1
|
Vu HM, Moran TE, Liang Z, Bao YJ, Carles PG, Keane JC, Cerney MG, Dahnke CN, Flores-Mireles AL, Ploplis VA, Castellino FJ, Lee SW. Group a Streptococcus remains viable inside fibrin clots and gains access to human plasminogen for subsequent fibrinolysis and dissemination. Microbiol Spectr 2025; 13:e0260724. [PMID: 39804237 PMCID: PMC11792473 DOI: 10.1128/spectrum.02607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/14/2024] [Indexed: 02/05/2025] Open
Abstract
Group A Streptococcus (GAS) is a major human pathogen that causes several invasive diseases including necrotizing fasciitis. The host coagulation cascade initiates fibrin clots to sequester bacteria to prevent dissemination into deeper tissues. GAS, especially skin-tropic bacterial strains, utilize specific virulence factors, plasminogen binding M-protein (PAM) and streptokinase (SK), to manipulate hemostasis and activate plasminogen to cause fibrinolysis and fibrin clot escape. A major unresolved question regards the temporal dynamics of how GAS enmeshed in a fibrin clot can access plasminogen for clot dissolution and eventual dissemination. Here, we reveal through live imaging studies that GAS trapped inside a fibrin clot can remain viable in a latent state, until access to plasminogen activates fibrinolysis and dissemination. RNA-sequencing (RNA-seq) analysis shows marked changes in the wild-type (WT)-GAS transcriptome from the time bacteria were enmeshed inside the clot (4 h) to when dissemination was initiated (8 h). To gain a more fully realized model of how GAS trapped in fibrin clots can disseminate in the blood system, we utilized a novel 3D endothelial microfluidic device to demonstrate that GAS is fully capable of fibrinolysis in an endothelial environment, revealing a major underappreciated route by which GAS may cause more invasive outcomes. Our findings reveal for the first time that GAS can engage a latent, growth-suspended phase whereby physical structures such as fibrin clots that immobilize an invading pathogen allow bacteria to remain viable until sufficient access to plasminogen allows it to initiate fibrinolysis and escape into surrounding blood system and tissues. IMPORTANCE Group A Streptococcus (GAS) is a human-specific bacterial pathogen that causes infections ranging in severity from mild to severe infections that can often be fatal. To protect the host, the innate immune system creates fibrin clots to trap bacteria and prevent deeper spread. GAS produces several factors that can initiate the dissolution of these fibrin clots to spread to deeper tissues, but we lack specific understanding of the timing of these events. Our studies demonstrate for the first time that GAS can delay their escape from fibrin clots to gain access to deeper tissues during infection, suggesting a key strategy that GAS utilize to cause more invasive disease.
Collapse
Affiliation(s)
- Henry M. Vu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Thomas E. Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Berthiamue Institute for Precision Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yun-Juan Bao
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paulina G. Carles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jessica C. Keane
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Madelyn G. Cerney
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Caitlyn N. Dahnke
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Berthiamue Institute for Precision Health, University of Notre Dame, Notre Dame, Indiana, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
2
|
Banerjee B, Thompson C, Nizet V, Bjånes E. Bactericidal efficacy of low dose gaseous ozone against clinically relevant multidrug-resistant bacteria. Front Microbiol 2024; 15:1480433. [PMID: 39723132 PMCID: PMC11668732 DOI: 10.3389/fmicb.2024.1480433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Healthcare-associated infections (HAIs) pose a significant challenge in acute care hospitals, particularly in intensive care units, due to persistent environmental contamination despite existing disinfection protocols and manual cleaning methods. Current disinfection methods are labor-intensive and often ineffective against multidrug-resistant (MDR) pathogens, highlighting the need for new, automated, hands-free approaches. Methods This study evaluates the bactericidal efficacy of low concentrations of gaseous ozone (5 ppm) against clinically relevant and often MDR bacteria under various concentrations, contact times, temperatures, and environmental conditions. Results We observed a 3 log10-fold reduction in Escherichia coli and Salmonella Typhimurium and a 1-2 log10-fold reduction in group A Streptococcus and methicillin-resistant Staphylococcus aureus upon ozone exposure. The bactericidal effect was dose-dependent, with no significant difference between single and repeated exposures. Environmental conditions such as temperature and humidity had minimal impact on low-dose ozone efficacy, with slightly improved bacterial killing at colder temperatures and higher humidity levels. Gaseous ozone also showed significant bactericidal activity against the broad range of Gram-positive and -negative MDR clinical isolates. Discussion These findings highlight the potential of low-dose gaseous ozone as a versatile, effective, and hands-free disinfectant for healthcare and other settings. Further research is needed to establish long-term safety and efficacy guidelines for its use in occupied spaces and to explore potential synergy with other contemporary disinfection strategies.
Collapse
Affiliation(s)
| | - Christine Thompson
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States
| | - Elisabet Bjånes
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
3
|
Ayinuola O, Ayinuola YA, Qiu C, Lee SW, Ploplis VA, Castellino FJ. Binding of the kringle-2 domain of human plasminogen to streptococcal PAM-type M-protein causes dissociation of PAM dimers. Microbiologyopen 2021; 10:e1252. [PMID: 34964287 PMCID: PMC8633249 DOI: 10.1002/mbo3.1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
The direct binding of human plasminogen (hPg), via its kringle-2 domain (K2hPg ), to streptococcal M-protein (PAM), largely contributes to the pathogenesis of Pattern D Group A Streptococcus pyogenes (GAS). However, the mechanism of complex formation is unknown. In a system consisting of a Class II PAM from Pattern D GAS isolate NS88.2 (PAMNS88.2 ), with one K2hPg binding a-repeat in its A-domain, we employed biophysical techniques to analyze the mechanism of the K2hPg /PAMNS88.2 interaction. We show that apo-PAMNS88.2 is a coiled-coil homodimer (M.Wt. ~80 kDa) at 4°C-25°C, and is monomeric (M.Wt. ~40 kDa) at 37°C, demonstrating a temperature-dependent dissociation of PAMNS88.2 over a narrow temperature range. PAMNS88.2 displayed a single tight binding site for K2hPg at 4°C, which progressively increased at 25°C through 37°C. We isolated the K2hPg /PAMNS88.2 complexes at 4°C, 25°C, and 37°C and found molecular weights of ~50 kDa at each temperature, corresponding to a 1:1 (m:m) K2hPg /PAMNS88.2 monomer complex. hPg activation experiments by streptokinase demonstrated that the hPg/PAMNS88.2 monomer complexes are fully functional. The data show that PAM dimers dissociate into functional monomers at physiological temperatures or when presented with the active hPg module (K2hPg ) showing that PAM is a functional monomer at 37°C.
Collapse
Affiliation(s)
- Olawole Ayinuola
- W. M. Keck Center for Transgene ResearchUniversity of Notre DameNotre DameIndianaUSA
| | - Yetunde A. Ayinuola
- W. M. Keck Center for Transgene ResearchUniversity of Notre DameNotre DameIndianaUSA
| | - Cunjia Qiu
- W. M. Keck Center for Transgene ResearchUniversity of Notre DameNotre DameIndianaUSA
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Shaun W. Lee
- W. M. Keck Center for Transgene ResearchUniversity of Notre DameNotre DameIndianaUSA
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene ResearchUniversity of Notre DameNotre DameIndianaUSA
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Francis J. Castellino
- W. M. Keck Center for Transgene ResearchUniversity of Notre DameNotre DameIndianaUSA
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
4
|
Vu HM, Hammers DE, Liang Z, Nguyen GL, Benz ME, Moran TE, Higashi DL, Park CJ, Ayinuola YA, Donahue DL, Flores-Mireles AL, Ploplis VA, Castellino FJ, Lee SW. Group A Streptococcus-Induced Activation of Human Plasminogen Is Required for Keratinocyte Wound Retraction and Rapid Clot Dissolution. Front Cardiovasc Med 2021; 8:667554. [PMID: 34179133 PMCID: PMC8230121 DOI: 10.3389/fcvm.2021.667554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023] Open
Abstract
Invasive outcomes of Group A Streptococcus (GAS) infections that involve damage to skin and other tissues are initiated when these bacteria colonize and disseminate via an open wound to gain access to blood and deeper tissues. Two critical GAS virulence factors, Plasminogen-Associated M-Protein (PAM) and streptokinase (SK), work in concert to bind and activate host human plasminogen (hPg) in order to create a localized proteolytic environment that alters wound-site architecture. Using a wound scratch assay with immortalized epithelial cells, real-time live imaging (RTLI) was used to examine dynamic effects of hPg activation by a PAM-containing skin-trophic GAS isolate (AP53R+S-) during the course of infection. RTLI of these wound models revealed that retraction of the epithelial wound required both GAS and hPg. Isogenic AP53R+S- mutants lacking SK or PAM highly attenuated the time course of retraction of the keratinocyte wound. We also found that relocalization of integrin β1 from the membrane to the cytoplasm occurred during the wound retraction event. We devised a combined in situ-based cellular model of fibrin clot-in epithelial wound to visualize the progress of GAS pathogenesis by RTLI. Our findings showed GAS AP53R+S- hierarchically dissolved the fibrin clot prior to the retraction of keratinocyte monolayers at the leading edge of the wound. Overall, our studies reveal that localized activation of hPg by AP53R+S- via SK and PAM during infection plays a critical role in dissemination of bacteria at the wound site through both rapid dissolution of the fibrin clot and retraction of the keratinocyte wound layer.
Collapse
Affiliation(s)
- Henry M. Vu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Daniel E. Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Gabrielle L. Nguyen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Mary E. Benz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Thomas E. Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Dustin L. Higashi
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, United States
| | - Claudia J. Park
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Yetunde A. Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Deborah L. Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
5
|
Vyas HKN, McArthur JD, Sanderson-Smith ML. An optimised GAS-pharyngeal cell biofilm model. Sci Rep 2021; 11:8200. [PMID: 33859234 PMCID: PMC8050266 DOI: 10.1038/s41598-021-87377-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/19/2021] [Indexed: 12/01/2022] Open
Abstract
Group A Streptococcus (GAS) causes 700 million infections and accounts for half a million deaths per year. Biofilm formation has been implicated in both pharyngeal and dermal GAS infections. In vitro, plate-based assays have shown that several GAS M-types form biofilms, and multiple GAS virulence factors have been linked to biofilm formation. Although the contributions of these plate-based studies have been valuable, most have failed to mimic the host environment, with many studies utilising abiotic surfaces. GAS is a human specific pathogen, and colonisation and subsequent biofilm formation is likely facilitated by distinct interactions with host tissue surfaces. As such, a host cell-GAS model has been optimised to support and grow GAS biofilms of a variety of GAS M-types. Improvements and adjustments to the crystal violet biofilm biomass assay have also been tailored to reproducibly detect delicate GAS biofilms. We propose 72 h as an optimal growth period for yielding detectable biofilm biomass. GAS biofilms formed are robust and durable, and can be reproducibly assessed via staining/washing intensive assays such as crystal violet with the aid of methanol fixation prior to staining. Lastly, SEM imaging of GAS biofilms formed by this model revealed GAS cocci chains arranged into three-dimensional aggregated structures with EPS matrix material. Taken together, we outline an efficacious GAS biofilm pharyngeal cell model that can support long-term GAS biofilm formation, with biofilms formed closely resembling those seen in vivo.
Collapse
Affiliation(s)
- Heema K N Vyas
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Jason D McArthur
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Martina L Sanderson-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia. .,School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
6
|
Assessing the Role of Pharyngeal Cell Surface Glycans in Group A Streptococcus Biofilm Formation. Antibiotics (Basel) 2020; 9:antibiotics9110775. [PMID: 33158121 PMCID: PMC7694240 DOI: 10.3390/antibiotics9110775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 01/06/2023] Open
Abstract
Group A Streptococcus (GAS) causes 700 million infections and accounts for half a million deaths per year. Antibiotic treatment failure rates of 20–40% have been observed. The role host cell glycans play in GAS biofilm formation in the context of GAS pharyngitis and subsequent antibiotic treatment failure has not been previously investigated. GAS serotype M12 GAS biofilms were assessed for biofilm formation on Detroit 562 pharyngeal cell monolayers following enzymatic removal of all N-linked glycans from pharyngeal cells with PNGase F. Removal of N-linked glycans resulted in an increase in biofilm biomass compared to untreated controls. Further investigation into the removal of terminal mannose and sialic acid residues with α1-6 mannosidase and the broad specificity sialidase (Sialidase A) also found that biofilm biomass increased significantly when compared to untreated controls. Increases in biofilm biomass were associated with increased production of extracellular polymeric substances (EPS). Furthermore, it was found that M12 GAS biofilms grown on untreated pharyngeal monolayers exhibited a 2500-fold increase in penicillin tolerance compared to planktonic GAS. Pre-treatment of monolayers with exoglycosidases resulted in a further doubling of penicillin tolerance in resultant biofilms. Lastly, an additional eight GAS emm-types were assessed for biofilm formation in response to terminal mannose and sialic acid residue removal. As seen for M12, biofilm biomass on monolayers increased following removal of terminal mannose and sialic acid residues. Collectively, these data demonstrate that pharyngeal cell surface glycan structures directly impact GAS biofilm formation in a strain and glycan specific fashion.
Collapse
|
7
|
Russo BT, Ayinuola YA, Singh D, Carothers K, Fischetti VA, Flores-Mireles AL, Lee SW, Ploplis VA, Liang Z, Castellino FJ. The M Protein of Streptococcus pyogenes Strain AP53 Retains Cell Surface Functional Plasminogen Binding after Inactivation of the Sortase A Gene. J Bacteriol 2020; 202:e00096-20. [PMID: 32123038 PMCID: PMC7186463 DOI: 10.1128/jb.00096-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pyogenes (Lancefield group A Streptococcus [GAS]) is a β-hemolytic human-selective pathogen that is responsible for a large number of morbid and mortal infections in humans. For efficient infection, GAS requires different types of surface proteins that provide various mechanisms for evading human innate immune responses, thus enhancing pathogenicity of the bacteria. Many such virulence-promoting proteins, including the major surface signature M protein, are translocated after biosynthesis through the cytoplasmic membrane and temporarily tethered to this membrane via a type 1 transmembrane domain (TMD) positioned near the COOH terminus. In these proteins, a sorting signal, LPXTG, is positioned immediately upstream of the TMD, which is cleaved by the membrane-associated transpeptidase, sortase A (SrtA), leading to the covalent anchoring of these proteins to newly emerging l-Ala-l-Ala cross-bridges of the growing peptidoglycan cell wall. Herein, we show that inactivation of the srtA gene in a skin-tropic pattern D GAS strain (AP53) results in retention of the M protein in the cell membrane. However, while the isogenic AP53 ΔsrtA strain is attenuated in overall pathogenic properties due to effects on the integrity of the cell membrane, our data show that the M protein nonetheless can extend from the cytoplasmic membrane through the cell wall and then to the surface of the bacteria and thereby retain its important properties of productively binding and activating fluid-phase host plasminogen (hPg). The studies presented herein demonstrate an underappreciated additional mechanism of cell surface display of bacterial virulence proteins via their retention in the cell membrane and extension to the GAS surface.IMPORTANCE Group A Streptococcus pyogenes (GAS) is a human-specific pathogen that produces many surface factors, including its signature M protein, that contribute to its pathogenicity. M proteins undergo specific membrane localization and anchoring to the cell wall via the transpeptidase sortase A. Herein, we explored the role of sortase A function on M protein localization, architecture, and function, employing, a skin-tropic GAS isolate, AP53, which expresses a human plasminogen (hPg)-binding M (PAM) Protein. We showed that PAM anchored in the cell membrane, due to the targeted inactivation of sortase A, was nonetheless exposed on the cell surface and functionally interacted with host hPg. We demonstrate that M proteins, and possibly other sortase A-processed proteins that are retained in the cell membrane, can still function to initiate pathogenic processes by this underappreciated mechanism.
Collapse
Affiliation(s)
- Brady T Russo
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yetunde A Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Damini Singh
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Ana L Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
8
|
Qiu C, Yuan Y, Liang Z, Lee SW, Ploplis VA, Castellino FJ. Variations in the secondary structures of PAM proteins influence their binding affinities to human plasminogen. J Struct Biol 2019; 206:193-203. [PMID: 30880082 DOI: 10.1016/j.jsb.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 11/25/2022]
Abstract
M-proteins (M-Prts) are major virulence determinants of Group A Streptococcus pyogenes (GAS) that are covalently anchored to the cell wall at their conserved COOH-termini while the NH2-terminal regions extend through the capsule into extracellular space. Functional M-Prts are also secreted and/or released from GAS cells where they exist as helical coiled-coil dimers in solution. Certain GAS strains (Pattern D) uniquely express an M-protein (plasminogen-binding group A streptococcal M-protein; PAM) that directly interacts with human plasminogen (hPg), a process strongly implicated in the virulence of these strains. M-Prt expressed by the emm gene is employed to serotype over 250 known strains of GAS, ∼20 of which are hitherto found to express PAMs. We have developed a modular structural model of the PAM dimer that describes the roles of different domains of this protein in various functions. While the helical COOH-terminal domains of PAM are essential for dimerization in solution, regions of its NH2-terminal domains also exhibit a weak potential to dimerize. We find that temperature controls the open (unwound) or closed (wound) states of the functional NH2-terminal domains of PAM. As temperature increases, α-helices are dramatically reduced, which concomitantly destabilizes the helical coiled-coil PAM dimers. PAMs with two a-repeats within the variable NH2-terminal A-domain (class I/III) bind to hPg tightly, but natural PAM isolates with a single a-repeat in this domain (class II) display dramatic changes in hPg binding with temperature. We conclude that coexistence of two a-repeats in PAM is critical to achieve optimal binding to hPg, especially in its monomeric form, at the biologically relevant temperature.
Collapse
Affiliation(s)
- Cunjia Qiu
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Yue Yuan
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Zhong Liang
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
9
|
Hammerschmidt S, Rohde M, Preissner KT. Extracellular Matrix Interactions with Gram-Positive Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0041-2018. [PMID: 31004421 PMCID: PMC11590433 DOI: 10.1128/microbiolspec.gpp3-0041-2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 01/10/2023] Open
Abstract
The main strategies used by pathogenic bacteria to infect eukaryotic tissue include their adherence to cells and the extracellular matrix (ECM), the subsequent colonization and invasion as well as the evasion of immune defences. A variety of structurally and functionally characterized adhesins and binding proteins of gram-positive bacteria facilitate these processes by specifically recognizing and interacting with various components of the host ECM, including different collagens, fibronectin and other macromolecules. The ECM affects the cellular physiology of our body and is critical for adhesion, migration, proliferation, and differentiation of many host cell types, but also provides the support for infiltrating pathogens, particularly under conditions of injury and trauma. Moreover, microbial binding to a variety of adhesive components in host tissue fluids leads to structural and/or functional alterations of host proteins and to the activation of cellular mechanisms that influence tissue and cell invasion of pathogens. Since the diverse interactions of gram-positive bacteria with the ECM represent important pathogenicity mechanisms, their characterization not only allows a better understanding of microbial invasion but also provides clues for the design of novel therapeutic strategies to manage infectious diseases.
Collapse
Affiliation(s)
- Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz-Center for Infection Research, D-38124 Braunschweig, Germany
| | - Klaus T Preissner
- Institute for Biochemistry, Medical School, Justus-Liebig-University, D-35392 Giessen, Germany
| |
Collapse
|
10
|
Ogura N, Tomari K, Takayama T, Tonegawa N, Okawa T, Matsuoka T, Nakayashiro M, Matsumora T. Group A streptococcus endocarditis in children: 2 cases and a review of the literature. BMC Infect Dis 2019; 19:102. [PMID: 30704409 PMCID: PMC6357504 DOI: 10.1186/s12879-019-3736-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 01/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infective endocarditis (IE) is defined as endocarditis caused by microorganisms (bacteria or fungi) involving either the heart or great vessels. The clinical course of IE can be complicated by cardiac dysfunction and bacterial embolization to virtually any organ. Staphylococcus aureus and viridans group streptococci are the most common causative organisms, whereas group A Streptococcus (GAS) is less common. Although some GAS serotypes have been associated with severe disease, there are few reports of IE associated with GAS serotypes. Here, we report two cases of GAS endocarditis and review the associated literature. CASE PRESENTATIONS Patient 1 was a previously healthy 14-year-old girl who developed bacteremia and disseminated intravascular coagulation secondary to left foot cellulitis. She was administered intravenous antibiotics. Two of three blood cultures grew Streptococcus pyogenes (T6 M6, emm6.104). Three days later, a new systolic ejection murmur was heard and echocardiography showed mitral regurgitation with mitral valve vegetation. Because of the resultant severity of the mitral regurgitation, she underwent mitral valve repair after 10 weeks of antibiotic treatment. Patient 2 was a 17-month old boy who presented with a fever. He had a history of spontaneous closure of a ventricular septal defect (VSD). He was started on intravenous antibiotics for possible bacteremia. Two consecutive blood cultures with an interval of more than 12 h grew S. pyogenes (T4 M4, emm4.0). Five days later, echocardiography showed vegetation on a membranous ventricular septal aneurysm. The patient responded well to antibiotics, and recovered fully with no complications. CONCLUSIONS Although both patients developed GAS endocarditis, patient 1 did not have any predisposing conditions for IE, and patient 2 had a only a low-risk predisposing condition, a VSD that had closed spontaneously at five months of age. We found twelve reports in the literature of GAS endocarditis with information on serotypes. All patients in these reports had GAS endocarditis caused by serotypes generally associated with milder infections, but no specific risk trends were identified. A greater accumulation of cases is necessary to more clearly elucidate the association between GAS IE and specific serotypes.
Collapse
Affiliation(s)
- Nao Ogura
- Okinawa Prefectural Nanbu Medical Center & Children's Medical Center, Department of General Pediatrics, Okinawa, Japan
| | - Kouki Tomari
- Okinawa Prefectural Nanbu Medical Center & Children's Medical Center, Department of General Pediatrics, Okinawa, Japan.
| | - Tomotada Takayama
- Okinawa Prefectural Nanbu Medical Center & Children's Medical Center, Department of General Pediatrics, Okinawa, Japan
| | - Naoya Tonegawa
- Okinawa Prefectural Nanbu Medical Center & Children's Medical Center, Department of General Pediatrics, Okinawa, Japan
| | - Teppei Okawa
- Okinawa Prefectural Nanbu Medical Center & Children's Medical Center, Department of General Pediatrics, Okinawa, Japan
| | - Takashi Matsuoka
- Okinawa Prefectural Nanbu Medical Center & Children's Medical Center, Department of General Pediatrics, Okinawa, Japan
| | - Mami Nakayashiro
- Okinawa Prefectural Nanbu Medical Center & Children's Medical Center, Department of Pediatric Cardiology, Okinawa, Japan
| | - Tsutomu Matsumora
- Okinawa Prefectural Nanbu Medical Center & Children's Medical Center, Department of General Pediatrics, Okinawa, Japan
| |
Collapse
|
11
|
Yuan Y, Zajicek J, Qiu C, Chandrahas V, Lee SW, Ploplis VA, Castellino FJ. Conformationally organized lysine isosteres in Streptococcus pyogenes M protein mediate direct high-affinity binding to human plasminogen. J Biol Chem 2017; 292:15016-15027. [PMID: 28724633 PMCID: PMC5592677 DOI: 10.1074/jbc.m117.794198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/10/2017] [Indexed: 11/06/2022] Open
Abstract
The binding of human plasminogen (hPg) to the surface of the human pathogen group A Streptococcus pyogenes (GAS) and subsequent hPg activation to the protease plasmin generate a proteolytic surface that GAS employs to circumvent host innate immunity. Direct high-affinity binding of hPg/plasmin to pattern D GAS is fully recapitulated by the hPg kringle 2 domain (K2hPg) and a short internal peptide region (a1a2) of a specific subtype of bacterial surface M protein, present in all GAS pattern D strains. To better understand the nature of this binding, critical to the virulence of many GAS skin-tropic strains, we used high-resolution NMR to define the interaction of recombinant K2hPg with recombinant a1a2 (VKK38) of the M protein from GAS isolate NS455. We found a 2:1 (m/m) binding stoichiometry of K2hPg/VKK38, with the lysine-binding sites of two K2hPg domains anchored to two regions of monomeric VKK38. The K2hPg/VKK38 binding altered the VKK38 secondary structure from a helical apo-peptide with a flexible center to an end-to-end K2hPg-bound α-helix. The K2hPg residues occupied opposite faces of this helix, an arrangement that minimized steric clashing of K2hPg We conclude that VKK38 provides two conformational lysine isosteres that each interact with the lysine-binding sites in K2hPg Further, the adoption of an α-helix by VKK38 upon binding to K2hPg sterically optimizes the side chains of VKK38 for maximal binding to K2hPg and minimizes steric overlap between the K2hPg domains. The mechanism for hPg/M protein binding uncovered here may facilitate targeting of GAS virulence factors for disease management.
Collapse
Affiliation(s)
- Yue Yuan
- From the W.M. Keck Center for Transgene Research
- Department of Chemistry and Biochemistry, and
| | | | - Cunjia Qiu
- From the W.M. Keck Center for Transgene Research
- Department of Chemistry and Biochemistry, and
| | - Vishwanatha Chandrahas
- From the W.M. Keck Center for Transgene Research
- Department of Chemistry and Biochemistry, and
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A Ploplis
- From the W.M. Keck Center for Transgene Research
- Department of Chemistry and Biochemistry, and
| | - Francis J Castellino
- From the W.M. Keck Center for Transgene Research,
- Department of Chemistry and Biochemistry, and
| |
Collapse
|
12
|
Bao YJ, Li Y, Liang Z, Agrahari G, Lee SW, Ploplis VA, Castellino FJ. Comparative pathogenomic characterization of a non-invasive serotype M71 strain Streptococcus pyogenes NS53 reveals incongruent phenotypic implications from distinct genotypic markers. Pathog Dis 2017; 75:3829887. [PMID: 28520869 PMCID: PMC5808649 DOI: 10.1093/femspd/ftx056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/16/2017] [Indexed: 11/15/2022] Open
Abstract
The strains serotyped as M71 from group A Streptococcus are common causes of pharyngeal and skin diseases worldwide. Here we characterize the genome of a unique non-invasive M71 human isolate, NS53. The genome does not contain structural rearrangements or large-scale gene gains/losses, but encodes a full set of non-truncated known virulence factors, thus providing an ideal reference for comparative studies. However, the NS53 genome showed incongruent phenotypic implications from distinct genotypic markers. NS53 is characterized as an emm pattern D and FCT (fibronectin-collagen-T antigen) type-3 strain, typical of skin tropic strains, but is phylogenetically close to emm pattern E strains with preference for both skin and pharyngeal infections. We propose that this incongruence could result from recombination within the emm gene locus, or, alternatively, selection has been against those genetic alterations. Combined with the inability to select for CovS switching, a process is indicated whereby NS53 has been pre-adapted to specific host niches selecting against variations in CovS and many other genes. This may allow the strain to attain successful colonization and long-term survival. A balance between genetic variations and fitness may exist for this bacterium to form a stabilized genome optimized for survival in specific host environments.
Collapse
Affiliation(s)
- Yun-Juan Bao
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yang Li
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhong Liang
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Garima Agrahari
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shaun W. Lee
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A. Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J. Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
13
|
Huish S, Thelwell C, Longstaff C. Activity Regulation by Fibrinogen and Fibrin of Streptokinase from Streptococcus Pyogenes. PLoS One 2017; 12:e0170936. [PMID: 28125743 PMCID: PMC5268773 DOI: 10.1371/journal.pone.0170936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/12/2017] [Indexed: 01/26/2023] Open
Abstract
Streptokinase is a virulence factor of streptococci and acts as a plasminogen activator to generate the serine protease plasmin which promotes bacterial metastasis. Streptokinase isolated from group C streptococci has been used therapeutically as a thrombolytic agent for many years and its mechanism of action has been extensively studied. However, group A streptococci are associated with invasive and potentially fatal infections, but less detail is available on the mechanism of action of streptokinase from these bacteria. We have expressed recombinant streptokinase from a group C strain to investigate the therapeutic molecule (here termed rSK-H46A) and a molecule isolated from a cluster 2a strain from group A (rSK-M1GAS) which is known to produce the fibrinogen binding, M1 protein, and is associated with life-threatening disease. Detailed enzyme kinetic models have been prepared which show how fibrinogen-streptokinase-plasminogen complexes regulate plasmin generation, and also the effect of fibrin interactions. As is the case with rSK-H46A our data with rSK-M1GAS support a "trigger and bullet" mechanism requiring the initial formation of SK•plasminogen complexes which are replaced by more active SK•plasmin as plasmin becomes available. This model includes the important fibrinogen interactions that stimulate plasmin generation. In a fibrin matrix rSK-M1GAS has a 24 fold higher specific activity than the fibrin-specific thrombolytic agent, tissue plasminogen activator, and 15 fold higher specific activity than rSK-H46A. However, in vivo fibrin specificity would be undermined by fibrinogen stimulation. Given the observed importance of M1 surface receptors or released M1 protein to virulence of cluster 2a strain streptococci, studies on streptokinase activity regulation by fibrin and fibrinogen may provide additional routes to addressing bacterial invasion and infectious diseases.
Collapse
Affiliation(s)
- Sian Huish
- Component development laboratory, NHS Blood and Transplant, Cambridge Donor Centre, Cambridge, United Kingdom
| | - Craig Thelwell
- Biotherapeutics Section, National Institute for Biological Standard and Control, South Mimms, Herts, United Kingdom
| | - Colin Longstaff
- Biotherapeutics Section, National Institute for Biological Standard and Control, South Mimms, Herts, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Pandey M, Ozberk V, Calcutt A, Langshaw E, Powell J, Rivera-Hernandez T, Ho MF, Philips Z, Batzloff MR, Good MF. Streptococcal Immunity Is Constrained by Lack of Immunological Memory following a Single Episode of Pyoderma. PLoS Pathog 2016; 12:e1006122. [PMID: 28027314 PMCID: PMC5222516 DOI: 10.1371/journal.ppat.1006122] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 01/09/2017] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
The immunobiology underlying the slow acquisition of skin immunity to group A streptococci (GAS), is not understood, but attributed to specific virulence factors impeding innate immunity and significant antigenic diversity of the type-specific M-protein, hindering acquired immunity. We used a number of epidemiologically distinct GAS strains to model the development of acquired immunity. We show that infection leads to antibody responses to the serotype-specific determinants on the M-protein and profound protective immunity; however, memory B cells do not develop and immunity is rapidly lost. Furthermore, antibodies do not develop to a conserved M-protein epitope that is able to induce immunity following vaccination. However, if re-infected with the same strain within three weeks, enduring immunity and memory B-cells (MBCs) to type-specific epitopes do develop. Such MBCs can adoptively transfer protection to naïve recipients. Thus, highly protective M-protein-specific MBCs may never develop following a single episode of pyoderma, contributing to the slow acquisition of immunity and to streptococcal endemicity in at-risk populations. GAS skin infections pose a significant health problem in the tropics. They are highly prevalent in developing countries as well as amongst the Indigenous populations of developed countries. In at-risk impoverished communities the epidemiology of GAS infections is very dynamic, leading to very high rates of streptococcal-associated serious pathology including rheumatic heart disease, glomerulonephritis and invasive GAS disease. Immunity to GAS takes over 20 years to develop and this has been attributed to sequence diversity of the type-specific surface M-protein. There are more than 250 different strains of GAS and it known that antibodies to the amino-terminal segment of the M-protein can kill organisms in a strain-specific manner in vitro. In the present study, using four different strains of GAS isolated from the skin lesions of Aboriginal patients in the Northern Territory of Australia, we make the discovery that skin infection does not induce long-lived type-specific immunity. However, following reinfection with the same strain memory B cells are generated and long-term strain-protective immunity then develops. The dependence on reinfection for the development of strain-specific immunity compounds with antigenic diversity of the M-protein and provides a rational explanation for the very slow acquisition of streptococcal immunity.
Collapse
Affiliation(s)
- Manisha Pandey
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
- * E-mail: (MFG); (MP)
| | - Victoria Ozberk
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Ainslie Calcutt
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Emma Langshaw
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Jessica Powell
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Tania Rivera-Hernandez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Mei-Fong Ho
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Zachary Philips
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Michael R. Batzloff
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Michael F. Good
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
- * E-mail: (MFG); (MP)
| |
Collapse
|
15
|
Timmis KN. Singh Chhatwal: A magical scholar and exceptional Streptococcus researcher. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:550-552. [PMID: 30240168 DOI: 10.1111/1758-2229.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Kenneth N Timmis
- Institute for Microbiology, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
16
|
Nitzsche R, Köhler J, Kreikemeyer B, Oehmcke-Hecht S. Streptococcus pyogenes Escapes Killing from Extracellular Histones through Plasminogen Binding and Activation by Streptokinase. J Innate Immun 2016; 8:589-600. [PMID: 27533300 DOI: 10.1159/000448039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/28/2016] [Indexed: 01/05/2023] Open
Abstract
Histones are small basic proteins and highly conserved among eukaryotes. Their main function is binding, packaging and organizing of DNA in the nucleus, but extracellular histones are also potent antimicrobial proteins. Here we found that Streptococcus pyogenes - an important human pathogen - protects itself from histone-killing by the acquisition of plasminogen. Plasminogen, bound to the streptococcal surface, efficiently prevents histone-mediated killing. Moreover, the streptokinase/plasminogen complex degrades all classes of histones and abrogates their antibacterial and hemolytic effects. This novel streptokinase-mediated virulence mechanism may contribute to the escape of S. pyogenes from the human innate immune system.
Collapse
Affiliation(s)
- Ramona Nitzsche
- University Medicine, Institute of Medical Microbiology, Virology and Hygiene, Rostock University, Rostock, Germany
| | | | | | | |
Collapse
|
17
|
Peetermans M, Vanassche T, Liesenborghs L, Lijnen RH, Verhamme P. Bacterial pathogens activate plasminogen to breach tissue barriers and escape from innate immunity. Crit Rev Microbiol 2015; 42:866-82. [PMID: 26485450 DOI: 10.3109/1040841x.2015.1080214] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Both coagulation and fibrinolysis are tightly connected with the innate immune system. Infection and inflammation cause profound alterations in the otherwise well-controlled balance between coagulation and fibrinolysis. Many pathogenic bacteria directly exploit the host's hemostatic system to increase their virulence. Here, we review the capacity of bacteria to activate plasminogen. The resulting proteolytic activity allows them to breach tissue barriers and evade innate immune defense, thus promoting bacterial spreading. Yersinia pestis, streptococci of group A, C and G and Staphylococcus aureus produce a specific bacterial plasminogen activator. Moreover, surface plasminogen receptors play an established role in pneumococcal, borrelial and group B streptococcal infections. This review summarizes the mechanisms of bacterial activation of host plasminogen and the role of the fibrinolytic system in infections caused by these pathogens.
Collapse
Affiliation(s)
- Marijke Peetermans
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| | - Thomas Vanassche
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| | | | - Roger H Lijnen
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| | - Peter Verhamme
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| |
Collapse
|
18
|
Chandrahas V, Glinton K, Liang Z, Donahue DL, Ploplis VA, Castellino FJ. Direct Host Plasminogen Binding to Bacterial Surface M-protein in Pattern D Strains of Streptococcus pyogenes Is Required for Activation by Its Natural Coinherited SK2b Protein. J Biol Chem 2015; 290:18833-42. [PMID: 26070561 DOI: 10.1074/jbc.m115.655365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 11/06/2022] Open
Abstract
Streptokinase (SK), secreted by Group A Streptococcus (GAS), is a single-chain ∼47-kDa protein containing three consecutive primary sequence regions that comprise its α, β, and γ modules. Phylogenetic analyses of the variable β-domain sequences from different GAS strains suggest that SKs can be arranged into two clusters, SK1 and SK2, with a subdivision of SK2 into SK2a and SK2b. SK2b is secreted by skin-tropic Pattern D M-protein strains that also express plasminogen (human Pg (hPg)) binding Group A streptococcal M-protein (PAM) as its major cell surface M-protein. SK2a-expressing strains are associated with nasopharynx tropicity, and many of these strains express human fibrinogen (hFg) binding Pattern A-C M-proteins, e.g. M1. PAM interacts with hPg directly, whereas M1 binds to hPg indirectly via M1-bound hFg. Subsequently, SK is secreted by GAS and activates hPg to plasmin (hPm), thus generating a proteolytic surface on GAS that enhances its dissemination. Due to these different modes of hPg/hPm recognition by GAS, full characterizations of the mechanisms of activation of hPg by SK2a and SK2b and their roles in GAS virulence are important topics. To more fully examine these subjects, isogenic chimeric SK- and M-protein-containing GAS strains were generated, and the virulence of these chimeric strains were analyzed in mice. We show that SK and M-protein alterations influenced the virulence of GAS and were associated with the different natures of hPg activation and hPm binding. These studies demonstrate that GAS virulence can be explained by disparate hPg activation by SK2a and SK2b coupled with the coinherited M-proteins of these strains.
Collapse
Affiliation(s)
- Vishwanatha Chandrahas
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Kristofor Glinton
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Zhong Liang
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Deborah L Donahue
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A Ploplis
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Francis J Castellino
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
19
|
The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe 2014; 14:675-82. [PMID: 24331465 DOI: 10.1016/j.chom.2013.11.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/10/2013] [Accepted: 10/28/2013] [Indexed: 01/03/2023]
Abstract
Autophagy is reported to be an important innate immune defense against the intracellular bacterial pathogen Group A Streptococcus (GAS). However, the GAS strains examined to date belong to serotypes infrequently associated with human disease. We find that the globally disseminated serotype M1T1 clone of GAS can evade autophagy and replicate efficiently in the cytosol of infected cells. Cytosolic M1T1 GAS (strain 5448), but not M6 GAS (strain JRS4), avoids ubiquitylation and recognition by the host autophagy marker LC3 and ubiquitin-LC3 adaptor proteins NDP52, p62, and NBR1. Expression of SpeB, a streptococcal cysteine protease, is critical for this process, as an isogenic M1T1 ΔspeB mutant is targeted to autophagy and attenuated for intracellular replication. SpeB degrades p62, NDP52, and NBR1 in vitro and within the host cell cytosol. These results uncover a proteolytic mechanism utilized by GAS to escape the host autophagy pathway that may underpin the success of the M1T1 clone.
Collapse
|
20
|
Bhattacharya S, Liang Z, Quek AJ, Ploplis VA, Law R, Castellino FJ. Dimerization is not a determining factor for functional high affinity human plasminogen binding by the group A streptococcal virulence factor PAM and is mediated by specific residues within the PAM a1a2 domain. J Biol Chem 2014; 289:21684-93. [PMID: 24962580 DOI: 10.1074/jbc.m114.570218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A emm53 subclass of Group A Streptococcus pyogenes (GAS) interacts tightly with human plasma plasminogen (hPg) and plasmin (hPm) via the kringle 2 (K2hPg) domain of hPg/hPm and the N-terminal a1a2 regions of a GAS coiled-coil M-like protein (PAM). Previous studies have shown that a monomeric PAM fragment, VEK30 (residues 97-125 + Tyr), interacted specifically with isolated K2hPg. However, the binding strength of VEK30 (KD = 56 nm) was ∼60-fold weaker than that of full-length dimeric PAM (KD = 1 nm). To assess whether this attenuated binding was due to the inability of VEK30 to dimerize, we defined the minimal length of PAM required to dimerize using a series of peptides with additional PAM residues placed at the NH2 and COOH termini of VEK30. VEK64 (PAM residues 83-145 + Tyr) was found to be the smallest peptide that adopted an α-helical dimer, and was bound to K2hPg with nearly the same affinity as PAM (KD = 1-2 nm). However, addition of two PAM residues (Arg(126)-His(127)) to the COOH terminus of VEK30 (VEK32) maintained a monomeric peptidic structure, but exhibited similar K2hPg binding affinity as full-length dimeric PAM. We identified five residues in a1a2 (Arg(113), His(114), Glu(116), Arg(126), His(127)), mutation of which reduced PAM binding affinity for K2hPg by ∼ 1000-fold. Replacement of these critical residues by Ala in the GAS genome resulted in reduced virulence, similar to the effects of inactivating the PAM gene entirely. We conclude that rather than dimerization of PAM, the five key residues in the binding domain of PAM are essential to mediate the high affinity interaction with hPg, leading to increased GAS virulence.
Collapse
Affiliation(s)
- Sarbani Bhattacharya
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| | - Zhong Liang
- From the W. M. Keck Center for Transgene Research and
| | - Adam J Quek
- the Department of Biochemistry and Molecular Biology, Monash University, 3800, Victoria, Australia
| | - Victoria A Ploplis
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| | - Ruby Law
- the Department of Biochemistry and Molecular Biology, Monash University, 3800, Victoria, Australia
| | - Francis J Castellino
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| |
Collapse
|
21
|
Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014. [PMID: 24696436 DOI: 10.1128/cmr.00101-13)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
|
22
|
Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriprakash KS, Sanderson-Smith ML, Nizet V. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014; 27:264-301. [PMID: 24696436 PMCID: PMC3993104 DOI: 10.1128/cmr.00101-13] [Citation(s) in RCA: 609] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
Affiliation(s)
- Mark J. Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Timothy C. Barnett
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Jason D. McArthur
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Jason N. Cole
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Anna Henningham
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - K. S. Sriprakash
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Martina L. Sanderson-Smith
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
23
|
Site-restricted plasminogen activation mediated by group A streptococcal streptokinase variants. Biochem J 2014; 458:23-31. [DOI: 10.1042/bj20131305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
By examining the roles of bacterial and host-derived cofactors in streptokinase-mediated plasminogen activation, we find that phenotypic streptokinase variation functionally underpins a pathogenic mechanism whereby streptokinase variants differentially focus plasminogen activation, leading to specific niche adaption within the host.
Collapse
|
24
|
Ly D, Taylor JM, Tsatsaronis JA, Monteleone MM, Skora AS, Donald CA, Maddocks T, Nizet V, West NP, Ranson M, Walker MJ, McArthur JD, Sanderson-Smith ML. Plasmin(ogen) acquisition by group A Streptococcus protects against C3b-mediated neutrophil killing. J Innate Immun 2013; 6:240-50. [PMID: 23969887 DOI: 10.1159/000353754] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/17/2013] [Indexed: 12/20/2022] Open
Abstract
The globally significant human pathogen group A Streptococcus (GAS) sequesters the host protease plasmin to the cell surface during invasive disease initiation. Recent evidence has shown that localized plasmin activity prevents opsonization of several bacterial species by key components of the innate immune system in vitro. Here we demonstrate that plasmin at the GAS cell surface resulted in degradation of complement factor C3b, and that plasminogen acquisition is associated with a decrease in C3b opsonization and neutrophil-mediated killing in vitro. Furthermore, the ability to acquire cell surface plasmin(ogen) correlates directly with a decrease in C3b opsonization, neutrophil phagocytosis, and increased bacterial survival in a humanized plasminogen mouse model of infection. These findings demonstrate that localized plasmin(ogen) plays an important role in facilitating GAS escape from the host innate immune response and increases bacterial virulence in the early stages of infection.
Collapse
Affiliation(s)
- Diane Ly
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, N.S.W., Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Agrahari G, Liang Z, Mayfield JA, Balsara RD, Ploplis VA, Castellino FJ. Complement-mediated opsonization of invasive group A Streptococcus pyogenes strain AP53 is regulated by the bacterial two-component cluster of virulence responder/sensor (CovRS) system. J Biol Chem 2013; 288:27494-27504. [PMID: 23928307 DOI: 10.1074/jbc.m113.494864] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Group A Streptococcus pyogenes (GAS) strain AP53 is a primary isolate from a patient with necrotizing fasciitis. These AP53 cells contain an inactivating mutation in the sensor component of the cluster of virulence (cov) responder (R)/sensor (S) two-component gene regulatory system (covRS), which enhances the virulence of the primary strain, AP53/covR(+)S(-). However, specific mechanisms by which the covRS system regulates the survival of GAS in humans are incomplete. Here, we show a key role for covRS in the regulation of opsonophagocytosis of AP53 by human neutrophils. AP53/covR(+)S(-) cells displayed potent binding of host complement inhibitors of C3 convertase, viz. Factor H (FH) and C4-binding protein (C4BP), which concomitantly led to minimal C3b deposition on AP53 cells, further showing that these plasma protein inhibitors are active on GAS cells. This resulted in weak killing of the bacteria by human neutrophils and a corresponding high death rate of mice after injection of these cells. After targeted allelic alteration of covS(-) to wild-type covS (covS(+)), a dramatic loss of FH and C4BP binding to the AP53/covR(+)S(+) cells was observed. This resulted in elevated C3b deposition on AP53/covR(+)S(+) cells, a high level of opsonophagocytosis by human neutrophils, and a very low death rate of mice infected with AP53/covR(+)S(+). We show that covRS is a critical transcriptional regulator of genes directing AP53 killing by neutrophils and regulates the levels of the receptors for FH and C4BP, which we identify as the products of the fba and enn genes, respectively.
Collapse
Affiliation(s)
- Garima Agrahari
- W. M. Keck Center for Transgene Research; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | | | | | - Rashna D Balsara
- W. M. Keck Center for Transgene Research; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556.
| |
Collapse
|
26
|
Tsatsaronis JA, Hollands A, Cole JN, Maamary PG, Gillen CM, Ben Zakour NL, Kotb M, Nizet V, Beatson SA, Walker MJ, Sanderson-Smith ML. Streptococcal collagen-like protein A and general stress protein 24 are immunomodulating virulence factors of group A Streptococcus. FASEB J 2013; 27:2633-43. [PMID: 23531597 DOI: 10.1096/fj.12-226662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Western countries, invasive infections caused by M1T1 serotype group A Streptococcus (GAS) are epidemiologically linked to mutations in the control of virulence regulatory 2-component operon (covRS). In indigenous communities and developing countries, severe GAS disease is associated with genetically diverse non-M1T1 GAS serotypes. Hypervirulent M1T1 covRS mutant strains arise through selection by human polymorphonuclear cells for increased expression of GAS virulence factors such as the DNase Sda1, which promotes neutrophil resistance. The GAS bacteremia isolate NS88.2 (emm 98.1) is a covS mutant that exhibits a hypervirulent phenotype and neutrophil resistance yet lacks the phage-encoded Sda1. Here, we have employed a comprehensive systems biology (genomic, transcriptomic, and proteomic) approach to identify NS88.2 virulence determinants that enhance neutrophil resistance in the non-M1T1 GAS genetic background. Using this approach, we have identified streptococcal collagen-like protein A and general stress protein 24 proteins as NS88.2 determinants that contribute to survival in whole blood and neutrophil resistance in non-M1T1 GAS. This study has revealed new factors that contribute to GAS pathogenicity that may play important roles in resisting innate immune defenses and the development of human invasive infections.
Collapse
Affiliation(s)
- James A Tsatsaronis
- Illawarra Health and Medical Research Institute, and School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cooperative plasminogen recruitment to the surface of Streptococcus canis via M protein and enolase enhances bacterial survival. mBio 2013; 4:e00629-12. [PMID: 23481605 PMCID: PMC3604778 DOI: 10.1128/mbio.00629-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Streptococcus canis is a zoonotic pathogen capable of causing serious invasive diseases in domestic animals and humans. Surface-exposed M proteins and metabolic enzymes have been characterized as major virulence determinants in various streptococcal species. Recently, we have identified SCM, the M-like protein of S. canis, as the major receptor for miniplasminogen localized on the bacterial surface. The present study now characterizes the glycolytic enzyme enolase as an additional surface-exposed plasminogen-binding protein. According to its zoonotic properties, purified S. canis enolase binds to both human and canine plasminogen and facilitates degradation of aggregated fibrin matrices after activation with host-derived urokinase-type plasminogen activator (uPA). Unlike SCM, which binds to the C terminus of human plasminogen, the S. canis enolase interacts N terminally with the first four kringle domains of plasminogen, representing angiostatin. Radioactive binding analyses confirmed cooperative plasminogen recruitment to both surface-exposed enolase and SCM. Furthermore, despite the lack of surface protease activity via SpeB in S. canis, SCM is released and reassociated homophilically to surface-anchored SCM and heterophilically to surface-bound plasminogen. In addition to plasminogen-mediated antiphagocytic activity, reassociation of SCM to the bacterial surface significantly enhanced bacterial survival in phagocytosis analyses using human neutrophils. IMPORTANCE Streptococcal infections are a major issue in medical microbiology due to the increasing spread of antibiotic resistances and the limited availability of efficient vaccines. Surface-exposed glycolytic enzymes and M proteins have been characterized as major virulence factors mediating pathogen-host interaction. Since streptococcal infection mechanisms exert a subset of multicombinatorial processes, the investigation of synergistic activities mediated via different virulence factors has become a high priority. Our data clearly demonstrate that plasminogen recruitment to the Streptococcus canis surface via SCM and enolase in combination with SCM reassociation enhances bacterial survival by protecting against phagocytic killing. These data propose a new cooperative mechanism for prevention of phagocytic killing based on the synergistic activity of homophilic and heterophilic SCM binding in the presence of human plasminogen.
Collapse
|
28
|
Liang Z, Zhang Y, Agrahari G, Chandrahas V, Glinton K, Donahue DL, Balsara RD, Ploplis VA, Castellino FJ. A natural inactivating mutation in the CovS component of the CovRS regulatory operon in a pattern D Streptococcal pyogenes strain influences virulence-associated genes. J Biol Chem 2013; 288:6561-73. [PMID: 23316057 PMCID: PMC3585089 DOI: 10.1074/jbc.m112.442657] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 12/28/2012] [Indexed: 11/06/2022] Open
Abstract
A skin-tropic invasive group A Streptococcus pyogenes (GAS) strain, AP53, contains a natural inactivating mutation in the covS gene (covS(M)) of the two-component responder (CovR)/sensor (CovS) gene regulatory system. The effects of this mutation on specific GAS virulence determinants have been assessed, with emphasis on expression of the extracellular protease, streptococcal pyrogenic exotoxin B (SpeB), capsular hyaluronic acid, and proteins that allow host plasmin assembly on the bacterial surface, viz. a high affinity plasminogen (Pg)/plasmin receptor, Pg-binding group A streptococcal M protein (PAM), and the human Pg activator streptokinase. To further illuminate mechanisms of the functioning of CovRS in the virulence of AP53, two AP53 isogenic strains were generated, one in which the natural covS(M) gene was mutated to WT-covS (AP53/covS(WT)) and a strain that contained an inactivated covR gene (AP53/ΔcovR). Two additional strains that do not contain PAM, viz. WT-NS931 and NS931/covS(M), were also employed. SpeB was not measurably expressed in strains containing covR(WT)/covS(M), whereas in strains with natural or engineered covR(WT)/covS(WT), SpeB expression was highly up-regulated. Alternatively, capsule synthesis via the hasABC operon was enhanced in strain AP53/covS(M), whereas streptokinase expression was only slightly affected by the covS inactivation. PAM expression was not substantially influenced by the covS mutation, suggesting that covRS had minimal effects on the mga regulon that controls PAM expression. These results demonstrate that a covS inactivation results in virulence gene alterations and also suggest that the CovR phosphorylation needed for gene up- or down-regulation can occur by alternative pathways to CovS kinase.
Collapse
Affiliation(s)
- Zhong Liang
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Yueling Zhang
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Garima Agrahari
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Vishwanatha Chandrahas
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Kristofor Glinton
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Deborah L. Donahue
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Rashna D. Balsara
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A. Ploplis
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Francis J. Castellino
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
29
|
Cook SM, Skora A, Gillen CM, Walker MJ, McArthur JD. Streptokinase variants fromStreptococcus pyogenesisolates display altered plasminogen activation characteristics - implications for pathogenesis. Mol Microbiol 2012; 86:1052-62. [DOI: 10.1111/mmi.12037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2012] [Indexed: 01/23/2023]
Affiliation(s)
- Simon M. Cook
- Illawarra Health and Medical Research Institute; School of Biological Sciences; University of Wollongong; Wollongong; Australia
| | - Amanda Skora
- Illawarra Health and Medical Research Institute; School of Biological Sciences; University of Wollongong; Wollongong; Australia
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre; University of Queensland; Brisbane; Australia
| | - Mark J. Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre; University of Queensland; Brisbane; Australia
| | - Jason D. McArthur
- Illawarra Health and Medical Research Institute; School of Biological Sciences; University of Wollongong; Wollongong; Australia
| |
Collapse
|
30
|
Zhang Y, Liang Z, Hsueh HT, Ploplis VA, Castellino FJ. Characterization of streptokinases from group A Streptococci reveals a strong functional relationship that supports the coinheritance of plasminogen-binding M protein and cluster 2b streptokinase. J Biol Chem 2012; 287:42093-103. [PMID: 23086939 PMCID: PMC3516755 DOI: 10.1074/jbc.m112.417808] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Group Astreptococcus (GAS) strains secrete the protein streptokinase (SK), which functions by activating host human plasminogen (hPg) to plasmin (hPm), thus providing a proteolytic framework for invasive GAS strains. The types of SK secreted by GAS have been grouped into two clusters (SK1 and SK2) and one subcluster (SK2a and SK2b). SKs from cluster 1 (SK1) and cluster 2b (SK2b) display significant evolutionary and functional differences, and attempts to relate these properties to GAS skin or pharynx tropism and invasiveness are of great interest. In this study, using four purified SKs from each cluster, new relationships between plasminogen-binding group A streptococcal M (PAM) protein and SK2b have been revealed. All SK1 proteins efficiently activated hPg, whereas all subclass SK2b proteins only weakly activated hPg in the absence of PAM. Surface plasmon resonance studies revealed that the lower affinity of SK2b to hPg served as the basis for the attenuated activation of hPg by SK2b. Binding of hPg to either human fibrinogen (hFg) or PAM greatly enhanced activation of hPg by SK2b but minimally influenced the already effective activation of hPg by SK1. Activation of hPg in the presence of GAS cells containing PAM demonstrated that PAM is the only factor on the surface of SK2b-expressing cells that enabled the direct activation of hPg by SK2b. As the binding of hPg to PAM is necessary for hPg activation by SK2b, this dependence explains the coinherant relationship between PAM and SK2b and the ability of these particular strains to generate the proteolytic activity that disrupts the innate barriers that limit invasiveness.
Collapse
Affiliation(s)
- Yueling Zhang
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | | | | | | | |
Collapse
|
31
|
Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. J Biomed Biotechnol 2012; 2012:482096. [PMID: 23118509 PMCID: PMC3477821 DOI: 10.1155/2012/482096] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/24/2012] [Accepted: 08/13/2012] [Indexed: 01/06/2023] Open
Abstract
In order for invasive pathogens to migrate beyond the site of infection, host physiological barriers such as the extracellular matrix, the basement membrane, and encapsulating fibrin network must be degraded. To circumvent these impediments, proteolytic enzymes facilitate the dissemination of the microorganism. Recruitment of host proteases to the bacterial surface represents a particularly effective mechanism for enhancing invasiveness. Plasmin is a broad spectrum serine protease that degrades fibrin, extracellular matrices, and connective tissue. A large number of pathogens express plasminogen receptors which immobilize plasmin(ogen) on the bacterial surface. Surface-bound plasminogen is then activated by plasminogen activators to plasmin through limited proteolysis thus triggering the development of a proteolytic surface on the bacteria and eventually assisting the spread of bacteria. The host hemostatic system plays an important role in systemic infection. The interplay between hemostatic processes such as coagulation and fibrinolysis and the inflammatory response constitutes essential components of host defense and bacterial invasion. The goal of this paper is to highlight mechanisms whereby pathogenic bacteria, by engaging surface receptors, utilize and exploit the host plasminogen and fibrinolytic system for the successful dissemination within the host.
Collapse
|
32
|
Bacterial plasminogen receptors: mediators of a multifaceted relationship. J Biomed Biotechnol 2012; 2012:272148. [PMID: 23118502 PMCID: PMC3478875 DOI: 10.1155/2012/272148] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/07/2012] [Indexed: 12/14/2022] Open
Abstract
Multiple species of bacteria are able to sequester the host zymogen plasminogen to the cell surface. Once localised to the bacterial surface, plasminogen can act as a cofactor in adhesion, or, following activation to plasmin, provide a source of potent proteolytic activity. Numerous bacterial plasminogen receptors have been identified, and the mechanisms by which they interact with plasminogen are diverse. Here we provide an overview of bacterial plasminogen receptors and discuss the diverse role bacterial plasminogen acquisition plays in the relationship between bacteria and the host.
Collapse
|
33
|
Henningham A, Chiarot E, Gillen CM, Cole JN, Rohde M, Fulde M, Ramachandran V, Cork AJ, Hartas J, Magor G, Djordjevic SP, Cordwell SJ, Kobe B, Sriprakash KS, Nizet V, Chhatwal GS, Margarit IYR, Batzloff MR, Walker MJ. Conserved anchorless surface proteins as group A streptococcal vaccine candidates. J Mol Med (Berl) 2012; 90:1197-207. [PMID: 22527883 DOI: 10.1007/s00109-012-0897-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/25/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus (GAS)) causes ∼700 million human infections each year, resulting in over 500,000 deaths. The development of a commercial GAS vaccine is hampered by the occurrence of many unique GAS serotypes, antigenic variation within the same serotype, differences in serotype geographical distribution, and the production of antibodies cross-reactive with human tissue that may lead to autoimmune disease. Several independent studies have documented a number of GAS cell wall-associated or secreted metabolic enzymes that contain neither N-terminal leader sequences nor C-terminal cell wall anchors. Here, we applied a proteomic analysis of serotype M1T1 GAS cell wall extracts for the purpose of vaccine development. This approach catalogued several anchorless proteins and identified two protective vaccine candidates, arginine deiminase and trigger factor. These surface-exposed enzymes are expressed across multiple GAS serotypes exhibiting ≥99% amino acid sequence identity. Vaccine safety concerns are alleviated by the observation that these vaccine candidates lack human homologs, while sera from human populations suffering repeated GAS infections and high levels of autoimmune complications do not recognize these enzymes. Our study demonstrates anchorless cell surface antigens as promising vaccine candidates for the prevention of GAS disease.
Collapse
Affiliation(s)
- Anna Henningham
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Maamary PG, Ben Zakour NL, Cole JN, Hollands A, Aziz RK, Barnett TC, Cork AJ, Henningham A, Sanderson-Smith M, McArthur JD, Venturini C, Gillen CM, Kirk JK, Johnson DR, Taylor WL, Kaplan EL, Kotb M, Nizet V, Beatson SA, Walker MJ. Tracing the evolutionary history of the pandemic group A streptococcal M1T1 clone. FASEB J 2012; 26:4675-84. [PMID: 22878963 DOI: 10.1096/fj.12-212142] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The past 50 years has witnessed the emergence of new viral and bacterial pathogens with global effect on human health. The hyperinvasive group A Streptococcus (GAS) M1T1 clone, first detected in the mid-1980s in the United States, has since disseminated worldwide and remains a major cause of severe invasive human infections. Although much is understood regarding the capacity of this pathogen to cause disease, much less is known of the precise evolutionary events selecting for its emergence. We used high-throughput technologies to sequence a World Health Organization strain collection of serotype M1 GAS and reconstructed its phylogeny based on the analysis of core genome single-nucleotide polymorphisms. We demonstrate that acquisition of a 36-kb genome segment from serotype M12 GAS and the bacteriophage-encoded DNase Sda1 led to increased virulence of the M1T1 precursor and occurred relatively early in the molecular evolutionary history of this strain. The more recent acquisition of the phage-encoded superantigen SpeA is likely to have provided selection advantage for the global dissemination of the M1T1 clone. This study provides an exemplar for the evolution and emergence of virulent clones from microbial populations existing commensally or causing only superficial infection.
Collapse
Affiliation(s)
- Peter G Maamary
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shannon O, Herwald H, Oehmcke S. Modulation of the coagulation system during severe streptococcal disease. Curr Top Microbiol Immunol 2012; 368:189-205. [PMID: 23224709 DOI: 10.1007/82_2012_283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Haemostasis is maintained by a tightly regulated coagulation system that comprises platelets, procoagulant proteins, and anticoagulant proteins. During the local and systemic response to bacterial infection, the coagulation system becomes activated, and contributes to the pathophysiological response to infection. The significant human pathogen, Streptococcus pyogenes has multiple strategies to modulate coagulation. This can range from systemic activation of the intrinsic and extrinsic pathway of coagulation to local stimulation of fibrinolysis. Such diverse effects on this host system imply a finely tuned host-bacteria interaction. The molecular mechanisms that underlie this modulation of the coagulation system are discussed in this review.
Collapse
Affiliation(s)
- Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Biomedical Centre, B14, Lund University, Sweden.
| | | | | |
Collapse
|
36
|
Abstract
Streptococcus pyogenes is also known as group A Streptococcus (GAS) and is an important human pathogen that causes considerable morbidity and mortality worldwide. The GAS serotype M1T1 clone is the most frequently isolated serotype from life-threatening invasive (at a sterile site) infections, such as streptococcal toxic shock-like syndrome and necrotizing fasciitis. Here, we describe the virulence factors and newly discovered molecular events that mediate the in vivo changes from non-invasive GAS serotype M1T1 to the invasive phenotype, and review the invasive-disease trigger for non-M1 GAS. Understanding the molecular basis and mechanism of initiation for streptococcal invasive disease may expedite the discovery of novel therapeutic targets for the treatment and control of severe invasive GAS diseases.
Collapse
|
37
|
Sun H. Exploration of the host haemostatic system by group A streptococcus: implications in searching for novel antimicrobial therapies. J Thromb Haemost 2011; 9 Suppl 1:189-94. [PMID: 21781255 PMCID: PMC3151011 DOI: 10.1111/j.1538-7836.2011.04316.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The haemostatic system is heavily involved in the host response to infection. A number of host haemostatic factors, notably plasminogen and fibrinogen have been reported to bind and interact with various bacterial proteins. This review summarises the roles of host haemostatic factors such as plasminogen, factor V and fibrinogen in host defence against group A streptococcus infection and discusses the potential of targeting the host haemostatic system for therapeutic intervention against infectious diseases.
Collapse
Affiliation(s)
- H Sun
- Department of Internal Medicine, University of Missouri Hospital and Clinics, Columbia, MO, USA.
| |
Collapse
|
38
|
Siemens N, Patenge N, Otto J, Fiedler T, Kreikemeyer B. Streptococcus pyogenes M49 plasminogen/plasmin binding facilitates keratinocyte invasion via integrin-integrin-linked kinase (ILK) pathways and protects from macrophage killing. J Biol Chem 2011; 286:21612-22. [PMID: 21521694 DOI: 10.1074/jbc.m110.202671] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The entry into epithelial cells and the prevention of primary immune responses are a prerequisite for a successful colonization and subsequent infection of the human host by Streptococcus pyogenes (group A streptococci, GAS). Here, we demonstrate that interaction of GAS with plasminogen promotes an integrin-mediated internalization of the bacteria into keratinocytes, which is independent from the serine protease activity of potentially generated plasmin. α(1)β(1)- and α(5)β(1)-integrins were identified as the major keratinocyte receptors involved in this process. Inhibition of integrin-linked kinase (ILK) expression by siRNA silencing or blocking of PI3K and Akt with specific inhibitors, reduced the GAS M49-plasminogen/plasmin-mediated invasion of keratinocytes. In addition, blocking of actin polymerization significantly reduced GAS internalization into keratinocytes. Altogether, these results provide a first model of plasminogen-mediated GAS invasion into keratinocytes. Furthermore, we demonstrate that plasminogen binding protects the bacteria against macrophage killing.
Collapse
Affiliation(s)
- Nikolai Siemens
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Hospital, Schillingallee 70, 18057 Rostock, Germany
| | | | | | | | | |
Collapse
|
39
|
Seymour LM, Falconer L, Deutscher AT, Minion FC, Padula MP, Dixon NE, Djordjevic SP, Walker MJ. Mhp107 is a member of the multifunctional adhesin family of Mycoplasma hyopneumoniae. J Biol Chem 2011; 286:10097-104. [PMID: 21245147 DOI: 10.1074/jbc.m110.208140] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycoplasma hyopneumoniae is the causative pathogen of porcine enzootic pneumonia, an economically significant disease that disrupts the mucociliary escalator in the swine respiratory tract. Expression of Mhp107, a P97 paralog encoded by the gene mhp107, was confirmed using ESI-MS/MS. To investigate the function of Mhp107, three recombinant proteins, F1(Mhp107), F2(Mhp107), and F3(Mhp107), spanning the N-terminal, central, and C-terminal regions of Mhp107 were constructed. Colonization of swine by M. hyopneumoniae requires adherence of the bacterium to ciliated cells of the respiratory tract. Recent studies have identified a number of M. hyopneumoniae adhesins that bind heparin, fibronectin, and plasminogen. F1(Mhp107) was found to bind porcine heparin (K(D) ∼90 nM) in a dose-dependent and saturable manner, whereas F3(Mhp107) bound fibronectin (K(D) ∼180 nM) at physiologically relevant concentrations. F1(Mhp107) also bound porcine plasminogen (K(D) = 24 nM) in a dose-dependent and physiologically relevant manner. Microspheres coated with F3(Mhp107) mediate adherence to porcine kidney epithelial-like (PK15) cells, and all three recombinant proteins (F1(Mhp107)-F3(Mhp107)) bound swine respiratory cilia. Together, these findings indicate that Mhp107 is a member of the multifunctional M. hyopneumoniae adhesin family of surface proteins and contributes to both adherence to the host and pathogenesis.
Collapse
Affiliation(s)
- Lisa M Seymour
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Maamary PG, Sanderson-Smith ML, Aziz RK, Hollands A, Cole JN, McKay FC, McArthur JD, Kirk JK, Cork AJ, Keefe RJ, Kansal RG, Sun H, Taylor WL, Chhatwal GS, Ginsburg D, Nizet V, Kotb M, Walker MJ. Parameters governing invasive disease propensity of non-M1 serotype group A streptococci. J Innate Immun 2010; 2:596-606. [PMID: 20814186 DOI: 10.1159/000317640] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 06/17/2010] [Indexed: 12/20/2022] Open
Abstract
Group A Streptococcus (GAS) causes rare but life-threatening syndromes of necrotizing fasciitis and toxic shock-like syndrome in humans. The GAS serotype M1T1 clone has globally disseminated, and mutations in the control of virulence regulatory sensor kinase (covRS) operon correlate with severe invasive disease. Here, a cohort of non-M1 GAS was screened to determine whether mutation in covRS triggers systemic dissemination in divergent M serotypes. A GAS disease model defining parameters governing invasive propensity of differing M types is proposed. The vast majority of GAS infection is benign. Nonetheless, many divergent M types possess limited capacity to cause invasive infection. M1T1 GAS readily switch to a covRS mutant form that is neutrophil resistant and frequently associated with systemic infection. Whilst non-M1 GAS are shown in this study to less frequently accumulate covRS mutations in vivo, such mutants are isolated from invasive infections and exhibit neutrophil resistance and enhanced virulence. The reduced capacity of non-M1 GAS to switch to the hypervirulent covRS mutant form provides an explanation for the comparatively less frequent isolation of non-M1 serotypes from invasive human infections.
Collapse
Affiliation(s)
- Peter G Maamary
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Olsen RJ, Musser JM. Molecular pathogenesis of necrotizing fasciitis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2010; 5:1-31. [PMID: 19737105 DOI: 10.1146/annurev-pathol-121808-102135] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Necrotizing fasciitis, also known as the flesh-eating disease, is a severe invasive infection associated with very high rates of human morbidity and mortality. It is most commonly caused by group A Streptococcus(GAS), a versatile human pathogen that causes diseases ranging in severity from uncomplicated pharyngitis (or strep throat) to life-threatening infections such as necrotizing fasciitis. Herein, we review recent discoveries bearing on the molecular pathogenesis of GAS necrotizing fasciitis. Importantly, the integration of new technologies and the development of human-relevant animal models have markedly expanded our understanding of the key pathogen-host interactions underlying GAS necrotizing fasciitis. For example, we now know that GAS organisms secrete a variety of proteases that disrupt host tissue and that these proteolytic enzymes are regulated by multiple transcriptional and posttranslational processes. This pathogenesis knowledge will be crucial to supporting downstream efforts that seek to develop novel vaccines and therapeutic agents for this serious human infection.
Collapse
Affiliation(s)
- Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology, The Methodist Hospital, Houston, Texas 77030, USA
| | | |
Collapse
|
42
|
Cork AJ, Jergic S, Hammerschmidt S, Kobe B, Pancholi V, Benesch JLP, Robinson CV, Dixon NE, Aquilina JA, Walker MJ. Defining the structural basis of human plasminogen binding by streptococcal surface enolase. J Biol Chem 2009; 284:17129-17137. [PMID: 19363026 DOI: 10.1074/jbc.m109.004317] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flesh-eating bacterium group A Streptococcus (GAS) binds and activates human plasminogen, promoting invasive disease. Streptococcal surface enolase (SEN), a glycolytic pathway enzyme, is an identified plasminogen receptor of GAS. Here we used mass spectrometry (MS) to confirm that GAS SEN is octameric, thereby validating in silico modeling based on the crystal structure of Streptococcus pneumoniae alpha-enolase. Site-directed mutagenesis of surface-located lysine residues (SEN(K252 + 255A), SEN(K304A), SEN(K334A), SEN(K344E), SEN(K435L), and SEN(Delta434-435)) was used to examine their roles in maintaining structural integrity, enzymatic function, and plasminogen binding. Structural integrity of the GAS SEN octamer was retained for all mutants except SEN(K344E), as determined by circular dichroism spectroscopy and MS. However, ion mobility MS revealed distinct differences in the stability of several mutant octamers in comparison with wild type. Enzymatic analysis indicated that SEN(K344E) had lost alpha-enolase activity, which was also reduced in SEN(K334A) and SEN(Delta434-435). Surface plasmon resonance demonstrated that the capacity to bind human plasminogen was abolished in SEN(K252 + 255A), SEN(K435L), and SEN(Delta434-435). The lysine residues at positions 252, 255, 434, and 435 therefore play a concerted role in plasminogen acquisition. This study demonstrates the ability of combining in silico structural modeling with ion mobility-MS validation for undertaking functional studies on complex protein structures.
Collapse
Affiliation(s)
- Amanda J Cork
- From the School of Biological Sciences, Wollongong NSW 2522, Australia
| | - Slobodan Jergic
- School of Chemistry, University of Wollongong, Wollongong NSW 2522, Australia
| | - Sven Hammerschmidt
- Department of Genetics of Microorganisms, Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University of Greifswald, Greifswald D-17487, Germany
| | - Bostjan Kobe
- School of Molecular and Microbial Sciences and Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | - Vijay Pancholi
- Department of Pathology, Ohio State University, Columbus, Ohio 43210
| | - Justin L P Benesch
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Carol V Robinson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Nicholas E Dixon
- School of Chemistry, University of Wollongong, Wollongong NSW 2522, Australia
| | - J Andrew Aquilina
- From the School of Biological Sciences, Wollongong NSW 2522, Australia
| | - Mark J Walker
- From the School of Biological Sciences, Wollongong NSW 2522, Australia.
| |
Collapse
|
43
|
McArthur JD, McKay FC, Ramachandran V, Shyam P, Cork AJ, Sanderson‐Smith ML, Cole JN, Ringdahl U, Sjöbring U, Ranson M, Walker MJ. Allelic variants of streptokinase fromStreptococcus pyogenesdisplay functional differences in plasminogen activation. FASEB J 2008; 22:3146-53. [DOI: 10.1096/fj.08-109348] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jason D. McArthur
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Fiona C. McKay
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | | | - Priya Shyam
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Amanda J. Cork
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | | | - Jason N. Cole
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Ulrika Ringdahl
- Department of Laboratory Medicine, Section for Microbiology, Immunology and GlycobiologyLund University Lund Sweden
| | - Ulf Sjöbring
- Department of Laboratory Medicine, Section for Microbiology, Immunology and GlycobiologyLund University Lund Sweden
| | - Marie Ranson
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Mark J. Walker
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| |
Collapse
|
44
|
Sanderson-Smith ML, Dinkla K, Cole JN, Cork AJ, Maamary PG, McArthur JD, Chhatwal GS, Walker MJ. M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate. FASEB J 2008; 22:2715-22. [PMID: 18467595 DOI: 10.1096/fj.07-105643] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The human protease plasmin plays a crucial role in the capacity of the group A streptococcus (GAS; Streptococcus pyogenes) to initiate invasive disease. The GAS strain NS88.2 was isolated from a case of bacteremia from the Northern Territory of Australia, a region with high rates of GAS invasive disease. Mutagenesis of the NS88.2 plasminogen binding M protein Prp was undertaken to examine the contribution of plasminogen binding and cell surface plasmin acquisition to virulence. The isogenic mutant NS88.2prp was engineered whereby four amino acid residues critical for plasminogen binding were converted to alanine codons in the GAS genome sequence. The mutated residues were reverse complemented to the wild-type sequence to construct GAS strain NS88.2prpRC. In comparison to NS88.2 and NS88.2prpRC, the NS88.2prp mutant exhibited significantly reduced ability to bind human plasminogen and accumulate cell surface plasmin activity during growth in human plasma. Utilizing a humanized plasminogen mouse model of invasive infection, we demonstrate that the capacity to bind plasminogen and accumulate surface plasmin activity plays an essential role in GAS virulence.
Collapse
Affiliation(s)
- M L Sanderson-Smith
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Cole JN, Aquilina JA, Hains PG, Henningham A, Sriprakash KS, Caparon MG, Nizet V, Kotb M, Cordwell SJ, Djordjevic SP, Walker MJ. Role of group A Streptococcus HtrA in the maturation of SpeB protease. Proteomics 2008; 7:4488-98. [PMID: 18072207 DOI: 10.1002/pmic.200700626] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The serine protease high-temperature requirement A (HtrA) (DegP) of the human pathogen Streptococcus pyogenes (group A Streptococcus; GAS) is localized to the ExPortal secretory microdomain and is reportedly essential for the maturation of cysteine protease streptococcal pyrogenic exotoxin B (SpeB). Here, we utilize HSC5 (M5 serotype) and the in-frame isogenic mutant HSC5DeltahtrA to determine whether HtrA contributes to the maturation of other GAS virulence determinants. Mutanolysin cell wall extracts and secreted proteins were arrayed by 2-DE and identified by MALDI-TOF PMF analysis. HSC5DeltahtrA had elevated levels of cell wall-associated M protein, whilst the supernatant had higher concentrations of M protein fragments and a reduced amount of mature SpeB protease, compared to wild-type (WT). Western blot analysis and protease assays revealed a delay in the maturation of SpeB in the HSC5DeltahtrA supernatant. HtrA was unable to directly process SpeB zymogen (proSpeB) to the active form in vitro. We therefore conclude that HtrA plays an indirect role in the maturation of cysteine protease SpeB.
Collapse
Affiliation(s)
- Jason N Cole
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fu Q, Figuera-Losada M, Ploplis VA, Cnudde S, Geiger JH, Prorok M, Castellino FJ. The lack of binding of VEK-30, an internal peptide from the group A streptococcal M-like protein, PAM, to murine plasminogen is due to two amino acid replacements in the plasminogen kringle-2 domain. J Biol Chem 2007; 283:1580-1587. [PMID: 18039665 DOI: 10.1074/jbc.m705063200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
VEK-30, a 30-amino acid internal peptide present within a streptococcal M-like plasminogen (Pg)-binding protein (PAM) from Gram-positive group-A streptococci (GAS), represents an epitope within PAM that shows high affinity for the lysine binding site (LBS) of the kringle-2 (K2) domain of human (h)Pg. VEK-30 does not interact with this same region of mouse (m)Pg, despite the high conservation of the mK2- and hK2-LBS. To identify the molecular basis for the species specificity of this interaction, hPg and mPg variants were generated, including an hPg chimera with the mK2 sequence and an mPg chimera containing the hK2 sequence. The binding of synthetic VEK-30 to these variants was studied by surface plasmon resonance. The data revealed that, in otherwise intact Pg, the species specificity of VEK-30 binding in these two cases is entirely dictated by two K2 residues that are different between hPg and mPg, namely, Arg-220 of hPg, which is a Gly in mPg, and Leu-222 of hPg, which is a Pro in mPg, neither of which are members of the canonical K2-LBS. Neither the activation of hPg, nor the enzymatic activity of its activated product, plasmin (hPm), are compromised by replacing these two amino acids by their murine counterparts. It is also demonstrated that hPg is more susceptible to activation to hPm after complexation with VEK-30 and that this property is greatly reduced as a result of the R220G and L222P replacements in hPg. These mechanisms for accumulation of protease activity on GAS likely contribute to the virulence of PAM(+)-GAS strains and identify targets for new therapeutic interventions.
Collapse
Affiliation(s)
- Qihua Fu
- W. M. Keck Center for Transgene Research and the Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Mariana Figuera-Losada
- W. M. Keck Center for Transgene Research and the Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research and the Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Sara Cnudde
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Mary Prorok
- W. M. Keck Center for Transgene Research and the Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research and the Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556.
| |
Collapse
|
47
|
McDonald M, Towers RJ, Andrews RM, Carapetis JR, Currie BJ. Epidemiology of Streptococcus dysgalactiae subsp. equisimilis in tropical communities, Northern Australia. Emerg Infect Dis 2007; 13:1694-700. [PMID: 18217553 PMCID: PMC3375807 DOI: 10.3201/eid1311.061258] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Streptococcus dysgalactiae subsp. equisimilis (groups C and G streptococci [GCS/GGS]) is an increasingly recognized human pathogen, although it may follow indirect pathways. Prospective surveillance of selected households in 3 remote Aboriginal communities in Australia provided 337 GCS/GGS isolates that were emm sequence-typed. Lancefield group C isolates (GCS) were localized to specific households and group G isolates (GGS) were more evenly distributed. GCS/GGS was more frequently recovered from the throat than group A streptococci (GAS [S. pyogenes]) but rarely recovered from skin sores, and then only with Staphylococcus aureus or GAS. Symptomatic GGS/GGC pharyngitis was also rare. Specific emm sequence types of GCS/GGS did not appear to cycle through the communities (sequential strain replacement) in a manner suggesting acquisition of type-specific immunity. These communities already have high levels of streptococcal and poststreptococcal disease. GCS/GGS may increase in importance as it acquires key virulence factors from GAS by lateral gene transfer.
Collapse
Affiliation(s)
- Malcolm McDonald
- Menzies School of Health Research, Charles Darwin University, Casuarina, Northern Territory, Australia.
| | | | | | | | | |
Collapse
|
48
|
Walker MJ, Hollands A, Sanderson-Smith ML, Cole JN, Kirk JK, Henningham A, McArthur JD, Dinkla K, Aziz RK, Kansal RG, Simpson AJ, Buchanan JT, Chhatwal GS, Kotb M, Nizet V. DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med 2007; 13:981-5. [PMID: 17632528 DOI: 10.1038/nm1612] [Citation(s) in RCA: 326] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 05/30/2007] [Indexed: 12/16/2022]
Abstract
Most invasive bacterial infections are caused by species that more commonly colonize the human host with minimal symptoms. Although phenotypic or genetic correlates underlying a bacterium's shift to enhanced virulence have been studied, the in vivo selection pressures governing such shifts are poorly understood. The globally disseminated M1T1 clone of group A Streptococcus (GAS) is linked with the rare but life-threatening syndromes of necrotizing fasciitis and toxic shock syndrome. Mutations in the GAS control of virulence regulatory sensor kinase (covRS) operon are associated with severe invasive disease, abolishing expression of a broad-spectrum cysteine protease (SpeB) and allowing the recruitment and activation of host plasminogen on the bacterial surface. Here we describe how bacteriophage-encoded GAS DNase (Sda1), which facilitates the pathogen's escape from neutrophil extracellular traps, serves as a selective force for covRS mutation. The results provide a paradigm whereby natural selection exerted by the innate immune system generates hypervirulent bacterial variants with increased risk of systemic dissemination.
Collapse
Affiliation(s)
- Mark J Walker
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tart AH, Walker MJ, Musser JM. New understanding of the group A Streptococcus pathogenesis cycle. Trends Microbiol 2007; 15:318-25. [PMID: 17524649 DOI: 10.1016/j.tim.2007.05.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/26/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
Group A Streptococcus (GAS) has long been recognized as a human pathogen causing an exceptionally broad range of infections. Despite intense research, however, the molecular mechanisms of GAS disease remain unclear. Recently, many important discoveries have been made that shed light on GAS pathogenesis and open exciting avenues for future research. Advances in genome sequencing, microarray technology and proteomic analysis, in combination with the development of more suitable animal models, have markedly increased our knowledge of the mechanisms underlying GAS pathogenesis. The information gained from these studies will translate into improved diagnostics and new targets for therapeutic drugs and vaccines.
Collapse
Affiliation(s)
- Anne H Tart
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology, The Methodist Hospital, 6565 Fannin Street B490, Houston, TX 77030, USA
| | | | | |
Collapse
|
50
|
McDonald MI, Towers RJ, Fagan P, Carapetis JR, Currie BJ. Molecular typing of Streptococcus pyogenes from remote Aboriginal communities where rheumatic fever is common and pyoderma is the predominant streptococcal infection. Epidemiol Infect 2007; 135:1398-405. [PMID: 17306049 PMCID: PMC2870701 DOI: 10.1017/s0950268807008023] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Aboriginal Australians in remote communities have high rates of rheumatic heart disease (RHD); yet pharyngitis is reportedly rare whilst pyoderma is common. Some strains of group A streptococci (GAS) have preference for the throat and others for the skin depending on M protein type. A study in three remote communities provided 350 GAS isolates for emm sequence typing, 244 were also emm pattern typed. There was 100% correlation between emm sequence and pattern type. Patterns D and E (non-throat tropic) made up 71% of throat and 87% of skin isolates although patterns A-C (throat tropic) were more common in the throat than the skin (RR 2.3, 95% CI 1.4-3.8) whilst the opposite was found for pattern D (RR 2.2, 95% CI 1.7-3.0). Pattern E favoured the throat (RR 1.4, 95% CI 1.1-1.8). Where environmental factors predispose to skin infection, emm pattern types D and E prevail, whatever the recovery site.
Collapse
Affiliation(s)
- M I McDonald
- Menzies School of Health Research, Casuarina, 0811, NT, Australia.
| | | | | | | | | |
Collapse
|