1
|
Miki T, Ito M, Haneda T, Kim YG. Crohn's Disease‒Associated Escherichia coli BasRS Is Involved in Fimbriae Expression, Contributing to Epithelial Cell Invasion. Microbiol Immunol 2025. [PMID: 40221934 DOI: 10.1111/1348-0421.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/16/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Crohn's disease‒associated adherent-invasive Escherichia coli (AIEC) colonizes the gut lumen through Type 1 fimbriae. We demonstrated that the two-component signal transduction system BasRS is involved in the expression of fimbriae in the AIEC strain LF82, as evidenced by the reduced transcriptional activity of fimA in an LF82 mutant lacking BasRS. Consequently, the basRS mutant showed decreased invasiveness to HeLa cells, which was restored by introducing a plasmid expressing fimbriae in a BasRS-independent manner. These findings may provide new prospects for developing therapeutic interventions for AIEC-related Crohn's disease.
Collapse
Affiliation(s)
- Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Takeshi Haneda
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Yun-Gi Kim
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
2
|
Li X, Pang Y, Jiang L, Liu L, Zhou J, Jin C, Wang Q, Sun H, Li Q, Chen Z, Qin J, Mu J, Liu B, Zhang Q, Liu Y, Feng L, Wang L. Two-component system GrpP/GrpQ promotes pathogenicity of uropathogenic Escherichia coli CFT073 by upregulating type 1 fimbria. Nat Commun 2025; 16:607. [PMID: 39799152 PMCID: PMC11724981 DOI: 10.1038/s41467-025-55982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTIs). Invasion into bladder epithelial cells (BECs) on the bladder luminal surface via type 1 fimbria is the first critical step in UPEC infection. Although type 1 fimbria expression increases during UPEC invasion of BECs, the underlying regulatory mechanisms remain poorly understood. This study reported a previously uncharacterized two-component system (TCS) GrpP/GrpQ that directly activates type 1 fimbria expression to promote UPEC invasion and therefore pathogenicity in response to D-serine present in the host urine. grpP/grpQ mutation severely impaired UPEC invasion of BECs and decreased the bacterial burden and formation of intracellular bacterial communities in mouse bladders during acute UTI. grpP/grpQ is widely present in UPEC genomes but rarely in other E. coli genomes, suggesting that this TCS specifically contributes to UPEC evolution. This study revealed a new pathway for virulence activation in response to host cues, providing further insight into UPEC pathogenesis and a promising target for UTI treatment.
Collapse
Affiliation(s)
- Xueping Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yu Pang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Lingyan Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Le Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Jiarui Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Chen Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Qian Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Hongmin Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Qing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Zhen Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Jingliang Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Jianwei Mu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Qiyue Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Lu Feng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.
- Nankai International Advanced Research Institute, Nankai University Shenzhen, Shenzhen, China.
| | - Lei Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
3
|
Hamilton ADK, Sparsoe LV, Skov M, Johnsen N, Chreistensen MH, Corydon TJ, Praetorius H. Increased water intake dilutes protective uromodulin levels in urine and results in increased rates of pyelonephritis in a murine model. Acta Physiol (Oxf) 2024; 240:e14204. [PMID: 39007512 DOI: 10.1111/apha.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
AIM Urinary tract infections (UTIs) rank among the most prevalent infections in humans, carrying substantial implications for public health. Women experiencing recurrent UTIs are often advised to boost their fluid intake to help eliminate bacteria. In this study, we explored the impact of elevated fluid consumption during UTIs using a mouse model of pyelonephritis. METHODS UTI was induced in 8-10 w female BALB/cJ-mice by surgically injecting Escherichia coli (O6:K13:H1) into the bladder whereafter mice were randomized to gel food (GF) or regular chow. Immune response and infection severity were determined 24-h post-infection. In vitro bacterial growth (OD600) was determined in urine from mice or from human volunteers. RESULTS Gel feeding increased urine output (1.40 ± 0.77 μL min-1, p < 0.01) and diluted the urine (668.7 ± 177 mOsmol kg-1, p < 0.0001) compared to controls on regular chow (urine output: 0.34 ± 0.27 μL min-1, osmolality: 1439 ± 473.5 mOsmol kg-1). Mice on GF had a higher risk of pyelonephritis (87.5%) and more severe infections (26.22 ± 9.88 CFU mg-1 tissue) compared to controls (43.75%; 3.87 ± 3.56 CFU mg-1, p < 0.01). Correspondingly, the growth of E. coli was markedly reduced at osmolalities above 1200 mOsmol kg-1 compared to 600 mOsmol kg-1 and GF mice had lower urine levels of uromodulin (13.70 ± 1.89 μg mL-1, p < 0.01) compared to controls (24.65 ± 2.70 μg mL-1). CONCLUSION Increased water intake and urine flow in mice will markedly increase the risk of pyelonephritis. The increased risk may reflect reduced urine uromodulin combined with optimized growth conditions for E. coli. The study does not immediately support the notion that established UTIs can be eliminated by increased water intake.
Collapse
Affiliation(s)
| | - Laura V Sparsoe
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Mathias Skov
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Nanna Johnsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | | | | |
Collapse
|
4
|
Iyer A, Frallicciardi J, le Paige UBA, Narasimhan S, Luo Y, Sieiro PA, Syga L, van den Brekel F, Tran BM, Tjioe R, Schuurman-Wolters G, Stuart MCA, Baldus M, van Ingen H, Poolman B. The Structure and Function of the Bacterial Osmotically Inducible Protein Y. J Mol Biol 2024; 436:168668. [PMID: 38908784 DOI: 10.1016/j.jmb.2024.168668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
The ability to adapt to osmotically diverse and fluctuating environments is critical to the survival and resilience of bacteria that colonize the human gut and urinary tract. Environmental stress often provides cross-protection against other challenges and increases antibiotic tolerance of bacteria. Thus, it is critical to understand how E. coli and other microbes survive and adapt to stress conditions. The osmotically inducible protein Y (OsmY) is significantly upregulated in response to hypertonicity. Yet its function remains unknown for decades. We determined the solution structure and dynamics of OsmY by nuclear magnetic resonance spectroscopy, which revealed that the two Bacterial OsmY and Nodulation (BON) domains of the protein are flexibly linked under low- and high-salinity conditions. In-cell solid-state NMR further indicates that there are no gross structural changes in OsmY as a function of osmotic stress. Using cryo-electron and super-resolution fluorescence microscopy, we show that OsmY attenuates plasmolysis-induced structural changes in E. coli and improves the time to growth resumption after osmotic upshift. Structure-guided mutational and functional studies demonstrate that exposed hydrophobic residues in the BON1 domain are critical for the function of OsmY. We find no evidence for membrane interaction of the BON domains of OsmY, contrary to current assumptions. Instead, at high ionic strength, we observe an interaction with the water channel, AqpZ. Thus, OsmY does not play a simple structural role in E. coli but may influence a cascade of osmoregulatory functions of the cell.
Collapse
Affiliation(s)
- Aditya Iyer
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Jacopo Frallicciardi
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Ulric B A le Paige
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Siddarth Narasimhan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Yanzhang Luo
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Patricia Alvarez Sieiro
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Lukasz Syga
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Floris van den Brekel
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Buu Minh Tran
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Rendy Tjioe
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Gea Schuurman-Wolters
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Marc C A Stuart
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Hugo van Ingen
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
5
|
Isidro-Coxca MI, Ortiz-Jiménez S, Puente JL. Type 1 fimbria and P pili: regulatory mechanisms of the prototypical members of the chaperone-usher fimbrial family. Arch Microbiol 2024; 206:373. [PMID: 39127787 PMCID: PMC11316696 DOI: 10.1007/s00203-024-04092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Adherence to both cellular and abiotic surfaces is a crucial step in the interaction of bacterial pathogens and commensals with their hosts. Bacterial surface structures known as fimbriae or pili play a fundamental role in the early colonization stages by providing specificity or tropism. Among the various fimbrial families, the chaperone-usher family has been extensively studied due to its ubiquity, diversity, and abundance. This family is named after the components that facilitate their biogenesis. Type 1 fimbria and P pilus, two chaperone-usher fimbriae associated with urinary tract infections, have been thoroughly investigated and serve as prototypes that have laid the foundations for understanding the biogenesis of this fimbrial family. Additionally, the study of the mechanisms regulating their expression has also been a subject of great interest, revealing that the regulation of the expression of the genes encoding these structures is a complex and diverse process, involving both common global regulators and those specific to each operon.
Collapse
Affiliation(s)
- María I Isidro-Coxca
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico.
| | - Stephanie Ortiz-Jiménez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico
| | - José L Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico.
| |
Collapse
|
6
|
Miki T, Ito M, Okada N, Haneda T. The CpxRA two-component system of adherent and invasive Escherichia coli contributes to epithelial cell invasion and early-stage intestinal fitness in a dysbiotic mouse model mediated by type 1 fimbriae expression. Infect Immun 2024; 92:e0013224. [PMID: 38700334 PMCID: PMC11237727 DOI: 10.1128/iai.00132-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Adherent and invasive Escherichia coli (AIEC) is a pathobiont that is involved in the onset and exacerbation of Crohn's disease. Although the inducible expression of virulence traits is a critical step for AIEC colonization in the host, the mechanism underlying AIEC colonization remains largely unclear. We here showed that the two-component signal transduction system CpxRA contributes to AIEC gut competitive colonization by activating type 1 fimbriae expression. CpxRA from AIEC strain LF82 functioned as a transcriptional regulator, as evidenced by our finding that an isogenic cpxRA mutant exhibits reduced expression of cpxP, a known regulon gene. Transcription levels of cpxP in LF82 increased in response to envelope stress, such as exposure to antimicrobials compromising the bacterial membrane, whereas the cpxRA mutant did not exhibit this response. Furthermore, we found that the cpxRA mutant exhibits less invasiveness into host cells than LF82, primarily due to reduced expression of the type 1 fimbriae. Finally, we found that the cpxRA mutant is impaired in gut competitive colonization in a mouse model. The colonization defects were reversed by the introduction of a plasmid encoding the cpxRA gene or expressing the type 1 fimbriae. Our findings indicate that modulating CpxRA activity could be a promising approach to regulating AIEC-involved Crohn's disease.
Collapse
Affiliation(s)
- Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Takeshi Haneda
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
7
|
Carlson HK, Piya D, Moore ML, Magar RT, Elisabeth NH, Deutschbauer AM, Arkin AP, Mutalik VK. Geochemical constraints on bacteriophage infectivity in terrestrial environments. ISME COMMUNICATIONS 2023; 3:78. [PMID: 37596312 PMCID: PMC10439110 DOI: 10.1038/s43705-023-00297-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Lytic phages can be potent and selective inhibitors of microbial growth and can have profound impacts on microbiome composition and function. However, there is uncertainty about the biogeochemical conditions under which phage predation modulates microbial ecosystem function, particularly in terrestrial systems. Ionic strength is critical for infection of bacteria by many phages, but quantitative data is limited on the ion thresholds for phage infection that can be compared with environmental ion concentrations. Similarly, while carbon composition varies in the environment, we do not know how this variability influences the impact of phage predation on microbiome function. Here, we measured the half-maximal effective concentrations (EC50) of 80 different inorganic ions for the infection of E. coli with two canonical dsDNA and ssRNA phages, T4 and MS2, respectively. Many alkaline earth metals and alkali metals enabled lytic infection but the ionic strength thresholds varied for different ions between phages. Additionally, using a freshwater nitrate-reducing microbiome, we found that the ability of lytic phages to influence nitrate reduction end-products depended upon the carbon source as well as ionic strength. For all phage:host pairs, the ion EC50s for phage infection exceeded the ion concentrations found in many terrestrial freshwater systems. Thus, our findings support a model where phages most influence terrestrial microbial functional ecology in hot spots and hot moments such as metazoan guts, drought influenced soils, or biofilms where ion concentration is locally or transiently elevated and nutrients are available to support the growth of specific phage hosts.
Collapse
Affiliation(s)
- Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA.
| | - Denish Piya
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Madeline L Moore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Roniya T Magar
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Nathalie H Elisabeth
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Vivek K Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA.
| |
Collapse
|
8
|
Guo J, Deng X, Zhang Y, Song S, Zhao T, Zhu D, Cao S, Baryshnikov PI, Cao G, Blair HT, Chen C, Gu X, Liu L, Zhang H. The Flagellar Transcriptional Regulator FtcR Controls Brucella melitensis 16M Biofilm Formation via a betI-Mediated Pathway in Response to Hyperosmotic Stress. Int J Mol Sci 2022; 23:ijms23179905. [PMID: 36077302 PMCID: PMC9456535 DOI: 10.3390/ijms23179905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
The expression of flagellar proteins in Brucella species likely evolved through genetic transference from other microorganisms, and contributed to virulence, adaptability, and biofilm formation. Despite significant progress in defining the molecular mechanisms behind flagellar gene expression, the genetic program controlling biofilm formation remains unclear. The flagellar transcriptional factor (FtcR) is a master regulator of the flagellar system’s expression, and is critical for B. melitensis 16M’s flagellar biogenesis and virulence. Here, we demonstrate that FtcR mediates biofilm formation under hyperosmotic stress. Chromatin immunoprecipitation with next-generation sequencing for FtcR and RNA sequencing of ftcR-mutant and wild-type strains revealed a core set of FtcR target genes. We identified a novel FtcR-binding site in the promoter region of the osmotic-stress-response regulator gene betI, which is important for the survival of B. melitensis 16M under hyperosmotic stress. Strikingly, this site autoregulates its expression to benefit biofilm bacteria’s survival under hyperosmotic stress. Moreover, biofilm reduction in ftcR mutants is independent of the flagellar target gene fliF. Collectively, our study provides new insights into the extent and functionality of flagellar-related transcriptional networks in biofilm formation, and presents phenotypic and evolutionary adaptations that alter the regulation of B. melitensis 16M to confer increased tolerance to hyperosmotic stress.
Collapse
Affiliation(s)
- Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yu Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Shengnan Song
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Tianyi Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Dexin Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Peter Ivanovic Baryshnikov
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- College of Veterinary, Altai State Agricultural University, 656000 Barnaul, Russia
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China
| | - Hugh T. Blair
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- International Sheep Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Chuangfu Chen
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xinli Gu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Liangbo Liu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- Correspondence: (L.L.); (H.Z.); Tel.: +86-0993-2057971 (L.L. & H.Z.)
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- Correspondence: (L.L.); (H.Z.); Tel.: +86-0993-2057971 (L.L. & H.Z.)
| |
Collapse
|
9
|
Conserved FimK Truncation Coincides with Increased Expression of Type 3 Fimbriae and Cultured Bladder Epithelial Cell Association in Klebsiella quasipneumoniae. J Bacteriol 2022; 204:e0017222. [PMID: 36005809 PMCID: PMC9487511 DOI: 10.1128/jb.00172-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella spp. commonly cause both uncomplicated urinary tract infection (UTI) and recurrent UTI (rUTI). Klebsiella quasipneumoniae, a relatively newly defined species of Klebsiella, has been shown to be metabolically distinct from Klebsiella pneumoniae, but its type 1 and type 3 fimbriae have not been studied. K. pneumoniae uses both type 1 and type 3 fimbriae to attach to host epithelial cells. The type 1 fimbrial operon is well conserved between Escherichia coli and K. pneumoniae apart from fimK, which is unique to Klebsiella spp. FimK contains an N-terminal DNA binding domain and a C-terminal phosphodiesterase (PDE) domain that has been hypothesized to cross-regulate type 3 fimbriae expression via modulation of cellular levels of cyclic di-GMP. Here, we find that a conserved premature stop codon in K. quasipneumoniae fimK results in truncation of the C-terminal PDE domain and that K quasipneumoniae strain KqPF9 cultured bladder epithelial cell association and invasion are dependent on type 3 but not type 1 fimbriae. Further, we show that basal expression of both type 1 and type 3 fimbrial operons as well as cultured bladder epithelial cell association is elevated in KqPF9 relative to uropathogenic K. pneumoniae TOP52. Finally, we show that complementation of KqPF9ΔfimK with the TOP52 fimK allele reduced type 3 fimbrial expression and cultured bladder epithelial cell attachment. Taken together these data suggest that the C-terminal PDE of FimK can modulate type 3 fimbrial expression in K. pneumoniae and its absence in K. quasipneumoniae may lead to a loss of type 3 fimbrial cross-regulation. IMPORTANCE K. quasipneumoniae is often indicated as the cause of opportunistic infections, including urinary tract infection, which affects >50% of women worldwide. However, the virulence factors of K. quasipneumoniae remain uninvestigated. Prior to this work, K. quasipneumoniae and K. pneumoniae had only been distinguished phenotypically by metabolic differences. This work contributes to the understanding of K. quasipneumoniae by evaluating the contribution of type 1 and type 3 fimbriae, which are critical colonization factors encoded by all Klebsiella spp., to K. quasipneumoniae bladder epithelial cell attachment in vitro. We observe clear differences in bladder epithelial cell attachment and regulation of type 3 fimbriae between uropathogenic K. pneumoniae and K. quasipneumoniae that coincide with a structural difference in the fimbrial regulatory gene fimK.
Collapse
|
10
|
Avelino-Flores F, Soria-Bustos J, Saldaña-Ahuactzi Z, Martínez-Laguna Y, Yañez-Santos JA, Cedillo-Ramírez ML, Girón JA. The Transcription of Flagella of Enteropathogenic Escherichia coli O127:H6 Is Activated in Response to Environmental and Nutritional Signals. Microorganisms 2022; 10:microorganisms10040792. [PMID: 35456842 PMCID: PMC9032864 DOI: 10.3390/microorganisms10040792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The flagella of enteropathogenic Escherichia coli (EPEC) O127:H6 E2348/69 mediate adherence to host proteins and epithelial cells. What environmental and nutritional signals trigger or down-regulate flagella expression in EPEC are largely unknown. In this study, we analyzed the influence of pH, oxygen tension, cationic and anionic salts (including bile salt), carbon and nitrogen sources, and catecholamines on the expression of the flagellin gene (fliC) of E2348/69. We found that sodium bicarbonate, which has been shown to induce the expression of type III secretion effectors, down-regulated flagella expression, explaining why E2348/69 shows reduced motility and flagellation when growing in Dulbecco’s Minimal Essential Medium (DMEM). Further, growth under a 5% carbon dioxide atmosphere, in DMEM adjusted to pH 8.2, in M9 minimal medium supplemented with 80 mM glucose or sucrose, and in DMEM containing 150 mM sodium chloride, 0.1% sodium deoxycholate, or 30 µM epinephrine significantly enhanced fliC transcription to different levels in comparison to growth in DMEM alone. When EPEC was grown in the presence of HeLa cells or in supernatants of cultured HeLa cells, high levels (4-fold increase) of fliC transcription were detected in comparison to growth in DMEM alone. Our data suggest that nutritional and host signals that EPEC may encounter in the intestinal niche activate fliC expression in order to favor motility and host colonization.
Collapse
Affiliation(s)
- Fabiola Avelino-Flores
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (F.A.-F.); (Y.M.-L.)
| | - Jorge Soria-Bustos
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca 42160, Mexico;
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| | - Ygnacio Martínez-Laguna
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (F.A.-F.); (Y.M.-L.)
| | - Jorge A. Yañez-Santos
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - María L. Cedillo-Ramírez
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
| | - Jorge A. Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
- Correspondence:
| |
Collapse
|
11
|
Schwan WR, Luedtke J, Engelbrecht K, Mollinger J, Wheaton A, Foster JW, Wolchak R. Regulation of Escherichia coli fim gene transcription by GadE and other acid tolerance gene products. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001149. [PMID: 35316170 PMCID: PMC9558354 DOI: 10.1099/mic.0.001149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) cause millions of urinary tract infections each year in the United States. Type 1 pili are important for adherence of UPEC to uroepithelial cells in the human and murine urinary tracts where osmolality and pH vary. Previous work has shown that an acidic pH adversely affects the expression of type 1 pili. To determine if acid tolerance gene products may be regulating E. coli fim gene expression, a bank of K-12 strain acid tolerance gene mutants were screened using fimA-lux, fimB-lux, and fimE-lux fusions on single copy number plasmids. We have determined that a mutation in gadE increased transcription of all three fim genes, suggesting that GadE may be acting as a repressor in a low pH environment. Complementation of the gadE mutation restored fim gene transcription to wild-type levels. Moreover, mutations in gadX, gadW, crp, and cya also affected transcription of the three fim genes. To verify the role GadE plays in type 1 pilus expression, the NU149 gadE UPEC strain was tested. The gadE mutant had higher fimE gene transcript levels, a higher frequency of Phase-OFF positioning of fimS, and hemagglutination titres that were lower in strain NU149 gadE cultured in low pH medium as compared to the wild-type bacteria. The data demonstrate that UPEC fim genes are regulated directly or indirectly by the GadE protein and this could have some future bearing on the ability to prevent urinary tract infections by acidifying the urine and shutting off fim gene expression.
Collapse
Affiliation(s)
| | | | | | | | | | - John W. Foster
- University South Alabama College of Medicine, Mobile, AL, USA
| | | |
Collapse
|
12
|
Abstract
Urinary tract infection (UTI) is the most common type of urogenital disease. UTI affects the urethra, bladder, ureter, and kidney. A total of 13.3% of women, 2.3% of men, and 3.4% of children in the United States will require treatment for UTI. Traditionally, bladder (cystitis) and kidney (pyelonephritis) infections are considered independently. However, both infections induce host defenses that are either shared or coordinated across the urinary tract. Here, we review the chemical and biophysical mechanisms of bacteriostasis, which limit the duration and severity of the illness. Urinary bacteria attempt to overcome each of these defenses, complicating description of the natural history of UTI.
Collapse
Affiliation(s)
| | - Anne-Catrin Uhlemann
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY, USA;
| | - Jonathan Barasch
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY, USA;
| |
Collapse
|
13
|
CRISPR Interference (CRISPRi) Mediated Suppression of OmpR Gene in E. coli: An Alternative Approach to Inhibit Biofilm. Curr Microbiol 2022; 79:78. [DOI: 10.1007/s00284-021-02760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/30/2021] [Indexed: 11/03/2022]
|
14
|
uvrY deletion and acetate reduce gut colonization of Crohn's disease-associated adherent-invasive Escherichia coli by decreasing expression of type 1 fimbriae. Infect Immun 2022; 90:e0066221. [PMID: 34978926 DOI: 10.1128/iai.00662-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) is involved in onset and/or exacerbation of Crohn's disease. AIEC adapts to the gut environment by altering gene-expression programs, leading to successful gut-lumen colonization. However, the underlying mechanism of gut colonization is still far from clarified. Here, we show the role of UvrY, a response regulator of bacterial two-component signal transduction systems, in AIEC gut colonization. An AIEC mutant lacking the uvrY gene exhibited impairment of competitive colonization in the murine intestinal tract. UvrY contributes to functional expression of type 1 fimbriae by activating expression of small RNA CsrB, which confers adherence and invasion into epithelial cells on AIEC. In contrast, acetate suppresses the UvrY-dependent expression of type 1 fimbriae, resulting in less efficient cell invasion and attenuated gut colonization. Our findings might lead to therapeutic interventions for CD, in which inhibitions of UvrY activation and acetate supplementation reduce the colonization levels of AIEC by decreasing type-1 fimbriae expression.
Collapse
|
15
|
Bessaiah H, Anamalé C, Sung J, Dozois CM. What Flips the Switch? Signals and Stress Regulating Extraintestinal Pathogenic Escherichia coli Type 1 Fimbriae (Pili). Microorganisms 2021; 10:5. [PMID: 35056454 PMCID: PMC8777976 DOI: 10.3390/microorganisms10010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens are exposed to a multitude of harmful conditions imposed by the environment of the host. Bacterial responses against these stresses are pivotal for successful host colonization and pathogenesis. In the case of many E. coli strains, type 1 fimbriae (pili) are an important colonization factor that can contribute to diseases such as urinary tract infections and neonatal meningitis. Production of type 1 fimbriae in E. coli is dependent on an invertible promoter element, fimS, which serves as a phase variation switch determining whether or not a bacterial cell will produce type 1 fimbriae. In this review, we present aspects of signaling and stress involved in mediating regulation of type 1 fimbriae in extraintestinal E. coli; in particular, how certain regulatory mechanisms, some of which are linked to stress response, can influence production of fimbriae and influence bacterial colonization and infection. We suggest that regulation of type 1 fimbriae is potentially linked to environmental stress responses, providing a perspective for how environmental cues in the host and bacterial stress response during infection both play an important role in regulating extraintestinal pathogenic E. coli colonization and virulence.
Collapse
Affiliation(s)
- Hicham Bessaiah
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Carole Anamalé
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
| | - Jacqueline Sung
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
16
|
Vendeville JB, Kyriakides MJ, Takebayashi Y, Rama S, Preece J, Samphire J, Ramos-Soriano J, Amieva AM, Holbrow-Wilshaw ME, Gordon Newman HR, Kou SL, Medina-Villar S, Dorh N, Dorh JN, Spencer J, Galan MC. Fast Identification and Quantification of Uropathogenic E. coli through Cluster Analysis. ACS Biomater Sci Eng 2021; 8:242-252. [PMID: 34894660 DOI: 10.1021/acsbiomaterials.1c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rapid diagnostic tools to detect, identify, and enumerate bacteria are key to maintaining effective antibiotic stewardship and avoiding the unnecessary prescription of broad-spectrum agents. In this study, a 15 min agglutination assay is developed that relies on the use of mannose-functionalized polymeric microspheres in combination with cluster analysis. This allows for the identification and enumeration of laboratory (BW25113), clinical isolate (NCTC 12241), and uropathogenic Escherichia coli strains (NCTC 9001, NCTC 13958, J96, and CFT073) at clinically relevant concentrations in tryptic soy broth (103-108 CFU/mL) and in urine (105-108 CFU/mL). This fast, simple, and efficient assay offers a step forward toward efficient point-of-care diagnostics for common urinary tract infections.
Collapse
Affiliation(s)
| | | | - Yuiko Takebayashi
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, BS8 1TD Bristol, United Kingdom
| | - Sylvain Rama
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - James Preece
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - Jenny Samphire
- School of Chemistry, University of Bristol, Cantock''s Close, BS8 1TS Bristol, United Kingdom
| | - Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock''s Close, BS8 1TS Bristol, United Kingdom
| | | | | | | | - Sio Lou Kou
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - Sandra Medina-Villar
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - Neciah Dorh
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - Josephine Ndoa Dorh
- FluoretiQ, Unit DX, St Philips Central, Albert Road, BS2 0XJ Bristol, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, BS8 1TD Bristol, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock''s Close, BS8 1TS Bristol, United Kingdom
| |
Collapse
|
17
|
Gulyuk AV, LaJeunesse DR, Collazo R, Ivanisevic A. Tuning Microbial Activity via Programmatic Alteration of Cell/Substrate Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004655. [PMID: 34028885 PMCID: PMC10167751 DOI: 10.1002/adma.202004655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/11/2020] [Indexed: 05/11/2023]
Abstract
A wide portfolio of advanced programmable materials and structures has been developed for biological applications in the last two decades. Particularly, due to their unique properties, semiconducting materials have been utilized in areas of biocomputing, implantable electronics, and healthcare. As a new concept of such programmable material design, biointerfaces based on inorganic semiconducting materials as substrates introduce unconventional paths for bioinformatics and biosensing. In particular, understanding how the properties of a substrate can alter microbial biofilm behavior enables researchers to better characterize and thus create programmable biointerfaces with necessary characteristics on demand. Herein, the current status of advanced microorganism-inorganic biointerfaces is summarized along with types of responses that can be observed in such hybrid systems. This work identifies promising inorganic material types along with target microorganisms that will be critical for future research on programmable biointerfacial structures.
Collapse
Affiliation(s)
- Alexey V Gulyuk
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dennis R LaJeunesse
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina-Greensboro, Greensboro, NC, 27401, USA
| | - Ramon Collazo
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Albena Ivanisevic
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
18
|
Influence of Cultivation pH on Composition, Diversity, and Metabolic Production in an In Vitro Human Intestinal Microbiota. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fecal microbiota transplantation, an alternative treatment method for gastrointestinal diseases, has a high recovery rate, but comes with disadvantages, such as high donor requirements and the low storability of stool. A solution to overcome these problems is the cultivation of an in vitro microbiota. However, the influence of cultivation conditions on the pH are yet unknown. In this study, the influence of the cultivation pH (6.0–7.0) on the system’s behavior and characteristics, including cell count, metabolism, and microbial composition, was investigated. With an increasing cultivation pH, an increase in cell count, total amount of SCFAs, acetate, propionate, and the abundance of Bacteroidetes and Verrucomicrobia were observed. For the concentration of butyrate and the abundance of Actinobacteria and Firmicutes, a decrease with increasing pH was determined. For the concentration of isovalerate, the abundance of Proteobacteria and diversity (richness and Shannon effective), no effect of the pH was observed. Health-promoting genera were more abundant at lower pH levels. When cultivating an in vitro microbiota, all investigated pH values created a diverse and stable system. Ultimately, therefore, the choice of pH creates significant differences in the established in vitro microbiota, but no clear recommendations for a special value can be made.
Collapse
|
19
|
Mihailovic MK, Ekdahl AM, Chen A, Leistra AN, Li B, González Martínez J, Law M, Ejindu C, Massé É, Freddolino PL, Contreras LM. Uncovering Transcriptional Regulators and Targets of sRNAs Using an Integrative Data-Mining Approach: H-NS-Regulated RseX as a Case Study. Front Cell Infect Microbiol 2021; 11:696533. [PMID: 34327153 PMCID: PMC8313858 DOI: 10.3389/fcimb.2021.696533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial small RNAs (sRNAs) play a vital role in pathogenesis by enabling rapid, efficient networks of gene attenuation during infection. In recent decades, there has been a surge in the number of proposed and biochemically-confirmed sRNAs in both Gram-positive and Gram-negative pathogens. However, limited homology, network complexity, and condition specificity of sRNA has stunted complete characterization of the activity and regulation of these RNA regulators. To streamline the discovery of the expression of sRNAs, and their post-transcriptional activities, we propose an integrative in vivo data-mining approach that couples DNA protein occupancy, RNA-seq, and RNA accessibility data with motif identification and target prediction algorithms. We benchmark the approach against a subset of well-characterized E. coli sRNAs for which a degree of in vivo transcriptional regulation and post-transcriptional activity has been previously reported, finding support for known regulation in a large proportion of this sRNA set. We showcase the abilities of our method to expand understanding of sRNA RseX, a known envelope stress-linked sRNA for which a cellular role has been elusive due to a lack of native expression detection. Using the presented approach, we identify a small set of putative RseX regulators and targets for experimental investigation. These findings have allowed us to confirm native RseX expression under conditions that eliminate H-NS repression as well as uncover a post-transcriptional role of RseX in fimbrial regulation. Beyond RseX, we uncover 163 putative regulatory DNA-binding protein sites, corresponding to regulation of 62 sRNAs, that could lead to new understanding of sRNA transcription regulation. For 32 sRNAs, we also propose a subset of top targets filtered by engagement of regions that exhibit binding site accessibility behavior in vivo. We broadly anticipate that the proposed approach will be useful for sRNA-reliant network characterization in bacteria. Such investigations under pathogenesis-relevant environmental conditions will enable us to deduce complex rapid-regulation schemes that support infection.
Collapse
Affiliation(s)
- Mia K Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Alyssa M Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Angela Chen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Abigail N Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Bridget Li
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Javier González Martínez
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Matthew Law
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Cindy Ejindu
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Éric Massé
- Department of Biochemistry and Functional Genomics, Universitéde Sherbrooke, RNA Group, Sherbrooke, QC, Canada
| | - Peter L Freddolino
- Department of Biological Chemistry and Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
20
|
Bessaiah H, Pokharel P, Loucif H, Kulbay M, Sasseville C, Habouria H, Houle S, Bernier J, Massé É, Van Grevenynghe J, Dozois CM. The RyfA small RNA regulates oxidative and osmotic stress responses and virulence in uropathogenic Escherichia coli. PLoS Pathog 2021; 17:e1009617. [PMID: 34043736 PMCID: PMC8205139 DOI: 10.1371/journal.ppat.1009617] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 06/15/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
Urinary tract infections (UTIs) are a common bacterial infectious disease in humans, and strains of uropathogenic Escherichia coli (UPEC) are the most frequent cause of UTIs. During infection, UPEC must cope with a variety of stressful conditions in the urinary tract. Here, we demonstrate that the small RNA (sRNA) RyfA of UPEC strains is required for resistance to oxidative and osmotic stresses. Transcriptomic analysis of the ryfA mutant showed changes in expression of genes associated with general stress responses, metabolism, biofilm formation and genes coding for cell surface proteins. Inactivation of ryfA in UPEC strain CFT073 decreased urinary tract colonization in mice and the ryfA mutant also had reduced production of type 1 and P fimbriae (pili), adhesins which are known to be important for UTI. Furthermore, loss of ryfA also reduced UPEC survival in human macrophages. Thus, ryfA plays a key regulatory role in UPEC adaptation to stress, which contributes to UTI and survival in macrophages.
Collapse
Affiliation(s)
- Hicham Bessaiah
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- CRIPA-Centre de recherche en infectiologie porcine et avicole, Saint-Hyacinthe, Québec, Canada
| | - Pravil Pokharel
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- CRIPA-Centre de recherche en infectiologie porcine et avicole, Saint-Hyacinthe, Québec, Canada
| | - Hamza Loucif
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Merve Kulbay
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Charles Sasseville
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Hajer Habouria
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- CRIPA-Centre de recherche en infectiologie porcine et avicole, Saint-Hyacinthe, Québec, Canada
| | - Sébastien Houle
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- CRIPA-Centre de recherche en infectiologie porcine et avicole, Saint-Hyacinthe, Québec, Canada
| | - Jacques Bernier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Éric Massé
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Charles M. Dozois
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
- CRIPA-Centre de recherche en infectiologie porcine et avicole, Saint-Hyacinthe, Québec, Canada
- * E-mail:
| |
Collapse
|
21
|
Katani R, Kudva IT, Srinivasan S, Stasko JB, Schilling M, Li L, Cote R, DebRoy C, Arthur TM, Sokurenko EV, Kapur V. Strain and host-cell dependent role of type-1 fimbriae in the adherence phenotype of super-shed Escherichia coli O157:H7. Int J Med Microbiol 2021; 311:151511. [PMID: 33975122 PMCID: PMC8605689 DOI: 10.1016/j.ijmm.2021.151511] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/14/2021] [Accepted: 05/03/2021] [Indexed: 02/04/2023] Open
Abstract
Super-shed (SS) Escherichia coli O157 (E. coli O157) demonstrate a strong, aggregative, locus of enterocyte effacement (LEE)-independent adherence phenotype on bovine recto-anal junction squamous epithelial (RSE) cells, and harbor polymorphisms in non-LEE-adherence-related loci, including in the type 1 fimbriae operon. To elucidate the role of type 1 fimbriae in strain- and host-specific adherence, we evaluated the entire Fim operon (FimB-H) and its adhesion (FimH) deletion mutants in four E. coli O157 strains, SS17, SS52, SS77 and EDL933, and evaluated the adherence phenotype in bovine RSE and human HEp-2 adherence assays. Consistent with the prevailing dogma that fimH expression is genetically switched off in E. coli O157, the ΔfimHSS52, ΔfimB-HSS52, ΔfimB-HSS17, and ΔfimHSS77 mutants remained unchanged in adherence phenotype to RSE cells. In contrast, the ΔfimHSS17 and ΔfimB-HSS77 mutants changed from a wild-type strong and aggregative, to a moderate and diffuse adherence phenotype, while both ΔfimHEDL933 and ΔfimB-HEDL933 mutants demonstrated enhanced binding to RSE cells (p < 0.05). Additionally, both ΔfimHSS17 and ΔfimHEDL933 were non-adherent to HEp-2 cells (p < 0.05). Complementation of the mutant strains with their respective wild-type genes restored parental phenotypes. Microscopy revealed that the SS17 and EDL933 strains indeed carry type 1 fimbriae-like structures shorter than those seen in uropathogenic E. coli. Taken together, these results provide compelling evidence for a strain and host cell type-dependent role of fimH and the fim operon in E. coli O157 adherence that needs to be further evaluated.
Collapse
Affiliation(s)
- Robab Katani
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Indira T Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, USA.
| | - Sreenidhi Srinivasan
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Judith B Stasko
- Microscopy Services, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, USA
| | - Megan Schilling
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Lingling Li
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Rebecca Cote
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Chitrita DebRoy
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Terrance M Arthur
- Roman L. Hruska U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE, USA
| | | | - Vivek Kapur
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA; Department of Animal Science, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
22
|
GÜMÜŞ D, KALAYCI YÜKSEK F, UZ G, SEFER Ö, YÖRÜK E, KÜÇÜKER M. Urine influences growth and virulence gene expressions in Uropathogenic E. coli: a comparison with nutrient limited medium. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.686302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Schwan WR, Flohr NL, Multerer AR, Starkey JC. GadE regulates fliC gene transcription and motility in Escherichia coli. World J Clin Infect Dis 2020; 10:14-23. [PMID: 32728533 PMCID: PMC7388676 DOI: 10.5495/wjcid.v10.i1.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/25/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Escherichia coli (E. coli) express flagella to ascend human urinary tracts. To survive in the acidic pH of human urine, E. coli uses the glutamate decarboxylase acid response system, which is regulated by the GadE protein.
AIM To determine if growth in an acidic pH environment affected fliC transcription and whether GadE regulated that transcription.
METHODS A fliC-lacZ reporter fusion was created on a single copy number plasmid to assess the effects of acidic pH on fliC transcription. Further, a ΔgadE mutant strain of a uropathogenic E. coli was created and tested for motility compared to the wild-type strain.
RESULTS Escherichia coli cells carrying the fliC-lacZ fusion displayed significantly less fliC transcription when grown in an acidic pH medium compared to when grown in a neutral pH medium. Transcription of fliC fell further when the E. coli was grown in an acidic pH/high osmolarity environment. Since GadE is a critical regulator of one acid response system, fliC transcription was tested in a gadE mutant strain grown under acidic conditions. Expression of fliC was derepressed in the E. coli gadE mutant strain grown under acidic conditions compared to that in wild-type bacteria under the same conditions. Furthermore, a gadE mutation in a uropathogenic E. coli background exhibited significantly greater motility than the wild-type strain following growth in an acidic medium.
CONCLUSION Together, our results suggest that GadE may down-regulate fliC transcription and motility in E. coli grown under acidic conditions.
Collapse
Affiliation(s)
- William R Schwan
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - Nicole L Flohr
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - Abigail R Multerer
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| | - Jordan C Starkey
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, WI 54601, United States
| |
Collapse
|
24
|
Nieckarz M, Kaczor P, Jaworska K, Raczkowska A, Brzostek K. Urease Expression in Pathogenic Yersinia enterocolitica Strains of Bio-Serotypes 2/O:9 and 1B/O:8 Is Differentially Regulated by the OmpR Regulator. Front Microbiol 2020; 11:607. [PMID: 32322248 PMCID: PMC7156557 DOI: 10.3389/fmicb.2020.00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/19/2020] [Indexed: 12/31/2022] Open
Abstract
Yersinia enterocolitica exhibits a dual lifestyle, existing as both a saprophyte and a pathogen colonizing different niches within a host organism. OmpR has been recognized as a regulator that controls the expression of genes involved in many different cellular processes and the virulence of pathogenic bacteria. Here, we have examined the influence of OmpR and varying temperature (26°C vs. 37°C) on the cytoplasmic proteome of Y. enterocolitica Ye9N (bio-serotype 2/O:9, low pathogenicity). Differential label-free quantitative proteomic analysis indicated that OmpR affects the cellular abundance of a number of proteins including subunits of urease, an enzyme that plays a significant role in acid tolerance and the pathogenicity of Y. enterocolitica. The impact of OmpR on the expression of urease under different growth conditions was studied in more detail by comparing urease activity and the transcription of ure genes in Y. enterocolitica strains Ye9N and Ye8N (highly pathogenic bio-serotype 1B/O:8). Urease expression was higher in strain Ye9N than in Ye8N and in cells grown at 26°C compared to 37°C. However, low pH, high osmolarity and the presence of urea did not have a clear effect on urease expression in either strain. Further analysis showed that OmpR participates in the positive regulation of three transcriptional units encoding the multi-subunit urease (ureABC, ureEF, and ureGD) in strain Ye9N, but this was not the case in strain Ye8N. Binding of OmpR to the ureABC and ureEF promoter regions was confirmed using an electrophoretic mobility shift assay, suggesting that this factor plays a direct role in regulating the transcription of these operons. In addition, we determined that OmpR modulates the expression of a ureR-like gene encoding a putative regulator of the ure gene cluster, but in the opposite manner, i.e., positively in Ye9N and negatively in Ye8N. These findings provide some novel insights into the function of OmpR in adaptation strategies of Y. enterocolitica.
Collapse
Affiliation(s)
| | | | | | | | - Katarzyna Brzostek
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Extended Phylogeny and Extraintestinal Virulence Potential of Commensal Escherichia coli from Piglets and Sows. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17010366. [PMID: 31935799 PMCID: PMC6981902 DOI: 10.3390/ijerph17010366] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
Commensal Escherichia coli, naturally occurring in the intestinal tract, can be the origin of extraintestinal pathogenic E. coli (ExPEC) strains. ExPEC causes high mortality and significant economic losses in the swine industry in several countries and poses a serious threat to public health worldwide. The aim of this study was to analyze the extended phylogenetic structure and extraintestinal virulence potential in two groups of commensal E. coli isolates from post-weaning piglets and sows. The phylogenetic assignment to eight groups was determined using the revised Clermont phylogenetic typing method in quadruplex PCR. Identification of extraintestinal virulence genes (VGs) and adhesin operon genes was performed using multiplex or simplex PCR. The revised phylogenetic assignment allowed us to distinguish E. coli with significantly higher (groups C and F) or lower (group E) virulence potential in isolates from piglets. The majority of the tested VGs occurred more frequently in isolates from piglets than from sows, with statistically significant differences for seven genes: fimH, papAH, iutA, iroN, ompT, traT, and iss. Complete operons for type I and P fimbriae significantly prevailed among E. coli from piglets. This study provides insight into the extended phylogenetic structure of porcine commensal E. coli and showed that these strains, particularly from piglets, constitute a considerable reservoir of extraintestinal VGs and may increase the potential risk of extraintestinal infections.
Collapse
|
26
|
Ligowska-Marzęta M, Hancock V, Ingmer H, M Aarestrup F. Comparison of Gene Expression Profiles of Uropathogenic Escherichia Coli CFT073 after Prolonged Exposure to Subinhibitory Concentrations of Different Biocides. Antibiotics (Basel) 2019; 8:antibiotics8040167. [PMID: 31569631 PMCID: PMC6963283 DOI: 10.3390/antibiotics8040167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/24/2023] Open
Abstract
Biocides are chemical compounds widely used for sterilization and disinfection. The aim of this study was to examine whether exposure to subinhibitory biocide concentrations influenced transcriptional expression of genes that could improve a pathogen’s drug resistance or fitness. We used DNA microarrays to investigate the transcriptome of the uropathogenic Escherichia coli strain CFT073 in response to prolonged exposure to subinhibitory concentrations of four biocides: benzalkonium chloride, chlorhexidine, hydrogen peroxide and triclosan. Transcription of a gene involved in polymyxin resistance, arnT, was increased after treatment with benzalkonium chloride. However, pretreatment of the bacteria with this biocide did not result in cross-resistance to polymyxin in vitro. Genes encoding products related to transport formed the functional group that was most affected by biocides, as 110 out of 884 genes in this category displayed altered transcription. Transcripts of genes involved in cysteine uptake, sulfate assimilation, dipeptide transport, as well as cryptic phage genes were also more abundant in response to several biocides. Additionally, we identified groups of genes with transcription changes unique to single biocides that might include potential targets for the biocides. The biocides did not increase the resistance potential of the pathogen to other antimicrobials.
Collapse
Affiliation(s)
- Małgorzata Ligowska-Marzęta
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark.
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Viktoria Hancock
- Renal Research & Innovation, Baxter International Inc., SE-220 10 Lund, Sweden.
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
27
|
Distinct intraspecies virulence mechanisms regulated by a conserved transcription factor. Proc Natl Acad Sci U S A 2019; 116:19695-19704. [PMID: 31501343 PMCID: PMC6765310 DOI: 10.1073/pnas.1903461116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial pathogens emerge by adapting mechanisms of virulence, differentiating them from their nonpathogenic progenitor. Virulence factors are often encoded on accessory genomic elements not part of the core genome and therefore must be integrated into the regulatory architecture of the cell. Here, we show that a highly conserved transcription factor in Escherichia coli has been relieved of a common purpose and adapted to regulate virulence pleiotropically in 2 distinct genetic backgrounds. This leads to enhanced virulence of both intestinal enterohemorrhagic E. coli and extraintestinal uropathogenic E. coli by exclusive mechanisms. These findings challenge the assumption that conserved transcription factors regulate common pathways maintained within a species and suggest that transcriptional repurposing creates new primary roles on an individual basis. Tailoring transcriptional regulation to coordinate the expression of virulence factors in tandem with the core genome is a hallmark of bacterial pathogen evolution. Bacteria encode hundreds of transcription factors forming the base-level control of gene regulation. Moreover, highly homologous regulators are assumed to control conserved genes between members within a species that harbor the same genetic targets. We have explored this concept in 2 Escherichia coli pathotypes that employ distinct virulence mechanisms that facilitate specification of a different niche within the host. Strikingly, we found that the transcription factor YhaJ actively regulated unique gene sets between intestinal enterohemorrhagic E. coli (EHEC) and extraintestinal uropathogenic E. coli (UPEC), despite being very highly conserved. In EHEC, YhaJ directly activates expression of type 3 secretion system components and effectors. Alternatively, YhaJ enhances UPEC virulence regulation by binding directly to the phase-variable type 1 fimbria promoter, driving its expression. Additionally, YhaJ was found to override the universal GAD acid tolerance system but exclusively in EHEC, thereby indirectly enhancing type 3 secretion pleiotropically. These results have revealed that within a species, conserved regulators are actively repurposed in a “personalized” manner to benefit particular lifestyles and drive virulence via multiple distinct mechanisms.
Collapse
|
28
|
Bessaiah H, Pokharel P, Habouria H, Houle S, Dozois CM. yqhG Contributes to Oxidative Stress Resistance and Virulence of Uropathogenic Escherichia coli and Identification of Other Genes Altering Expression of Type 1 Fimbriae. Front Cell Infect Microbiol 2019; 9:312. [PMID: 31555608 PMCID: PMC6727828 DOI: 10.3389/fcimb.2019.00312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Urinary tract infections (UTIs) are common bacterial infections and the vast majority of UTIs are caused by extraintestinal pathogenic Escherichia coli (ExPEC) strains referred to as uropathogenic E. coli (UPEC). Successful colonization of the human urinary tract by UPEC is mediated by secreted or surface exposed virulence factors-toxins, iron transport systems, and adhesins, such as type 1 fimbriae (pili). To identify factors involved in the expression of type 1 fimbriae, we constructed a chromosomal transcriptional reporter consisting of lux under the control of the fimbrial promoter region, fimS and this construct was inserted into the reference UPEC strain CFT073 genome at the attTn7 site. This fimS reporter strain was used to generate a Tn10 transposon mutant library, coupled with high-throughput sequencing to identify genes that affect the expression of type 1 fimbriae. Transposon insertion sites were linked to genes involved in protein fate and synthesis, energy metabolism, adherence, transcriptional regulation, and transport. We showed that YqhG, a predicted periplasmic protein, is one of the important mediators that contribute to the decreased expression of type 1 fimbriae in UPEC strain CFT073. The ΔyqhG mutant had reduced expression of type 1 fimbriae and a decreased capacity to colonize the murine urinary tract. Reduced expression of type 1 fimbriae correlated with an increased bias for orientation of the fim switch in the OFF position. Interestingly, the ΔyqhG mutant was more motile than the WT strain and was also significantly more sensitive to hydrogen peroxide. Taken together, loss of yqhG may decrease virulence in the urinary tract due to a decrease in production of type 1 fimbriae and a greater sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Hicham Bessaiah
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| | - Pravil Pokharel
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| | - Hajer Habouria
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| | - Sébastien Houle
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| | - Charles M. Dozois
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
29
|
Ares MA, Abundes-Gallegos J, Rodríguez-Valverde D, Panunzi LG, Jiménez-Galicia C, Jarillo-Quijada MD, Cedillo ML, Alcántar-Curiel MD, Torres J, Girón JA, De la Cruz MA. The Coli Surface Antigen CS3 of Enterotoxigenic Escherichia coli Is Differentially Regulated by H-NS, CRP, and CpxRA Global Regulators. Front Microbiol 2019; 10:1685. [PMID: 31417507 PMCID: PMC6681793 DOI: 10.3389/fmicb.2019.01685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
Enterotoxigenic Escherichia coli produces a myriad of adhesive structures collectively named colonization factors (CFs). CS3 is a CF, which is assembled into fine wiry fibrillae encoded by the cstA-H gene cluster. In this work we evaluated the influence of environmental cues such as temperature, osmolarity, pH, and carbon source on the expression of CS3 genes. The transcription of cstH major pilin gene was stimulated by growth of the bacteria in colonization factor broth at 37°C; the presence of glycerol enhanced cstH transcription, while glucose at high concentration, high osmolarity, and the depletion of divalent cations such as calcium and magnesium repressed cstH expression. In addition, we studied the role of H-NS, CpxRA, and CRP global regulators in CS3 gene expression. H-NS and CpxRA acted as repressors and CRP as an activator of cstH expression. Under high osmolarity, H-NS, and CpxRA were required for cstH repression. CS3 was required for both, bacterial adherence to epithelial cells and biofilm formation. Our data strengthens the existence of a multi-factorial regulatory network that controls transcription of CS3 genes in which global regulators, under the influence of environmental signals, control the production of this important intestinal colonization factor.
Collapse
Affiliation(s)
- Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Judith Abundes-Gallegos
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Diana Rodríguez-Valverde
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Leonardo G Panunzi
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - César Jiménez-Galicia
- Unidad Médica de Alta Especialidad, Laboratorio Clínico, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Ma Dolores Jarillo-Quijada
- Unidad de Investigacioìn en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Lilia Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Marìa D Alcántar-Curiel
- Unidad de Investigacioìn en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
30
|
Uropathogenic Escherichia coli and the related virulence factors. GINECOLOGIA.RO 2019. [DOI: 10.26416/gine.26.4.2019.2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
31
|
Matter LB, Ares MA, Abundes-Gallegos J, Cedillo ML, Yáñez JA, Martínez-Laguna Y, De la Cruz MA, Girón JA. The CpxRA stress response system regulates virulence features of avian pathogenic Escherichia coli. Environ Microbiol 2018; 20:3363-3377. [PMID: 30062827 DOI: 10.1111/1462-2920.14368] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/29/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) causes localized and systemic avian infections and is responsible for considerable economic losses in the poultry industry. This organism adheres and invades human and avian cells, however, the regulatory networks that dictate its virulence are largely unknown. The CpxRA two-component system is responsible for sensing and controlling outer-membrane stress and detecting misfolded proteins in the bacterial periplasmic space. CpxA is a membrane sensor kinase and CpxR is a cytoplasmic transcriptional regulator. In this study, we found that the CpxRA system regulates the virulence properties of APEC. Adherence, invasiveness, motility, production of type 1 fimbriae and biofilm were negatively affected in the ΔcpxA mutant indicating that the CpxA is required for full manifestation of these phenotypes. We also found that CpxR-P directly bound to the fimA promoter, locking the fimS region of type 1 fimbriae in the phase-OFF orientation. In addition, the absence of CpxA also reduced flagella production strongly suggesting that CpxRA regulates these two important surface organelles in APEC. This study provides compelling evidence of the role of the CpxRA two-component system in the regulation of virulence factors of avian pathogenic E. coli.
Collapse
Affiliation(s)
- Letícia B Matter
- Emerging Pathogens Institute, University of Florida, P.O. Box 100009, 2055 Mowry Road, Gainesville, FL, USA.,Departamento de Ciências da Saúde, Universidade Regional Integrada do Alto Uruguai e das Missões, Rua Universidade das Missões, CEP: 98.802-470, Santo Ângelo, Rio Grande do Sul, Brasil
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, México
| | - Judith Abundes-Gallegos
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, México
| | - María L Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Jorge A Yáñez
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Ygnacio Martínez-Laguna
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, México
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
32
|
The OmpR Regulator of Burkholderia multivorans Controls Mucoid-to-Nonmucoid Transition and Other Cell Envelope Properties Associated with Persistence in the Cystic Fibrosis Lung. J Bacteriol 2018; 200:JB.00216-18. [PMID: 29914989 DOI: 10.1128/jb.00216-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
Bacteria from the Burkholderia cepacia complex grow in different natural and man-made environments and are feared opportunistic pathogens that cause chronic respiratory infections in cystic fibrosis patients. Previous studies showed that Burkholderia mucoid clinical isolates grown under stress conditions give rise to nonmucoid variants devoid of the exopolysaccharide cepacian. Here, we determined that a major cause of the nonmucoid morphotype involves nonsynonymous mutations and small indels in the ompR gene encoding a response regulator of a two-component regulatory system. In trans complementation of nonmucoid variants (NMVs) with the native gene restored exopolysaccharide production. The loss of functional Burkholderia multivorans OmpR had positive effects on growth, adhesion to lung epithelial cells, and biofilm formation in high-osmolarity medium, as well as an increase in swimming and swarming motilities. In contrast, phenotypes such as antibiotic resistance, biofilm formation at low osmolarity, and virulence in Galleria mellonella were compromised by the absence of functional OmpR. Transcriptomic studies indicated that loss of the ompR gene affects the expression of 701 genes, many associated with outer membrane composition, motility, stress response, iron acquisition, and the uptake of nutrients, consistent with starvation tolerance. Since the stresses here imposed on B. multivorans may strongly resemble the ones found in the cystic fibrosis (CF) airways and mutations in the ompR gene from longitudinally collected CF isolates have been found, this regulator might be important for the production of NMVs in the CF environment.IMPORTANCE Within the cystic fibrosis (CF) lung, bacteria experience high-osmolarity conditions due to an ion unbalance resulting from defects in CF transmembrane conductance regulator (CFTR) protein activity in epithelial cells. Understanding how bacterial CF pathogens thrive in this environment might help the development of new therapeutic interventions to prevent chronic respiratory infections. Here, we show that the OmpR response regulator of one of the species found in CF respiratory infections, Burkholderia multivorans, is involved in the emergence of nonmucoid colony variants and is important for osmoadaptation by regulating several cell envelope components. Specifically, genetic, phenotypic, genomic, and transcriptomic approaches uncover OmpR as a regulator of cell wall remodeling under stress conditions, with implications in several phenotypes such as exopolysaccharide production, motility, antibiotic resistance, adhesion, and virulence.
Collapse
|
33
|
Battaglioli EJ, Goh KGK, Atruktsang TS, Schwartz K, Schembri MA, Welch RA. Identification and Characterization of a Phase-Variable Element That Regulates the Autotransporter UpaE in Uropathogenic Escherichia coli. mBio 2018; 9:e01360-18. [PMID: 30087170 PMCID: PMC6083910 DOI: 10.1128/mbio.01360-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common etiologic agent of uncomplicated urinary tract infection (UTI). An important mechanism of gene regulation in UPEC is phase variation that involves inversion of a promoter-containing DNA element via enzymatic activity of tyrosine recombinases, resulting in biphasic, ON or OFF expression of target genes. The UPEC reference strain CFT073 has five tyrosine site-specific recombinases that function at two previously characterized promoter inversion systems, fimS and hyxS Three of the five recombinases are located proximally to their cognate target elements, which is typical of promoter inversion systems. The genes for the other two recombinases, IpuA and IpuB, are located distal from these sites. Here, we identified and characterized a third phase-variable invertible element in CFT073, ipuS, located proximal to ipuA and ipuB The inversion of ipuS is catalyzed by four of the five CFT073 recombinases. Orientation of the element drives transcription of a two-gene operon containing ipuR, a predicted LuxR-type regulator, and upaE, a predicted autotransporter. We show that the predicted autotransporter UpaE is surface located and facilitates biofilm formation as well as adhesion to extracellular matrix proteins in a K-12 recombinant background. Consistent with this phenotype, the ipuS ON condition in CFT073 results in defective swimming motility, increased adherence to human kidney epithelial cells, and a positive competitive kidney colonization advantage in experimental mouse UTIs. Overall, the identification of a third phase switch in UPEC that is regulated by a shared set of recombinases describes a complex phase-variable virulence network in UPEC.IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the most common cause of urinary tract infection (UTI). ON versus OFF phase switching by inversion of small DNA elements at two chromosome sites in UPEC regulates the expression of important virulence factors, including the type 1 fimbria adhesion organelle. In this report, we describe a third invertible element, ipuS, in the UPEC reference strain CFT073. The inversion of ipuS controls the phase-variable expression of upaE, an autotransporter gene that encodes a surface protein involved in adherence to extracellular matrix proteins and colonization of the kidneys in a murine model of UTI.
Collapse
Affiliation(s)
- E J Battaglioli
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - K G K Goh
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - T S Atruktsang
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - K Schwartz
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - M A Schembri
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - R A Welch
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
34
|
The Periplasmic Trehalase Affects Type 1 Fimbria Production and Virulence of Extraintestinal Pathogenic Escherichia coli Strain MT78. Infect Immun 2018; 86:IAI.00241-18. [PMID: 29844238 DOI: 10.1128/iai.00241-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/21/2018] [Indexed: 11/20/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is responsible for various infections outside the gastrointestinal tract in humans and other animals. ExPEC strain MT78 is invasive to various nonphagocytic cells and highly virulent in vivo To identify genes required for invasion of nonphagocytic cells by this strain, we applied signature-tagged mutagenesis to generate a library of mutants and tested them for invasion of avian fibroblasts. Mutants showing reduced cellular invasion included those with insertions in the fim operon, encoding type 1 fimbriae. Another attenuated mutant showed a disruption in the treA gene, which encodes a periplasmic trehalase. The substrate of TreA, trehalose, can be metabolized and used as a carbon source or can serve as an osmoprotectant under conditions of osmotic stress in E. coli K-12. We generated and characterized mutant MT78ΔtreA In contrast to the wild type, MT78ΔtreA was able to grow under osmotic stress caused by 0.6 M urea but not in minimal M9 medium with trehalose as the only carbon source. It presented decreased association and invasion of avian fibroblasts, decreased yeast agglutination titer, and impaired type 1 fimbria production. In a murine model of urinary tract infection, MT78ΔtreA was less able to colonize the bladder. All phenotypes were rescued in the complemented mutant. Our results show that the treA gene is needed for optimal production of type 1 fimbriae in ExPEC strain MT78 and that loss of treA significantly reduces its cell invasion capacity and colonization of the bladder in a murine model of urinary tract infection.
Collapse
|
35
|
Ng TW, Ip M, Chao CYH, Tang JW, Lai KP, Fu SC, Leung WT, Lai KM. Differential gene expression in Escherichia coli during aerosolization from liquid suspension. Appl Microbiol Biotechnol 2018; 102:6257-6267. [DOI: 10.1007/s00253-018-9083-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/29/2018] [Accepted: 05/08/2018] [Indexed: 10/14/2022]
|
36
|
Schwan WR, Beck MT, Hung CS, Hultgren SJ. Differential Regulation of Escherichia coli fim Genes following Binding to Mannose Receptors. J Pathog 2018; 2018:2897581. [PMID: 29951317 PMCID: PMC5987248 DOI: 10.1155/2018/2897581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/12/2018] [Indexed: 01/17/2023] Open
Abstract
Regulation of the uropathogenic Escherichia coli (UPEC) fimB and fimE genes was examined following type 1 pili binding to mannose-coated Sepharose beads. Within 25 min after mannose attachment, fimE expression dropped eightfold, whereas fimB transcription increased about two- to fourfold. Because both fim genes encode site-specific recombinases that affect the position of the fimS element containing the fimA promoter, the positioning of fimS was also examined. The fimS element changed to slightly more Phase-OFF in bacteria mixed with plain beads, whereas UPEC cells interacting with mannose-coated beads had significantly less Phase-OFF orientation of fimS under pH 7 conditions. On the other hand, Phase-OFF oriented fimS increased fourfold when UPEC cells were mixed with plain beads in a pH 5.5 environment. Positioning of fimS was also affected by fimH mutations, demonstrating that the FimH ligand binding to its receptor facilitates the changes. Moreover, enzyme immunoassays showed that UPEC cells had greater type 1 pili expression when mixed with mannose-coated beads versus plain beads. These results indicate that, after type 1 pilus binding to tethered mannose receptors, the physiology of the E. coli cells changes to maintain the expression of type 1 pili even when awash in an acidic environment.
Collapse
Affiliation(s)
| | | | - Chia S. Hung
- Center for Women's Infectious Disease Research, Washington University, St. Louis, MO 63110, USA
| | - Scott J. Hultgren
- Center for Women's Infectious Disease Research, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
37
|
Werneburg GT, Thanassi DG. Pili Assembled by the Chaperone/Usher Pathway in Escherichia coli and Salmonella. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0007-2017. [PMID: 29536829 PMCID: PMC5940347 DOI: 10.1128/ecosalplus.esp-0007-2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria assemble a variety of surface structures, including the hair-like organelles known as pili or fimbriae. Pili typically function in adhesion and mediate interactions with various surfaces, with other bacteria, and with other types of cells such as host cells. The chaperone/usher (CU) pathway assembles a widespread class of adhesive and virulence-associated pili. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and integral outer membrane protein termed the usher, which forms a multifunctional assembly and secretion platform. This review addresses the molecular and biochemical aspects of the CU pathway in detail, focusing on the type 1 and P pili expressed by uropathogenic Escherichia coli as model systems. We provide an overview of representative CU pili expressed by E. coli and Salmonella, and conclude with a discussion of potential approaches to develop antivirulence therapeutics that interfere with pilus assembly or function.
Collapse
Affiliation(s)
- Glenn T. Werneburg
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| | - David G. Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
38
|
Reciprocal Regulation of OmpR and Hfq and Their Regulatory Actions on the Vi Polysaccharide Capsular Antigen in Salmonella enterica Serovar Typhi. Curr Microbiol 2018; 75:773-778. [DOI: 10.1007/s00284-018-1447-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/31/2018] [Indexed: 11/30/2022]
|
39
|
Cheng Y, Moraru CI. Long-range interactions keep bacterial cells from liquid-solid interfaces: Evidence of a bacteria exclusion zone near Nafion surfaces and possible implications for bacterial attachment. Colloids Surf B Biointerfaces 2018; 162:16-24. [DOI: 10.1016/j.colsurfb.2017.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 11/30/2022]
|
40
|
Temporal Regulation of fim Genes in Uropathogenic Escherichia coli during Infection of the Murine Urinary Tract. J Pathog 2017; 2017:8694356. [PMID: 29445547 PMCID: PMC5763102 DOI: 10.1155/2017/8694356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) adhere to cells in the human urinary tract via type 1 pili that undergo phase variation where a 314-bp fimS DNA element flips between Phase-ON and Phase-OFF orientations through two site-specific recombinases, FimB and FimE. Three fim-lux operon transcriptional fusions were created and moved into the clinical UPEC isolate NU149 to determine their temporal regulation in UPEC growing in the urinary tract. Within murine urinary tracts, the UPEC strains demonstrated elevated transcription of fimA and fimB early in the infection, but lower transcription by the fifth day in murine kidneys. In contrast, fimE transcription was much lower than either fimA or fimB early, increased markedly at 24 h after inoculation, and then dropped five days after inoculation. Positioning of fimS was primarily in the Phase-ON position over the time span in UPEC infected bladders, whereas in UPEC infected murine kidneys the Phase-OFF orientation was favored by the fifth day after inoculation. Hemagglutination titers with guinea pig erythrocytes remained constant in UPEC growing in infected murine bladders but fell substantially in UPEC infected kidneys over time. Our results show temporal in vivo regulation of fim gene expression in different environmental niches when UPEC infects the murine urinary tract.
Collapse
|
41
|
Involvement of Two-Component Signaling on Bacterial Motility and Biofilm Development. J Bacteriol 2017; 199:JB.00259-17. [PMID: 28533218 DOI: 10.1128/jb.00259-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two-component signaling is a specialized mechanism that bacteria use to respond to changes in their environment. Nonpathogenic strains of Escherichia coli K-12 harbor 30 histidine kinases and 32 response regulators, which form a network of regulation that integrates many other global regulators that do not follow the two-component signaling mechanism, as well as signals from central metabolism. The output of this network is a multitude of phenotypic changes in response to changes in the environment. Among these phenotypic changes, many two-component systems control motility and/or the formation of biofilm, sessile communities of bacteria that form on surfaces. Motility is the first reversible attachment phase of biofilm development, followed by a so-called swim or stick switch toward surface organelles that aid in the subsequent phases. In the mature biofilm, motility heterogeneity is generated by a combination of evolutionary and gene regulatory events.
Collapse
|
42
|
Tan A, Atack JM, Jennings MP, Seib KL. The Capricious Nature of Bacterial Pathogens: Phasevarions and Vaccine Development. Front Immunol 2016; 7:586. [PMID: 28018352 PMCID: PMC5149525 DOI: 10.3389/fimmu.2016.00586] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022] Open
Abstract
Infectious diseases are a leading cause of morbidity and mortality worldwide, and vaccines are one of the most successful and cost-effective tools for disease prevention. One of the key considerations for rational vaccine development is the selection of appropriate antigens. Antigens must induce a protective immune response, and this response should be directed to stably expressed antigens so the target microbe can always be recognized by the immune system. Antigens with variable expression, due to environmental signals or phase variation (i.e., high frequency, random switching of expression), are not ideal vaccine candidates because variable expression could lead to immune evasion. Phase variation is often mediated by the presence of highly mutagenic simple tandem DNA repeats, and genes containing such sequences can be easily identified, and their use as vaccine antigens reconsidered. Recent research has identified phase variably expressed DNA methyltransferases that act as global epigenetic regulators. These phase-variable regulons, known as phasevarions, are associated with altered virulence phenotypes and/or expression of vaccine candidates. As such, genes encoding candidate vaccine antigens that have no obvious mechanism of phase variation may be subject to indirect, epigenetic control as part of a phasevarion. Bioinformatic and experimental studies are required to elucidate the distribution and mechanism of action of these DNA methyltransferases, and most importantly, whether they mediate epigenetic regulation of potential and current vaccine candidates. This process is essential to define the stably expressed antigen target profile of bacterial pathogens and thereby facilitate efficient, rational selection of vaccine antigens.
Collapse
Affiliation(s)
- Aimee Tan
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| | - John M Atack
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University , Gold Coast, QLD , Australia
| |
Collapse
|
43
|
Zhang H, Susanto TT, Wan Y, Chen SL. Comprehensive mutagenesis of the fimS promoter regulatory switch reveals novel regulation of type 1 pili in uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 2016; 113:4182-7. [PMID: 27035967 PMCID: PMC4839427 DOI: 10.1073/pnas.1522958113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E coli strains and have been limited in the number of mutations or by alteration of the fimS genomic context. We surmounted these limitations by using saturating genomic mutagenesis of fimS coupled with accurate sequencing to detect both mutations and phase status simultaneously. In addition to the sequences known to be important for biasing fimS inversion, our method also identifies a previously unknown pair of 5' UTR inverted repeats that act by altering the relative fimA levels to control phase variation. Thus we have uncovered an additional layer of T1P regulation potentially impacting virulence and the coordinate expression of multiple pilus systems.
Collapse
Affiliation(s)
- Huibin Zhang
- Infectious Diseases Group, Genome Institute of Singapore, Singapore 138672
| | - Teodorus T Susanto
- Stem Cell and Development, Genome Institute of Singapore, Singapore 138672
| | - Yue Wan
- Stem Cell and Development, Genome Institute of Singapore, Singapore 138672
| | - Swaine L Chen
- Infectious Diseases Group, Genome Institute of Singapore, Singapore 138672; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074
| |
Collapse
|
44
|
Bhattacharya S, Mukherjee O, Mukhopadhyay AK, Chowdhury R, Pal AK, Dhar KK. A Conserved Helicobacter pylori Gene, HP0102, Is Induced Upon Contact With Gastric Cells and Has Multiple Roles in Pathogenicity. J Infect Dis 2016; 214:196-204. [PMID: 27056952 DOI: 10.1093/infdis/jiw139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/30/2016] [Indexed: 01/13/2023] Open
Abstract
Contact with host cells is recognized as a signal capable of triggering expression of bacterial genes important for host pathogen interaction. Adherence of Helicobacter pylori to the gastric epithelial cell line AGS strongly upregulated expression of a gene, HP0102, in the adhered bacteria in all strains examined, including several Indian clinical isolates. The gene is highly conserved and ubiquitously present in all 69 sequenced H. pylori genomes at the same genomic locus, as well as in 15 Indian clinical isolates. The gene is associated with 2 distinct phenotypes related to pathogenicity. In AGS cell-adhered H. pylori, it has a role in upregulation of cagA expression from a specific σ(28)-RNAP promoter and consequent induction of the hummingbird phenotype in the infected AGS cells. Furthermore, HP0102 has a role in chemotaxis and a ΔHP0102 mutant exhibited low acid-escape response that might account for the poor colonization efficiency of the mutant.
Collapse
Affiliation(s)
- Saurabh Bhattacharya
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology
| | - Oindrilla Mukherjee
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology
| | - Asish K Mukhopadhyay
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rukhsana Chowdhury
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology
| | | | | |
Collapse
|
45
|
Nieckarz M, Raczkowska A, Dębski J, Kistowski M, Dadlez M, Heesemann J, Rossier O, Brzostek K. Impact of OmpR on the membrane proteome of Yersinia enterocolitica in different environments: repression of major adhesin YadA and heme receptor HemR. Environ Microbiol 2016; 18:997-1021. [PMID: 26627632 DOI: 10.1111/1462-2920.13165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 01/22/2023]
Abstract
Enteropathogenic Yersinia enterocolitica is able to grow within or outside the mammalian host. Previous transcriptomic studies have indicated that the regulator OmpR plays a role in the expression of hundreds of genes in enterobacteria. Here, we have examined the impact of OmpR on the production of Y. enterocolitica membrane proteins upon changes in temperature, osmolarity and pH. Proteomic analysis indicated that the loss of OmpR affects the production of 120 proteins, a third of which are involved in uptake/transport, including several that participate in iron or heme acquisition. A set of proteins associated with virulence was also affected. The influence of OmpR on the abundance of adhesin YadA and heme receptor HemR was examined in more detail. OmpR was found to repress YadA production and bind to the yadA promoter, suggesting a direct regulatory effect. In contrast, the repression of hemR expression by OmpR appears to be indirect. These findings provide new insights into the role of OmpR in remodelling the cell surface and the adaptation of Y. enterocolitica to different environmental niches, including the host.
Collapse
Affiliation(s)
- Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Janusz Dębski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Kistowski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Dadlez
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, Warsaw, 02-106, Poland.,Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Jürgen Heesemann
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Ombeline Rossier
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
46
|
Abstract
Escherichia colicauses three types of illnesses in humans: diarrhea, urinary tract infections, and meningitis in newborns. The acquisition of virulence-associated genes and the ability to properly regulate these, often horizontally transferred, loci distinguishes pathogens from the normally harmless commensal E. coli found within the human intestine. This review addresses our current understanding of virulence gene regulation in several important diarrhea-causing pathotypes, including enteropathogenic, enterohemorrhagic,enterotoxigenic, and enteroaggregativeE. coli-EPEC, EHEC, ETEC and EAEC, respectively. The intensely studied regulatory circuitry controlling virulence of uropathogenicE. coli, or UPEC, is also reviewed, as is that of MNEC, a common cause of meningitis in neonates. Specific topics covered include the regulation of initial attachment events necessary for infection, environmental cues affecting virulence gene expression, control of attaching and effacing lesionformation, and control of effector molecule expression and secretion via the type III secretion systems by EPEC and EHEC. How phage control virulence and the expression of the Stx toxins of EHEC, phase variation, quorum sensing, and posttranscriptional regulation of virulence determinants are also addressed. A number of important virulence regulators are described, including the AraC-like molecules PerA of EPEC, CfaR and Rns of ETEC, and AggR of EAEC;the Ler protein of EPEC and EHEC;RfaH of UPEC;and the H-NS molecule that acts to silence gene expression. The regulatory circuitry controlling virulence of these greatly varied E. colipathotypes is complex, but common themes offerinsight into the signals and regulators necessary forE. coli disease progression.
Collapse
|
47
|
Stærk K, Khandige S, Kolmos HJ, Møller-Jensen J, Andersen TE. Uropathogenic Escherichia coli Express Type 1 Fimbriae Only in Surface Adherent Populations Under Physiological Growth Conditions. J Infect Dis 2015; 213:386-94. [PMID: 26290608 DOI: 10.1093/infdis/jiv422] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/10/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Most uropathogenic Escherichia coli (UPEC) strains harbor genes encoding adhesive type 1 fimbria (T1F). T1F is a key factor for successful establishment of urinary tract infection. However, UPEC strains typically do not express T1F in the bladder urine, and little is understood about its induction in vivo. METHODS A flow chamber infection model was used to grow UPEC under conditions simulating distinct infection niches in the bladder. Type 1 fimbriation on isolated UPEC was subsequently determined by yeast cell agglutination and immunofluorescence microscopy, and the results were correlated with the ability to adhere to and invade cultured human bladder cells. RESULTS Although inactive during planktonic growth in urine, T1F expression occurs when UPEC settles on and infects bladder epithelial cells or colonizes catheters. As a result, UPEC in these sessile populations enhances bladder cell adhesion and invasion potential. Only T1F-negative UPEC are subsequently released to the urine, thus limiting T1F expression to surface-associated UPEC alone. CONCLUSIONS Our results demonstrate that T1F expression is strictly regulated under physiological growth conditions with increased expression during surface growth adaptation and infection of uroepithelial cells. This leads to separation of UPEC into low-expression planktonic populations and high-expression sessile populations.
Collapse
Affiliation(s)
- Kristian Stærk
- Research Unit of Clinical Microbiology Odense University Hospital, Denmark
| | - Surabhi Khandige
- Department of Biochemistry and Molecular Biology, University of Southern Denmark
| | - Hans Jørn Kolmos
- Research Unit of Clinical Microbiology Odense University Hospital, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark
| | | |
Collapse
|
48
|
Good DW, George T, Watts BA. High-mobility group box 1 inhibits HCO(3)(-) absorption in medullary thick ascending limb through a basolateral receptor for advanced glycation end products pathway. Am J Physiol Renal Physiol 2015; 309:F720-30. [PMID: 26180239 DOI: 10.1152/ajprenal.00227.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is a damage-associated molecule implicated in mediating kidney dysfunction in sepsis and sterile inflammatory disorders. HMGB1 is a nuclear protein released extracellularly in response to infection or injury, where it interacts with Toll-like receptor 4 (TLR4) and other receptors to mediate inflammation. Previously, we demonstrated that LPS inhibits HCO(3)(-) absorption in the medullary thick ascending limb (MTAL) through a basolateral TLR4-ERK pathway (Watts BA III, George T, Sherwood ER, Good DW. Am J Physiol Cell Physiol 301: C1296-C1306, 2011). Here, we examined whether HMGB1 could inhibit HCO(3)(-) absorption through the same pathway. Adding HMGB1 to the bath decreased HCO(3)(-) absorption by 24% in isolated, perfused rat and mouse MTALs. In contrast to LPS, inhibition by HMGB1 was preserved in MTALs from TLR4(-/-) mice and was unaffected by ERK inhibitors. Inhibition by HMGB1 was eliminated by the receptor for advanced glycation end products (RAGE) antagonist FPS-ZM1 and by neutralizing anti-RAGE antibody. Confocal immunofluorescence showed expression of RAGE in the basolateral membrane domain. Inhibition of HCO(3)(-) absorption by HMGB1 through RAGE was additive to inhibition by LPS through TLR4 and to inhibition by Gram-positive bacterial molecules through TLR2. Bath amiloride, which selectively prevents inhibition of MTAL HCO(3)(-) absorption mediated through Na⁺/H⁺ exchanger 1 (NHE1), eliminated inhibition by HMGB1. We conclude that HMGB1 inhibits MTAL HCO(3)(-) absorption through a RAGE-dependent pathway distinct from TLR4-mediated inhibition by LPS. These studies provide new evidence that HMGB1-RAGE signaling acts directly to impair the transport function of renal tubules. They reveal a novel paradigm for sepsis-induced renal tubule dysfunction, whereby exogenous pathogen-associated molecules and endogenous damage-associated molecules act directly and independently to inhibit MTAL HCO(3)(-) absorption through different receptor signaling pathways.
Collapse
Affiliation(s)
- David W Good
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; and Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Thampi George
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; and
| | - Bruns A Watts
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas; and
| |
Collapse
|
49
|
Abstract
ABSTRACT
Type 1 fimbriae of
E. coli
, a chaperon-usher bacterial adhesin, are synthesized by the majority of strains of the bacterium. Although frequently produced by commensal strains, the adhesin is nevertheless a virulence factor in Extraintestinal Pathogenic
E. coli
(ExPEC). The role of the adhesin in pathogenesis is best understood in Uropathogenic
E. coli
(UPEC). Host attachment and invasion by type 1 fimbriate bacteria activates inflammatory pathways, with TLR4 signaling playing a predominant role. In a mouse model of cystitis, type 1 fimbriation not only enhances UPEC adherence to the surface of superficial umbrella cells of the bladder urothelium, but is both necessary and sufficient for their invasion. Moreover the adhesin plays a role in the formation of transient intracellular bacterial communities (IBCs) within the cytoplasm of urothelial cells as part of UPEC cycles of invasion. The expression of type 1 fimbriation is controlled by phase variation at the transcriptional level, a mode of gene regulation in which bacteria switch reversibly between fimbriate and afimbriate phases. Phase variation has been widely considered to be a mechanism enabling immune evasion. Notwithstanding the apparently random nature of phase variation, switching of type 1 fimbrial expression is nevertheless controlled by a range of environmental signals that include the amino sugars sialic acid and N-acetylglucosamine (GlcNAc). Sialic acid plays a pivotal role in innate immunity, including signaling by the toll-like receptors. Here how sialic acid and GlcNAc control type 1 fimbriation is described and the potential significance of this regulatory response is discussed.
Collapse
|
50
|
Zakrisson J, Wiklund K, Servin M, Axner O, Lacoursière C, Andersson M. Rigid multibody simulation of a helix-like structure: the dynamics of bacterial adhesion pili. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:291-300. [PMID: 25851543 DOI: 10.1007/s00249-015-1021-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 12/23/2022]
Abstract
We present a coarse-grained rigid multibody model of a subunit assembled helix-like polymer, e.g., adhesion pili expressed by bacteria, that is capable of describing the polymer's force-extension response. With building blocks representing individual subunits, the model appropriately describes the complex behavior of pili expressed by the gram-negative uropathogenic Escherichia coli bacteria under the action of an external force. Numerical simulations show that the dynamics of the model, which include the effects of both unwinding and rewinding, are in good quantitative agreement with the characteristic force-extension response as observed experimentally for type 1 and P pili. By tuning the model, it is also possible to reproduce the force-extension response in the presence of anti-shaft antibodies, which dramatically changes the mechanical properties. Thus, the model and results in this work give enhanced understanding of how a pilus unwinds under the action of external forces and provide a new perspective of the complex bacterial adhesion processes.
Collapse
Affiliation(s)
- Johan Zakrisson
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|