1
|
Supina BSI, McCutcheon JG, Peskett SR, Stothard P, Dennis JJ. A flagella-dependent Burkholderia jumbo phage controls rice seedling rot and steers Burkholderia glumae toward reduced virulence in rice seedlings. mBio 2025; 16:e0281424. [PMID: 39868782 PMCID: PMC11898562 DOI: 10.1128/mbio.02814-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Bacteriophages (phages) are being investigated as potential biocontrol agents for the suppression of bacterial diseases in cultivated crops. Jumbo bacteriophages, which possess genomic DNA larger than 200 kbp, generally have a broader host range than other phages and therefore would be useful as biocontrol agents against a wide range of bacterial strains. Thus, the characterization of novel jumbo phages specific for agricultural pathogens would be of importance for the development of phage biocontrol strategies. Herein, we demonstrate that phage S13 requires Burkholderia glumae flagella for its attachment and infection and that loss of B. glumae flagella prevents S13 cellular lysis. As flagella is a known virulence factor, loss of flagella results in a surviving population of B. glumae with reduced virulence. Further experimentation demonstrates that phage S13 can protect rice plants from B. glumae-sponsored destruction in a rice seedling model of infection.IMPORTANCEBacterial plant pathogens threaten many major food crops and inflict large agricultural losses worldwide. B. glumae is a bacterial plant pathogen that causes diseases such as rot, wilt, and blight in several food major crops including rice, tomato, hot pepper, and eggplant. B. glumae infects rice during all developmental stages, causing diseases such as rice seedling rot and bacterial panicle blight (BPB). The B. glumae incidence of rice plant infection is predicted to increase with warming global temperatures, and several different control strategies targeting B. glumae are being explored. These include chemical and antibiotic soil amendment, microbiome manipulation, and the use of partially resistant rice cultivars. However, despite rice growth amelioration, the treatment options for B. glumae plant infections remain limited to cultural practices. Alternatively, phage biocontrol represents a promising new method for eliminating B. glumae from crop soils and improving rice yields.
Collapse
Affiliation(s)
- Brittany S. I. Supina
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jaclyn G. McCutcheon
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sydney R. Peskett
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Stothard
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan J. Dennis
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Davis CM, Ruest MK, Cole JH, Dennis JJ. The Isolation and Characterization of a Broad Host Range Bcep22-like Podovirus JC1. Viruses 2022; 14:938. [PMID: 35632679 PMCID: PMC9144972 DOI: 10.3390/v14050938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteriophage JC1 is a Podoviridae phage with a C1 morphotype, isolated on host strain Burkholderia cenocepacia Van1. Phage JC1 is capable of infecting an expansive range of Burkholderia cepacia complex (Bcc) species. The JC1 genome exhibits significant similarity and synteny to Bcep22-like phages and to many Ralstonia phages. The genome of JC1 was determined to be 61,182 bp in length with a 65.4% G + C content and is predicted to encode 76 proteins and 1 tRNA gene. Unlike the other Lessieviruses, JC1 encodes a putative helicase gene in its replication module, and it is in a unique organization not found in previously analyzed phages. The JC1 genome also harbours 3 interesting moron genes, that encode a carbon storage regulator (CsrA), an N-acetyltransferase, and a phosphoadenosine phosphosulfate (PAPS) reductase. JC1 can stably lysogenize its host Van1 and integrates into the 5' end of the gene rimO. This is the first account of stable integration identified for Bcep22-like phages. JC1 has a higher global virulence index at 37 °C than at 30 °C (0.8 and 0.21, respectively); however, infection efficiency and lysogen stability are not affected by a change in temperature, and no observable temperature-sensitive switch between lytic and lysogenic lifestyle appears to exist. Although JC1 can stably lysogenize its host, it possesses some desirable characteristics for use in phage therapy. Phage JC1 has a broad host range and requires the inner core of the bacterial LPS for infection. Bacteria that mutate to evade infection by JC1 may develop a fitness disadvantage as seen in previously characterized LPS mutants lacking inner core.
Collapse
Affiliation(s)
| | | | | | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada; (C.M.D.); (M.K.R.); (J.H.C.)
| |
Collapse
|
3
|
Sousa SA, Seixas AMM, Marques JMM, Leitão JH. Immunization and Immunotherapy Approaches against Pseudomonas aeruginosa and Burkholderia cepacia Complex Infections. Vaccines (Basel) 2021; 9:vaccines9060670. [PMID: 34207253 PMCID: PMC8234409 DOI: 10.3390/vaccines9060670] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Human infections caused by the opportunist pathogens Burkholderia cepacia complex and Pseudomonas aeruginosa are of particular concern due to their severity, their multiple antibiotic resistance, and the limited eradication efficiency of the current available treatments. New therapeutic options have been pursued, being vaccination strategies to prevent or limit these infections as a rational approach to tackle these infections. In this review, immunization and immunotherapy approaches currently available and under study against these bacterial pathogens is reviewed. Ongoing active and passive immunization clinical trials against P. aeruginosa infections is also reviewed. Novel identified bacterial targets and their possible exploitation for the development of immunization and immunotherapy strategies against P. aeruginosa and B. cepacia complex and infections are also presented and discussed.
Collapse
Affiliation(s)
- Sílvia A. Sousa
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| | - António M. M. Seixas
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joana M. M. Marques
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
| | - Jorge H. Leitão
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| |
Collapse
|
4
|
Activity of Aerosolized Levofloxacin against Burkholderia cepacia in a Mouse Model of Chronic Lung Infection. Antimicrob Agents Chemother 2020; 64:AAC.01988-19. [PMID: 31712215 DOI: 10.1128/aac.01988-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cepacia complex is an opportunistic pathogen capable of causing chronic pulmonary infections. These studies were conducted to demonstrate the activity of aerosolized levofloxacin in a chronic mouse lung infection model caused by B. cepacia isolates from patients with cystic fibrosis. Treatment with aerosolized levofloxacin for 4 days produced at least 1 log CFU of bacterial killing against all strains tested, suggesting possible utility in the treatment of lung infections caused by B. cepacia isolates.
Collapse
|
5
|
Price EP, Sarovich DS, Webb JR, Hall CM, Jaramillo SA, Sahl JW, Kaestli M, Mayo M, Harrington G, Baker AL, Sidak-Loftis LC, Settles EW, Lummis M, Schupp JM, Gillece JD, Tuanyok A, Warner J, Busch JD, Keim P, Currie BJ, Wagner DM. Phylogeographic, genomic, and meropenem susceptibility analysis of Burkholderia ubonensis. PLoS Negl Trop Dis 2017; 11:e0005928. [PMID: 28910350 PMCID: PMC5614643 DOI: 10.1371/journal.pntd.0005928] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 09/26/2017] [Accepted: 09/03/2017] [Indexed: 01/02/2023] Open
Abstract
The bacterium Burkholderia ubonensis is commonly co-isolated from environmental specimens harbouring the melioidosis pathogen, Burkholderia pseudomallei. B. ubonensis has been reported in northern Australia and Thailand but not North America, suggesting similar geographic distribution to B. pseudomallei. Unlike most other Burkholderia cepacia complex (Bcc) species, B. ubonensis is considered non-pathogenic, although its virulence potential has not been tested. Antibiotic resistance in B. ubonensis, particularly towards drugs used to treat the most severe B. pseudomallei infections, has also been poorly characterised. This study examined the population biology of B. ubonensis, and includes the first reported isolates from the Caribbean. Phylogenomic analysis of 264 B. ubonensis genomes identified distinct clades that corresponded with geographic origin, similar to B. pseudomallei. A small proportion (4%) of strains lacked the 920kb chromosome III replicon, with discordance of presence/absence amongst genetically highly related strains, demonstrating that the third chromosome of B. ubonensis, like other Bcc species, probably encodes for a nonessential pC3 megaplasmid. Multilocus sequence typing using the B. pseudomallei scheme revealed that one-third of strains lack the "housekeeping" narK locus. In comparison, all strains could be genotyped using the Bcc scheme. Several strains possessed high-level meropenem resistance (≥32 μg/mL), a concern due to potential transmission of this phenotype to B. pseudomallei. In silico analysis uncovered a high degree of heterogeneity among the lipopolysaccharide O-antigen cluster loci, with at least 35 different variants identified. Finally, we show that Asian B. ubonensis isolate RF23-BP41 is avirulent in the BALB/c mouse model via a subcutaneous route of infection. Our results provide several new insights into the biology of this understudied species.
Collapse
Affiliation(s)
- Erin P. Price
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Derek S. Sarovich
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Jessica R. Webb
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Carina M. Hall
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Sierra A. Jaramillo
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Jason W. Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Mirjam Kaestli
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Glenda Harrington
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Anthony L. Baker
- Environmental and Public Health Microbiology Research Group, Microbiology and Immunology, James Cook University, Townsville, Queensland, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Lindsay C. Sidak-Loftis
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Erik W. Settles
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Madeline Lummis
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - James M. Schupp
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - John D. Gillece
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Apichai Tuanyok
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Jeffrey Warner
- Environmental and Public Health Microbiology Research Group, Microbiology and Immunology, James Cook University, Townsville, Queensland, Australia
| | - Joseph D. Busch
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Paul Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Bart J. Currie
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - David M. Wagner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
6
|
Vanhoutte B, Cappoen D, Maira BDM, Cools F, Torfs E, Coenye T, Martinet W, Caljon G, Maes L, Delputte P, Cos P. Optimization and characterization of a murine lung infection model for the evaluation of novel therapeutics against Burkholderia cenocepacia. J Microbiol Methods 2017; 139:181-188. [PMID: 28587856 DOI: 10.1016/j.mimet.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022]
Abstract
Several B. cenocepacia mouse models are available to study the pulmonary infection by this Burkholderia cepacia complex (BCC) species. However, a characterized B. cenocepacia mouse model to evaluate the efficacy of potential new antibacterial therapies is not yet described. Therefore, we optimized and validated the course of infection (i.e. bacterial proliferation in lung, liver and spleen) and the efficacy of a reference antibiotic, tobramycin (TOB), in a mouse lung infection model. Furthermore, the local immune response and histological changes in lung tissue were studied during infection and treatment. A reproducible lung infection was observed when immunosuppressed BALB/c mice were infected with B. cenocepacia LMG 16656. Approximately 50 to 60% of mice infected with this BCC species demonstrated a dissemination to liver and spleen. TOB treatment resulted in a two log reduction in lung burden, prevented dissemination of B. cenocepacia to liver and spleen and significantly reduced levels of proinflammatory cytokines. As this mouse model is characterized by a reproducible course of infection and efficacy of TOB, it can be used as a tool for the in vivo evaluation of new antibacterial therapies.
Collapse
Affiliation(s)
- Bieke Vanhoutte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Davie Cappoen
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Bidart de Macedo Maira
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Freya Cools
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Eveline Torfs
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
7
|
Kandel SL, Firrincieli A, Joubert PM, Okubara PA, Leston ND, McGeorge KM, Mugnozza GS, Harfouche A, Kim SH, Doty SL. An In vitro Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes. Front Microbiol 2017; 8:386. [PMID: 28348550 PMCID: PMC5347143 DOI: 10.3389/fmicb.2017.00386] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/23/2017] [Indexed: 11/13/2022] Open
Abstract
Microbial communities in the endosphere of Salicaceae plants, poplar (Populus trichocarpa) and willow (Salix sitchensis), have been demonstrated to be important for plant growth promotion, protection from biotic and abiotic stresses, and degradation of toxic compounds. Our study aimed to investigate bio-control activities of Salicaceae endophytes against various soil borne plant pathogens including Rhizoctonia solani AG-8, Fusarium culmorum, Gaeumannomyces graminis var. tritici, and Pythium ultimum. Additionally, different plant growth promoting traits such as biological nitrogen fixation (BNF), indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, and siderophore production were assessed in all bio-control positive strains. Burkholderia, Rahnella, Pseudomonas, and Curtobacterium were major endophyte genera that showed bio-control activities in the in-vitro assays. The bio-control activities of Burkholderia strains were stronger across all tested plant pathogens as compared to other stains. Genomes of sequenced Burkholderia strains WP40 and WP42 were surveyed to identify the putative genes involved in the bio-control activities. The ocf and hcnABC gene clusters responsible for biosynthesis of the anti-fungal metabolites, occidiofungin and hydrogen cyanide, are present in the genomes of WP40 and WP42. Nearly all endophyte strains showing the bio-control activities produced IAA, solubilized tricalcium phosphate, and synthesized siderophores in the culture medium. Moreover, some strains reduced acetylene into ethylene in the acetylene reduction assay, a common assay used for BNF. Salicaceae endophytes could be useful for bio-control of various plant pathogens, and plant growth promotion possibly through the mechanisms of BNF, IAA production, and nutrient acquisition.
Collapse
Affiliation(s)
- Shyam L Kandel
- School of Environmental and Forest Sciences, College of the Environment, University of Washington Seattle, WA, USA
| | - Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia Viterbo, Italy
| | - Pierre M Joubert
- Department of Biology, University of Washington Seattle, WA, USA
| | - Patricia A Okubara
- Wheat Health, Genetics and Quality Research Unit, USDA-ARS Pullman, WA, USA
| | - Natalie D Leston
- Department of Plant Pathology, Washington State University Pullman, WA, USA
| | - Kendra M McGeorge
- Department of Plant Pathology, Washington State University Pullman, WA, USA
| | - Giuseppe S Mugnozza
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia Viterbo, Italy
| | - Antoine Harfouche
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia Viterbo, Italy
| | - Soo-Hyung Kim
- School of Environmental and Forest Sciences, College of the Environment, University of Washington Seattle, WA, USA
| | - Sharon L Doty
- School of Environmental and Forest Sciences, College of the Environment, University of Washington Seattle, WA, USA
| |
Collapse
|
8
|
Mahenthiralingam E, Vandamme P. Taxonomy and pathogenesis of the Burkholderia cepacia complex. Chron Respir Dis 2016; 2:209-17. [PMID: 16541604 DOI: 10.1191/1479972305cd053ra] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Patients with cystic fibrosis (CF) are susceptible to chronic respiratory infection with a number of bacterial pathogens. The Burkholderia cepacia complex bacteria are problematic CF pathogens because (i) they are very resistant to antibiotics, making respiratory infection difficult to treat and eradicate; (ii) infection with these bacteria is associated with high mortality in CF; (iii) they may spread from one CF patient to another, leading to considerable problems for both patients and carers; and (iv) B. cepacia complex bacteria are difficult to identify and nine new species have now been found to constitute isolates originally identified as ‘B. cepacia’ based on their phenotypic properties. Here we review the changes that have occurred in the taxonomy of the B. cepacia complex and the pathogenic factors these bacteria possess. While the taxonomy of the B.cepacia complex has advanced considerably with the development of accurate methods for their identification, the pathogenic mechanisms employed by these CF pathogens are only just beginning to be explored at the molecular level. Several virulence factors have been defined for B. cenocepacia (the dominant CF pathogen within the complex); however, knowledge of the disease mechanisms employed by other B. cepacia complex species is limited. The recent determination of the complete genome sequences for several of the B. cepacia complex species should greatly enhance our ability to study these problematic CF pathogens.
Collapse
|
9
|
Lewis ERG, Torres AG. The art of persistence-the secrets to Burkholderia chronic infections. Pathog Dis 2016; 74:ftw070. [PMID: 27440810 DOI: 10.1093/femspd/ftw070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
The Gram-negative proteobacteria genus Burkholderia encompasses multiple bacterial species that are pathogenic to humans and other vertebrates. Two pathogenic species of interest within this genus are Burkholderia pseudomallei (Bpm) and the B. cepacia complex (Bcc); the former is the causative agent of melioidosis in humans and other mammals, and the latter is associated with pneumonia in immunocompromised patients. One understudied and shared characteristic of these two pathogenic groups is their ability to persist and establish chronic infection within the host. In this review, we will explore the depth of knowledge about chronic infections caused by persistent Bpm and Bcc. We examine the host risk factors and immune responses associated with more severe chronic infections. We also discuss host adaptation and phenotypes associated with persistent Burkholderia species. Lastly, we survey how other intracellular bacteria associated with chronic infections are combatted and explore possible future applications to target Burkholderia Our goal is to highlight understudied areas that should be addressed for a more thorough understanding of chronic Burkholderia infections and how to combat them.
Collapse
Affiliation(s)
- Eric R G Lewis
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA Department of Pathology, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 7555-1070, USA
| |
Collapse
|
10
|
Colony morphology variation of Burkholderia pseudomallei is associated with antigenic variation and O-polysaccharide modification. Infect Immun 2015; 83:2127-38. [PMID: 25776750 DOI: 10.1128/iai.02785-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/05/2015] [Indexed: 12/12/2022] Open
Abstract
Burkholderia pseudomallei is a CDC tier 1 select agent that causes melioidosis, a severe disease in humans and animals. Persistent infections are common, and there is currently no vaccine available. Lipopolysaccharide (LPS) is a potential vaccine candidate. B. pseudomallei expresses three serologically distinct LPS types. The predominant O-polysaccharide (OPS) is an unbranched heteropolymer with repeating d-glucose and 6-deoxy-l-talose residues in which the 6-deoxy-l-talose residues are variably replaced with O-acetyl and O-methyl modifications. We observed that primary clinical B. pseudomallei isolates with mucoid and nonmucoid colony morphologies from the same sample expressed different antigenic types distinguishable using an LPS-specific monoclonal antibody (MAb). MAb-reactive (nonmucoid) and nonreactive (mucoid) strains from the same patient exhibited identical LPS banding patterns by silver staining and indistinguishable genotypes. We hypothesized that LPS antigenic variation reflected modification of the OPS moieties. Mutagenesis of three genes involved in LPS synthesis was performed in B. pseudomallei K96243. Loss of MAb reactivity was observed in both wbiA (encoding a 2-O-acetyltransferase) and wbiD (putative methyl transferase) mutants. The structural characteristics of the OPS moieties from isogenic nonmucoid strain 4095a and mucoid strain 4095c were further investigated. Utilizing nuclear magnetic resonance (NMR) spectroscopy, we found that B. pseudomallei 4095a and 4095c OPS antigens exhibited substitution patterns that differed from the prototypic OPS structure. Specifically, 4095a lacked 4-O-acetylation, while 4095c lacked both 4-O-acetylation and 2-O-methylation. Our studies indicate that B. pseudomallei OPS undergoes antigenic variation and suggest that the 9D5 MAb recognizes a conformational epitope that is influenced by both O-acetyl and O-methyl substitution patterns.
Collapse
|
11
|
Gautam V, Shafiq N, Singh M, Ray P, Singhal L, Jaiswal NP, Prasad A, Singh S, Agarwal A. Clinical and in vitro evidence for the antimicrobial therapy in Burkholderia cepacia complex infections. Expert Rev Anti Infect Ther 2015; 13:629-63. [PMID: 25772031 DOI: 10.1586/14787210.2015.1025056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Treatment of infections caused by Burkholderia cepacia complex (Bcc) in cystic fibrosis (CF) patients poses a complex problem. Bcc is multidrug-resistant due to innate and acquired mechanisms of resistance. As CF patients receive multiple courses of antibiotics, susceptibility patterns of strains from CF patients may differ from those noted in strains from non-CF patients. Thus, there was a need for assessing in vitro and clinical data to guide antimicrobial therapy in these patients. A systematic search of literature, followed by extraction and analysis of available information from human and in vitro studies was done. The results of the analysis are used to address various aspects like use of antimicrobials for pulmonary and non-pulmonary infections, use of combination versus monotherapy, early eradication, duration of therapy, route of administration, management of biofilms, development of resistance during therapy, pharmacokinetics-pharmacodynamics correlations, therapy in post-transplant patients and newer drugs in Bcc-infected CF patients.
Collapse
Affiliation(s)
- Vikas Gautam
- Deparatment of Medical Microbiology, PGIMER, Chandigarh 160022, India
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections. Antimicrob Agents Chemother 2014; 58:4005-13. [PMID: 24798268 DOI: 10.1128/aac.02388-13] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phage therapy has been suggested as a potential treatment for highly antibiotic-resistant bacteria, such as the species of the Burkholderia cepacia complex (BCC). To address this hypothesis, experimental B. cenocepacia respiratory infections were established in mice using a nebulizer and a nose-only inhalation device. Following infection, the mice were treated with one of five B. cenocepacia-specific phages delivered as either an aerosol or intraperitoneal injection. The bacterial and phage titers within the lungs were assayed 2 days after treatment, and mice that received the aerosolized phage therapy demonstrated significant decreases in bacterial loads. Differences in phage activity were observed in vivo. Mice that received phage treatment by intraperitoneal injection did not demonstrate significantly reduced bacterial loads, although phage particles were isolated from their lung tissue. Based on these data, aerosol phage therapy appears to be an effective method for treating highly antibiotic-resistant bacterial respiratory infections, including those caused by BCC bacteria.
Collapse
|
13
|
Abstract
In recent years the zebrafish has gained enormous attention in infection biology, and many protocols have been developed to study interaction of both human and fish pathogens, including viruses, fungi, and bacteria, with the host. Especially the extraordinary possibilities for live imaging of disease processes in the transparent embryos using fluorescent bacteria and cell-specific reporter fish combined with gene knockdown, transcriptome, and genetic studies have dramatically advanced our understanding of disease mechanisms. The zebrafish embryo is amenable to study virulence of both extracellular and facultative intracellular pathogens introduced through the technique of microinjection. Several protocols have been published that address the different sites of injection, antisense strategies, imaging, and production of transgenic fish in detail. Here we describe a protocol to study the virulence profiles, ranging from acute fatal to persistent, of bacteria belonging to the Burkholderia cepacia complex. This standard operating protocol combines simple survival assays, analysis of bacterial kinetics, analysis of the early innate immune response with qRT-PCR, and the use of transgenic reporter fish to study interactions with host phagocytes, and is also applicable to other pathogens.
Collapse
|
14
|
Schmerk CL, Valvano MA. Burkholderia multivorans survival and trafficking within macrophages. J Med Microbiol 2013; 62:173-184. [PMID: 23105020 DOI: 10.1099/jmm.0.051243-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Cystic fibrosis (CF) patients are at great risk of opportunistic lung infection, particularly by members of the Burkholderia cepacia complex (Bcc). This group of bacteria can cause damage to the lung tissue of infected patients and are difficult to eradicate due to their high levels of antibiotic resistance. Although the highly virulent Burkholderia cenocepacia has been the focus of virulence research for the past decade, Burkholderia multivorans is emerging as the most prevalent Bcc species infecting CF patients in North America. Despite several studies detailing the intramacrophage trafficking and survival of B. cenocepacia, no such data exist for B. multivorans. The results of this study demonstrated that the clinical CF isolates C5568 and C0514 and an environmental B. multivorans isolate, ATCC 17616, were able to replicate and survive within murine macrophages in a manner similar to that of B. cenocepacia strain K56-2. These strains were also able to survive but were unable to replicate within human THP-1 macrophages. Differences in macrophage uptake were observed among all three B. multivorans strains; these variances were attributed to major differences in O-antigen production. Unlike B. cenocepacia-containing vacuoles, which delay phagosomal maturation in murine macrophages by 6 h, all B. multivorans-containing vacuoles co-localized with lysosome-associated membrane protein-1, a late endosome/lysosomal marker, and the lysosomal marker dextran within 2 h of uptake. Together, these results indicated that, whilst both Bcc species were able to survive and replicate within macrophages, they utilized different intramacrophage survival strategies. To observe differences in virulence, the strains were compared using the Galleria mellonella (wax worm) model. When compared with the B. multivorans strains tested, B. cenocepacia K56-2 was highly virulent in this model and killed all worms within 24 h when injected at 10(7) c.f.u. B. multivorans clinical isolates C5568 and C0514 were significantly more virulent than the soil isolate ATCC 17616, which was avirulent even when worms were injected with 10(7) c.f.u. These results suggest strain differences in the virulence of B. multivorans isolates.
Collapse
Affiliation(s)
- Crystal L Schmerk
- Center for Human Immunology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Microbiology and Immunology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Miguel A Valvano
- Center for Human Immunology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Microbiology and Immunology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
15
|
Döring G, Parameswaran IG, Murphy TF. Differential adaptation of microbial pathogens to airways of patients with cystic fibrosis and chronic obstructive pulmonary disease. FEMS Microbiol Rev 2011; 35:124-46. [PMID: 20584083 DOI: 10.1111/j.1574-6976.2010.00237.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cystic fibrosis (CF), the most common autosomal recessive disorder in Caucasians, and chronic obstructive pulmonary disease (COPD), a disease of adults, are characterized by chronic lung inflammation, airflow obstruction and extensive tissue remodelling, which have a major impact on patients' morbidity and mortality. Airway inflammation is stimulated in CF by chronic bacterial infections and in COPD by environmental stimuli, particularly from smoking. Pseudomonas aeruginosa is the major bacterial pathogen in CF, while in COPD, Haemophilus influenzae is most frequently observed. Molecular studies indicate that during chronic pulmonary infection, P. aeruginosa clones genotypically and phenotypically adapt to the CF niche, resulting in a highly diverse bacterial community that is difficult to eradicate therapeutically. Pseudomonas aeruginosa clones from COPD patients remain within the airways only for limited time periods, do not adapt and are easily eradicated. However, in a subgroup of severely ill COPD patients, P. aeruginosa clones similar to those in CF persist. In this review, we will discuss the pathophysiology of lung disease in CF and COPD, the complex genotypic and phenotypic adaptation processes of the opportunistic bacterial pathogens and novel treatment options.
Collapse
Affiliation(s)
- Gerd Döring
- Institute of Medical Microbiology and Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany.
| | | | | |
Collapse
|
16
|
Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Appl Microbiol Biotechnol 2010; 87:31-40. [PMID: 20390415 DOI: 10.1007/s00253-010-2528-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 12/31/2022]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of 17 closely related species of the beta-proteobacteria subdivision that emerged in the 1980s as important human pathogens, especially to patients suffering from cystic fibrosis. Since then, a remarkable progress has been achieved on the taxonomy and molecular identification of these bacteria. Although some progress have been achieved on the knowledge of the pathogenesis traits and virulence factors used by these bacteria, further work envisaging the identification of potential targets for the scientifically based design of new therapeutic strategies is urgently needed, due to the very difficult eradication of these bacteria with available therapies. An overview of these aspects of Bcc pathogenesis and opportunities for the design of future therapies is presented and discussed in this work.
Collapse
|
17
|
Identification of potential diagnostic markers among Burkholderia cenocepacia and B. multivorans supernatants. J Clin Microbiol 2010; 48:4186-92. [PMID: 20810766 DOI: 10.1128/jcm.00577-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patients with cystic fibrosis (CF) are susceptible to chronic respiratory infections with a number of bacterial pathogens. Among them, the Burkholderia cepacia complex (Bcc) bacteria, consisting of nine related species, have emerged as problematic CF pathogens due to their antibiotic resistance, incidence of nosocomial infection, and person-to-person transmission. Bcc organisms present the clinical microbiologist with a diagnostic dilemma due to the lack of phenotypic biochemical or growth-related characterization tests that reliably distinguish among these organisms. The complex taxonomy of the Bcc species colonizing the CF respiratory tract makes accurate identification problematic. Despite the clinical implications of Bcc identification, a clinical laboratory differentiation of species within the Bcc is lacking. Additionally, no commercial assays are available to further identify the Bcc species. In the current study, secretory proteins present in the cultured supernatants of Burkholderia cenocepacia and Burkholderia multivorans were analyzed by two-dimensional gel electrophoresis (2-DE), followed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). To assess differential expression, protein spots of B. cenocepacia and B. multivorans that were unique or displayed different intensities were chosen for MALDI-TOF MS analysis. In total, 341 protein spots were detected, of which 23 were unique to each species, demonstrating that potential diagnostic candidates between these two members of the Bcc exist.
Collapse
|
18
|
Castonguay-Vanier J, Vial L, Tremblay J, Déziel E. Drosophila melanogaster as a model host for the Burkholderia cepacia complex. PLoS One 2010; 5:e11467. [PMID: 20635002 PMCID: PMC2902503 DOI: 10.1371/journal.pone.0011467] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 05/19/2010] [Indexed: 02/06/2023] Open
Abstract
Background Colonization with bacterial species from the Burkholderia cepacia complex (Bcc) is associated with fast health decline among individuals with cystic fibrosis. In order to investigate the virulence of the Bcc, several alternative infection models have been developed. To this end, the fruit fly is increasingly used as surrogate host, and its validity to enhance our understanding of host-pathogen relationships has been demonstrated with a variety of microorganisms. Moreover, its relevance as a suitable alternative to mammalian hosts has been confirmed with vertebrate organisms. Methodology/Principal Findings The aim of this study was to establish Drosophila melanogaster as a surrogate host for species from the Bcc. While the feeding method proved unsuccessful at killing the flies, the pricking technique did generate mortality within the populations. Results obtained with the fruit fly model are comparable with results obtained using mammalian infection models. Furthermore, validity of the Drosophila infection model was confirmed with B. cenocepacia K56-2 mutants known to be less virulent in murine hosts or in other alternative models. Competitive index (CI) analyses were also performed using the fruit fly as host. Results of CI experiments agree with those obtained with mammalian models. Conclusions/Significance We conclude that Drosophila is a useful alternative infection model for Bcc and that fly pricking assays and competition indices are two complementary methods for virulence testing. Moreover, CI results indicate that this method is more sensitive than mortality tests.
Collapse
Affiliation(s)
- Josée Castonguay-Vanier
- Institut National de la Recherche Scientifique (INRS)-Institut Armand Frappier, Laval, Canada
| | - Ludovic Vial
- Institut National de la Recherche Scientifique (INRS)-Institut Armand Frappier, Laval, Canada
| | - Julien Tremblay
- Institut National de la Recherche Scientifique (INRS)-Institut Armand Frappier, Laval, Canada
| | - Eric Déziel
- Institut National de la Recherche Scientifique (INRS)-Institut Armand Frappier, Laval, Canada
- * E-mail:
| |
Collapse
|
19
|
Makidon PE, Knowlton J, Groom JV, Blanco LP, LiPuma JJ, Bielinska AU, Baker JR. Induction of immune response to the 17 kDa OMPA Burkholderia cenocepacia polypeptide and protection against pulmonary infection in mice after nasal vaccination with an OMP nanoemulsion-based vaccine. Med Microbiol Immunol 2010; 199:81-92. [PMID: 19967396 DOI: 10.1007/s00430-009-0137-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Indexed: 10/20/2022]
Abstract
Burkholderia cepacia complex (Bcc) are opportunistic bacteria associated with life-threatening illness in persons with cystic fibrosis. Once Bcc colonization is established, these antimicrobial-resistant and biofilm-forming bacteria are difficult to eradicate and are associated with increased rates of morbidity and mortality. At present, no vaccines are available to prevent the Bcc infection. There is currently a paucity of published information regarding the development of vaccines designed to prevent Burkholderia colonization. This work expands on the recent studies published by Bertot et al. [Infect Immun 75(6):2740-2752, 2007], where successful protective immune responses were generated in mice using a B. multivorans OMP-based vaccine. Here, we evaluate an experimental mucosal vaccine against Bcc using a novel mucosal adjuvant (nanoemulsion) and a novel B. cenocepacia-based OMP antigen. The OMP antigen derived from B. cenocepacia was mixed with either nanoemulsion or with PBS and delivered intranasally to CD-1 mice. Serum analysis showed robust IgG and mucosal secretory IgA immune responses in vaccinated versus control mice. The antibodies had cross-neutralizing activity against both B. cenocepacia and B. multivorans species. We found that immunized mice were protected against pulmonary colonization with B. cenocepacia. We have also identified that a 17 kDa OmpA-like protein highly conserved between Burkholderia and Ralstonia species as a new immunodominant epitope in mucosal immunization.
Collapse
Affiliation(s)
- P E Makidon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS), University of Michigan, 9220 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-5648, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
AuCoin DP, Crump RB, Thorkildson P, Nuti DE, LiPuma JJ, Kozel TR. Identification of Burkholderia cepacia complex bacteria with a lipopolysaccharide-specific monoclonal antibody. J Med Microbiol 2010; 59:41-47. [PMID: 19729457 DOI: 10.1099/jmm.0.012500-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Burkholderia includes many bacteria that cause serious human infections. As is the case with other Gram-negative bacteria, Burkholderia species produce LPS, which is an abundant component of the bacterial cell surface. Burkholderia cepacia complex (Bcc) bacteria (which include at least 17 separate species) produce LPS structures that are quite different. In an attempt to determine the degree of LPS epitope variation among Bcc species, a mAb was produced, designated 5D8, specific for the LPS of B. cepacia. Western blot analysis determined that mAb 5D8 was able to produce the classic 'ladder pattern' when used to probe B. cepacia and Burkholderia anthina lysates, although 5D8 did not produce this pattern with the other seven Bcc species tested. mAb 5D8 reacted with varying intensity to most but not all of the additional B. cepacia and B. anthina strains tested. Therefore, there seems to be significant epitope variation among Bcc LPS both between and within species. Additionally, mAb 5D8 reacted with a proteinase-K-sensitive 22 kDa antigen in all Bcc strains and also in a strain of Burkholderia pseudomallei.
Collapse
Affiliation(s)
- David P AuCoin
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Reva B Crump
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Peter Thorkildson
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Dana E Nuti
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - John J LiPuma
- Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Thomas R Kozel
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
21
|
Alfalfa infection model: is it a potential alternative for mouse pneumonia model to study pathogenesis of Stenotrophomonas maltophilia? World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Virulence and cellular interactions of Burkholderia multivorans in chronic granulomatous disease. Infect Immun 2009; 77:4337-44. [PMID: 19635825 DOI: 10.1128/iai.00259-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Chronic granulomatous disease (CGD) patients are susceptible to life-threatening infections by the Burkholderia cepacia complex. We used leukocytes from CGD and healthy donors and compared cell association, invasion, and cytokine induction by Burkholderia multivorans strains. A CGD isolate, CGD1, showed higher cell association than that of an environmental isolate, Env1, which correlated with cell entry. All B. multivorans strains associated significantly more with cells from CGD patients than with those from healthy donors. Similar findings were observed with another CGD pathogen, Serratia marcescens, but not with Escherichia coli. In a mouse model of CGD, strain CGD1 was virulent while Env1 was avirulent. B. multivorans organisms were found in the spleens of CGD1-infected mice at levels that were 1,000 times higher than those found in Env1-infected mice, which was coincident with higher levels of the proinflammatory cytokine interleukin-1beta. Taken together, these results may shed light on the unique susceptibility of CGD patients to specific pathogens.
Collapse
|
23
|
Coutinho HDM, Falcão-Silva VS, Gonçalves GF. Pulmonary bacterial pathogens in cystic fibrosis patients and antibiotic therapy: a tool for the health workers. Int Arch Med 2008; 1:24. [PMID: 18992146 PMCID: PMC2586015 DOI: 10.1186/1755-7682-1-24] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 11/07/2008] [Indexed: 03/17/2024] Open
Abstract
Cystic fibrosis is the most common and best known genetic disease involving a defect in transepithelial Cl- transport by mutations in the CF gene on chromosome 7, which codes for the cystic fibrosis transmembrane conductance regulator protein (CFTR). The most serious symptoms are observed in the lungs, augmenting the risk of bacterial infection. The objective of this review was to describe the bacterial pathogens colonizing patients with cystic fibrosis. A systematic search was conducted using the international bibliographic databanks SCIELO, HIGHWIRE, PUBMED, SCIRUS and LILACS to provide a useful and practical review for healthcare workers to make them aware of these microorganisms. Today, B. cepacia, P. aeruginosa and S. aureus are the most important infectious agents in cystic fibrosis patients. However, healthcare professionals must pay attention to emerging infectious agents in these patients, because they represent a potentially serious future problem. Therefore, these pathogens should be pointed out as a risk to these patients, and hospitals all over the world must be prepared to detect and combat these bacteria.
Collapse
Affiliation(s)
- Henrique Douglas M Coutinho
- Laboratório de Pesquisa em Produtos Naturais, Departamento de Ciências físicas e Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Regional do Cariri, Crato (CE), Brazil
| | - Vivyanne S Falcão-Silva
- Laboratorio de Genética de Microrganismos, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa (PB), Brazil
| | - Gregório Fernandes Gonçalves
- Laboratorio de Genética de Microrganismos, Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa (PB), Brazil
| |
Collapse
|
24
|
MacDonald KL, Speert DP. Differential modulation of innate immune cell functions by theBurkholderia cepaciacomplex:Burkholderia cenocepaciabut notBurkholderia multivoransdisrupts maturation and induces necrosis in human dendritic cells. Cell Microbiol 2008; 10:2138-49. [DOI: 10.1111/j.1462-5822.2008.01197.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infect Immun 2008; 76:1267-75. [PMID: 18195031 DOI: 10.1128/iai.01249-07] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia is an important bacterial genus with a complex taxonomy that contains species of both ecological and pathogenic importance, including nine closely related species collectively termed the Burkholderia cepacia complex (BCC). In order to more thoroughly investigate the virulence of this bacterial complex of microorganisms, alternative infection models would be useful. To this end, we have adapted and developed the use of the Galleria mellonella wax moth larvae as a host for examining BCC infections. The experimental conditions affecting the BCC killing of the "wax worm" were optimized. BCC virulence levels were determined using 50% lethal doses, and differences were observed between both species and strains of the BCC. The BCC pathogenicity trends obtained compare favorably with results acquired using other published alternative infection models, as well as mammalian infection models. In addition, BCC killing activity was determined by directly measuring relative bacterial loads in three different BCC strains, thus demonstrating innate differences in BCC strain virulence. Finally, genetically mutated BCC strains were compared to a wild-type BCC strain in order to show concomitant reduction of BCC virulence and increased wax worm survival. For experimentation examining the virulent properties of the BCC, the wax worm has proven to be a useful alternative infection model.
Collapse
|
26
|
A LysR-type transcriptional regulator in Burkholderia cenocepacia influences colony morphology and virulence. Infect Immun 2007; 76:38-47. [PMID: 17967860 DOI: 10.1128/iai.00874-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Burkholderia cenocepacia strain K56-2 typically has rough colony morphology on agar medium; however, shiny colony variants (shv) can appear spontaneously. These shv all had a minimum of 50% reduction in biomass formation and were generally avirulent in an alfalfa seedling infection model. Three shv-K56-2 S15, K56-2 S76, and K56-2 S86-were analyzed for virulence in a chronic agar bead model of respiratory infection and, although all shv were able to establish chronic infection, they produced significantly less lung histopathology than the rough K56-2. Transmission electron microscopy revealed that an extracellular matrix surrounding bacterial cells was absent or reduced in the shv compared to the rough wild type. Transposon mutagenesis was performed on the rough wild-type strain and a mutant with an insertion upstream of ORF BCAS0225, coding for a putative LysR-type regulator, exhibited shiny colony morphology, reduced biofilm production, increased N-acyl homoserine lactone production, and avirulence in alfalfa. The rough parental colony morphotype, biofilm formation, and virulence in alfalfa were restored by providing BCAS0225 in trans in the BCAS0225::pGSVTp-luxCDABF mutant. Introduction of BCAS0225 restored the rough morphotype in several shv which were determined to have spontaneous mutations in this gene. In the present study, we show that the conversion from rough wild type to shv in B. cenocepacia correlates with reduced biofilm formation and virulence, and we determined that BCAS0225 is one gene involved in the regulation of these phenotypes.
Collapse
|
27
|
Sousa SA, Ulrich M, Bragonzi A, Burke M, Worlitzsch D, Leitão JH, Meisner C, Eberl L, Sá-Correia I, Döring G. Virulence of Burkholderia cepacia complex strains in gp91phox-/- mice. Cell Microbiol 2007; 9:2817-25. [PMID: 17627623 DOI: 10.1111/j.1462-5822.2007.00998.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In cystic fibrosis (CF), infection with Burkholderia cepacia complex (Bcc) strains may cause long-term asymptomatic airway colonization, or severe lung infection leading to rapid pulmonary decline. To assess the virulence of Bcc strains, we established a lung infection model in mice with a null allele of the gene involved in X-linked chronic granulomatous disease (CGD). CGD mice, challenged intratracheally with 10(3) cells of the epidemic Burkholderia cenocepacia strain J2315, died within 3 days from sepsis after bacteria had multiplied to 3.3 x 10(8) cells. Infected mice developed neutrophil-dominated lung abscesses. Other B. cenocepacia strains and a B. cepacia strain were less virulent and one B. multivorans and one B. vietnamensis CF isolate were both avirulent. Bcc mutants, defective in exopolysaccharide synthesis or quorum sensing revealed diminished or no abscess formation and mortality. Immunofluorescence staining of Bcc-infected murine and CF lung tissues revealed colocalization of Bcc and neutrophils, suggesting Bcc persistence within neutrophils in CGD and CF. In vitro, Bcc cells were rapidly killed during aerobic neutrophil phagocytosis; however, the pathogens survived in neutrophils with blocked nicotinamide adenine dinucleotide phosphate oxidase activity and under anaerobic conditions. We conclude that the Bcc infection model in CGD mice is well suited for the assessment of Bcc virulence.
Collapse
Affiliation(s)
- Silvia A Sousa
- Institute of Medical Microbiology and Hygiene, Universitätsklinikum Tübingen, Wilhelmstrasse 31, 72074 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bertot GM, Restelli MA, Galanternik L, Aranibar Urey RC, Valvano MA, Grinstein S. Nasal immunization with Burkholderia multivorans outer membrane proteins and the mucosal adjuvant adamantylamide dipeptide confers efficient protection against experimental lung infections with B. multivorans and B. cenocepacia. Infect Immun 2007; 75:2740-52. [PMID: 17296759 PMCID: PMC1932907 DOI: 10.1128/iai.01668-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic lung infection by opportunistic pathogens, such as Pseudomonas aeruginosa and members of the Burkholderia cepacia complex, is a major cause of morbidity and mortality in patients with cystic fibrosis. Outer membrane proteins (OMPs) of gram-negative bacteria are promising vaccine antigen candidates. In this study, we evaluated the immunogenicity, protection, and cross-protection conferred by intranasal vaccination of mice with OMPs from B. multivorans plus the mucosal adjuvant adamantylamide dipeptide (AdDP). Robust mucosal and systemic immune responses were stimulated by vaccination of naive animals with OMPs from B. multivorans and B. cenocepacia plus AdDP. Using a mouse model of chronic pulmonary infection, we observed enhanced clearance of B. multivorans from the lungs of vaccinated animals, which correlated with OMP-specific secretory immunoglobulin A responses. Furthermore, OMP-immunized mice showed rapid resolution of the pulmonary infection with virtually no lung pathology after bacterial challenge with B. multivorans. In addition, we demonstrated that administration of B. multivorans OMP vaccine conferred protection against B. cenocepacia challenge in this mouse infection model, suggesting that OMPs provide cross-protection against the B. cepacia complex. Therefore, we concluded that mucosal immunity to B. multivorans elicited by intranasal vaccination with OMPs plus AdDP could prevent early steps of colonization and infection with B. multivorans and also ameliorate lung tissue damage, while eliciting cross-protection against B. cenocepacia. These results support the notion that therapies leading to increased mucosal immunity in the airways may help patients with cystic fibrosis.
Collapse
Affiliation(s)
- Gustavo M Bertot
- Laboratorio de Virología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, 1425 Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
29
|
Chung JW, Speert DP. Proteomic identification and characterization of bacterial factors associated with Burkholderia cenocepacia survival in a murine host. Microbiology (Reading) 2007; 153:206-14. [PMID: 17185549 DOI: 10.1099/mic.0.2006/000455-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia cenocepacia is a member of the Burkholderia cepacia complex, a diverse family of Gram-negative bacteria that are serious respiratory pathogens in immunocompromised patients and individuals with cystic fibrosis. To identify putative bacterial virulence determinants, proteomic profiles were compared between two B. cenocepacia isolates that demonstrated differential persistence in a mouse model of pulmonary infection; clinical isolate C1394 is rapidly cleared from the murine lung whereas the strain variant, C1394mp2, persists. Two-dimensional (2D) gel electrophoresis was used to identify candidate proteins involved in B. cenocepacia survival in a susceptible host. The 2D proteome of the persistent isolate (C1394mp2) revealed loss of an alkyl hydroperoxide reductase subunit C (AhpC) protein spot and increased production of flagellin proteins. Loss of AhpC expression in C1394mp2 correlated with enhanced susceptibility to oxidative stress. C1394mp2 expressed increased flagellin production and enhanced swimming motility, traits that were subject to regulation by heat and low pH. Together, these results revealed differential expression and stress regulation of putative virulence determinants associated with B. cenocepacia persistence in a susceptible host.
Collapse
Affiliation(s)
- Jacqueline W Chung
- Department of Paediatrics, University of British Columbia, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | | |
Collapse
|
30
|
Gingues S, Kooi C, Visser MB, Subsin B, Sokol PA. Distribution and expression of the ZmpA metalloprotease in the Burkholderia cepacia complex. J Bacteriol 2006; 187:8247-55. [PMID: 16321929 PMCID: PMC1316997 DOI: 10.1128/jb.187.24.8247-8255.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution of the metalloprotease gene zmpA was determined among strains of the Burkholderia cepacia complex (Bcc). The zmpA gene was present in B. cepacia, B. cenocepacia, B. stabilis, B. ambifaria and B. pyrrocinia but absent from B. multivorans, B. vietnamiensis, B. dolosa, and B. anthina. The presence of zmpA generally correlated with extracellular proteolytic activity with the exception of five strains, which had zmpA but had no detectable proteolytic activity when skim milk agar was used as a substrate (zmpA protease deficient). Western immunoblot experiments with anti-ZmpA antibodies suggest that the zmpA protease-deficient strains do not secrete or accumulate detectable ZmpA. Transcriptional zmpA::lacZ fusions were introduced in selected strains of the Bcc. zmpA::lacZ was expressed in all strains, but expression was generally lower in the zmpA protease-deficient strains than in the zmpA protease-proficient strains. Quantitative reverse transcriptase real-time PCR demonstrated that zmpA protease-deficient strains did express zmpA mRNA, although at various levels. ZmpA has previously been shown to be positively regulated by the CepIR quorum-sensing system. Addition of exogenous AHLs did not restore extracellular protease production to any of the zmpA protease-deficient strains; however, introduction of cepR in trans complemented protease activity in two of five strains. Extracellular proteolytic activity was restored by the presence of zmpA in trans in two of the five strains. These studies suggest that although some strains of the Bcc contain the zmpA gene, multiple factors may influence its expression.
Collapse
Affiliation(s)
- S Gingues
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary Health Sciences Centre, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
31
|
Cardona ST, Wopperer J, Eberl L, Valvano MA. Diverse pathogenicity of Burkholderia cepacia complex strains in the Caenorhabditis elegans host model. FEMS Microbiol Lett 2005; 250:97-104. [PMID: 16043310 DOI: 10.1016/j.femsle.2005.06.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 06/23/2005] [Accepted: 06/24/2005] [Indexed: 11/15/2022] Open
Abstract
A fast screening method was developed to assess the pathogenicity of a diverse collection of environmental and clinical Burkholderia cepacia complex isolates in the nematode Caenorhabditis elegans. The method was validated by comparison with the standard slow-killing assay. We observed that the pathogenicity of B. cepacia complex isolates in C. elegans was strain-dependent but species-independent. The wide range of observed pathogenic phenotypes agrees with the high degree of phenotypic variation among species of the B. cepacia complex and suggests that the taxonomic classification of a given strain within the complex cannot predict pathogenicity.
Collapse
Affiliation(s)
- Silvia T Cardona
- Department of Microbiology, Infectious Diseases Research Group, Siebens-Drake Research Institute, Dental Sciences Building, Room 3014, The University of Western Ontario, London, Ont., Canada N6A 5C1.
| | | | | | | |
Collapse
|
32
|
Mahenthiralingam E, Urban TA, Goldberg JB. The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 2005; 3:144-56. [PMID: 15643431 DOI: 10.1038/nrmicro1085] [Citation(s) in RCA: 646] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Burkholderia cepacia complex (Bcc) is a collection of genetically distinct but phenotypically similar bacteria that are divided into at least nine species. Bcc bacteria are found throughout the environment, where they can have both beneficial and detrimental effects on plants and some members can also degrade natural and man-made pollutants. Bcc bacteria are now recognized as important opportunistic pathogens that can cause variable lung infections in cystic fibrosis patients, which result in asymptomatic carriage, chronic infection or 'cepacia syndrome', which is characterized by a rapid decline in lung function that can include invasive disease. Here we highlight the unique characteristics of the Bcc, focusing on the factors that determine virulence.
Collapse
|
33
|
Chu KK, MacDonald KL, Davidson DJ, Speert DP. Persistence of Burkholderia multivorans within the pulmonary macrophage in the murine lung. Infect Immun 2004; 72:6142-7. [PMID: 15385520 PMCID: PMC517555 DOI: 10.1128/iai.72.10.6142-6147.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Differences in infection kinetics and host response between Burkholderia multivorans and Burkholderia cenocepacia were demonstrated in a pulmonary infection model in BALB/c mice. B. multivorans persisted in the lung, while B. cenocepacia was cleared. Indirect immunofluorescence and electron microscopy of B. multivorans-infected lungs localized bacteria to macrophages. Clearance of B. cenocepacia was associated with greater interleukin-1beta and neutrophil responses than the responses induced by B. multivorans.
Collapse
Affiliation(s)
- Karen K Chu
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
34
|
Vermis K, Vandamme PAR, Nelis HJ. Burkholderia cepacia complex genomovars: utilization of carbon sources, susceptibility to antimicrobial agents and growth on selective media. J Appl Microbiol 2004; 95:1191-9. [PMID: 14632991 DOI: 10.1046/j.1365-2672.2003.02054.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To investigate the relationship between genomovar status and carbon source utilization, antibiotic susceptibility and growth ability on selective media of 142 clinical and environmental Burkholderia cepacia complex (Bcc) isolates belonging to all nine genomovars. METHODS AND RESULTS Carbon source utilization and growth on selective media were tested by agar plate multipoint inoculation. Antimicrobial minimum inhibitory concentration (MIC) values were determined by agar dilution. Of all carbon sources, l-arabinose was most frequently utilized, supporting growth of 90% of all isolates. Burkholderia cepacia genomovar VI failed to utilize azelaic acid, penicillin G, phtalate, salicin and tryptamine. Overall, B. vietnamiensis and B. anthina were most susceptible and B. cepacia genomovar VI most resistant to antimicrobial agents. Burkholderia cepacia selective agar (BCSA) and the Mast B. cepacia medium supported growth of Bcc isolates most efficiently. CONCLUSIONS This study demonstrates phenotypic heterogeneity within the Bcc. Some trends can be observed at the genomovar level, but only B. cepacia genomovar VI could be differentiated unambiguously on the basis of its inability to grow on PCAT. SIGNIFICANCE AND IMPACT OF THE STUDY This work provides an update on some differential phenotypic characteristics of all nine Bcc genomovars.
Collapse
Affiliation(s)
- K Vermis
- Laboratory for Pharmaceutical Microbiology, University of Ghent, Ghent, Belgium
| | | | | |
Collapse
|
35
|
Allan ND, Kooi C, Sokol PA, Beveridge TJ. Putative virulence factors are released in association with membrane vesicles from Burkholderia cepacia. Can J Microbiol 2004; 49:613-24. [PMID: 14663495 DOI: 10.1139/w03-078] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Like many other Gram-negative bacteria, Burkholderia cepacia naturally releases membrane vesicles (n-MVs) during normal growth. Through filtration and differential centrifugation, n-MVs from clinical isolates of the IIIa and V genomovars were isolated and their characteristics compared. Electron microscopy revealed that they were spherical, 30-220 nm in diameter, and bilayered. Virulence factors thought to play a role in pathogenicity (e.g., lipase, phospholipase-N, and protease, including a metalloprotease) were found associated with n-MVs, while peptidoglycan zymogram analysis also revealed 26, 28, 36, and 66 kDa peptidoglycan-degrading enzymes. n-MVs were often contaminated with flagella and pili when isolated by traditional methods, and a new strategy using a linear isopycnic sucrose gradient was utilized. For better characterization, this was applied to a representative genomovar IIIa strain (C5424) and showed that n-MVs consisted of a subset of specific outer membrane and periplasmic proteins as well as lipopoly saccharide possessing only a putative minor O-side chain polymer. This finding suggests that certain components are selected by B. cepacia during n-MV formation, and since some are putative virulence factors, this property could help deliver the factors to tissue, thereby aiding infection.
Collapse
Affiliation(s)
- Nick D Allan
- Canadian Bacterial Disease Network--National Centre of Excellence, Department of Microbiology, College of Biological Science, University of Guelph, ON
| | | | | | | |
Collapse
|
36
|
Bernier SP, Silo-Suh L, Woods DE, Ohman DE, Sokol PA. Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence. Infect Immun 2003; 71:5306-13. [PMID: 12933878 PMCID: PMC187319 DOI: 10.1128/iai.71.9.5306-5313.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A simple alfalfa model was developed as an alternative infection model for virulence studies of the Burkholderia cepacia complex. Symptoms of disease were observed in wounded alfalfa seedlings within 7 days following inoculation of 10(1) to 10(5) CFU of most strains of the B. cepacia complex. Strains from seven genomovars of the B. cepacia complex were tested for virulence in the alfalfa model, and the degree of virulence was generally similar in strains belonging to the same genomovar. Strains of Burkholderia multivorans and some strains of Burkholderia stabilis did not cause symptoms of disease in alfalfa seedlings. Representative strains were also tested for virulence using the rat agar bead model. Most of the strains tested were able to establish chronic lung infections; B. stabilis strains were the exception. Most of the strains that were virulent in the alfalfa infection model were also virulent in the lung infection model. The B. cepacia genomovar III mutants K56pvdA::tp and K56-H15 were significantly less virulent in the alfalfa infection model than their parent strain. Therefore, this alfalfa infection model may be a useful tool for assessing virulence of strains of the B. cepacia complex and identifying new virulence-associated genes.
Collapse
Affiliation(s)
- Steve P Bernier
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
37
|
Chung JW, Altman E, Beveridge TJ, Speert DP. Colonial morphology of Burkholderia cepacia complex genomovar III: implications in exopolysaccharide production, pilus expression, and persistence in the mouse. Infect Immun 2003; 71:904-9. [PMID: 12540572 PMCID: PMC145372 DOI: 10.1128/iai.71.2.904-909.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to determine the role of colonial morphology of Burkholderia cepacia complex (BCC) organisms in pathogenicity in a mouse model of pulmonary infection. BCC strain C1394 was rapidly cleared by leukopenic mice after intranasal challenge, whereas a spontaneous variant (C1394mp2) that was indistinguishable from the parent strain by genetic typing persisted in the lungs and differed in colonial morphology. The parent strain had a matte colonial phenotype, made scant exopolysaccharide (EPS), and was lightly piliated. The variant had a shiny phenotype, produced abundant EPS, and was heavily piliated. Matte to shiny colonial transformation was induced by growth at 42 degrees C. Colonial morphology in the BCC strain variant was associated with persistence after pulmonary challenge and appeared to be correlated with the elaboration of putative virulence determinants.
Collapse
Affiliation(s)
- Jacqueline W Chung
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|