactonase, which hydrolyzes the lactone ring of various AHL signal molecules, in all described B. cepacia complex species. We show that expression of AiiA abolished or greatly reduced the accumulation of AHL molecules in the culture supernatants of all tested B. cepacia complex strains. Phenotypic characterization of wild-type and transgenic strains revealed that protease production, swarming motility, biofilm formation, and Caenorhabditis elegans killing efficiency was regulated by AHL in the large majority of strains investigated.
Collapse
Affiliation(s)
- Julia Wopperer
- Department of Microbiology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The genus Burkholderia contains over 30 species, many of which are important human pathogens. In addition to the primary pathogens Burkholderia pseudomallei and Burkholderia mallei, several species have emerged as opportunistic pathogens in persons suffering from cystic fibrosis (CF) and immunocompromised individuals. All Burkholderia species investigated so far employ quorum-sensing (QS) systems that rely on N-acyl-homoserine lactone (AHL) signal molecules to express certain phenotypic traits in a population density-dependent manner. Whilst many Burkholderia strains only contain the CepI/CepR QS system, which relies on C8-HSL, some strains, in particular isolates of B. pseudomallei and B. mallei, harbour multiple LuxI/LuxR homologues and produce numerous AHL signal molecules. Evidence has accumulated over the past few years that the QS systems operating in Burkholderia are crucial for full virulence in various animal models. However, only few QS-regulated functions required for virulence in the different infection models have so far been identified. Given the essential role of QS in the expression of pathogenic traits in Burkholderia these regulatory systems represent attractive targets for the development of novel therapeutics.
Collapse
Affiliation(s)
- Leo Eberl
- Department of Microbiology, Institute of Plant Biology, University Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland.
| |
Collapse
|
36
|
Riedel K, Köthe M, Kramer B, Saeb W, Gotschlich A, Ammendola A, Eberl L. Computer-aided design of agents that inhibit the cep quorum-sensing system of Burkholderia cenocepacia. Antimicrob Agents Chemother 2006; 50:318-23. [PMID: 16377703 PMCID: PMC1346811 DOI: 10.1128/aac.50.1.318-323.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent research has provided evidence that interference with bacterial cell-to-cell signaling is a promising strategy for the development of novel antimicrobial agents. Here we report on the computer-aided design of novel compounds that specifically inhibit an N-acyl-homoserine lactone-dependent communication system that is widespread among members of the genus Burkholderia. This genus comprises more than 30 species, many of which are important pathogens of animals and humans. Over the past few years, several Burkholderia species, most notably Burkholderia cenocepacia, have emerged as important opportunistic pathogens causing severe pulmonary deterioration in persons with cystic fibrosis. As efficient treatment of Burkholderia infections is hampered by the inherent resistance of the organisms to a large range of antibiotics, novel strategies for battling these pathogens need to be developed. Here we show that compounds targeting the B. cenocepacia signaling system efficiently inhibit the expression of virulence factors and attenuate the pathogenicity of the organism.
Collapse
Affiliation(s)
- Kathrin Riedel
- Department of Microbiology, Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
37
|
Leveau JHJ, Gerards S, Fritsche K, Zondag G, van Veen JA. Genomic flank-sequencing of plasposon insertion sites for rapid identification of functional genes. J Microbiol Methods 2006; 66:276-85. [PMID: 16457898 DOI: 10.1016/j.mimet.2005.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 12/02/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
Plasposons are modified mini-Tn5 transposons for random mutagenesis of Gram-negative bacteria. Their unique design allows for the rescue cloning and sequencing of DNA that flanks insertion sites in plasposon mutants. However, this process can be laborious and time-consuming, as it involves genomic DNA isolation, restriction endonuclease treatment, subsequent religation, transformation of religated DNA into an Escherichia coli host, and re-isolation as a plasmid, which is then used as a template in sequencing reactions with primers that read from the plasposon ends into the flanking DNA regions. We describe here a method that produces flanking DNA sequences directly from genomic DNA that is isolated from plasposon mutants. By eliminating the need for rescue cloning, our protocol dramatically reduces time and effort, typically by 2 to 3 working days, as well as costs associated with digestion, ligation, transformation, and plasmid isolation. Furthermore, it allows for a high-throughput automated approach to analysis of the plasposome, i.e. the collective set of plasposon insertion sites in a plasposon mutant library. We have tested the utility of genomic flank-sequencing on three plasposon mutants of the soil bacterium Collimonas fungivorans with abolished ability to degrade chitin.
Collapse
Affiliation(s)
- Johan H J Leveau
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Microbial Ecology, Boterhoeksestraat 48, 6666 GA Heteren, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Gingues S, Kooi C, Visser MB, Subsin B, Sokol PA. Distribution and expression of the ZmpA metalloprotease in the Burkholderia cepacia complex. J Bacteriol 2006; 187:8247-55. [PMID: 16321929 PMCID: PMC1316997 DOI: 10.1128/jb.187.24.8247-8255.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution of the metalloprotease gene zmpA was determined among strains of the Burkholderia cepacia complex (Bcc). The zmpA gene was present in B. cepacia, B. cenocepacia, B. stabilis, B. ambifaria and B. pyrrocinia but absent from B. multivorans, B. vietnamiensis, B. dolosa, and B. anthina. The presence of zmpA generally correlated with extracellular proteolytic activity with the exception of five strains, which had zmpA but had no detectable proteolytic activity when skim milk agar was used as a substrate (zmpA protease deficient). Western immunoblot experiments with anti-ZmpA antibodies suggest that the zmpA protease-deficient strains do not secrete or accumulate detectable ZmpA. Transcriptional zmpA::lacZ fusions were introduced in selected strains of the Bcc. zmpA::lacZ was expressed in all strains, but expression was generally lower in the zmpA protease-deficient strains than in the zmpA protease-proficient strains. Quantitative reverse transcriptase real-time PCR demonstrated that zmpA protease-deficient strains did express zmpA mRNA, although at various levels. ZmpA has previously been shown to be positively regulated by the CepIR quorum-sensing system. Addition of exogenous AHLs did not restore extracellular protease production to any of the zmpA protease-deficient strains; however, introduction of cepR in trans complemented protease activity in two of five strains. Extracellular proteolytic activity was restored by the presence of zmpA in trans in two of the five strains. These studies suggest that although some strains of the Bcc contain the zmpA gene, multiple factors may influence its expression.
Collapse
Affiliation(s)
- S Gingues
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary Health Sciences Centre, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
39
|
Weingart CL, White CE, Liu S, Chai Y, Cho H, Tsai CS, Wei Y, Delay NR, Gronquist MR, Eberhard A, Winans SC. Direct binding of the quorum sensing regulator CepR of Burkholderia cenocepacia to two target promoters in vitro. Mol Microbiol 2005; 57:452-67. [PMID: 15978077 DOI: 10.1111/j.1365-2958.2005.04656.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Burkholderia cenocepacia is an opportunistic human pathogen that can aggressively colonize the cystic fibrosis lung. This organism has a LuxR/LuxI-type quorum sensing system that enables cell-cell communication via exchange of acyl homoserine lactones (AHLs). The CepR and CepI proteins constitute a global regulatory system, controlling expression of at least 40 genes, including those controlling swarming motility and biofilm formation. In this study, we isolated seven lacZ fusions in a clinical isolate of B. cenocepacia that are inducible by octanoyl-HSL. Induction of all of these genes requires CepR. The cepI promoter was tested for induction by a set of 33 synthetic autoinducers and analogues, and was most strongly induced by long-chain AHLs lacking 3-oxo substitutions. Expression of this promoter was inhibited by high concentrations of three different autoinducers, each having six-carbon acyl chains. When CepR protein was overproduced in Escherichia coli, it accumulated in a soluble form in the presence of octanoyl-HSL, but accumulated only as insoluble inclusion bodies in its absence. Purified CepR-OHL complexes bound to specific DNA sequences at the cepI and aidA promoters with high specificity. These binding sites included a 16-nucleotide imperfect dyad symmetry. Both CepR binding sites are centred approximately 44 nucleotides upstream of the respective transcription start sites.
Collapse
|
40
|
Malott RJ, Baldwin A, Mahenthiralingam E, Sokol PA. Characterization of the cciIR quorum-sensing system in Burkholderia cenocepacia. Infect Immun 2005; 73:4982-92. [PMID: 16041013 PMCID: PMC1201253 DOI: 10.1128/iai.73.8.4982-4992.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several transmissible Burkholderia cenocepacia strains that infect multiple cystic fibrosis patients contain a genomic island designated as the cenocepacia island (cci). The cci contains a predicted N-acylhomoserine lactone (AHL) synthase gene, cciI, and a predicted response regulator gene, cciR. AHL production profiles indicated that CciI catalyzes the synthesis of N-hexanoyl-l-homoserine lactone and minor amounts of N-octanoyl-l-homoserine lactone. The cciI and cciR genes were found to be cotranscribed by reverse transcription-PCR analysis, and the expression of a cciIR::luxCDABE fusion in a cciR mutant suggested that the cciIR system negatively regulates its own expression. B. cenocepacia strains also have a cepIR quorum-sensing system. Expression of cepI::luxCDABE or cepR::luxCDABE fusions in a cciR mutant showed that CciR negatively regulates cepI but does not regulate cepR. Expression of the cciIR::luxCDABE fusion in a cepR mutant indicated that functional CepR is required for cciIR expression. Phylogenetic analysis suggested that the cciIR system was acquired by horizontal gene transfer from a distantly related organism and subsequently incorporated into the ancestral cepIR regulatory network. Mutations in cciI, cciR, cepI cciI, and cepR cciR were constructed in B. cenocepacia K56-2. The cciI mutant had greater protease activity and less swarming motility than the parent strain. The cciR mutant had less protease activity than the parent strain. The phenotypes of the cepI cciI and cepR cciR mutants were similar to cepI or cepR mutants, with less protease activity and swarming motility than the parent strain.
Collapse
Affiliation(s)
- Rebecca J Malott
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, 3330 Hospital Dr. N.W., Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
41
|
Chambers CE, Visser MB, Schwab U, Sokol PA. Identification of N-acylhomoserine lactones in mucopurulent respiratory secretions from cystic fibrosis patients. FEMS Microbiol Lett 2005; 244:297-304. [PMID: 15766782 DOI: 10.1016/j.femsle.2005.01.055] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2004] [Revised: 12/24/2004] [Accepted: 01/31/2005] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas aeruginosa and species of the Burkholderia cepacia complex are the primary bacterial pathogens contributing to lung disease in patients with cystic fibrosis. Quorum sensing systems using N-acyl homoserine lactone (AHL) signal molecules are involved in the regulation of a number of virulence factors in these species. Extracts of mucopurulent respiratory secretions from 13 cystic fibrosis patients infected with P. aeruginosa and/or strains of the B. cepacia complex were fractionated using reverse-phase fast pressure liquid chromatography and analyzed for the presence of AHLs using a traI-luxCDABE-based reporter that responds to AHLs with acyl chains ranging between 4 and 12 carbons. Using this assay system, a broad range of AHLs were detected and identified despite being present at low concentrations in limited sample volumes. N-(3-oxo-dodecanoyl)-l-homoserine lactone, N-(3-oxo-decanoyl)-l-homoserine lactone and N-octanoyl-l-homoserine lactone (OHL) were the AHLs most frequently identified. OHL and N-decanoyl-l-homoserine lactone were detected in nanomolar concentrations compared to picomolar amounts of the 3-oxo-derivatives of the AHLs identified.
Collapse
Affiliation(s)
- Catherine E Chambers
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alta., Canada T2N 4N1
| | | | | | | |
Collapse
|
42
|
Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, Van Elsas JD, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 2005; 55:1187-1192. [PMID: 15879253 DOI: 10.1099/ijs.0.63149-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, non-sporulating, rod-shaped, motile bacterium, with a single polar flagellum, designated strain PsJNT, was isolated from surface-sterilized onion roots. This isolate proved to be a highly effective plant-beneficial bacterium, and was able to establish rhizosphere and endophytic populations associated with various plants. Seven related strains were recovered from Dutch soils. Based on 16S rRNA gene sequence data, strain PsJNT and the Dutch strains were identified as representing a member of the genus Burkholderia, as they were closely related to Burkholderia fungorum (98·7 %) and Burkholderia phenazinium (98·5 %). Analysis of whole-cell protein profiles and DNA–DNA hybridization experiments confirmed that all eight strains belonged to a single species. Strain PsJNT had a DNA G+C content of 61·0 mol%. Only low levels of DNA–DNA hybridization to closely related species were found. Qualitative and quantitative differences in fatty acid composition between strain PsJNT and closely related species were identified. The predominant fatty acids in strain PsJNT were 16 : 0, 18 : 1ω7c and summed feature 3 (comprising 16 : 1ω7c and/or iso-15 : 0 2-OH). Isolate PsJNT showed high 1-aminocyclopropane-1-carboxylate deaminase activity and is therefore able to lower the ethylene level in a developing or stressed plant. Production of the quorum-sensing signal compound 3-hydroxy-C8-homoserine lactone was detected. Based on the results of this polyphasic taxonomic study, strain PsJNT and the seven Dutch isolates are considered to represent a single, novel species, for which the name Burkholderia phytofirmans sp. nov. is proposed. The type strain is strain PsJNT (=LMG 22146T=CCUG 49060T).
Collapse
Affiliation(s)
- A Sessitsch
- ARC Seibersdorf research GmbH, Department of Bioresources/Microbiology, A-2444 Seibersdorf, Austria
| | - T Coenye
- Laboratory of Microbiology, Universiteit Gent, Ledeganckstraat 35, B-9000 Gent, Belgium
| | - A V Sturz
- Prince Edward Island Department of Agriculture and Forestry, PO Box 1600, Charlottetown, PEI, Canada C1A 7N3
| | - P Vandamme
- Laboratory of Microbiology, Universiteit Gent, Ledeganckstraat 35, B-9000 Gent, Belgium
| | - E Ait Barka
- Université de Reims Champagne-Ardenne, UFR Sciences, URVVC, Laboratoire de Stress, Défenses et Reproduction des Plantes, BP 1039, F-51687 Reims Cedex 2, France
| | - J F Salles
- Plant Research International, Wageningen, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - J D Van Elsas
- Department of Microbial Ecology, Groningen University, Biological Center, PO Box 14, 9750 RA Haren, The Netherlands
| | - D Faure
- Institut des Sciences du Végétal, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
| | - B Reiter
- ARC Seibersdorf research GmbH, Department of Bioresources/Microbiology, A-2444 Seibersdorf, Austria
| | - B R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - G Wang-Pruski
- Department of Plant and Animal Sciences, Nova Scotia Agricultural College, PO Box 550, Truro, NS, Canada B2N 5E3
| | - J Nowak
- Department of Horticulture, Virginia Polytechnic Institute and State University, 0327-301 Saunders Hall, Blacksburg, VA 24060, USA
| |
Collapse
|
43
|
Huber B, Feldmann F, Köthe M, Vandamme P, Wopperer J, Riedel K, Eberl L. Identification of a novel virulence factor in Burkholderia cenocepacia H111 required for efficient slow killing of Caenorhabditis elegans. Infect Immun 2004; 72:7220-30. [PMID: 15557647 PMCID: PMC529107 DOI: 10.1128/iai.72.12.7220-7230.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia H111, which was isolated from a cystic fibrosis patient, employs a quorum-sensing (QS) system, encoded by cep, to control the expression of virulence factors as well as the formation of biofilms. The QS system is thought to ensure that pathogenic traits are expressed only when the bacterial population density is high enough to overwhelm the host before it is able to mount an efficient response. While the wild-type strain effectively kills the nematode Caenorhabditis elegans, the pathogenicity of mutants with defective quorum sensing is attenuated. To date, very little is known about the cep-regulated virulence factors required for nematode killing. Here we report the identification of a cep-regulated gene, whose predicted amino acid sequence is highly similar to the QS-regulated protein AidA of the plant pathogen Ralstonia solanacearum. By use of polyclonal antibodies directed against AidA, it is demonstrated that the protein is expressed in the late-exponential phase and accumulates during growth arrest. We show that B. cenocepacia H111 AidA is essential for slow killing of C. elegans but has little effect on fast killing, suggesting that the protein plays a role in the accumulation of the strain in the nematode gut. Thus, AidA appears to be required for establishing an infection-like process rather than acting as a toxin. Furthermore, evidence is provided that AidA is produced not only by B. cenocepacia but also by many other strains of the Burkholderia cepacia complex.
Collapse
Affiliation(s)
- Birgit Huber
- Department of Microbiology, Institute of Plant Biology, University Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
44
|
Hunt TA, Kooi C, Sokol PA, Valvano MA. Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. Infect Immun 2004; 72:4010-22. [PMID: 15213146 PMCID: PMC427415 DOI: 10.1128/iai.72.7.4010-4022.2004] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia (formerly Burkholderia cepacia complex genomovar III) causes chronic lung infections in patients with cystic fibrosis. In this work, we used a modified signature-tagged mutagenesis (STM) strategy for the isolation of B. cenocepacia mutants that cannot survive in vivo. Thirty-seven specialized plasposons, each carrying a unique oligonucleotide tag signature, were constructed and used to examine the survival of 2,627 B. cenocepacia transposon mutants, arranged in pools of 37 unique mutants, after a 10-day lung infection in rats by using the agar bead model. The recovered mutants were screened by real-time PCR, resulting in the identification of 260 mutants which presumably did not survive within the lungs. These mutants were repooled into smaller pools, and the infections were repeated. After a second screen, we isolated 102 mutants unable to survive in the rat model. The location of the transposon in each of these mutants was mapped within the B. cenocepacia chromosomes. We identified mutations in genes involved in cellular metabolism, global regulation, DNA replication and repair, and those encoding bacterial surface structures, including transmembrane proteins and cell surface polysaccharides. Also, we found 18 genes of unknown function, which are conserved in other bacteria. A subset of 12 representative mutants that were individually examined using the rat model in competition with the wild-type strain displayed reduced survival, confirming the predictive value of our STM screen. This study provides a blueprint to investigate at the molecular level the basis for survival and persistence of B. cenocepacia within the airways.
Collapse
Affiliation(s)
- Tracey A Hunt
- Department of Microbiology and Immunology, Dental Sciences Building, Rm. 3014, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
45
|
Ulrich RL, Hines HB, Parthasarathy N, Jeddeloh JA. Mutational analysis and biochemical characterization of the Burkholderia thailandensis DW503 quorum-sensing network. J Bacteriol 2004; 186:4350-60. [PMID: 15205437 PMCID: PMC421622 DOI: 10.1128/jb.186.13.4350-4360.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Numerous gram-negative bacteria communicate and regulate gene expression through a cell density-responsive mechanism termed quorum sensing (QS), which involves the synthesis and perception of diffusible N-acyl-homoserine lactones (AHL). In this study we genetically and physiologically characterized the Burkholderia thailandensis DW503 QS network. In silico analysis of the B. thailandensis genome revealed the presence of at least three AHL synthases (AHS) and five transcriptional regulators belonging to the LuxIR family of proteins. Mass spectrometry demonstrated that wild-type B. thailandensis synthesizes N-hexanoyl-homoserine lactone (C6-HSL), N-octanoyl-homoserine lactone (C8-HSL), and N-decanoyl-homoserine lactone (C10-HSL). Mutation of the btaI1 (luxI) AHS gene prevented accumulation of C8-HSL in culture supernatants, enhanced beta-hemolysis of sheep erythrocytes, increased lipase production, and altered colony morphology on swarming and twitching motility plates. Disruption of the btaI3 (luxI) AHS prevented biosynthesis of C6-HSL and increased lipase production and beta-hemolysis, whereas mutagenesis of the btaI2 (luxI) allele eliminated C10-HSL accumulation and reduced lipase production. Complementation of the btaI1 and btaI3 mutants fully restored the synthesis of C8-HSL and C6-HSL to parental levels. In contrast, mutagenesis of the btaR1, btaR3, btaR4, and btaR5 (luxR) transcriptional regulators had no effect on AHL accumulation, enhanced lipase production, and resulted in extensive beta-hemolysis on sheep blood agar plates. Furthermore, interruption of the btaI1, btaR1, and btaR3 genes altered colony morphology on twitching and swarming motility plates and induced pigmentation. Additionally, phenotypic microarray analysis indicated that QS in B. thailandensis both positively and negatively affects the metabolism of numerous substrates, including citric acid, formic acid, glucose 6-phosphate, capric acid, gamma-hydroxybutyric acid, and d-arabinose. These results demonstrate that mutagenesis of the B. thailandensis QS system affects various cellular processes, including lipase production, swarming and twitching motility, beta-hemolysis of sheep erythrocytes, and carbon metabolism and/or transport.
Collapse
Affiliation(s)
- Ricky L Ulrich
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702-5011, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
Communication among bacterial cells through quorum-sensing (QS) systems is used to regulate ecologically and medically important traits, including virulence to hosts. QS is widespread in bacteria; it has been demonstrated experimentally in diverse phylogenetic groups, and homologs to the implicated genes have been discovered in a large proportion of sequenced bacterial genomes. The widespread distribution of the underlying gene families (LuxI/R and LuxS) raises the questions of how often QS genes have been transferred among bacterial lineages and the extent to which genes in the same QS system exchange partners or coevolve. Phylogenetic analyses of the relevant gene families show that the genes annotated as LuxI/R inducer and receptor elements comprise two families with virtually no homology between them and with one family restricted to the gamma-Proteobacteria and the other more widely distributed. Within bacterial phyla, trees for the LuxS and the two LuxI/R families show broad agreement with the ribosomal RNA tree, suggesting that these systems have been continually present during the evolution of groups such as the Proteobacteria and the Firmicutes. However, lateral transfer can be inferred for some genes (e.g., from Firmicutes to some distantly related lineages for LuxS). In general, the inducer/receptor elements in the LuxI/R systems have evolved together with little exchange of partners, although loss or replacement of partners has occurred in several lineages of gamma-Proteobacteria, the group for which sampling is most intensive in current databases. For instance, in Pseudomonas aeruginosa, a transferred QS system has been incorporated into the pathway of a native one. Gene phylogenies for the main LuxI/R family in Pseudomonas species imply a complex history of lateral transfer, ancestral duplication, and gene loss within the genus.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| | | |
Collapse
|
47
|
Venturi V, Friscina A, Bertani I, Devescovi G, Aguilar C. Quorum sensing in the Burkholderia cepacia complex. Res Microbiol 2004; 155:238-44. [PMID: 15142620 DOI: 10.1016/j.resmic.2004.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 01/22/2004] [Indexed: 11/24/2022]
Abstract
Quorum sensing is a cell-density-dependent regulatory mechanism which, in Gram-negative bacteria, usually involves the production and detection of N-acyl homoserine lactones (HSLs). In the last four years HSL-dependent quorum sensing has been identified in members of the Burkholderia cepacia complex, and this mini-review summarizes initial findings and discusses future perspectives.
Collapse
Affiliation(s)
- Vittorio Venturi
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy.
| | | | | | | | | |
Collapse
|
48
|
Baldwin A, Sokol PA, Parkhill J, Mahenthiralingam E. The Burkholderia cepacia epidemic strain marker is part of a novel genomic island encoding both virulence and metabolism-associated genes in Burkholderia cenocepacia. Infect Immun 2004; 72:1537-47. [PMID: 14977960 PMCID: PMC356040 DOI: 10.1128/iai.72.3.1537-1547.2004] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Burkholderia cepacia epidemic strain marker (BCESM) is a useful epidemiological marker for virulent B. cenocepacia strains that infect patients with cystic fibrosis. However, there was no evidence that the original marker, identified by random amplified polymorphic DNA fingerprinting, contributed to pathogenicity. Here we demonstrate that the BCESM is part of a novel genomic island encoding genes linked to both virulence and metabolism. The BCESM was present on a 31.7-kb low-GC-content island that encoded 35 predicted coding sequences (CDSs): an N-acyl homoserine lactone (AHL) synthase gene (cciI) and corresponding transcriptional regulator (cciR), representing the first time cell signaling genes have been found on a genomic island; fatty acid biosynthesis genes; an IS66 family transposase; transcriptional regulator CDSs; amino acid metabolism genes; and a group of hypothetical genes. Mutagenesis of the AHL synthase, amidase (amiI), and porin (opcI) genes on the island was carried out. Testing of the isogenic mutants in a rat model of chronic lung infection demonstrated that the amidase played a role in persistence, while the AHL synthase and porin were both involved in virulence. The island, designated the B. cenocepacia island (cci), is the first genomic island to be defined in the B. cepacia complex and its discovery validates the original epidemiological correlation of the BCESM with virulent CF strains. The features of the cci, which overlap both pathogenicity and metabolism, expand the concept of bacterial pathogenicity islands and illustrate the diversity of accessory functions that can be acquired by lateral gene transfer in bacteria.
Collapse
Affiliation(s)
- Adam Baldwin
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3TL, Wales, Canada TN2 4N1
| | | | | | | |
Collapse
|
49
|
Komeda H, Harada H, Washika S, Sakamoto T, Ueda M, Asano Y. S -Stereoselective piperazine-2-tert-butylcarboxamide hydrolase from Pseudomonas azotoformans IAM 1603 is a novel l-amino acid amidase. ACTA ACUST UNITED AC 2004; 271:1465-75. [PMID: 15066172 DOI: 10.1111/j.1432-1033.2004.04056.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An amidase acting on (R,S)-piperazine-2-tert-butylcarboxamide was purified from Pseudomonas azotoformans IAM 1603 and characterized. The enzyme acted S-stereoselectively on (R,S)-piperazine-2-tert-butylcarboxamide to yield (S)-piperazine-2-carboxylic acid. N-terminal and internal amino acid sequences of the enzyme were determined. The gene encoding the S-stereoselective piperazine-2-tert-butylcarboxamide amidase was cloned from the chromosomal DNA of the strain and sequenced. Analysis of 2.1 kb of genomic DNA revealed the presence of two ORFs, one of which (laaA) encodes the amidase. This enzyme, LaaA is composed of 310 amino acid residues (molecular mass 34 514 Da), and the deduced amino acid sequence exhibits significant similarity to hypothetical and functionally characterized proline iminopeptidases from several bacteria. The laaA gene modified in the nucleotide sequence upstream from its start codon was overexpressed in Escherichia coli. The activity of the recombinant LaaA enzyme in cell-free extracts of E. coli was 13.1 units.mg(-1) with l-prolinamide as substrate. This enzyme was purified to electrophoretic homogeneity by ammonium sulfate fractionation and two column chromatography steps. On gel-filtration chromatography, the enzyme appeared to be a monomer with a molecular mass of 32 kDa. It had maximal activity at 45 degrees C and pH 9.0, and was completely inactivated in the presence of phenylhydrazine, Zn2+, Ag+, Cd2+ or Hg2+. LaaA had hydrolyzing activity toward L-amino acid amides such as L-prolinamide, L-proline-p-nitroanilide, L-alaninamide and L-methioninamide, but did not act on the peptide substrates for the proline iminopeptidases despite their sequence similarity to LaaA. The enzyme also acted S-stereoselectively on (R,S)-piperidine-2-carboxamide, (R,S)-piperazine-2-carboxamide and (R,S)-piperazine-2-tert-butylcarboxamide. Based on its specificity towards L-amino acid amides, the enzyme was named L-amino acid amidase. E. coli transformants overexpressing the laaA gene could be used for the S-stereoselective hydrolysis of (R,S)-piperazine-2-tert-butylcarboxamide.
Collapse
Affiliation(s)
- Hidenobu Komeda
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Kosugi, Toyama 939-0398, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Sokol PA, Sajjan U, Visser MB, Gingues S, Forstner J, Kooi C. The CepIR quorum-sensing system contributes to the virulence of Burkholderia cenocepacia respiratory infections. MICROBIOLOGY-SGM 2004; 149:3649-3658. [PMID: 14663096 DOI: 10.1099/mic.0.26540-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cepIR genes encode an N-acyl homoserine lactone (AHL)-dependent quorum-sensing system consisting of an AHL synthase that directs the synthesis of N-octanoyl-L-homoserine lactone (ohl) and n-hexanoyl-L-homoserine lactone and a transcriptional regulator. The virulence of cepIR mutants was examined in two animal models. Rats were infected with agar beads containing Burkholderia cenocepacia K56-2, K56-I2 (cepI : : Tp(r)) or K56-R2 (cepR : : Tn5-OT182). At 10 days post-infection, the extent of lung histopathological changes was significantly lower in lungs infected with K56-I2 or K56-R2 compared to the parent strain. Intranasal infections were performed in Cftr((-/-)) mice and their wild-type siblings. K56-2 was more virulent in both groups of mice. K56-I2 was the least virulent strain and was not invasive in the Cftr((-/-)) mice. OHL was readily detected in lung homogenates from Cftr((-/-)) mice infected with K56-2 but was only detected at levels slightly above background in a few mice infected with K56-I2. Lung homogenates from mice infected with K56-2 had significantly higher levels of the inflammatory mediators murine macrophage inflammatory protein-2, KC/N51, interleukin-1beta and interleukin-6 than those from K56-I2-infected animals. These studies indicate that a functional CepIR quorum-sensing system contributes to the severity of B. cenocepacia infections. A zinc metalloprotease gene (zmpA) was shown to be regulated by CepR and may be one of the factors that accounts for the difference in virulence between the cepI mutant and the parent strain.
Collapse
Affiliation(s)
- P A Sokol
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - U Sajjan
- Division of Structural Biology and Biochemistry, Hospital for Sick Children, Toronto, Ontario, Canada
| | - M B Visser
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - S Gingues
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - J Forstner
- Division of Structural Biology and Biochemistry, Hospital for Sick Children, Toronto, Ontario, Canada
| | - C Kooi
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|