1
|
Boorei MA, Paul BT, Abdullah Jesse FF, Teik Chung EL, Mohd Lila MA. Responses of selected biomarkers, female reproductive hormones and tissue changes in non-pregnant does challenged with Mannheimia haemolytica serotype A2 and its outer membrane protein (OMP) immunogen. Microb Pathog 2022; 169:105674. [PMID: 35820581 DOI: 10.1016/j.micpath.2022.105674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Mannheimia haemolytica causative agent of pneumonic mannheimiosis, a common respiratory disease of goat and sheep, which cause huge economic losses to farmers worldwide. Pneumonic mannheimiosis caused by M. haemolytica serotype A2 has been reported among small ruminants in Malaysia. The lipopolysaccharide (LPS) and outer membrane protein (OMP) are major virulence determinants for M. haemolytica serotype A2. Although pneumonic mannheimiosis is known to cause poor reproductive performance in small ruminants under field conditions, there is a dearth of published information on the specific effects of M. haemolytica serotype A2 infection on the female reproductive physiology. In this experiment, we explored the impact of M. haemolytica serotype A2 and its OMP immunogen on selected pro-inflammatory cytokines, acute phase proteins, female reproductive hormones, and cellular changes in visceral and female reproductive organs of non-pregnant does. METHODOLOGY Twelve healthy, non-pregnant, Boer crossbreds does were divided equally into three groups (n = 4); Group 1 served as the negative control and was challenged with 2 ml of sterile PBS intranasally. Group 2 served as the positive control and was challenged with 2 ml of 109 colonies forming unit (CFU) of M. haemolytica serotype A2 suspension intranasally. Group 3 was challenged with 2 ml of OMP extracted from 109 CFU of M. haemolytica A2 intramuscularly. The experimental does were monitored for clinical signs and responses periodically. Blood samples were collected at 0, 1, 2, 4, 6, 12 and 24 h and 3, 7, 21, 35 and 56 days post treatment for serological analyses. All does were euthanised using the halal slaughter method on day 60 post challenge/treatment. Tissues from the uterus, liver, lung and associated bronchial lymph nodes were collected and fixed in 10% formalin for 14 days for histopathological study. RESULTS Compared to the control group, the challenged/treated groups showed significant (p < 0.05) increase in the rectal temperature, respiratory rate, heart rate, and rumen motility. Serum analyses revealed that the concentrations of progesterone and estrogen hormones were significantly (p < 0.05) decreased in groups 2 & 3. In contrast, the concentrations of pro-inflammatory cytokines (IL-1β and IL-6) and acute phase proteins (Hp and SAA) were significantly increased (p < 0.05) in the challenged/treated groups compared to the control group. Histopathological lesion scoring revealed mild to moderate cellular changes characterised by congestion, haemorrhage, degeneration, leucocytic cellular infiltration, and cellular necrosis in the tissues of does from the OMP treatment and bacterial challenge groups compared to the control group. CONCLUSION The findings from this study suggests that M. haemolytica serotype A2 and its OMP immunogen induced mild to moderate inflammatory and degenerative changes which may potentially interfere with fertilization through hormonal imbalances and cause temporary loss of fertility in infected does.
Collapse
Affiliation(s)
- Mohamed Abdirahman Boorei
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia Serdang, 43400, Selangor, Malaysia; Faculty of Veterinary Medicine and Animal Husbandry, Somali National University, Mogadishu, Somalia
| | - Bura Thlama Paul
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia Serdang, 43400, Selangor, Malaysia; Department of Animal Science and Fisheries, Faculty of Agriculture and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, 97008, Bintulu, Sarawak, Malaysia
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia Serdang, 43400, Selangor, Malaysia.
| | - Eric Lim Teik Chung
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Mohd Azmi Mohd Lila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia Serdang, 43400, Selangor, Malaysia
| |
Collapse
|
2
|
Slate JR, Chriswell BO, Briggs RE, McGill JL. The Effects of Ursolic Acid Treatment on Immunopathogenesis Following Mannheimia haemolytica Infections. Front Vet Sci 2021; 8:782872. [PMID: 34869750 PMCID: PMC8637451 DOI: 10.3389/fvets.2021.782872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022] Open
Abstract
Bovine respiratory disease complex (BRDC) is a costly economic and health burden for the dairy and feedlot cattle industries. BRDC is a multifactorial disease, often involving viral and bacterial pathogens, which makes it difficult to effectively treat or vaccinate against. Mannheimia haemolytica (MH) are common commensal bacteria found in the nasopharynx of healthy cattle; however, following environmental and immunological stressors, these bacteria can rapidly proliferate and spread to the lower respiratory tract, giving rise to pneumonic disease. Severe MH infections are often characterized by leukocyte infiltration and dysregulated inflammatory responses in the lungs. IL-17A is thought to play a key role in this inflammatory response by inducing neutrophilia, activating innate and adaptive immune cells, and further exacerbating lung congestion. Herein, we used a small molecule inhibitor, ursolic acid (UA), to suppress IL-17A production and to determine the downstream impact on the immune response and disease severity following MH infection in calves. We hypothesized that altering IL-17A signaling during MH infections may have therapeutic effects by reducing immune-mediated lung inflammation and improving disease outcome. Two independent studies were performed (Study 1 = 32 animals and Study 2 = 16 animals) using 4-week-old male Holstein calves, which were divided into 4 treatment group including: (1) non-treated and non-challenged, (2) non-treated and MH-challenged, (3) UA-treated and non-challenged, and (4) UA-treated and MH-challenged. Based on the combined studies, we observed a tendency (p = 0.0605) toward reduced bacterial burdens in the lungs of UA-treated animals, but did not note a significant difference in gross (p = 0.3343) or microscopic (p = 0.1917) pathology scores in the lungs. UA treatment altered the inflammatory environment in the lung tissues following MH infection, reducing the expression of IL-17A (p = 0.0870), inflammatory IL-6 (p = 0.0209), and STAT3 (p = 0.0205) compared to controls. This reduction in IL-17A signaling also appeared to alter the downstream expression of genes associated with innate defenses (BAC5, DEFB1, and MUC5AC) and lung remodeling (MMP9 and TIMP-1). Taken together, these results support our hypothesis that IL-17A signaling may contribute to lung immunopathology following MH infections, and further understanding of this inflammatory pathway could expand therapeutic intervention strategies for managing BRDC.
Collapse
Affiliation(s)
- Jamison R Slate
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Bradley O Chriswell
- Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, Ames, IA, United States
| | - Robert E Briggs
- Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, Ames, IA, United States
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
3
|
Askar H, Chen S, Hao H, Yan X, Ma L, Liu Y, Chu Y. Immune Evasion of Mycoplasma bovis. Pathogens 2021; 10:pathogens10030297. [PMID: 33806506 PMCID: PMC7998117 DOI: 10.3390/pathogens10030297] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma bovis (M. bovis) causes various chronic inflammatory diseases, including mastitis and bronchopneumonia, in dairy and feed cattle. It has been found to suppress the host immune response during infection, leading to the development of chronic conditions. Both in vitro and in vivo studies have confirmed that M. bovis can induce proinflammatory cytokines and chemokines in the host. This consists of an inflammatory response in the host that causes pathological immune damage, which is essential for the pathogenic mechanism of M. bovis. Additionally, M. bovis can escape host immune system elimination and, thus, cause chronic infection. This is accomplished by preventing phagocytosis and inhibiting key responses, including the neutrophil respiratory burst and the development of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) that lead to the creation of an extracellular bactericidal network, in addition to inhibiting monocyte and alveolar macrophage apoptosis and inducing monocytes to produce anti-inflammatory factors, thus inducing the apoptosis of peripheral blood mononuclear cells (PBMCs), inhibiting their proliferative response and resulting in their invasion. Together, these conditions lead to long-term M. bovis infection. In terms of the pathogenic mechanism, M. bovis may invade specific T-cell subsets and induce host generation of exhausted T-cells, which helps it to escape immune clearance. Moreover, the M. bovis antigen exhibits high-frequency variation in size and expression period, which allows it to avoid activation of the host humoral immune response. This review includes some recent advances in studying the immune response to M. bovis. These may help to further understand the host immune response against M. bovis and to develop potential therapeutic approaches to control M. bovis infection.
Collapse
Affiliation(s)
- Hussam Askar
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
- Faculty of Science, Al-Azhar University, Assuit 71524, Egypt
| | - Shengli Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
| | - Huafang Hao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
| | - Xinmin Yan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
| | - Lina Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
- Correspondence: ; Tel.: +86-0931-8342-676
| |
Collapse
|
4
|
Bassel LL, Caswell JL. Bovine neutrophils in health and disease. Cell Tissue Res 2018; 371:617-637. [PMID: 29445861 DOI: 10.1007/s00441-018-2789-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/04/2018] [Indexed: 12/23/2022]
Abstract
Bovine neutrophils have similarities to those of other species with respect to mechanisms of their activation and migration into tissue, modulation of immune responses and the balance between microbial killing and host tissue damage. However, bovine neutrophils have biochemical and functional differences from those of other species, which may yield insights about the comparative biology of neutrophils. Neutrophils play protective and harmful roles in the infectious diseases of cattle that occur at times of transition: respiratory disease in beef calves recently arrived to feedlots and mastitis and other diseases of postparturient dairy cows. An important research focus is the mechanisms by which risk factors for these diseases affect neutrophil function and thereby lead to disease and the prospect of genetic or pharmacologic improvement of disease resistance. Further, in keeping with the One Health paradigm, cattle can be considered a model for studying the role of neutrophils in naturally occurring diseases caused by host-adapted pathogens and are thus an intermediary between studies of mouse models and investigations of human disease. Finally, the study of bovine neutrophils is important for agriculture, to understand the pathogenesis of these production-limiting diseases and to develop novel methods of disease prevention that improve animal health and reduce the reliance on antimicrobial use.
Collapse
Affiliation(s)
- Laura L Bassel
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G2W1, Canada.
| | - Jeff L Caswell
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G2W1, Canada
| |
Collapse
|
5
|
Jimbo S, Suleman M, Maina T, Prysliak T, Mulongo M, Perez-Casal J. Effect of Mycoplasma bovis on bovine neutrophils. Vet Immunol Immunopathol 2017; 188:27-33. [DOI: 10.1016/j.vetimm.2017.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/18/2017] [Accepted: 04/29/2017] [Indexed: 12/19/2022]
|
6
|
Differential Susceptibility of Bighorn Sheep (Ovis canadensis) and Domestic Sheep (Ovis aries) Neutrophils to Mannheimia haemolytica Leukotoxin is not due to Differential Expression of Cell Surface CD18. J Wildl Dis 2017; 53:625-629. [PMID: 28323564 DOI: 10.7589/2016-11-244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bighornsheep ( Ovis canadensis ) are more susceptible to pneumonia caused by Mannheimia haemolytica than are domestic sheep ( Ovis aries ). Leukotoxin produced by M. haemolytica is the principal virulence factor involved in pneumonia pathogenesis. Although leukotoxin is cytolytic to all subsets of ruminant leukocytes, neutrophils are the most susceptible subset. Bighorn sheep neutrophils are four- to eightfold more susceptible to leukotoxin-induced cytolysis than are domestic sheep neutrophils. We hypothesized that the higher susceptibility of bighorn sheep neutrophils, in comparison to domestic sheep neutrophils, is due to higher expression of CD18, the receptor for leukotoxin on leukocytes. Our objective was to quantify CD18 expression on neutrophils of bighorn sheep and domestic sheep. Cell-surface CD18 expression on bighorn sheep and domestic sheep neutrophils was measured as antibody binding capacity of cells by flow cytometric analysis with two fluorochrome-conjugated anti-CD18 monoclonal antibodies (BAQ30A and HUH82A) and microspheres. Contrary to our expectations, CD18 expression was higher (P<0.0001) with monoclonal antibody BAQ30A and was higher (P<0.0002) as well with monoclonal antibody HUH80A on domestic sheep neutrophils in comparison to bighorn sheep neutrophils. These findings suggest that the higher in vitro susceptibility to leukotoxin of bighorn sheep neutrophils compared to domestic sheep neutrophils is not due to higher expression of the leukotoxin receptor CD18 on bighorn sheep neutrophils.
Collapse
|
7
|
Chauhan A, Paladhi S, Debnath M, Dash J. Selective recognition of c-MYC G-quadruplex DNA using prolinamide derivatives. Org Biomol Chem 2016; 14:5761-7. [DOI: 10.1039/c6ob00177g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the design, synthesis, biophysical and biological evaluation of triazole containing prolinamide derivatives as selectivec-MYCG-quadruplex binding ligands.
Collapse
Affiliation(s)
- Ajay Chauhan
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Sushovan Paladhi
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
- Department of Organic Chemistry
| | - Manish Debnath
- Department of Organic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Jyotirmayee Dash
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
- Department of Organic Chemistry
| |
Collapse
|
8
|
Panda D, Debnath M, Mandal S, Bessi I, Schwalbe H, Dash J. A Nucleus-Imaging Probe That Selectively Stabilizes a Minor Conformation of c-MYC G-quadruplex and Down-regulates c-MYC Transcription in Human Cancer Cells. Sci Rep 2015; 5:13183. [PMID: 26286633 PMCID: PMC4541407 DOI: 10.1038/srep13183] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/17/2015] [Indexed: 12/27/2022] Open
Abstract
The c-MYC proto-oncogene is a regulator of fundamental cellular processes such as cell cycle progression and apoptosis. The development of novel c-MYC inhibitors that can act by targeting the c-MYC DNA G-quadruplex at the level of transcription would provide potential insight into structure-based design of small molecules and lead to a promising arena for cancer therapy. Herein we report our finding that two simple bis-triazolylcarbazole derivatives can inhibit c-MYC transcription, possibly by stabilizing the c-MYC G-quadruplex. These compounds are prepared using a facile and modular approach based on Cu(I) catalysed azide and alkyne cycloaddition. A carbazole ligand with carboxamide side chains is found to be microenvironment-sensitive and highly selective for "turn-on" detection of c-MYC quadruplex over duplex DNA. This fluorescent probe is applicable to visualize the cellular nucleus in living cells. Interestingly, the ligand binds to c-MYC in an asymmetric fashion and selects the minor-populated conformer via conformational selection.
Collapse
Affiliation(s)
- Deepanjan Panda
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Manish Debnath
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Samir Mandal
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Irene Bessi
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt and Centre for Biomolecular, Magnetic Resonance, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt and Centre for Biomolecular, Magnetic Resonance, Max-von-Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - Jyotirmayee Dash
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
9
|
Neutrophil gelatinase-associated lipocalin (NGAL) and insulin-like growth factor (IGF)-1 association with a Mannheimia haemolytica infection in sheep. Vet Immunol Immunopathol 2014; 161:151-60. [PMID: 25193468 DOI: 10.1016/j.vetimm.2014.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/31/2014] [Accepted: 07/28/2014] [Indexed: 11/23/2022]
Abstract
This study was aimed at mapping the tissue distribution of some inflammatory parameters associated with a Mannheimia haemolytica (M. haemolytica) infection in sheep. The M. haemolytica was isolated and characterized from the affected lungs of slaughtered animals. Cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-10, insulin-like growth factor (IGF)-1, as well as the acute-phase protein, neutrophil gelatinase-associated lipocalin (NGAL), were identified in the lung tissues, the serum, and the lymph nodes of M. haemolytica infected sheep, by enzyme-linked immunosorbent assay (ELISA). NGAL and IGF-1 pointed to an innate immune response, and epithelial cell repairing, respectively. The adaptive immune response was identified through the type of cytokines present in the affected sheep, as TNF-α represents the pro-inflammatory cytokines, and IL-10 represents the anti-inflammatory cytokines. M. haemolytica isolates were confirmed by polymerase chain reaction (PCR) and DNA sequences. There was a significant difference in the concentrations of NGAL, IGF-1, TNF-α, and IL-10, as observed in the affected sheep when compared to the healthy sheep. This study, for the first time, closely describes the distribution of some key and new inflammatory parameters in the tissue homogenate of affected lungs.
Collapse
|
10
|
Stellari FF, Lavrentiadou S, Ruscitti F, Jacca S, Franceschi V, Civelli M, Carnini C, Villetti G, Donofrio G. Enlightened Mannhemia haemolytica lung inflammation in bovinized mice. Vet Res 2014; 45:8. [PMID: 24460618 PMCID: PMC3906860 DOI: 10.1186/1297-9716-45-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/17/2014] [Indexed: 11/10/2022] Open
Abstract
Polymorphonuclear cells diapedesis has an important contribution to the induced Mannhemia haemolytica (M. haemolytica) infection lung inflammation and IL-8 is the primary polymorphonuclear chemoattractant. Using a bovine IL-8/luciferase transiently transgenized mouse model, the orchestration among M. haemolytica, IL-8 promoter activation and neutrophilia was followed in real time by in vivo image analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gaetano Donofrio
- Department of Medical Veterinary Science, University of Parma, via del Taglio 10, 43126 Parma, Italy.
| |
Collapse
|
11
|
Fibroblasts express OvHV-2 capsid protein in vasculitis lesions of American bison (Bison bison) with experimental sheep-associated malignant catarrhal fever. Vet Microbiol 2013; 166:486-92. [DOI: 10.1016/j.vetmic.2013.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 07/06/2013] [Accepted: 07/12/2013] [Indexed: 11/23/2022]
|
12
|
N'jai AU, Rivera J, Atapattu DN, Owusu-Ofori K, Czuprynski CJ. Gene expression profiling of bovine bronchial epithelial cells exposed in vitro to bovine herpesvirus 1 and Mannheimia haemolytica. Vet Immunol Immunopathol 2013; 155:182-9. [PMID: 23890750 PMCID: PMC7127263 DOI: 10.1016/j.vetimm.2013.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/04/2013] [Accepted: 06/18/2013] [Indexed: 11/24/2022]
Abstract
Bovine respiratory disease (BRD) often occurs when active respiratory virus infections (BHV-1, etc.) impair resistance to Mannheimia haemolytica infection in the lower respiratory tract. The interactions that occur when the respiratory epithelium encounters these viral and bacterial pathogens are poorly understood. We used Agilent bovine gene microarray chips containing 44,000 transcripts to elucidate bovine bronchial epithelial cell (BBEC) responses following in vitro exposure to BHV-1 alone, M. haemolytica alone, or both BHV-1 and M. haemolytica. Microarray analysis revealed differential regulation (>2-fold) of 978 transcripts by BHV-1 alone, 2040 transcripts by M. haemolytica alone, and 2189 genes by BHV-1 and M. haemolytica in combination. M. haemolytica treatment produced significantly greater inductions (>10-fold) of several inflammation associated genes, such as CXCL2, IL-6, IL-1α, e-selectin, and IL-8, than to BHV-1 alone. Functional analysis of the microarray data revealed a significant upregulation of genes involved in important biological processes such as inflammation (TNF-α, IL-8, Tlr-2, IL-1, CXCL2, CSF2), vascular functions (VEGF, EDN2) and leukocyte migration (ICAM1, IL-16) during a co-infection with BHV-1 and M. haemolytica compared to either pathogen alone. This study provides evidence to support that lung epithelial cells are a source of mediators that may promote inflammatory changes observed during bovine respiratory disease.
Collapse
Affiliation(s)
- Alhaji U N'jai
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive-West, WI 52706, United States
| | | | | | | | | |
Collapse
|
13
|
Mandal S, Nelson VK, Mukhopadhyay S, Bandhopadhyay S, Maganti L, Ghoshal N, Sen G, Biswas T. 14-Deoxyandrographolide targets adenylate cyclase and prevents ethanol-induced liver injury through constitutive NOS dependent reduced redox signaling in rats. Food Chem Toxicol 2013; 59:236-48. [PMID: 23764359 DOI: 10.1016/j.fct.2013.05.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/25/2013] [Accepted: 05/29/2013] [Indexed: 02/07/2023]
Abstract
Chronic alcoholism is one of the most common causes of liver diseases worldwide. Nitric oxide (NO) has been proposed to have potential for clinical application against chronic hepatocellular injuries. However, mechanisms underlying hepatoprotective functions of NO in ethanol-induced apoptosis are largely unknown. Sprauge-Dawley rats were exposed to ethanol for 8 weeks. Half of the ethanol-fed animals received 14-deoxyandrographolide (14-DAG) treatment for the last 4 weeks of study. Preventive effect of 14-DAG against ethanol-induced hepatotoxicity involved constitutive nitric oxide synthase (cNOS) activation followed by up-regulation of γ-glutamylcysteine synthetase activity and reduced oxidative stress. Enhanced interaction of cNOS with caveolin-1 caused down-regulation of enzyme activity and led to depletion of NO in the hepatocytes of ethanol-fed animals. 14-DAG acted as activator of adenylate cyclase and modulated cyclic AMP (cAMP) mediated expression of caveolin-1 and calmodulin. This eventually favored activation of cNOS through inhibition of cNOS-caveolin-1 interaction. Our results suggest that, protective effect of 14-DAG against ethanol-induced hepatic injury is based on its ability to reduce oxidative stress through cNOS dependent improvement of redox status. 14-DAG mediated activation of adenylate cyclase-cAMP signaling leading to up-regulation of cNOS may provide a promising approach in the prevention of liver diseases during chronic alcoholism.
Collapse
Affiliation(s)
- Samir Mandal
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Pathogenic mechanisms implicated in the intravascular coagulation in the lungs of BVDV-infected calves challenged with BHV-1. Vet Res 2013; 44:20. [PMID: 23506546 PMCID: PMC3618313 DOI: 10.1186/1297-9716-44-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 02/18/2013] [Indexed: 01/19/2023] Open
Abstract
Resistance to respiratory disease in cattle requires host defense mechanisms that protect against pathogens which have evolved sophisticated strategies to evade them, including an altered function of pulmonary macrophages (MΦs) or the induction of inflammatory responses that cause lung injury and sepsis. The aim of this study was to clarify the mechanisms responsible for vascular changes occurring in the lungs of calves infected with bovine viral diarrhea virus (BVDV) and challenged later with bovine herpesvirus type 1 (BHV-1), evaluating the role of MΦs in the development of pathological lesions in this organ. For this purpose, pulmonary lesions were compared between co-infected calves and healthy animals inoculated only with BHV-1 through immunohistochemical (MAC387, TNFα, IL-1α, iNOS, COX-2 and Factor-VIII) and ultrastructural studies. Both groups of calves presented important vascular alterations produced by fibrin microthrombi and platelet aggregations within the blood vessels. These findings were earlier and more severe in the co-infected group, indicating that the concomitance of BVDV and BHV-1 in the lungs disrupts the pulmonary homeostasis by facilitating the establishment of an inflammatory and procoagulant environment modulated by inflammatory mediators released by pulmonary MΦs. In this regard, the co-infected calves, in spite of presenting a greater number of IMΦs than single-infected group, show a significant decrease in iNOS expression coinciding with the presence of more coagulation lesions. Moreover, animals pre-inoculated with BVDV displayed an alteration in the response of pro-inflammatory cytokines (TNFα and IL-1), which play a key role in activating the immune response, as well as in the local cell-mediated response.
Collapse
|
15
|
Redondo E, Gázquez A, García A, Vadillo S, Masot AJ. Dominant expression of interleukin-8 vs interleukin-1β and tumour necrosis factor alpha in lungs of lambs experimentally infected with Mannheimia haemolytica. N Z Vet J 2011; 59:225-32. [PMID: 21851299 DOI: 10.1080/00480169.2011.596180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AIMS To quantify the number of cells infected with Mannheimia haemolytica and expressing interleukin (IL)-1β, tumour necrosis factor alpha (TNFα) and IL-8 using immunohistochemistry, and to measure the immunoreactivity of cytokines in pulmonary tissue extracts using ELISA, in the lung of lambs experimentally infected with M. haemolytica, and to compare the patterns of expression of cytokines in airways at different times post-infection (p.i.). METHODS Twenty 3-month-old lambs of both sexes were randomly assigned to two groups, viz infected (n=15), and uninfected controls (n=5). Each lamb in the infected group was inoculated with 1.5 x 10(9) cfu M. haemolytica in 5 mL sterile nutrient broth, control lambs were inoculated with 5 mL sterile nutrient broth and clinical signs were monitored. Infected and control animals were killed at 1, 3, 5, 7, and 15 days p.i. Histopathology and immunohistochemistry were conducted to determine the number of immunolabelled cells in pneumonic lungs, and study the pattern of expression of IL-1β, TNFα and IL-8 in lung extracts using ELISA. RESULTS Lesions in bronchi and bronchioles ranged from epithelial desquamation to bronchiolitis obliterans and necrosis. The alveoli had areas of seroproteinaceous fluid, fibrin and bacterial aggregates that evolved to foci of pyogranulomatous inflammation with clustered inflammatory cells, referred to as 'oat cells'. M. haemolytica antigen was observed in the cytoplasm of inflammatory cells. Labelling of IL-1β, TNFα and IL-8 was observed in bronchial and bronchiolar epithelial cells, alveolar exudate, and in interstitial inflammatory infiltrate, with increased expression on 1 and 3 days p.i. for IL-1β and TNFα, and 1, 3, and 5 days p.i. for IL-8. In lung tissue extracts, peak concentrations of IL-1β (55 (SD 5) ng/mL), TNFα (92 (SD 6) pg/mL) and IL-8 (8 [SD 2] μg/mL) occurred at 3 days p.i. CONCLUSIONS The results of this study suggested that the inflammatory cytokines IL-1β, TNFα and IL-8 may play an important role in enhancing the biological response to M. haemolytica, and contribute to the development of lesions in the lung in pulmonary pasteurellosis in sheep. Given that the expression of IL-8 in lung was much greater than that of IL-1β and TNFα, anti-cytokine agents directed at this mediator could be useful in the prevention and treatment of this disease.
Collapse
Affiliation(s)
- E Redondo
- Department of Histology and Pathology, Veterinary Faculty, University of Extremadura, Avenue of the University, 10003 Cáceres, Spain.
| | | | | | | | | |
Collapse
|
16
|
Roy DN, Mandal S, Sen G, Mukhopadhyay S, Biswas T. 14-Deoxyandrographolide desensitizes hepatocytes to tumour necrosis factor-alpha-induced apoptosis through calcium-dependent tumour necrosis factor receptor superfamily member 1A release via the NO/cGMP pathway. Br J Pharmacol 2010; 160:1823-43. [PMID: 20649583 DOI: 10.1111/j.1476-5381.2010.00836.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Andrographis paniculata (AP) has been found to display hepatoprotective effect, although the mechanism of action of the active compounds of AP in this context still remains unclear. Here, we evaluated the hepatoprotective efficacy of 14-deoxyandrographolide (14-DAG), a bioactive compound of AP, particularly its role in desensitization of hepatocytes to tumour necrosis factor-alpha (TNF-alpha)-induced signalling of apoptosis. EXPERIMENTAL APPROACH TNF-alpha-mediated ligand receptor interaction in hepatocytes in the presence of 14-DAG was studied in vitro in primary hepatocyte cultures, with the help of co-immunoprecipitation, confocal microscopy and FACS analysis. Events associated with 14-DAG-induced TNFRSF1A release from hepatocytes were determined using immunoblotting, biochemical assay and fluorimetric studies. Pulse-chase experiments with radiolabelled TNF-alpha and detection of apoptotic nuclei by terminal transferase-mediated dUTP nick-end labelling were performed under in vivo conditions. KEY RESULTS 14-DAG down-regulated the formation of death-inducing signalling complex, resulting in desensitization of hepatocytes to TNF-alpha-induced apoptosis. Pretreatment of hepatocytes with 14-DAG accentuated microsomal Ca-ATPase activity through induction of NO/cGMP pathway. This resulted in enhanced calcium influx into microsomal lumen with the formation of TNFRSF1A-ARTS-1-NUCB2 complex in cellular vesicles. It was followed by the release of full-length 55 kDa TNFRSF1A and a reduction in the number of cell surface TNFRSF1A, which eventually caused diminution of TNF-alpha signal in hepatocytes. CONCLUSION AND IMPLICATION Taken together, the results demonstrate for the first time that 14-DAG desensitizes hepatocytes to TNF-alpha-mediated apoptosis through the release of TNFRSF1A. This can be used as a strategy against cytokine-mediated hepatocyte apoptosis in liver dysfunctions.
Collapse
Affiliation(s)
- D N Roy
- Cell Biology and Physiology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research, Kolkata, India
| | | | | | | | | |
Collapse
|
17
|
Bhatt KH, Pandey RK, Dahiya Y, Sodhi A. Protein kinase Cδ and protein tyrosine kinase regulate peptidoglycan-induced nuclear factor-κB activation and inducible nitric oxide synthase expression in mouse peritoneal macrophages in vitro. Mol Immunol 2010; 47:861-70. [DOI: 10.1016/j.molimm.2009.10.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 10/23/2009] [Indexed: 10/20/2022]
|
18
|
Bovine herpesvirus type 1 infection of bovine bronchial epithelial cells increases neutrophil adhesion and activation. Vet Immunol Immunopathol 2009; 131:167-76. [PMID: 19406483 DOI: 10.1016/j.vetimm.2009.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/28/2009] [Accepted: 04/03/2009] [Indexed: 01/13/2023]
Abstract
Respiratory infection of cattle with bovine herpesvirus type 1 (BHV-1) predisposes cattle to secondary pneumonia with Mannheimia haemolytica as part of the bovine respiratory disease complex (BRD). One cell type that has received limited investigation for its role in the inflammation that accompanies BRD is the respiratory epithelial cell. In the present study we investigated mechanisms by which BHV-1 infection of respiratory epithelial cells contributes to the recruitment and activation of bovine polymorphonuclear neutrophils (PMNs) in vitro. Primary cultures of bovine bronchial epithelial (BBE) cells were infected with BHV-1 and assessed for cytokine expression by real-time PCR. We found that BHV-1 infection elicits a rapid IL-1, IL-8 and TNF-alpha mRNA response by BBE cells. Bovine PMNs exhibited greater adherence to BHV-1 infected BBE cells than uninfected cells. The increased adherence was significantly reduced by the addition of an anti-IL-1beta antibody or human soluble TNF-alpha receptor (sTNF-alphaR). Pre-incubation of bovine PMNs with conditioned media from BHV-1 infected BBE cells increased PMN migration, which was inhibited by addition of an anti-IL-1beta antibody, sTNF-alphaR, or an IL-8 peptide inhibitor. Conditioned media from BHV-1 infected BBE cells activated bovine PMNs in vitro as demonstrated by PMN shape change, production of reactive oxygen species and degranulation. PMNs also exhibited increased LFA-1 expression and susceptibility to M. haemolytica LKT following incubation with BHV-1 infected BBE cell conditioned media. Our results suggest that BHV-1 infection of BBE cells triggers cytokine expression that contributes to the recruitment and activation of neutrophils, and amplifies the detrimental effects of M. haemolytica LKT.
Collapse
|
19
|
Atapattu DN, Albrecht RM, McClenahan DJ, Czuprynski CJ. Dynamin-2-dependent targeting of mannheimia haemolytica leukotoxin to mitochondrial cyclophilin D in bovine lymphoblastoid cells. Infect Immun 2008; 76:5357-65. [PMID: 18765728 PMCID: PMC2573345 DOI: 10.1128/iai.00221-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 06/09/2008] [Accepted: 08/26/2008] [Indexed: 11/20/2022] Open
Abstract
Exotoxins which belong to the family containing the RTX toxins (repeats in toxin) contribute to a variety of important human and animal diseases. One example of such a toxin is the potent leukotoxin (LKT) produced by the bovine respiratory pathogen Mannheimia haemolytica. LKT binds to CD18, resulting in the death of bovine leukocytes. In this study, we showed that internalized LKT binds to the outer mitochondrial membrane, which results in the release of cytochrome c and collapse of the mitochondrial membrane potential (psi(m)). Incubation of bovine lymphoblastoid cells (BL-3 cells) with the mitochondrial membrane-stabilizing agent cyclosporine (CSA) reduced LKT-mediated cytotoxicity, cytochrome c release, and collapse of the psi(m). Coimmunoprecipitation and intracellular binding studies suggested that LKT binds to the mitochondrial matrix protein cyclophilin D. We also demonstrated that LKT mobilizes the vesicle scission protein dynamin-2 from mitochondria to the cell membrane. Incubation with CSA depleted mitochondrial dynamin-2 in BL-3 cells, making it unavailable for vesicle scission and LKT internalization. The results of this study show that LKT trafficking and LKT-mediated cell death involve dynamin-2 and cyclophilin D, in a process that can be prevented by the mitochondrial membrane-protecting function of CSA.
Collapse
Affiliation(s)
- Dhammika N Atapattu
- Department of Pathobiological Sciences, 2015 Linden Drive West, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Bovine respiratory tract disease is a multi-factorial disease complex involving several viruses and bacteria. Viruses that play prominent roles in causing the bovine respiratory disease complex include bovine herpesvirus-1, bovine respiratory syncytial virus, bovine viral diarrhea virus and parinfluenza-3 virus. Bacteria that play prominent roles in this disease complex are Mannheimia haemolytica and Mycoplasma bovis. Other bacteria that infect the bovine respiratory tract of cattle are Histophilus (Haemophilus) somni and Pasteurella multocida. Frequently, severe respiratory tract disease in cattle is associated with concurrent infections of these pathogens. Like other pathogens, the viral and bacterial pathogens of this disease complex have co-evolved with their hosts over millions of years. As much as the hosts have diversified and fine-tuned the components of their immune system, the pathogens have also evolved diverse and sophisticated strategies to evade the host immune responses. These pathogens have developed intricate mechanisms to thwart both the innate and adaptive arms of the immune responses of their hosts. This review presents an overview of the strategies by which the pathogens suppress host immune responses, as well as the strategies by which the pathogens modify themselves or their locations in the host to evade host immune responses. These immune evasion strategies likely contribute to the failure of currently-available vaccines to provide complete protection to cattle against these pathogens.
Collapse
|
21
|
Majumder N, Bhattacharjee S, Bhattacharyya Majumdar S, Dey R, Guha P, Pal NK, Majumdar S. Restoration of impaired free radical generation and proinflammatory cytokines by MCP-1 in mycobacterial pathogenesis. Scand J Immunol 2008; 67:329-39. [PMID: 18282229 DOI: 10.1111/j.1365-3083.2008.02070.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mycobacterium tuberculosis exerts its pathogenic effects mainly via its cell wall glycolipid called Mannosylated Lipoarabinomannan (Man-LAM), which subverts the cellular inflammatory responses by the suppression of superoxide anion generation in earlier hours, and nitric oxide (NO) generation at later hours of pathogenic invasion. In this paper, we have shown the prophylactic effect of C-C chemokines, both in vitro and in vivo. Exogenous administration of C-C chemokines, particularly monocyte chemoattractant protein (MCP)-1, led to the induction of superoxide anion generation via the restoration of impaired protein kinase C (PKC) signalling in Man-LAM-treated macrophages. Monocyte chemoattractant protein-1 could also potently induce NO generation by upregulation of the proinflammatory cytokines tumour necrosis factor-alpha and interleukin-12 from Man-LAM-treated macrophages accompanied by inhibition of anti-inflammatory responses. Our in vivo observations clearly exhibited effective restoration of impaired PKC signalling as well as proinflammatory cytokine expression by MCP-1 in Man-LAM treated as well as M. tuberculosis H37Rv-infected C57BL/6 mice. We also observed, as direct evidence, that MCP-1 induced a significant reduction of the number of viable tubercle bacilli in the lungs and spleen of infected mice. Collectively, our findings strongly suggest the effectiveness of MCP-1 as a potent immunoprophylactic tool for controlling the mycobacterial establishment within the host.
Collapse
Affiliation(s)
- N Majumder
- Department of Microbiology, Bose Institute, Kolkata, India.
| | | | | | | | | | | | | |
Collapse
|
22
|
Majumder N, Bhattacharjee S, Dey R, Bhattacharyya Majumdar S, Pal NK, Majumdar S. Arabinosylated lipoarabinomannan modulates the impaired cell mediated immune response in Mycobacterium tuberculosis H37Rv infected C57BL/6 mice. Microbes Infect 2007; 10:349-57. [PMID: 18417403 DOI: 10.1016/j.micinf.2007.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/10/2007] [Accepted: 12/19/2007] [Indexed: 11/24/2022]
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen that flourishes inside the host macrophages. This organism has the ability to deactivate the cell-mediated immune responses involving the down-regulation of pro-inflammatory cytokines, T cell proliferation, apoptosis of CD4+T cells and impairment of the expression of MHC Class II molecules. We observed that Arabinosylated Lipoarabinomannan (Ara-LAM), a glycolipid present in the cell wall of the avirulent Mycobacterium smegmatis, could effectively restrict the growth of tubercle bacilli, induced the transcription of Th1 cytokines in alveolar macrophages (AMs) and splenocytes, enhanced the frequency of CD4+T cells secreting IFN-gamma and induced the expression of MHC Class II molecules on the splenocyte membrane, compared to that of Mycobacterium tuberculosis H37Rv infected C57BL/6 mice. Collectively our findings strongly suggest that Ara-LAM had the potency to restore the impaired cell mediated immune responses in mice infected with Mycobacterium tuberculosis H37Rv, and hence could be utilized as an effective immuno-prophylactic tool in the control of tuberculosis.
Collapse
|
23
|
Buck M, Chojkier M. A ribosomal S-6 kinase-mediated signal to C/EBP-beta is critical for the development of liver fibrosis. PLoS One 2007; 2:e1372. [PMID: 18159255 PMCID: PMC2137951 DOI: 10.1371/journal.pone.0001372] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 12/03/2007] [Indexed: 11/19/2022] Open
Abstract
Background In response to liver injury, hepatic stellate cell (HSC) activation causes excessive liver fibrosis. Here we show that activation of RSK and phosphorylation of C/EBPβ on Thr217 in activated HSC is critical for the progression of liver fibrosis. Methodology/Principal Findings Chronic treatment with the hepatotoxin CCl4 induced severe liver fibrosis in C/EBPβ+/+ mice but not in mice expressing C/EBPβ-Ala217, a non-phosphorylatable RSK-inhibitory transgene. C/EBPβ-Ala217 was present within the death receptor complex II, with active caspase 8, and induced apoptosis of activated HSC. The C/EBPβ-Ala217 peptides directly stimulated caspase 8 activation in a cell-free system. C/EBPβ+/+ mice with CCl4-induced severe liver fibrosis, while continuing on CCl4, were treated with a cell permeant RSK-inhibitory peptide for 4 or 8 weeks. The peptide inhibited RSK activation, stimulating apoptosis of HSC, preventing progression and inducing regression of liver fibrosis. We found a similar activation of RSK and phosphorylation of human C/EBPβ on Thr266 (human phosphoacceptor) in activated HSC in patients with severe liver fibrosis but not in normal livers, suggesting that this pathway may also be relevant in human liver fibrosis. Conclusions/Significance These data indicate that the RSK-C/EBPβ phosphorylation pathway is critical for the development of liver fibrosis and suggest a potential therapeutic target.
Collapse
Affiliation(s)
- Martina Buck
- Department of Medicine and Moores Cancer Center, University of California at San Diego, La Jolla, California, United States of America.
| | | |
Collapse
|
24
|
Czuprynski CJ, Leite F, Sylte M, Kuckleburg C, Schultz R, Inzana T, Behling-Kelly E, Corbeil L. Complexities of the pathogenesis ofMannheimia haemolyticaandHaemophilus somnusinfections: challenges and potential opportunities for prevention? Anim Health Res Rev 2007; 5:277-82. [PMID: 15984339 DOI: 10.1079/ahr200483] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractProgress in producing improved vaccines against bacterial diseases of cattle is limited by an incomplete understanding of the pathogenesis of these agents. Our group has been involved in investigations of two members of the family Pasteurellaceae,Mannheimia haemolyticaandHaemophilus somnus, which illustrate some of the complexities that must be confronted. Susceptibility toM. haemolyticais greatly increased during active viral respiratory infection, resulting in rapid onset of a severe and even lethal pleuropneumonia. Despite years of investigation, understanding of the mechanisms underlying this viral–bacterial synergism is incomplete. We have investigated the hypothesis that active viral infection increases the susceptibility of bovine leukocytes to theM. haemolyticaleukotoxin by increasing the expression of or activating the β2integrin CD11a/CD18 (LFA-1) on the leukocyte surface.In vitroexposure to proinflammatory cytokines (i.e. interleukin-1β, tumor necrosis factor-α and interferon-γ) increases LFA-1 expression on bovine leukocytes, which in turn correlates with increased binding and responsiveness to the leukotoxin. Alveolar macrophages and peripheral blood leukocytes from cattle with active bovine herpesvirus-1 (BVH-1) infection are more susceptible to the lethal effects of the leukotoxinex vivothan leukocytes from uninfected cattle. Likewise,in vitroincubation of bovine leukocytes with bovine herpesvirus 1 (BHV-1) potentiates LFA-1 expression and makes the cells more responsive to leukotoxin. A striking characteristic ofH. somnusinfection is its propensity to cause vasculitis. We have shown thatH. somnusand its lipo-oligosaccharide (LOS) trigger caspase activation and apoptosis in bovine endothelial cellsin vitro. This effect is associated with the production of reactive oxygen and nitrogen intermediates, and is amplified in the presence of platelets. The adverse effects ofH. somnusLOS are mediated in part by activation of endothelial cell purinergic receptors such as P2X7. Further dissection of the pathways that lead to endothelial cell damage in response toH. somnusmight help in the development of new preventive or therapeutic regimens. A more thorough understanding ofM. haemolyticaandH. somnusvirulence factors and their interactions with the host might identify new targets for prevention of bovine respiratory disease.
Collapse
Affiliation(s)
- Charles J Czuprynski
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Rogers DP, Wyatt CR, Walz PH, Drouillard JS, Mosier DA. Bovine alveolar macrophage neurokinin-1 and response to substance P. Vet Immunol Immunopathol 2006; 112:290-5. [PMID: 16621028 DOI: 10.1016/j.vetimm.2006.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 03/02/2006] [Indexed: 11/21/2022]
Abstract
In this study bovine alveolar macrophage neurokinin-1 (NK-1) and the in vitro response to substance P (SP) exposure were investigated. Bovine alveolar macrophage membrane extracts separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotted using anti-NK-1 antiserum demonstrated the presence of an approximately 60kDa band. Phagocytosis of fluorescent bioparticles by SP-exposed macrophages was 39% greater than that of non-exposed macrophages (P=0.0089). Likewise, there was 28% greater TNF production by macrophages following SP exposure compared to non-exposed controls (P=0.116). These results suggest that bovine alveolar macrophages respond to SP at least in part by enhancing phagocytosis and TNF production.
Collapse
Affiliation(s)
- Donna P Rogers
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | | | | | | | | |
Collapse
|
26
|
Dey R, Sarkar A, Majumder N, Bhattacharyya Majumdar S, Roychoudhury K, Bhattacharyya S, Roy S, Majumdar S. Regulation of impaired protein kinase C signaling by chemokines in murine macrophages during visceral leishmaniasis. Infect Immun 2006; 73:8334-44. [PMID: 16299331 PMCID: PMC1307035 DOI: 10.1128/iai.73.12.8334-8344.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein kinase C (PKC) family regulates macrophage function involved in host defense against infection. In the case of Leishmania donovani infection, the impairment of PKC-mediated signaling is one of the crucial events for the establishment of parasite into the macrophages. Earlier reports established that C-C chemokines mediated protection against leishmaniasis via the generation of nitric oxide after 48 h. In this study, we investigated the role of MIP-1alpha and MCP-1 in the regulation of impaired PKC activity in the early hours (6 h) of infection. These chemokines restored Ca2+-dependent PKC activity and inhibited Ca2+-independent atypical PKC activity in L. donovani-infected macrophages under both in vivo and in vitro conditions. Pretreatment of macrophages with chemokines induced superoxide anion generation by activating NADPH oxidase components in infected cells. Chemokine administration in vitro induced the migration of infected macrophages and triggered the production of reactive oxygen species. In vivo treatment with chemokines significantly restricted the parasitic burden in livers as well as in spleens. Collectively, these results indicate a novel regulatory role of C-C chemokines in controlling the intracellular growth and multiplication of L. donovani, thereby demonstrating the antileishmanial properties of C-C chemokines in the disease process.
Collapse
Affiliation(s)
- Ranadhir Dey
- Department of Microbiology, Bose Institute, P1/12, C.I.T. Scheme VII-M, Kolkata-700 054, India
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Atapattu DN, Czuprynski CJ. Mannheimia haemolytica leukotoxin induces apoptosis of bovine lymphoblastoid cells (BL-3) via a caspase-9-dependent mitochondrial pathway. Infect Immun 2005; 73:5504-13. [PMID: 16113266 PMCID: PMC1231077 DOI: 10.1128/iai.73.9.5504-5513.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/08/2005] [Accepted: 05/03/2005] [Indexed: 12/21/2022] Open
Abstract
Mannheimia haemolytica is a key pathogen in the bovine respiratory disease complex. It produces a leukotoxin (LKT) that is an important virulence factor, causing cell death in bovine leukocytes. The LKT binds to the beta(2) integrin CD11a/CD18, which usually activates signaling pathways that facilitate cell survival. In this study, we investigated mechanisms by which LKT induces death in bovine lymphoblastoid cells (BL-3). Incubation of BL-3 cells with a low concentration of LKT results in the activation of caspase-3 and caspase-9 but not caspase-8. Similarly, the proapoptotic proteins Bax and BAD were significantly elevated, while the antiapoptotic proteins Bcl-2, Bcl(XL) and Akt-1 were downregulated. Following exposure to LKT, we also observed a reduction in mitochondrial cytochrome c and corresponding elevation of cytosolic cytochrome c, suggesting translocation from the mitochondrial compartment to the cytosol. Consistent with this observation, tetramethylrhodamine ethyl ester perchlorate staining revealed that mitochondrial membrane potential was significantly reduced. These data suggest that LKT induces apoptosis of BL-3 cells via a caspase-9-dependent mitochondrial pathway. Furthermore, scanning electron micrographs of mitochondria from LKT-treated BL-3 cells revealed lesions in the outer mitochondrial membrane, which are larger than previous reports of the permeability transition pore through which cytochrome c is usually released.
Collapse
Affiliation(s)
- Dhammika N Atapattu
- Department of Pathobiological Sciences, University of Wisconsin, School of Veterinary Medicine, 2015 Linden Dr. West, Madison, WI 53706, USA
| | | |
Collapse
|
28
|
Thumbikat P, Dileepan T, Kannan MS, Maheswaran SK. Mechanisms underlying Mannheimia haemolytica leukotoxin-induced oncosis and apoptosis of bovine alveolar macrophages. Microb Pathog 2005; 38:161-72. [PMID: 15797811 DOI: 10.1016/j.micpath.2005.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 01/03/2005] [Accepted: 01/03/2005] [Indexed: 01/24/2023]
Abstract
Mannheimia (Pasteurella) haemolytica leukotoxin (LktA) binds to the bovine beta2 integrins (such as LFA-1-CD11a/CD18) and leads to subsequent cellular effects in a dose dependent manner. The objectives of this study were to delineate the mechanisms that underlie LktA-induced oncosis and apoptosis and to examine the role of LktA/LFA-1 interaction in these events. The results demonstrate that LktA-induced oncosis proceeds through a LFA-1 and caspase-1 dependent pathway referred to as 'pyrotosis', as well as through a LFA-1- and caspase-1-independent pathway. LktA-induced apoptosis in alveolar macrophages involves activation of caspase-3 and engages the extrinsic and intrinsic pathways of apoptosis, with the extrinsic pathway being dependent on LFA-1 signaling and TNFalpha.
Collapse
Affiliation(s)
- Praveen Thumbikat
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St.Paul, MN 55108, USA
| | | | | | | |
Collapse
|
29
|
Leite F, Atapattu D, Kuckleburg C, Schultz R, Czuprynski CJ. Incubation of bovine PMNs with conditioned medium from BHV-1 infected peripheral blood mononuclear cells increases their susceptibility to Mannheimia haemolytica leukotoxin. Vet Immunol Immunopathol 2005; 103:187-93. [PMID: 15621305 DOI: 10.1016/j.vetimm.2004.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 07/21/2004] [Accepted: 08/30/2004] [Indexed: 11/19/2022]
Abstract
Active infection with bovine herpesvirus-1 (BHV-1) increases the susceptibility of cattle to secondary bacterial pneumonia with Mannheimia (Pasteurella) haemolytica A1. In the present study we found that bovine PMNs incubated with conditioned media from BHV-1 infected peripheral blood mononuclear cells (PBMCs) exhibited increased LFA-1 expression, enhanced LKT binding and increased LKT cytotoxicity. These effects were abrogated when the conditioned medium was pre-incubated with an anti-IL-1beta Mab before being added to the PMNs. These findings suggest that BHV-1 infection, and the resulting release of IL-1beta and perhaps other inflammatory cytokines, can stimulate activation of LFA-1 in bystander bovine PMNs, thus enhancing the binding and biological effects of LKT.
Collapse
Affiliation(s)
- F Leite
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
30
|
Diez-Fraile A, Meyer E, Duchateau L, Burvenich C. Effect of proinflammatory mediators and glucocorticoids on L-selectin expression in peripheral blood neutrophils from dairy cows in various stages of lactation. Am J Vet Res 2004; 65:1421-6. [PMID: 15524330 DOI: 10.2460/ajvr.2004.65.1421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether proinflammatory mediators and glucocorticoids affect CD62L(L-selectin) expression on peripheral blood neutrophils from cows in various stages of lactation. ANIMALS 100 healthy dairy cows during early (13.1 +/- 0.79 days after parturition; n = 31), peak (58.7 +/- 1.64 days after parturition; 31), and mid (137.2 +/- 2.59 days after parturition; 38) lactation. PROCEDURE In vitro effects of relevant proinflammatory mediators that are released in response to mastitis caused by gram-negative bacteria such as lipopolysaccharide (endotoxin), tumor necrosis factor-alpha, and platelet-activating factor (PAF) on CD62L expression on bovine neutrophils were assessed by flow cytometry. Influences of cortisol and dexamethasone on CD62L expression on bovine neutrophils were also investigated. RESULTS Basal CD62L expression on neutrophils from cows during early, peak, and mid lactation were similar. Lipopolysaccharide and tumor necrosis factor-alpha had no effect on CD62L expression on neutrophils from cows at any stage of lactation. Conversely, PAF elicited a time- and dose-dependent, down regulatory effect on CD62L expression. However, no differential shedding of CD62L from neutrophils of cows at any stage of lactation were detected. In addition, no effects on CD62L expression on bovine neutrophils after whole blood incubation with cortisol or dexamethasone were observed. Incubation with glucocorticoids did not prevent the down regulatory effect of PAF on CD62L expression. CONCLUSIONS AND CLINICAL RELEVANCE Comparable basal CD62L expression on bovine neutrophils and equal amounts of CD62L shedding from bovine neutrophils during all stages of lactation suggest that variations in CD62L density are not a likely cause of susceptibility of cows to coliform-induced mastitis during early lactation.
Collapse
Affiliation(s)
- Araceli Diez-Fraile
- Department of Physiology, Biochemistry and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | | | | | | |
Collapse
|
31
|
Leite F, Kuckleburg C, Atapattu D, Schultz R, Czuprynski CJ. BHV-1 infection and inflammatory cytokines amplify the interaction of Mannheimia haemolytica leukotoxin with bovine peripheral blood mononuclear cells in vitro. Vet Immunol Immunopathol 2004; 99:193-202. [PMID: 15135985 DOI: 10.1016/j.vetimm.2004.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 12/22/2003] [Accepted: 02/09/2004] [Indexed: 10/26/2022]
Abstract
Bovine herpesvirus-1 (BHV-1) has been reported to increase the susceptibility of cattle to respiratory disease caused by Mannheimia (Pasteurella) haemolytica A1. The principal virulence factor of M. haemolytica is a leukotoxin (LKT) that can specifically kill ruminant leukocytes following its binding to the beta2-integrin CD11a/CD18 (lymphocyte function-associated antigen 1 (LFA-1)). In this study, we investigated the effects of experimental infection of bovine peripheral blood mononuclear cells (MNCs) with BHV-1 in vitro, on the subsequent interaction of these cells with the M. haemolytica LKT. We found that BHV-1 infection increased LFA-1 expression (as assessed by flow cytometry), and subsequently enhanced LKT binding and cytotoxicity to bovine MNCs. We also found that BHV-1 infection increased CD18, IL-1beta, and IFN-gamma mRNA expression by MNCs. As previously reported for bovine polymorphonuclear neutrophils (PMNs), MNCs increased their expression of LFA-1, and their LKT binding and cytotoxicity, following exposure to IL-1beta, TNF-alpha, and IFN-gamma. These findings suggest that BHV-1 infection, and the resulting release of inflammatory cytokines, can stimulate expression of LFA-1 in bovine MNCs, thus enhancing the binding and biological effects of LKT. If such a mechanism occurs in vivo it might explain, in part, the increased susceptibility of BHV-1 infected cattle to bovine pasteurellosis.
Collapse
Affiliation(s)
- F Leite
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
32
|
Ellis TN, Beaman BL. Interferon-gamma activation of polymorphonuclear neutrophil function. Immunology 2004; 112:2-12. [PMID: 15096178 PMCID: PMC1782470 DOI: 10.1111/j.1365-2567.2004.01849.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 02/16/2004] [Indexed: 11/29/2022] Open
Abstract
As current research illuminates the dynamic interplay between the innate and acquired immune responses, the interaction and communication between these two arms has yet to be fully investigated. Polymorphonuclear neutrophils (PMNs) and interferon-gamma (IFN-gamma) are known critical components of innate and acquired immunity, respectively. However, recent studies have demonstrated that these two components are not entirely isolated. Treatment of PMNs with IFN-gamma elicits a variety of responses depending on stimuli and environmental conditions. These responses include increased oxidative burst, differential gene expression, and induction of antigen presentation. Many of these functions have been overlooked in PMNs, which have long been classified as terminal phagocytic cells incapable of protein synthesis. As this review reports, the old definition of the PMN is in need of an update, as these cells have demonstrated their ability to mediate the transition between the innate and acquired immune responses.
Collapse
Affiliation(s)
- Terri N Ellis
- Department of Medical Microbiology and Immunology, University of California School of Medicine, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
33
|
Ohara M, Hayashi T, Kusunoki Y, Miyauchi M, Takata T, Sugai M. Caspase-2 and caspase-7 are involved in cytolethal distending toxin-induced apoptosis in Jurkat and MOLT-4 T-cell lines. Infect Immun 2004; 72:871-9. [PMID: 14742531 PMCID: PMC321583 DOI: 10.1128/iai.72.2.871-879.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cytolethal distending toxin (CDT) from Actinobacillus actinomycetemcomitans is a G2/M cell-cycle-specific growth-inhibitory toxin that leads to target cell distension followed by cell death. To determine the mechanisms by which A. actinomycetemcomitans CDT acts as an immunosuppressive factor, we examined the effects of highly purified CDT holotoxin on human T lymphocytes. Purified CDT was cytolethal toward normal peripheral T lymphocytes that were activated by in vitro stimulation with phytohemagglutinin. In addition, purified CDT showed cytolethal activity against Jurkat and MOLT-4 cells, which are known to be sensitive and resistant, respectively, to Fas-mediated apoptosis. Death in these cell lines was accompanied by the biochemical features of apoptosis, including membrane conformational changes, intranucleosomal DNA cleavage, and an increase in caspase activity in the cells. Pretreatment of Jurkat cells with the general caspase inhibitor z-VAD-fmk mostly suppressed CDT-induced apoptosis. Furthermore, specific inhibitors of caspase-2 and -7 showed significant inhibitory effects on CDT-induced apoptosis in Jurkat cells, and these inhibitory effects were fully associated with reduced activity of caspase-2 or -7 in the CDT-treated Jurkat cells. These results strongly suggest that CDT possesses the ability to induce human T-cell apoptosis through activation of caspase-2 and -7.
Collapse
Affiliation(s)
- Masaru Ohara
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima 734-8553, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Yamaguchi N, Kubo C, Masuhiro Y, Lally ET, Koga T, Hanazawa S. Tumor necrosis factor alpha enhances Actinobacillus actinomycetemcomitans leukotoxin-induced HL-60 cell apoptosis by stimulating lymphocyte function-associated antigen 1 expression. Infect Immun 2004; 72:269-76. [PMID: 14688105 PMCID: PMC343981 DOI: 10.1128/iai.72.1.269-276.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrated previously that Actinobacillus actinomycetemcomitans leukotoxin (Ltx) is greatly able to induce apoptotic signaling in cells that are positive for lymphocyte function-associated antigen 1 (LFA-1), a cell receptor of Ltx. We investigated in this study whether inflammatory cytokines can regulate apoptosis of human leukemic HL-60 cells induced by Ltx. Of the cytokines tested, tumor necrosis factor alpha (TNF-alpha) significantly enhanced the Ltx-induced cell apoptosis. Northern and Western blotting analyses showed that TNF-alpha enhanced the expression of CD11a in the cells at both the mRNA and protein levels but did not do so for CD18 expression. TNF-alpha also enhanced the binding of Ltx to the cells. We also observed by measuring the mitochondrial transmembrane potential and the generation of superoxide anion that the cytokine enhanced Ltx-induced apoptosis in HL-60 cells. In addition, interleukin-1beta significantly enhanced Ltx-induced cell apoptosis, although the enhancing activity was lower than that of TNF-alpha. These stimulatory effects of both cytokines were also observed for human polymorphonuclear leukocytes. The ability of TNF-alpha to increase cell susceptibility to Ltx could be inhibited by preincubation of the cells with a monoclonal antibody against TNF receptor 1 but not by preincubation of the cells with a monoclonal antibody against anti-TNF receptor 2. Furthermore, the results of an assay of caspase 3 intracellular activity (PhiPhiLuxG1D2) showed that Ltx-induced caspase 3 activation was completely neutralized by CD18 antibody treatment, although significant neutralization was also observed with anti-CD11a antibody. Taken together, the results of the present study indicate that TNF-alpha acts as a potent stimulator of Ltx-induced HL-60 cell apoptosis via TNF receptor 1-mediated upregulation of LFA-1 expression.
Collapse
Affiliation(s)
- Noboru Yamaguchi
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Leite F, Gyles S, Atapattu D, Maheswaran SK, Czuprynski CJ. Prior exposure to Mannheimia haemolytica leukotoxin or LPS enhances beta(2)-integrin expression by bovine neutrophils and augments LKT cytotoxicity. Microb Pathog 2003; 34:267-75. [PMID: 12782479 DOI: 10.1016/s0882-4010(03)00060-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mannheimia (Pasteurella) haemolytica serotype1 produces a variety of virulence factors that play an important role during the pathogenesis of bovine pneumonic pasteurellosis. Among these, a leukotoxin (LKT) and lipopolysaccharide (LPS) are thought to be the primary virulence factors that contribute to the characteristic pathology of pasteurellosis. Recent evidence suggests that M. haemolytica LKT binding to bovine leukocytes is mediated by the beta(2)-integrin CD11a/CD18 (LFA-1), which subsequently induces activation and death of these cells. Exposure of bovine peripheral blood neutrophils (PMNs) to LKT or LPS induces expression of inflammatory cytokines, which in turn can increase LFA-1 expression and conformational activation. In this study we demonstrated, by flow cytometry and Western blot, that bovine PMNs increased their LFA-1 expression following in vitro exposure to M. haemolytica LKT and LPS. Increased LFA-1 expression by PMNs exposed to LKT and LPS was associated with increased LKT binding and cell death. The results of this study suggest that M. haemolytica LKT and LPS might cooperatively increase LFA-1 expression, and by so doing amplify the lung inflammation that characterizes bovine pasteurellosis.
Collapse
Affiliation(s)
- F Leite
- Department of Pathological Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive West, Madison, WI 53705, USA
| | | | | | | | | |
Collapse
|