1
|
Chloroquine treatment influences immunological memory through the PD-1/PD-L1 pathway during the initiation of Plasmodium chabaudi infection. Int Immunopharmacol 2022; 113:109403. [DOI: 10.1016/j.intimp.2022.109403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022]
|
2
|
|
3
|
Nonspecific CD8 + T Cells and Dendritic Cells/Macrophages Participate in Formation of CD8 + T Cell-Mediated Clusters against Malaria Liver-Stage Infection. Infect Immun 2018; 86:IAI.00717-17. [PMID: 29426043 DOI: 10.1128/iai.00717-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/25/2018] [Indexed: 12/12/2022] Open
Abstract
CD8+ T cells are the major effector cells that protect against malaria liver-stage infection, forming clusters around Plasmodium-infected hepatocytes and eliminating parasites after a prolonged interaction with these hepatocytes. We aimed to investigate the roles of specific and nonspecific CD8+ T cells in cluster formation and protective immunity. To this end, we used Plasmodium berghei ANKA expressing ovalbumin as well as CD8+ T cells from transgenic mice expressing a T cell receptor specific for ovalbumin (OT-I) and CD8+ T cells specific for an unrelated antigen, respectively. While antigen-specific CD8+ T cells were essential for cluster formation, both antigen-specific and nonspecific CD8+ T cells joined the clusters. However, nonspecific CD8+ T cells did not significantly contribute to protective immunity. In the livers of infected mice, specific CD8+ T cells expressed high levels of CD25, compatible with a local, activated effector phenotype. In vivo imaging of the liver revealed that specific CD8+ T cells interact with CD11c+ cells around infected hepatocytes. The depletion of CD11c+ cells virtually eliminated the clusters in the liver, leading to a significant decrease in protection. These experiments reveal an essential role of hepatic CD11c+ dendritic cells and presumably macrophages in the formation of CD8+ T cell clusters around Plasmodium-infected hepatocytes. Once cluster formation is triggered by parasite-specific CD8+ T cells, specific and unrelated activated CD8+ T cells join the clusters in a chemokine- and dendritic cell-dependent manner. Nonspecific CD8+ T cells seem to play a limited role in protective immunity against Plasmodium parasites.
Collapse
|
4
|
Daou M, Kouriba B, Ouédraogo N, Diarra I, Arama C, Keita Y, Sissoko S, Ouologuem B, Arama S, Bousema T, Doumbo OK, Sauerwein RW, Scholzen A. Protection of Malian children from clinical malaria is associated with recognition of multiple antigens. Malar J 2015; 14:56. [PMID: 25653026 PMCID: PMC4332451 DOI: 10.1186/s12936-015-0567-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/16/2015] [Indexed: 12/13/2022] Open
Abstract
Background Naturally acquired immunity to clinical malaria is thought to be mainly antibody-mediated, but reports on antigen targets are contradictory. Recognition of multiple antigens may be crucial for protection. In this study, the magnitude of antibody responses and their temporal stability was assessed for a panel of malaria antigens in relation to protection against clinical Plasmodium falciparum malaria. Methods Malian children aged two to 14 years were enrolled in a longitudinal study and followed up by passive and active case detection for seven months. Plasma was collected at enrolment and at the beginning, in the middle and after the end of the transmission season. Antibody titres to the P. falciparum-antigens apical membrane protein (AMA)-1, merozoite surface protein (MSP)-119, MSP-3, glutamine-rich protein (GLURP-R0) and circumsporozoite antigen (CSP) were assessed by enzyme-linked immunosorbent assay (ELISA) for 99 children with plasma available at all time points. Parasite carriage was determined by microscopy and nested PCR. Results Antibody titres to all antigens, except MSP-119, and the number of antigens recognized increased with age. After malaria exposure, antibody titres increased in children that had low titres at baseline, but decreased in those with high baseline responses. No significant differences were found between antibody titers for individual antigens between children remaining symptomatic or asymptomatic after exposure, after adjustment for age. Instead, children remaining asymptomatic following parasite exposure had a broader repertoire of antigen recognition. Conclusions The present study provides immune-epidemiological evidence from a limited cohort of Malian children that strong recognition of multiple antigens, rather than antibody titres for individual antigens, is associated with protection from clinical malaria. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0567-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Modibo Daou
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali. .,Department of Medical Microbiology, Radboud university medical center, Route 268, PO Box 9101, 6500, HB Nijmegen, The Netherlands.
| | - Bourèma Kouriba
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Nicolas Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso.
| | - Issa Diarra
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Charles Arama
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Yamoussa Keita
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Sibiri Sissoko
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Boucary Ouologuem
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Seydou Arama
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Teun Bousema
- Department of Medical Microbiology, Radboud university medical center, Route 268, PO Box 9101, 6500, HB Nijmegen, The Netherlands. .,Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London, UK.
| | - Ogobara K Doumbo
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud university medical center, Route 268, PO Box 9101, 6500, HB Nijmegen, The Netherlands.
| | - Anja Scholzen
- Department of Medical Microbiology, Radboud university medical center, Route 268, PO Box 9101, 6500, HB Nijmegen, The Netherlands.
| |
Collapse
|
5
|
CD8+ T cells specific for a malaria cytoplasmic antigen form clusters around infected hepatocytes and are protective at the liver stage of infection. Infect Immun 2013; 81:3825-34. [PMID: 23897612 DOI: 10.1128/iai.00570-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Following Anopheles mosquito-mediated introduction into a human host, Plasmodium parasites infect hepatocytes and undergo intensive replication. Accumulating evidence indicates that CD8(+) T cells induced by immunization with attenuated Plasmodium sporozoites can confer sterile immunity at the liver stage of infection; however, the mechanisms underlying this protection are not clearly understood. To address this, we generated recombinant Plasmodium berghei ANKA expressing a fusion protein of an ovalbumin epitope and green fluorescent protein in the cytoplasm of the parasite. We have shown that the ovalbumin epitope is presented by infected liver cells in a manner dependent on a transporter associated with antigen processing and becomes a target of specific CD8(+) T cells from the T cell receptor transgenic mouse line OT-I, leading to protection at the liver stage of Plasmodium infection. We visualized the interaction between OT-I cells and infected hepatocytes by intravital imaging using two-photon microscopy. OT-I cells formed clusters around infected hepatocytes, leading to the elimination of the intrahepatic parasites and subsequent formation of large clusters of OT-I cells in the liver. Gamma interferon expressed in CD8(+) T cells was dispensable for this protective response. Additionally, we found that polyclonal ovalbumin-specific memory CD8(+) T cells induced by de novo immunization were able to confer sterile protection, although the threshold frequency of the protection was relatively high. These studies revealed a novel mechanism of specific CD8(+) T cell-mediated protective immunity and demonstrated that proteins expressed in the cytoplasm of Plasmodium parasites can become targets of specific CD8(+) T cells during liver-stage infection.
Collapse
|
6
|
Zong S, Kron MW, Epp C, Engler T, Bujard H, Kochanek S, Kreppel F. ΔE1 and high-capacity adenoviral vectors expressing full-length codon-optimized merozoite surface protein 1 for vaccination against Plasmodium falciparum. J Gene Med 2013; 13:670-9. [PMID: 22095915 DOI: 10.1002/jgm.1627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The merozoite surface protein (MSP)-1 of Plasmodium falciparum, the causative agent of malaria tropica, is considered to be a promising vaccine candidate. Although its stable cloning and expression has been difficult in the past, adenoviral vectors expressing the complex protein are described in the present study. METHODS Codon-optimized msp-1 was used to construct a set of first generation (ΔE1Ad) and high-capacity adenovirus (HC-Ad) vectors, and cellular and humoral immune responses induced by the vectors were characterized in detail in mice. RESULTS Generation of stable ΔE1Ad and HC-Ad vectors expressing full-length MSP-1 and their production to high vector titers was found to be feasible. Epitope identification and analysis of frequencies of specific CD8 T-cells revealed that MSP-1 expressing HC-Ad vectors induced higher frequencies of interferon-γ + CD8 T-cells than ΔE1 vectors. Irrespective of the vector format, higher titers of MSP-1 specific antibodies were generated by Ad vectors expressing MSP-1 from a chicken β-actin (CAG) promoter comprising the cytomegalovirus early enhancer element and the chicken β-actin promoter. CONCLUSIONS The findings of the present study suggest that Ad vectors expressing full-length codon-optimized MSP-1 are promising candidate vaccines against P. falciparum infections. Use of the HC-Ad vector type for delivery, as well as the CAG promoter to control MSP-1 expression, may further increase the efficacy of this vaccine candidate.
Collapse
Affiliation(s)
- Shan Zong
- Department of Gene Therapy, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Moormann AM, Sumba PO, Chelimo K, Fang H, Tisch DJ, Dent AE, John CC, Long CA, Vulule J, Kazura JW. Humoral and cellular immunity to Plasmodium falciparum merozoite surface protein 1 and protection from infection with blood-stage parasites. J Infect Dis 2013; 208:149-58. [PMID: 23539744 DOI: 10.1093/infdis/jit134] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Acquired immunity to malaria develops with increasing age and repeated infections. Understanding immune correlates of protection from malaria would facilitate vaccine development and identification of biomarkers that reflect changes in susceptibility resulting from ongoing malaria control efforts. METHODS The relationship between immunoglobulin G (IgG) antibody and both interferon γ (IFN-γ) and interleukin 10 (IL-10) responses to the 42-kD C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 (MSP142) and the risk of (re)infection were examined following drug-mediated clearance of parasitemia in 94 adults and 95 children in an area of holoendemicity of western Kenya. RESULTS Positive IFN-γ enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunosorbent spot assay (ELISPOT) responses to MSP142 3D7 were associated with delayed time to (re)infection, whereas high-titer IgG antibodies to MSP142 3D7 or FVO alleles were not independently predictive of the risk of (re)infection. When IFN-γ and IL-10 responses were both present, the protective effect of IFN-γ was abrogated. A Cox proportional hazard model including IFN-γ, IL-10, MSP142 3D7 IgG antibody responses, hemoglobin S genotype, age, and infection status at baseline showed that the time to blood-stage infection correlated positively with IFN-γ responses and negatively with IL-10 responses, younger age, and asymptomatic parasitemia. CONCLUSIONS Evaluating combined allele-specific cellular and humoral immunity elicited by malaria provides a more informative measure of protection relative to evaluation of either measure alone.
Collapse
Affiliation(s)
- Ann M Moormann
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cheong FW, Lau YL, Fong MY, Mahmud R. Evaluation of recombinant Plasmodium knowlesi merozoite surface protein-1(33) for detection of human malaria. Am J Trop Med Hyg 2013; 88:835-40. [PMID: 23509118 DOI: 10.4269/ajtmh.12-0250] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plasmodium knowlesi is now known as the fifth Plasmodium species that can cause human malaria. The Plasmodium merozoite surface protein (MSP) has been reported to be potential target for vaccination and diagnosis of malaria. MSP-1(33) has been shown to be immunogenic and its T cell epitopes could mediate cellular immune protection. However, limited studies have focused on P. knowlesi MSP-133. In this study, an approximately 28-kDa recombinant P. knowlesi MSP-1(33) (pkMSP-1(33)) was expressed by using an Escherichia coli system. The purified pkMSP-1(33) reacted with serum samples of patients infected with P. knowlesi (31 of 31, 100%) and non-P. knowlesi malaria (27 of 28, 96.43%) by Western blotting. The pkMSP-1(33) also reacted with P. knowlesi (25 of 31, 80.65%) and non-P. knowlesi malaria sera (20 of 28, 71.43%) in an enzyme-linked immunosorbent assay (ELISA). Most of the non-malarial infection (49 of 52 in by Western blotting and 46 of 52 in the ELISA) and healthy donor serum samples (65 of 65 by Western blotting and ELISA) did not react with recombinant pkMSP-1(33).
Collapse
Affiliation(s)
- Fei Wen Cheong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
9
|
The species specificity of immunity generated by live whole organism immunisation with erythrocytic and pre-erythrocytic stages of rodent malaria parasites and implications for vaccine development. Int J Parasitol 2012; 42:859-70. [DOI: 10.1016/j.ijpara.2012.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 11/20/2022]
|
10
|
Biswas S, Spencer AJ, Forbes EK, Gilbert SC, Holder AA, Hill AVS, Draper SJ. Recombinant viral-vectored vaccines expressing Plasmodium chabaudi AS apical membrane antigen 1: mechanisms of vaccine-induced blood-stage protection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:5041-53. [PMID: 22504652 PMCID: PMC3378655 DOI: 10.4049/jimmunol.1101106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apical membrane Ag 1 (AMA1) is one of the leading candidate Ags for inclusion in a subunit vaccine against blood-stage malaria. However, the efficacy of Ab-inducing recombinant AMA1 protein vaccines in phase IIa/b clinical trials remains disappointing. In this article, we describe the development of recombinant human adenovirus serotype 5 and modified vaccinia virus Ankara vectors encoding AMA1 from the Plasmodium chabaudi chabaudi strain AS. These vectors, when used in a heterologous prime-boost regimen in BALB/c mice, are capable of inducing strong transgene-specific humoral and cellular immune responses. We show that this vaccination regimen is protective against a nonlethal P. chabaudi chabaudi strain AS blood-stage challenge, resulting in reduced peak parasitemias. The role of vaccine-induced, AMA1-specific Abs and T cells in mediating the antiparasite effect was investigated by in vivo depletion of CD4(+) T cells and adoptive-transfer studies into naive and immunodeficient mice. Depletion of CD4(+) T cells led to a loss of vaccine-induced protection. Adoptive-transfer studies confirmed that efficacy is mediated by both CD4(+) T cells and Abs functioning in the context of an intact immune system. Unlike previous studies, these results confirm that Ag-specific CD4(+) T cells, induced by a clinically relevant vaccine-delivery platform, can make a significant contribution to vaccine blood-stage efficacy in the P. chabaudi model. Given that cell-mediated immunity may also contribute to parasite control in human malaria, these data support the clinical development of viral-vectored vaccines that induce both T cell and Abs against Plasmodium falciparum blood-stage malaria Ags like AMA1.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Animals
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/blood
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Antigens, Protozoan/blood
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Female
- Genetic Vectors/administration & dosage
- Genetic Vectors/immunology
- Humans
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria, Falciparum/blood
- Malaria, Falciparum/immunology
- Malaria, Falciparum/prevention & control
- Membrane Proteins/blood
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Nude
- Molecular Sequence Data
- Plasmodium chabaudi/genetics
- Plasmodium chabaudi/immunology
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Protozoan Proteins/blood
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
Collapse
Affiliation(s)
- Sumi Biswas
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
11
|
Sheehy SH, Duncan CJA, Elias SC, Biswas S, Collins KA, O'Hara GA, Halstead FD, Ewer KJ, Mahungu T, Spencer AJ, Miura K, Poulton ID, Dicks MDJ, Edwards NJ, Berrie E, Moyle S, Colloca S, Cortese R, Gantlett K, Long CA, Lawrie AM, Gilbert SC, Doherty T, Nicosia A, Hill AVS, Draper SJ. Phase Ia clinical evaluation of the safety and immunogenicity of the Plasmodium falciparum blood-stage antigen AMA1 in ChAd63 and MVA vaccine vectors. PLoS One 2012; 7:e31208. [PMID: 22363582 PMCID: PMC3283618 DOI: 10.1371/journal.pone.0031208] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 01/04/2012] [Indexed: 02/07/2023] Open
Abstract
Background Traditionally, vaccine development against the blood-stage of Plasmodium falciparum infection has focused on recombinant protein-adjuvant formulations in order to induce high-titer growth-inhibitory antibody responses. However, to date no such vaccine encoding a blood-stage antigen(s) alone has induced significant protective efficacy against erythrocytic-stage infection in a pre-specified primary endpoint of a Phase IIa/b clinical trial designed to assess vaccine efficacy. Cell-mediated responses, acting in conjunction with functional antibodies, may be necessary for immunity against blood-stage P. falciparum. The development of a vaccine that could induce both cell-mediated and humoral immune responses would enable important proof-of-concept efficacy studies to be undertaken to address this question. Methodology We conducted a Phase Ia, non-randomized clinical trial in 16 healthy, malaria-naïve adults of the chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) replication-deficient viral vectored vaccines encoding two alleles (3D7 and FVO) of the P. falciparum blood-stage malaria antigen; apical membrane antigen 1 (AMA1). ChAd63-MVA AMA1 administered in a heterologous prime-boost regime was shown to be safe and immunogenic, inducing high-level T cell responses to both alleles 3D7 (median 2036 SFU/million PBMC) and FVO (median 1539 SFU/million PBMC), with a mixed CD4+/CD8+ phenotype, as well as substantial AMA1-specific serum IgG responses (medians of 49 µg/mL and 41 µg/mL for 3D7 and FVO AMA1 respectively) that demonstrated growth inhibitory activity in vitro. Conclusions ChAd63-MVA is a safe and highly immunogenic delivery platform for both alleles of the AMA1 antigen in humans which warrants further efficacy testing. ChAd63-MVA is a promising heterologous prime-boost vaccine strategy that could be applied to numerous other diseases where strong cellular and humoral immune responses are required for protection. Trial Registration ClinicalTrials.gov NCT01095055
Collapse
Affiliation(s)
- Susanne H Sheehy
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
de Cassan SC, Forbes EK, Douglas AD, Milicic A, Singh B, Gupta P, Chauhan VS, Chitnis CE, Gilbert SC, Hill AVS, Draper SJ. The requirement for potent adjuvants to enhance the immunogenicity and protective efficacy of protein vaccines can be overcome by prior immunization with a recombinant adenovirus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:2602-16. [PMID: 21813775 PMCID: PMC3160495 DOI: 10.4049/jimmunol.1101004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A central goal in vaccinology is the induction of high and sustained Ab responses. Protein-in-adjuvant formulations are commonly used to achieve such responses. However, their clinical development can be limited by the reactogenicity of some of the most potent preclinical adjuvants and the cost and complexity of licensing new adjuvants for human use. Also, few adjuvants induce strong cellular immunity, which is important for protection against many diseases, such as malaria. We compared classical adjuvants such as aluminum hydroxide to new preclinical adjuvants and adjuvants in clinical development, such as Abisco 100, CoVaccine HT, Montanide ISA720, and stable emulsion-glucopyranosyl lipid A, for their ability to induce high and sustained Ab responses and T cell responses. These adjuvants induced a broad range of Ab responses when used in a three-shot protein-in-adjuvant regimen using the model Ag OVA and leading blood-stage malaria vaccine candidate Ags. Surprisingly, this range of Ab immunogenicity was greatly reduced when a protein-in-adjuvant vaccine was used to boost Ab responses primed by a human adenovirus serotype 5 vaccine recombinant for the same Ag. This human adenovirus serotype 5-protein regimen also induced a more cytophilic Ab response and demonstrated improved efficacy of merozoite surface protein-1 protein vaccines against a Plasmodium yoelii blood-stage challenge. This indicates that the differential immunogenicity of protein vaccine adjuvants may be largely overcome by prior immunization with recombinant adenovirus, especially for adjuvants that are traditionally considered poorly immunogenic in the context of subunit vaccination and may circumvent the need for more potent chemical adjuvants.
Collapse
Affiliation(s)
- Simone C de Cassan
- The Jenner Institute, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Forbes EK, Biswas S, Collins KA, Gilbert SC, Hill AVS, Draper SJ. Combining liver- and blood-stage malaria viral-vectored vaccines: investigating mechanisms of CD8+ T cell interference. THE JOURNAL OF IMMUNOLOGY 2011; 187:3738-50. [PMID: 21876036 DOI: 10.4049/jimmunol.1003783] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Replication-deficient adenovirus and modified vaccinia virus Ankara (MVA) vectors expressing single pre-erythrocytic or blood-stage Plasmodium falciparum Ags have entered clinical testing using a heterologous prime-boost immunization approach. In this study, we investigated the utility of the same immunization regimen when combining viral vectored vaccines expressing the 42-kDa C terminus of the blood-stage Ag merozoite surface protein 1 and the pre-erythrocytic Ag circumsporozoite protein in the Plasmodium yoelii mouse model. We find that vaccine coadministration leads to maintained Ab responses and efficacy against blood-stage infection, but reduced secondary CD8(+) T cell responses against both Ags and efficacy against liver-stage infection. CD8(+) T cell interference can be minimized by coadministering the MVA vaccines at separate sites, resulting in enhanced liver-stage efficacy in mice immunized against both Ags compared with just one. CD8(+) T cell interference (following MVA coadministration as a mixture) may be caused partly by a lack of physiologic space for high-magnitude responses against multiple Ags, but is not caused by competition for presentation of Ag on MHC class I molecules, nor is it due to restricted T cell access to APCs presenting both Ags. Instead, enhanced killing of peptide-pulsed cells is observed in mice possessing pre-existing T cells against two Ags compared with just one, suggesting that priming against multiple Ags may in part reduce the potency of multiantigen MVA vectors to stimulate secondary CD8(+) T cell responses. These data have important implications for the development of a multistage or multicomponent viral vectored malaria vaccine for use in humans.
Collapse
Affiliation(s)
- Emily K Forbes
- The Jenner Institute, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
14
|
Sheehy SH, Duncan CJA, Elias SC, Collins KA, Ewer KJ, Spencer AJ, Williams AR, Halstead FD, Moretz SE, Miura K, Epp C, Dicks MDJ, Poulton ID, Lawrie AM, Berrie E, Moyle S, Long CA, Colloca S, Cortese R, Gilbert SC, Nicosia A, Hill AVS, Draper SJ. Phase Ia clinical evaluation of the Plasmodium falciparum blood-stage antigen MSP1 in ChAd63 and MVA vaccine vectors. Mol Ther 2011; 19:2269-76. [PMID: 21862998 DOI: 10.1038/mt.2011.176] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Efficacy trials of antibody-inducing protein-in-adjuvant vaccines targeting the blood-stage Plasmodium falciparum malaria parasite have so far shown disappointing results. The induction of cell-mediated responses in conjunction with antibody responses is thought to be one alternative strategy that could achieve protective efficacy in humans. Here, we prepared chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) replication-deficient vectors encoding the well-studied P. falciparum blood-stage malaria antigen merozoite surface protein 1 (MSP1). A phase Ia clinical trial was conducted in healthy adults of a ChAd63-MVA MSP1 heterologous prime-boost immunization regime. The vaccine was safe and generally well tolerated. Fewer systemic adverse events (AEs) were observed following ChAd63 MSP1 than MVA MSP1 administration. Exceptionally strong T-cell responses were induced, and these displayed a mixed of CD4(+) and CD8(+) phenotype. Substantial MSP1-specific serum immunoglobulin G (IgG) antibody responses were also induced, which were capable of recognizing native parasite antigen, but these did not reach titers sufficient to neutralize P. falciparum parasites in vitro. This viral vectored vaccine regime is thus a leading approach for the induction of strong cellular and humoral immunogenicity against difficult disease targets in humans. Further studies are required to assess whether this strategy can achieve protective efficacy against blood-stage malaria infection.
Collapse
Affiliation(s)
- Susanne H Sheehy
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Douglas AD, de Cassan SC, Dicks MDJ, Gilbert SC, Hill AVS, Draper SJ. Tailoring subunit vaccine immunogenicity: maximizing antibody and T cell responses by using combinations of adenovirus, poxvirus and protein-adjuvant vaccines against Plasmodium falciparum MSP1. Vaccine 2011; 28:7167-78. [PMID: 20937436 PMCID: PMC3404461 DOI: 10.1016/j.vaccine.2010.08.068] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 12/15/2022]
Abstract
Subunit vaccination modalities tend to induce particular immune effector responses. Viral vectors are well known for their ability to induce strong T cell responses, while protein-adjuvant vaccines have been used primarily for induction of antibody responses. Here, we demonstrate in mice using a Plasmodium falciparum merozoite surface protein 1 (PfMSP1) antigen that novel regimes combining adenovirus and poxvirus vectored vaccines with protein antigen in Montanide ISA720 adjuvant can achieve simultaneous antibody and T cell responses which equal, or in some cases surpass, the best immune responses achieved by either the viral vectors or the protein vaccine alone. Such broad responses can be achieved either using three-stage vaccination protocols, or with an equally effective two-stage protocol in which viral vectors are admixed with protein and adjuvant, and were apparent despite the use of a protein antigen that represented only a portion of the viral vector antigen. We describe further possible advantages of viral vectors in achieving consistent antibody priming, enhanced antibody avidity, and cytophilic isotype skew. These data strengthen the evidence that tailored combinations of vaccine platforms can achieve desired combinations of immune responses, and further encourage the co-administration of antibody-inducing recombinant protein vaccines with T cell- and antibody-inducing recombinant viral vectors as one strategy that may achieve protective blood-stage malaria immunity in humans.
Collapse
|
16
|
CULLETON RL, INOUE M, REECE SE, CHEESMAN S, CARTER R. Strain-specific immunity induced by immunization with pre-erythrocytic stages of Plasmodium chabaudi. Parasite Immunol 2010; 33:73-8. [DOI: 10.1111/j.1365-3024.2010.01251.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Kimura D, Miyakoda M, Honma K, Shibata Y, Yuda M, Chinzei Y, Yui K. Production of IFN- by CD4+ T cells in response to malaria antigens is IL-2 dependent. Int Immunol 2010; 22:941-52. [DOI: 10.1093/intimm/dxq448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Goodman AL, Draper SJ. Blood-stage malaria vaccines - recent progress and future challenges. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2010; 104:189-211. [PMID: 20507694 DOI: 10.1179/136485910x12647085215534] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plasmodium falciparum malaria is a major global health problem, responsible for up to 1 million deaths each year. Major efforts have been made to develop an effective vaccine against this disease, to reduce the associated morbidity and mortality. There has already been considerable progress, with the first vaccine against the pre-erythrocytic stages of P. falciparum now en route to licensure. There remains, however, a strong scientific rationale for the development of a highly effective additional vaccine component against the blood stages of the parasite, which could be deployed in conjunction with partially effective control measures against the pre-erythrocytic stages. Here, recent progress in the clinical development of blood-stage vaccines is reviewed, including methods of antigen selection, the limitations of in-vitro assays for selecting vaccines for clinical development, and the results of recently published clinical trials. This review seeks to summarize recent developments in our understanding of immunity to blood-stage parasites, as well as the relevant key advances made in vaccine technologies over the last decade. The future challenges that face this field of vaccine research are also described.
Collapse
Affiliation(s)
- A L Goodman
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK.
| | | |
Collapse
|
19
|
New candidate vaccines against blood-stage Plasmodium falciparum malaria: prime-boost immunization regimens incorporating human and simian adenoviral vectors and poxviral vectors expressing an optimized antigen based on merozoite surface protein 1. Infect Immun 2010; 78:4601-12. [PMID: 20713623 DOI: 10.1128/iai.00315-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although merozoite surface protein 1 (MSP-1) is a leading candidate vaccine antigen for blood-stage malaria, its efficacy in clinical trials has been limited in part by antigenic polymorphism and potentially by the inability of protein-in-adjuvant vaccines to induce strong cellular immunity. Here we report the design of novel vectored Plasmodium falciparum vaccines capable of overcoming such limitations. We optimized an antigenic insert comprising the four conserved blocks of MSP-1 fused to tandemly arranged sequences that represent both allelic forms of the dimorphic 42-kDa C-terminal region. Inserts were expressed by adenoviral and poxviral vectors and employed in heterologous prime-boost regimens. Simian adenoviral vectors were used in an effort to circumvent preexisting immunity to human adenoviruses. In preclinical studies these vaccines induced potent cellular immune responses and high-titer antibodies directed against MSP-1. The antibodies induced were found to have growth-inhibitory activity against dimorphic allelic families of P. falciparum. These vectored vaccines should allow assessment in humans of the safety and efficacy of inducing strong cellular as well as cross-strain humoral immunity to P. falciparum MSP-1.
Collapse
|
20
|
Adenovectors induce functional antibodies capable of potent inhibition of blood stage malaria parasite growth. Vaccine 2010; 28:3201-10. [PMID: 20188680 DOI: 10.1016/j.vaccine.2010.02.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/01/2010] [Accepted: 02/10/2010] [Indexed: 11/21/2022]
Abstract
An effective malaria vaccine remains a global health priority. Recombinant adenoviruses are a promising vaccine platform, and Plasmodium falciparum apical membrane antigen 1 (AMA1) and merozoite surface protein 1-42 (MSP1(42)) are leading blood stage vaccine candidates. We evaluated the importance of surface antigen localization and glycosylation on the immunogenicity of adenovector delivered AMA1 and MSP1(42) and assessed the ability of these vaccines to induce functional antibody responses capable of inhibiting parasite growth in vitro. Adenovector delivery induced unprecedented levels of biologically active antibodies in rabbits as indicated by the parasite growth inhibition assay. These responses were as potent as published results using any other vaccine system, including recombinant protein in adjuvant. The cell surface associated and glycosylated forms of AMA1 and MSP1(42) elicited 99% and 60% inhibition of parasite growth, respectively. Antigens that were expressed at the cell surface and glycosylated were much better than intracellular antigens at inducing antibody responses. Good T cell responses were observed for all forms of AMA1 and MSP1(42). Antigen-specific antibody responses, but typically not T cell responses, were boosted by a second administration of adenovector. These data highlight the importance of rational vaccine design and support the advancement of adenovector delivery technology for a malaria vaccine.
Collapse
|
21
|
Draper SJ, Goodman AL, Biswas S, Forbes EK, Moore AC, Gilbert SC, Hill AVS. Recombinant viral vaccines expressing merozoite surface protein-1 induce antibody- and T cell-mediated multistage protection against malaria. Cell Host Microbe 2009; 5:95-105. [PMID: 19154991 PMCID: PMC2663714 DOI: 10.1016/j.chom.2008.12.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/07/2008] [Accepted: 12/01/2008] [Indexed: 11/21/2022]
Abstract
Protecting against both liver and blood stages of infection is a long-sought goal of malaria vaccine design. Recently, we described the use of replication-defective viral vaccine vectors expressing the malaria antigen merozoite surface protein-1 (MSP-1) as an antimalarial vaccine strategy that elicits potent and protective antibody responses against blood-stage parasites. Here, we show that vaccine-induced MSP-1-specific CD4(+) T cells provide essential help for protective B cell responses, and CD8(+) T cells mediate significant antiparasitic activity against liver-stage parasites. Enhanced survival is subsequently seen in immunized mice following challenge with sporozoites, which mimics the natural route of infection more closely than when using infected red blood cells. This effect is evident both in the presence and absence of protective antibodies and is associated with decreased parasite burden in the liver followed by enhanced induction of the cytokine IFN-gamma in the serum. Multistage immunity against malaria can thus be achieved by using viral vectors recombinant for MSP-1.
Collapse
Affiliation(s)
- Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
Asea A. Initiation of the Immune Response by Extracellular Hsp72: Chaperokine Activity of Hsp72. ACTA ACUST UNITED AC 2006; 2:209-215. [PMID: 17502920 PMCID: PMC1868403 DOI: 10.2174/157339506778018514] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Heat shock proteins exert their beneficial effects via basically two modes of action depending on their relative location within the host. Intracellular heat shock proteins found within cells serve a cytoprotective role by chaperoning naïve, misfolded and/or denatured proteins in response to stressful stimuli by a process known as the stress response. However, stressful stimuli also induce the release of intracellular heat shock proteins into the extracellular milieu and circulation. The extracellular heat shock protein proteins serve a cytostimulatory role by initiating immune responses designed to fend off microbial infection and destroy neoplastic transformed cells. This review will briefly cover recent advances into elucidating the mechanism(s) by which stress induces the release of heat shock proteins into the circulation, how it initiates immune responses and suggest the possible biological significance of circulating Hsp to the host.
Collapse
Affiliation(s)
- Alexzander Asea
- Division of Investigative Pathology, Scott & White Clinic and Texas A&M University System Health Science Center College of Medicine, 2401 South 31 Street, Temple, TX 76508, USA
| |
Collapse
|
23
|
Miao J, Li X, Liu Z, Xue C, Bujard H, Cui L. Immune responses in mice induced by prime-boost schemes of the Plasmodium falciparum apical membrane antigen 1 (PfAMA1)-based DNA, protein and recombinant modified vaccinia Ankara vaccines. Vaccine 2006; 24:6187-98. [PMID: 16806600 DOI: 10.1016/j.vaccine.2006.05.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 05/25/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
The apical membrane antigen 1 (AMA1) of malaria parasites is a leading vaccine candidate. Its expression in merozoites and sporozoites and its importance for erythrocyte and hepatocyte invasion underline the significance of both humoral and cellular immunities against this antigen in malaria protection. We have generated a DNA construct and a recombinant poxvirus (rMVA) for expressing the Plasmodium falciparum AMA1 ectodomain, produced recombinant AMA1 protein (rAMA1) and evaluated their antigenicity in mice using single and combinatory vaccine schemes. Our results showed that although vaccinations of mice by either DNA or rMVA alone did not yield high antibody responses, they had primed significant numbers of rAMA1-responsive splenocytes. Under heterologous prime-boost schemes, priming with DNA followed by boosting with rMVA or rAMA1 protein resulted in a significant increase in antibody titers. In addition, the antibody titers to AMA1 appeared to be correlated with the levels of inhibition of merozoite invasion of erythrocytes in vitro. Furthermore, different prime-boost schemes resulted in different AMA1-specific antibody isotype (IgG1/IgG2a) ratios, providing us with an indication about Th1 or Th2 responses the vaccination regimens have induced. This study has yielded useful information for further in vivo evaluation of the suitability and effectiveness of the heterologous prime-boost strategy in AMA1 vaccination.
Collapse
MESH Headings
- Animals
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Chick Embryo
- Cricetinae
- HeLa Cells
- Humans
- Immunization, Secondary
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria Vaccines/therapeutic use
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Rabbits
- Th1 Cells/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
Collapse
Affiliation(s)
- Jun Miao
- Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
24
|
Zhang ZG, Yu WG, Qiu WS, Zhao HM. Immunogenicity of C-terminus of Plasmodium falciparum merozoite surface protein 1 expressed as a non-glycosylated polypeptide in yeast. Acta Biochim Biophys Sin (Shanghai) 2006; 38:403-9. [PMID: 16761098 DOI: 10.1111/j.1745-7270.2006.00178.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The C-terminal region of the merozoite surface protein 1 (MSP119) is one of the most promising vaccine candidates against the erythrocytic forms of malaria. In the present study, a gene encoding Plasmodium falciparum MSP119 was expressed in yeast Pichia pastoris. A non-glycosylated form of the recombinant protein MSP119 was purified from culture medium. This recombinant protein maintains its antigenicity. Significant immune responses were seen in C57BL/6 mice after the second immunization. Moreover, the specific antibodies recognized the native antigens of P. falciparum. The prevailing isotypes of immunoglobulin (Ig) G associated with immunization were IgG1, IgG2a and IgG2b. The antibodies isolated from mouse sera immunized with MSP119 can inhibit parasite growth in vitro. Based on these immunological studies, we concluded that MSP119 deserves further evaluation in pre-clinical immunizations against P. falciparum.
Collapse
|
25
|
Woehlbier U, Epp C, Kauth CW, Lutz R, Long CA, Coulibaly B, Kouyaté B, Arevalo-Herrera M, Herrera S, Bujard H. Analysis of antibodies directed against merozoite surface protein 1 of the human malaria parasite Plasmodium falciparum. Infect Immun 2006; 74:1313-22. [PMID: 16428781 PMCID: PMC1360310 DOI: 10.1128/iai.74.2.1313-1322.2006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/31/2005] [Accepted: 10/27/2005] [Indexed: 11/20/2022] Open
Abstract
The 190-kDa merozoite surface protein 1 (MSP-1) of Plasmodium falciparum, an essential component in the parasite's life cycle, is a primary candidate for a malaria vaccine. Rabbit antibodies elicited by the heterologously produced MSP-1 processing products p83, p30, p38, and p42, derived from strain 3D7, were analyzed for the potential to inhibit in vitro erythrocyte invasion by the parasite and parasite growth. Our data show that (i) epitopes recognized by antibodies, which inhibit parasite replication, are distributed throughout the entire MSP-1 molecule; (ii) when combined, antibodies specific for different regions of MSP-1 inhibit in a strictly additive manner; (iii) anti-MSP-1 antibodies interfere with erythrocyte invasion as well as with the intraerythrocytic growth of the parasite; and (iv) antibodies raised against MSP-1 of strain 3D7 strongly cross-inhibit replication of the heterologous strain FCB-1. Accordingly, anti-MSP-1 antibodies appear to be capable of interfering with parasite multiplication at more than one level. Since the overall immunogenicity profile of MSP-1 in rabbits closely resembles that found in sera of Aotus monkeys immunized with parasite-derived MSP-1 and of humans semi-immune to malaria from whom highly inhibiting antigen-specific antibodies were recovered, we consider the findings reported here to be relevant for the development of MSP-1-based vaccines against malaria.
Collapse
Affiliation(s)
- Ute Woehlbier
- Zentrum fuer Molekulare Biologie (ZMBH), Universitaet Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Barrero CA, Delgado G, Sierra AY, Silva Y, Parra-Lopez C, Patarroyo MA. Gamma interferon levels and antibody production induced by two PvMSP-1 recombinant polypeptides are associated with protective immunity against P. vivax in Aotus monkeys. Vaccine 2005; 23:4048-53. [PMID: 15893858 DOI: 10.1016/j.vaccine.2005.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2004] [Accepted: 02/08/2005] [Indexed: 11/21/2022]
Abstract
Effector mechanisms responsible for providing protective immunity against Plasmodium vivax (Pv) infection were examined in Aotus monkeys vaccinated with two Pv Merozoite Surface Protein-1 (PvMSP-1) recombinant polypeptides that had previously been shown to protect vaccines against parasite challenge. Vaccine efficacy was reproducible in this trial, showing that one out of the five monkeys immunised with the recombinant protein mixture was partially protected while three others controlled parasitaemia. Antibodies reactive to the parasite's native proteins, the recombinant polypeptides and peptides spanning both recombinant fragments were detected in most vaccinees. Despite substantial Peripheral Blood Mononuclear Cell (PBMC) antigen-specific cellular proliferation not being detected, high rPvMSP-1(20) specific gamma interferon (IFN-gamma) production was found in the three animals that controlled parasitaemia. Altogether the results suggest that antibody titres and antigen-specific IFN-gamma production mediate protective immunity against P. vivax.
Collapse
Affiliation(s)
- Carlos A Barrero
- Molecular Biology Department, Fundacion Instituto de Inmunologia de Colombia, Carrera 50 # 26-00, Bogota, Colombia
| | | | | | | | | | | |
Collapse
|
27
|
John CC, O'Donnell RA, Sumba PO, Moormann AM, de Koning-Ward TF, King CL, Kazura JW, Crabb BS. Evidence That Invasion-Inhibitory Antibodies Specific for the 19-kDa Fragment of Merozoite Surface Protein-1 (MSP-119) Can Play a Protective Role against Blood-StagePlasmodium falciparumInfection in Individuals in a Malaria Endemic Area of Africa. THE JOURNAL OF IMMUNOLOGY 2004; 173:666-72. [PMID: 15210830 DOI: 10.4049/jimmunol.173.1.666] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The C-terminal 19-kDa fragment of Plasmodium falciparum merozoite surface protein-1 (MSP-1(19)) is a target of protective Abs against blood-stage infection and a leading candidate for inclusion in a human malaria vaccine. However, the precise role, relative importance, and mechanism of action of Abs that target this protein remain unclear. To examine the potential protective role of Abs to MSP-1(19) in individuals naturally exposed to malaria, we conducted a treatment time to infection study over a 10-wk period in 76 residents of a highland area of western Kenya during a malaria epidemic. These semi-immune individuals were not all equally susceptible to reinfection with P. falciparum following drug cure. Using a new neutralization assay based on transgenic P. falciparum expressing the P. chabaudi MSP-1(19) orthologue, individuals with high-level MSP-1(19)-specific invasion-inhibitory Abs (>75th percentile) had a 66% reduction in the risk of blood-stage infection relative to others in the population (95% confidence interval, 3-88%). In contrast, high levels of MSP-1(19) IgG or IgG subclass Abs measured by enzyme immunoassay with six different recombinant MSP-1(19) Ags did not correlate with protection from infection. IgG Abs measured by serology and functional invasion-inhibitory activity did not correlate with each other. These findings implicate an important protective role for MSP-1(19)-specific invasion inhibitory Abs in immunity to blood-stage P. falciparum infection, and suggest that the measurement of MSP-1(19) specific inhibitory Abs may serve as an accurate correlate of protection in clinical trials of MSP-1-based vaccines.
Collapse
Affiliation(s)
- Chandy C John
- Center for Global Health and Diseases, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bell AS, Ranford-Cartwright LC. A real-time PCR assay for quantifying Plasmodium falciparum infections in the mosquito vector. Int J Parasitol 2004; 34:795-802. [PMID: 15157762 DOI: 10.1016/j.ijpara.2004.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 03/15/2004] [Accepted: 03/18/2004] [Indexed: 11/27/2022]
Abstract
Transmission-blocking vaccines prevent the development of Plasmodium parasite within the mosquito vector, thereby thwarting the spread of malaria through a community. The gold standard for determining the efficacy of a transmission-blocking vaccine is the standard membrane feeding assay. This assay requires the dissection of mosquitoes and microscopic counting of oocysts present on the mosquito mid-gut, typically at 7-10 days p.i. Here we describe a real-time quantitative PCR assay that is rapid, target-specific and robust, with a sensitive detection threshold and which may be employed earlier p.i. than the standard membrane feeding assay and is applicable to preserved material. The real-time PCR assay utilises the LightCycler platform and SYBR Green I detection system to amplify 180 bp of the asexual form of the Plasmodium falciparum rRNA gene. It has a quantitative range of greater than four orders of magnitude and a detection threshold of 10 parasites. Validation experiments using a monoclonal antibody of known blocking activity revealed the real-time PCR assay to give equivalent results to the standard membrane feeding assay. In addition, the PCR assay can establish the effect of such a monoclonal antibody on the parasites' development within the oocyst and on the sporozoite (the transmissible stage) yield, providing a more pertinent assessment of transmission blocking activity than is possible by the standard membrane feeding assay. This assay may also be employed to monitor the sporogonic development of P. falciparum parasites within the mosquito vector.
Collapse
Affiliation(s)
- A S Bell
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland G12 8QQ, UK.
| | | |
Collapse
|