1
|
Wang J, Qin J, Hu B, Zhang Z, Cao B, Guo X. A Novel Sero-Specific-Gene Dependent Multiplex PCR Enhances the Discrimination of Major Listeria monocytogenes Serovars. J Microbiol Biotechnol 2025; 35:e2411081. [PMID: 40081907 PMCID: PMC11925748 DOI: 10.4014/jmb.2411.11081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 03/16/2025]
Abstract
Listeria monocytogenes is a foodborne bacterial pathogen distributed worldwide. Serotyping is extensively applied in the classification of L. monocytogenes and is crucial in the early stage of epidemiological tracing. Among the 13 serovars, 1/2a, 1/2b, 1/2c, and 4b are the ones most frequently isolated. Numerous PCR-based methods have been presented, however, their target genes, lmo0737, ORF2110 and ORF2819, are prone to horizontal transfer or loss in certain strains, thus leading to incorrect serovar designation. Herein, we selected novel sero-specific genes and developed an improved multiplex PCR assay. The specificity of our assay was confirmed by the use of target and nontarget Listeria reference strains, as well as by the use of isolates yielding incorrect profiles in previous studies. Sensitivity tests indicated that a minimum of 5 ng of genomic DNA or approximately 3 × 106 CFU of pure culture could be detected. Many collected isolates and genomes of global isolates were used to evaluate the specificity and reproducibility of our assay. The agreement between our assay and the agglutination test was 95%, and the one between our assay and the Doumith scheme was 97%. However, our assay overcomes the drawbacks of currently used PCR-based approaches by exhibiting 100% accuracy for certain strains and clones, for instance, ST782 within the hypervirulent CC2 and ST218 that were incorrectly assigned by the Doumith scheme. In conclusion, the developed assay herein will be a powerful tool and an alternative for the classification of L. monocytogenes strains in foodborne outbreak investigations and surveillance programs.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, P.R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, P.R. China
| | - Jingliang Qin
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, P.R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, P.R. China
| | - Bin Hu
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Zixu Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, P.R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, P.R. China
| | - Boyang Cao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, P.R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, P.R. China
| | - Xi Guo
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, P.R. China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, P.R. China
| |
Collapse
|
2
|
Kim BE, Jothi R, Kim DW, Park DS. Novel primers drive accurate SYBR Green PCR detection of Listeria monocytogenes and Listeria innocua in cultures and mushrooms. Sci Rep 2025; 15:1357. [PMID: 39779768 PMCID: PMC11711378 DOI: 10.1038/s41598-024-81508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
The close genetic resemblance between Listeria monocytogenes and Listeria innocua, combined with their presence in similar environments, poses challenges for species-specific detection in food products. Ensuring food safety through microbiological standards necessitates reliable detection of pathogens like L. monocytogenes and L. innocua throughout the food chain using appropriate analytical techniques. This study aims to develop, identify, and validate a SYBR Green qPCR-based genetic marker designed to detect L. monocytogenes and L. innocua. By performing a comparative analysis of the complete genome sequences of L. monocytogenes (ATCC 12392) and L. innocua (CFSAN044836), a unique gene region encoding a hypothetical protein with an LPXTG cell wall anchor domain (GCF_003031895.1) in L. monocytogenes and leucine-rich repeats (GCF_009648575.1) in L. innocua was identified. Primers targeting these specific region were designed and validated for their effectiveness in detecting L. monocytogenes/L. innocua using both conventional PCR and qPCR techniques. These primers exhibited high sensitivity and specificity in amplifying L. monocytogenes and L. innocua among different Listeria species. The sensitivity and specificity of the primers were further confirmed through standard curve analysis using three different templates: cloned DNA (as a positive control), genomic DNA, and bacterial cell suspension. Additionally, the primers were rigorously tested and validated for their accuracy in directly detecting the targeted strains in live enoki mushroom samples. This direct qPCR method offers significant advantages for the rapid and precise detection of L. monocytogenes and L. innocua, potentially enhancing the efficiency of diagnostic and monitoring processes within food and vegetable distribution systems.
Collapse
Affiliation(s)
- Bo-Eun Kim
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Ravi Jothi
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Da Woon Kim
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Dong Suk Park
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea.
| |
Collapse
|
3
|
Shi W, Zhang Q, Li H, Du D, Ma X, Wang J, Jiang J, Liu C, Kou L, Ren J. Biofilm Formation, Motility, and Virulence of Listeria monocytogenes Are Reduced by Deletion of the Gene lmo0159, a Novel Listerial LPXTG Surface Protein. Microorganisms 2024; 12:1354. [PMID: 39065121 PMCID: PMC11278909 DOI: 10.3390/microorganisms12071354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen that causes listeriosis in humans and other animals. Surface proteins with the LPXTG motif have important roles in the virulence of L. monocytogenes. Lmo0159 is one such protein, but little is known about its role in L. monocytogenes virulence, motility, and biofilm formation. Here, we constructed and characterized a deletion mutant of lmo0159 (∆lmo0159). We analyzed not only the capacity of biofilm formation, motility, attachment, and intracellular growth in different cell types but also LD50; bacterial load in mice's liver, spleen, and brain; expression of virulence genes; and survival time of mice after challenge. The results showed that the cross-linking density of the biofilm of ∆lmo0159 strain was lower than that of WT by microscopic examination. The expression of biofilm-formation and virulence genes also decreased in the biofilm state. Subsequently, the growth and motility of ∆lmo0159 in the culture medium were enhanced. Conversely, the growth and motility of L. monocytogenes were attenuated by ∆lmo0159 at both the cellular and mouse levels. At the cellular level, ∆lmo0159 reduced plaque size; accelerated scratch healing; and attenuated the efficiency of adhesion, invasion, and intracellular proliferation in swine intestinal epithelial cells (SIEC), RAW264.7, mouse-brain microvascular endothelial cells (mBMEC), and human-brain microvascular endothelial cells (hCMEC/D3). The expression of virulence genes was also inhibited. At the mouse level, the LD50 of the ∆lmo0159 strain was 100.97 times higher than that of the WT strain. The bacterial load of the ∆lmo0159 strain in the liver and spleen was lower than that of the WT strain. In a mouse model of intraperitoneal infection, the deletion of the lmo0159 gene significantly prolonged the survival time of the mice, suggesting that the lmo0159 deletion mutant also exhibited reduced virulence. Thus, our study identified lmo0159 as a novel virulence factor among L. monocytogenes LPXTG proteins.
Collapse
Affiliation(s)
- Weidi Shi
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
| | - Qiwen Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
| | - Honghuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
| | - Dongdong Du
- Analysis and Testing Center, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi 832000, China;
| | - Xun Ma
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
| | - Jing Wang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction, Shihezi 832000, China
| | - Jianjun Jiang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
| | - Caixia Liu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
| | - Lijun Kou
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
| | - Jingjing Ren
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
| |
Collapse
|
4
|
Alejandro-Navarreto X, Freitag NE. Revisiting old friends: updates on the role of two-component signaling systems in Listeria monocytogenes survival and pathogenesis. Infect Immun 2024; 92:e0034523. [PMID: 38591895 PMCID: PMC11003226 DOI: 10.1128/iai.00345-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Listeria monocytogenes is well recognized for both its broad resistance to stress conditions and its ability to transition from a soil bacterium to an intracellular pathogen of mammalian hosts. The bacterium's impressive ability to adapt to changing environments and conditions requires the rapid sensing of environmental cues and the coordinated response of gene products that enable bacterial growth and survival. Two-component signaling systems (TCSs) have been long recognized for their ability to detect environmental stimuli and transmit those signals into transcriptional responses; however, often the precise nature of the stimulus triggering TCS responses can be challenging to define. L. monocytogenes has up to 16 TCSs that have been recognized based on homology and included in this list are several whose functions remain poorly described. This review highlights the current understanding of the breadth and scope of L. monocytogenes TCS as relates to stress resistance and pathogenesis. Precise signals still often remain elusive, but the gene networks associated with TCSs are providing clues into possible functions.
Collapse
Affiliation(s)
| | - Nancy E. Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Zhu L, Ji X, Wu Y, Xu W, Wang F, Huang X. Molecular characterization of Listeria monocytogenes strains isolated from imported food in China from 14 countries/regions, 2003-2018. Front Cell Infect Microbiol 2023; 13:1287564. [PMID: 38179422 PMCID: PMC10765603 DOI: 10.3389/fcimb.2023.1287564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Listeria monocytogenes (Lm) is associated with severe foodborne infections and ubiquitous in the nature. Identification of characteristics of Lm transmission through trading of food products is essential for rapidly tracking Lm sources and controlling dissemination of listeriosis. In this study, a total of 44 Lm strains were isolated from food products originating from 14 countries/regions during 2003-2018 at the Shanghai port. The genomes of these Lm strains were sequenced by high-throughput sequencing. Multilocus sequence typing (MLST) analysis showed that 43 isolates were divided into 17 sequence types (STs). The distribution of STs was decentralized, with the dominant ST2 accounting for only 18.18% of the strains. The LM63 strain did not match with any of the existing STs. Core-genome MLST (cgMLST) analysis based on 1748 core genes categorized the 44 strains into 30 cgMLST types (CTs), with CT10153 and CT7892 as the most predominant CTs. Notably, LM63 and LM67 shared the same CT in the cgMLST analysis. The phylogenetic analysis based on single-copy homologous genes revealed that the 44 Lm strains were primarily classified into two lineages. The SNP analysis also indicated that these strains were roughly divided into two clades, with strains in the first clade mainly collected earlier than those in the second clade, which were predominantly collected from 2010 onwards. The analysis using the virulence factor database (VFDB) indicated that the virulence gene inlJ was the most prevalent among these 44 strains. Notably, ddrA, msbA, and sugC were enriched in this dataset, requiring further clarification of their roles in Listeria through future studies. These results might provide a clue for understanding of the global epidemiology and surveillance of Lm and present insights for implementing effective measures to reduce or prevent Listeria contamination outbreaks in imported food products.
Collapse
Affiliation(s)
- Liying Zhu
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xuejiao Ji
- Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Feifei Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xinxin Huang
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| |
Collapse
|
6
|
Upham JP, Eisebraun M, Fortuna A, Mallo GV. Substituting Allose as the Primary Carbon Source During Enrichment Helps Improve Detection and Isolation of Lineage II Listeria monocytogenes From Food. J Food Prot 2023; 86:100104. [PMID: 37178924 DOI: 10.1016/j.jfp.2023.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Testing of foods for low levels of the human pathogen, Listeria monocytogenes (Lm), involves a selective enrichment procedure. A nonpathogenic species of Listeria, L. innocua (Li), is often present in foods and food-manufacturing environments and is an interference organism for Lm detection due to competition during enrichment. The present study investigated whether a novel enrichment strategy incorporating the sugar allose into the secondary enrichment broth (allose method) could improve the detection of Lm from foods when Li is present. First, Canadian food isolates of Listeria spp. were tested to confirm recent reports that lineage II Lm (LII-Lm), but not Li, could metabolize allose. All LII-Lm isolates (n = 81), but not Li (n = 36), possessed the allose genes lmo0734-lmo0739, and could efficiently metabolize allose. Next, smoked salmon was contaminated with mixtures of LII-Lm and Li and tested using different enrichment procedures to compare the ability to recover Lm. Allose broth was more effective than Fraser Broth, with Lm detected in 87% (74 of 85) compared to 59% (50 of 85) of the samples (P < 0.05), following a common preenrichment. When evaluated against a current Health Canada method (MFLP-28), the allose method was more effective, with LII-Lm detected in 88% (57 of 65) compared to 69% (45 of 65) of the samples (P < 0.05). The allose method also remarkably increased the ratio of LII-Lm to Li postenrichment, which improved the ease of obtaining isolated Lm colonies for confirmation tests. Allose may therefore provide a tool for use when the presence of background flora interferes with Lm detection. As this tool is specifically applicable to a subset of Lm, the use of this method modification may provide a working example of tailoring methodology to target the known subtype of the pathogen of interest in an outbreak investigation, or for regular monitoring activities in conjunction with a PCR screen for allose genes on preenrichment cultures.
Collapse
Affiliation(s)
- Jacqueline P Upham
- Canadian Food Inspection Agency - Dartmouth Laboratory, Dartmouth, Nova Scotia, Canada B3B 1Y9.
| | - Mikaela Eisebraun
- Canadian Food Inspection Agency - Dartmouth Laboratory, Dartmouth, Nova Scotia, Canada B3B 1Y9
| | - Alex Fortuna
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada M5G 0A3
| | - Gustavo V Mallo
- Pathogen Preparedness and Test Development Unit, Public Health Ontario Laboratories, Toronto, Ontario, Canada M5G 1M1
| |
Collapse
|
7
|
Félix B, Capitaine K, Te S, Felten A, Gillot G, Feurer C, van den Bosch T, Torresi M, Sréterné Lancz Z, Delannoy S, Brauge T, Midelet G, Leblanc JC, Roussel S. Identification by High-Throughput Real-Time PCR of 30 Major Circulating Listeria monocytogenes Clonal Complexes in Europe. Microbiol Spectr 2023; 11:e0395422. [PMID: 37158749 PMCID: PMC10269651 DOI: 10.1128/spectrum.03954-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Listeria monocytogenes is a ubiquitous bacterium that causes a foodborne illness, listeriosis. Most strains can be classified into major clonal complexes (CCs) that account for the majority of outbreaks and sporadic cases in Europe. In addition to the 20 CCs known to account for the majority of human and animal clinical cases, 10 CCs are frequently reported in food production, thereby posing a serious challenge for the agrifood industry. Therefore, there is a need for a rapid and reliable method to identify these 30 major CCs. The high-throughput real-time PCR assay presented here provides accurate identification of these 30 CCs and eight genetic subdivisions within four CCs, splitting each CC into two distinct subpopulations, along with the molecular serogroup of a strain. Based on the BioMark high-throughput real-time PCR system, our assay analyzes 46 strains against 40 real-time PCR arrays in a single experiment. This European study (i) designed the assay from a broad panel of 3,342 L. monocytogenes genomes, (ii) tested its sensitivity and specificity on 597 sequenced strains collected from 24 European countries, and (iii) evaluated its performance in the typing of 526 strains collected during surveillance activities. The assay was then optimized for conventional multiplex real-time PCR for easy implementation in food laboratories. It has already been used for outbreak investigations. It represents a key tool for assisting food laboratories to establish strain relatedness with human clinical strains during outbreak investigations and for helping food business operators by improving their microbiological management plans. IMPORTANCE Multilocus sequence typing (MLST) is the reference method for Listeria monocytogenes typing but is expensive and takes time to perform, from 3 to 5 days for laboratories that outsource sequencing. Thirty major MLST clonal complexes (CCs) are circulating in the food chain and are currently identifiable only by sequencing. Therefore, there is a need for a rapid and reliable method to identify these CCs. The method presented here enables the rapid identification, by real-time PCR, of 30 CCs and eight genetic subdivisions within four CCs, splitting each CC into two distinct subpopulations. The assay was then optimized on different conventional multiplex real-time PCR systems for easy implementation in food laboratories. The two assays will be used for frontline identification of L. monocytogenes isolates prior to whole-genome sequencing. Such assays are of great interest for all food industry stakeholders and public agencies for tracking L. monocytogenes food contamination.
Collapse
Affiliation(s)
- Benjamin Félix
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Karine Capitaine
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Sandrine Te
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Arnaud Felten
- ANSES, Ploufragan/Plouzané/Niort Laboratory, Viral Genetics and Bio-Security Unit, Université Européenne de Bretagne, Ploufragan, France
| | | | - Carole Feurer
- IFIP–The French Pig and Pork Institute, Department of Fresh and Processed Meat, Le Rheu, France
| | - Tijs van den Bosch
- Wageningen Food Safety Research, Department of Bacteriology, Molecular Technology and Antimicrobial Resistance, Wageningen, The Netherlands
| | - Marina Torresi
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale” Via Campo Boario, Teramo, Italy
| | - Zsuzsanna Sréterné Lancz
- Microbiological National Reference Laboratory, National Food Chain Safety Office, Food Chain Safety Laboratory Directorate, Budapest, Hungary
| | - Sabine Delannoy
- ANSES, Laboratory for Food Safety, IdentyPath Platform, Maisons-Alfort, France
| | - Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne-sur-Mer, France
| | - Graziella Midelet
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne-sur-Mer, France
| | - Jean-Charles Leblanc
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| | - Sophie Roussel
- ANSES, European Union Reference Laboratory for Listeria monocytogenes, Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, Maisons-Alfort, France
| |
Collapse
|
8
|
Poimenidou SV, Caccia N, Paramithiotis S, Hébraud M, Nychas GJ, Skandamis PN. Influence of temperature on regulation of key virulence and stress response genes in Listeria monocytogenes biofilms. Food Microbiol 2023; 111:104190. [PMID: 36681396 DOI: 10.1016/j.fm.2022.104190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Temperature is a major determinant of Listeria (L.) monocytogenes adherence and biofilm formation on abiotic surfaces. However, its role on gene regulation of L. monocytogenes mature biofilms has not been investigated. In the present study, we aimed to evaluate the impact of temperature up- and down-shift on L. monocytogenes biofilms gene transcription. L. monocytogenes strain EGD-e biofilms were first developed on stainless steel surfaces in Brain Heart Infusion broth at 20 °C for 48 h. Then, nutrient broth was renewed, and mature biofilms were exposed to 10 °C, 20 °C or 37 °C for 24 h. Biofilm cells were harvested and RNA levels of plcA, prfA, hly, mpl, plcB, sigB, bapL, fbpA, fbpB, lmo2178, lmo0880, lmo0160, lmo1115, lmo 2089, lmo2576, lmo0159 and lmo0627 were evaluated by quantitative RT-PCR. The results revealed an over-expression of all genes tested in biofilm cells compared to planktonic cells. When biofilms were further allowed to proliferate at 20 °C for 24 h, the transcription levels of key virulence, stress response and putative binding proteins genes plcA, sigB, fbpA, fbpB, lmo1115, lmo0880 and lmo2089 decreased. A temperature-dependent transcription for sigB, plcA, hly, and lmo2089 genes was observed after biofilm proliferation at 10 °C or 37 °C. Our findings suggest that temperature differentially affects gene regulation of L. monocytogenes mature biofilms, thus modulating attributes such as virulence, stress response and pathogenesis.
Collapse
Affiliation(s)
- Sofia V Poimenidou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene. Iera Odos 75, 11855, Athens, Greece
| | - Nelly Caccia
- University Clermont Auvergne (UCA), Institut National de Recherche pour L'Agriculture, L'alimentation et L'environnement (INRAE), UMR Microbiologie, Environnement Digestif et Santé (MEDiS), Site de Theix, F-63122 Saint-Genès Champanelle, France
| | - Spiros Paramithiotis
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene. Iera Odos 75, 11855, Athens, Greece; Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Process Engineering. Iera Odos 75, 11855, Athens, Greece
| | - Michel Hébraud
- University Clermont Auvergne (UCA), Institut National de Recherche pour L'Agriculture, L'alimentation et L'environnement (INRAE), UMR Microbiologie, Environnement Digestif et Santé (MEDiS), Site de Theix, F-63122 Saint-Genès Champanelle, France
| | - George-John Nychas
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Microbiology and Biotechnology. Iera Odos 75, 11855, Athens, Greece
| | - Panagiotis N Skandamis
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene. Iera Odos 75, 11855, Athens, Greece.
| |
Collapse
|
9
|
Rahman S, Das AK. A subtractive proteomics and immunoinformatics approach towards designing a potential multi-epitope vaccine against pathogenic Listeriamonocytogenes. Microb Pathog 2022; 172:105782. [PMID: 36150556 DOI: 10.1016/j.micpath.2022.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
Abstract
Listeria monocytogenes is the causative agent of listeriosis, which is dangerous for pregnant women, the elderly or individuals with a weakened immune system. Individuals with leukaemia, cancer, HIV/AIDS, kidney transplant and steroid therapy suffer from immunological damage are menaced. World Health Organization (WHO) reports that human listeriosis has a high mortality rate of 20-30% every year. To date, no vaccine is available to treat listeriosis. Thereby, it is high time to design novel vaccines against L. monocytogenes. Here, we present computational approaches to design an antigenic, stable and safe vaccine against the L. monocytogenes that could help to control the infections associated with the pathogen. Three vital pathogenic proteins of L. monocytogenes, such as Listeriolysin O (LLO), Phosphatidylinositol-specific phospholipase C (PI-PLC), and Actin polymerization protein (ActA), were selected using a subtractive proteomics approach to design the multi-epitope vaccine (MEV). A total of 5 Cytotoxic T-lymphocyte (CTL) and 9 Helper T-lymphocyte (HTL) epitopes were predicted from these selected proteins. To design the multi-epitope vaccine (MEV) from the selected proteins, CTL epitopes were joined with the AAY linker, and HTL epitopes were joined with the GPGPG linker. Additionally, a human β-defensin-3 (hBD-3) adjuvant was added to the N-terminal side of the final MEV construct to increase the immune response to the vaccine. The final MEV was predicted to be antigenic, non-allergen and non-toxic in nature. Physicochemical property analysis suggested that the MEV construct is stable and could be easily purified through the E. coli expression system. This in-silico study showed that MEV has a robust binding interaction with Toll-like receptor 2 (TLR2), a key player in the innate immune system. Current subtractive proteomics and immunoinformatics study provides a background for designing a suitable, safe and effective vaccine against pathogenic L. monocytogenes.
Collapse
Affiliation(s)
- Shakilur Rahman
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
10
|
Pyz-Łukasik R, Paszkiewicz W, Kiełbus M, Ziomek M, Gondek M, Domaradzki P, Michalak K, Pietras-Ożga D. Genetic Diversity and Potential Virulence of Listeria monocytogenes Isolates Originating from Polish Artisanal Cheeses. Foods 2022; 11:2805. [PMID: 36140933 PMCID: PMC9497517 DOI: 10.3390/foods11182805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Artisanal cheeses can be sources of Listeria monocytogenes and cause disease in humans. This bacterial pathogen is a species of diverse genotypic and phenotypic characteristics. The aim of the study was to characterize 32 isolates of L. monocytogenes isolated in 2014-2018 from artisanal cheeses. The isolates were characterized using whole genome sequencing and bioinformatics analysis. The artisanal cheese isolates resolved to four molecular groups: 46.9% of them to IIa (1/2a-3a), 31.2% to IVb (4ab-4b-4d-4e), 12.5% to IIc (1/2c-3c), and 9.4% to IIb (1/2b-3b-7). Two evolutionary lineages emerged: lineage II having 59.4% of the isolates and lineage I having 40.6%. The sequence types (ST) totaled 18: ST6 (15.6% of the isolates), ST2, ST20, ST26, and ST199 (each 9.4%), ST7 and ST9 (each 6.3%), and ST1, ST3, ST8, ST16, ST87, ST91, ST121, ST122, ST195, ST217, and ST580 (each 3.1%). There were 15 detected clonal complexes (CC): CC6 (15.6% of isolates), CC9 (12.5%), CC2, CC20, CC26, and CC199 (each 9.4%), CC7 and CC8 (each 6.3%), and CC1, CC3, CC14, CC87, CC121, CC195, and CC217 (each 3.1%). The isolates were varied in their virulence genes and the differences concerned: inl, actA, LIPI-3, ami, gtcA, aut, vip, and lntA.
Collapse
Affiliation(s)
- Renata Pyz-Łukasik
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Waldemar Paszkiewicz
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Michał Kiełbus
- Department of Experimental Hematooncology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Monika Ziomek
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Michał Gondek
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Piotr Domaradzki
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| | - Dorota Pietras-Ożga
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland
| |
Collapse
|
11
|
Shen J, Zhang G, Yang J, Zhao L, Jiang Y, Guo D, Wang X, Zhi S, Xu X, Dong Q, Wang X. Prevalence, antibiotic resistance, and molecular epidemiology of Listeria monocytogenes isolated from imported foods in China during 2018 to 2020. Int J Food Microbiol 2022; 382:109916. [PMID: 36126498 DOI: 10.1016/j.ijfoodmicro.2022.109916] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 04/19/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
A total of 1797 imported food samples collected during 2018 to 2020 were investigated for Listeria monocytogenes. Antibiotic susceptibility tests and whole genome sequencing analysis were performed for the obtained isolates. The overall prevalence of L. monocytogenes was 5.62 %; the highest prevalence was observed for pork (13.65 %), followed by fish (6.25 %), sheep casing (6.06 %), chicken (3.61 %), and beef (2.06 %). Geographical differences in prevalence were also observed for pork. Resistance to oxacillin (39.33 %) and clindamycin (16.85 %) was common, whereas resistance rates for other antibiotics were relatively low, ranging from 0 % to 6.74 %. Pork and fish isolates showed resistance to more antibiotics than beef isolates. Tetracycline and chloramphenicol resistance phenotypes strongly correlated with genotypes. The predominant serogroup was 1/2a, 3a, at 44.44 %, while the percentages of three other serogroups were similar and relatively lower, from 17.28 % to 19.75 %. Significant genetic differences were observed among lineage I and II isolates. LIPI-3 was carried by 19.75 % (16/81) of isolates and LIPI-4 by 6.17 % (5/81); all were lineage I. The stress survival island was present in 31.03 % (9/29) of lineage I and 83.02 % (44/53) of lineage II. Benzalkonium chloride tolerance genes were carried by 10.34 % (3/29) of lineage I and 23.08 % (12/52) of lineage II isolates. A total of 25 sequence types (STs) were identified, among which one was novel; ST9 and ST121 were the most prevalent. Disparate distribution of STs among food types was observed, and geographical and food related characteristics were also found for some STs. Hypervirulent STs, such as ST1, ST4 and ST6, belonged to 4b,4e,4e; carried LIPI-3 and/or LIPI-4; and some even were ECI or ECII; while only one carried SSI or BC tolerance genes. In contrast, hypo-virulent STs such as ST9 and ST121 carried SSI and BC tolerance genes, while none had LIPI-3/LIPI-4. Certain STs were detected frequently from a particular food of a particular country for a long time, indicating more attention should be given to these special persistent isolates. These findings are valuable for source tracking, prevention and control of L. monocytogenes in the global food chain.
Collapse
Affiliation(s)
- Jinling Shen
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Guodong Zhang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Jielin Yang
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Lina Zhao
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Yuan Jiang
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing 210095, China.
| | - Dehua Guo
- Technology Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, China
| | - Xuan Wang
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Shuai Zhi
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xuebin Xu
- Shanghai Centers for Disease Prevention and Control, Shanghai 200336, China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
12
|
Persistence of Listeria monocytogenes ST5 in Ready-to-Eat Food Processing Environment. Foods 2022; 11:foods11172561. [PMID: 36076746 PMCID: PMC9454991 DOI: 10.3390/foods11172561] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Most human listeriosis is foodborne, and ready-to-eat (RET) foods contaminated by Listeria monocytogenes during processing are found to be common vehicles. In this study, a total of four L. monocytogens STs (ST5, ST121, ST120, and ST2) have been identified in two RTE food plants from 2019 to 2020 in Shanghai, China. The L. monocytogenes ST5 was predominant in one RTE food processing plant, and it persists in the RTE meat processing plant with continued clone transmission. The genetic features of the four STs isolates were different. ST5 and ST121 had the three genes clpL, mdrL, and lde; however, ST120 and ST2 had two genes except for clpL. SSI-1was present in ST5, ST121, and ST120. Additionally, SSI-2 was present only in the ST121 isolates. ST120 had all six biofilm-forming associated genes (actA, prfA, lmo0673, recO, lmo2504 and luxS). The ST2 isolate had only three biofilm-forming associated genes, which were prfA, lmo0673, and recO. The four ST isolates had different biofilm formation abilities at different stages. The biofilm formation ability of ST120 was significantly higher when grown for one day. However, the biofilm formation ability of ST120 reduced significantly after growing for four days. In contrast, the biofilm formation ability of ST5 and ST121 increased significantly. These results suggested that ST5 and ST121 had stronger ability to adapt to stressful environments. Biofilms formed by all four STs grown over four days can be sanitized entirely by a disinfectant concentration of 500 mg/L. Additionally, only ST5 and ST121 biofilm cells survived in sub-lethal concentrations of chlorine-containing disinfectant. These results suggested that ST5 and ST121 were more resistant to chlorine-containing disinfectants. These results indicated that the biofilm formation ability of L. monocytogenes isolates changed at different stages. Additionally, the persistence in food processing environments might be verified by the biofilm formation, stress resistance, etc. Alternatively, these results underlined that disinfectants should be used at lethal concentrations. More attention should be paid to ST5 and ST121, and stronger surveillance should be taken to prevent and control the clonal spread of L. monocytogenes isolates in food processing plants in Shanghai.
Collapse
|
13
|
Novel Approaches to Environmental Monitoring and Control of Listeria monocytogenes in Food Production Facilities. Foods 2022; 11:foods11121760. [PMID: 35741961 PMCID: PMC9222551 DOI: 10.3390/foods11121760] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a serious public health hazard responsible for the foodborne illness listeriosis. L. monocytogenes is ubiquitous in nature and can become established in food production facilities, resulting in the contamination of a variety of food products, especially ready-to-eat foods. Effective and risk-based environmental monitoring programs and control strategies are essential to eliminate L. monocytogenes in food production environments. Key elements of the environmental monitoring program include (i) identifying the sources and prevalence of L. monocytogenes in the production environment, (ii) verifying the effectiveness of control measures to eliminate L. monocytogenes, and (iii) identifying the areas and activities to improve control. The design and implementation of the environmental monitoring program are complex, and several different approaches have emerged for sampling and detecting Listeria monocytogenes in food facilities. Traditional detection methods involve culture methods, followed by confirmation methods based on phenotypic, biochemical, and immunological characterization. These methods are laborious and time-consuming as they require at least 2 to 3 days to obtain results. Consequently, several novel detection approaches are gaining importance due to their rapidness, sensitivity, specificity, and high throughput. This paper comprehensively reviews environmental monitoring programs and novel approaches for detection based on molecular methods, immunological methods, biosensors, spectroscopic methods, microfluidic systems, and phage-based methods. Consumers have now become more interested in buying food products that are minimally processed, free of additives, shelf-stable, and have a better nutritional and sensory value. As a result, several novel control strategies have received much attention for their less adverse impact on the organoleptic properties of food and improved consumer acceptability. This paper reviews recent developments in control strategies by categorizing them into thermal, non-thermal, biocontrol, natural, and chemical methods, emphasizing the hurdle concept that involves a combination of different strategies to show synergistic impact to control L. monocytogenes in food production environments.
Collapse
|
14
|
Lakicevic BZ, Den Besten HMW, De Biase D. Landscape of Stress Response and Virulence Genes Among Listeria monocytogenes Strains. Front Microbiol 2022; 12:738470. [PMID: 35126322 PMCID: PMC8811131 DOI: 10.3389/fmicb.2021.738470] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
The pathogenic microorganism Listeria monocytogenes is ubiquitous and responsible for listeriosis, a disease with a high mortality rate in susceptible people. It can persist in different habitats, including the farm environment, the food production environments, and in foods. This pathogen can grow under challenging conditions, such as low pH, low temperatures, and high salt concentrations. However, L. monocytogenes has a high degree of strain divergence regarding virulence potential, environmental adaption, and stress response. This review seeks to provide the reader with an up-to-date overview of clonal and serotype-specific differences among L. monocytogenes strains. Emphasis on the genes and genomic islands responsible for virulence and resistance to environmental stresses is given to explain the complex adaptation among L. monocytogenes strains. Moreover, we highlight the use of advanced diagnostic technologies, such as whole-genome sequencing, to fine-tune quantitative microbiological risk assessment for better control of listeriosis.
Collapse
Affiliation(s)
- Brankica Z. Lakicevic
- Institute of Meat Hygiene and Technology, Belgrade, Serbia
- *Correspondence: Brankica Z. Lakicevic,
| | | | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
15
|
Muñoz AI, Edna Catering. Distribution and phenotypic and genotypic characterization of Listeria monocytogenes isolated from food, Colombia, 2010-2018. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2021; 41:165-179. [PMID: 34669287 PMCID: PMC11616723 DOI: 10.7705/biomedica.6152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Introduction: Listeria monocytogenes is a food-borne pathogen that may cause infections in humans such as meningitis, meningoencephalitis, and septicemia, as well as abortions. By serological typing 13 serotypes have been identified of which 4b is responsible for most of the outbreaks in the world. Objective: To determine the frequency and distribution of serotypes and molecular subtypes of L. monocytogenes isolated in Colombia from food from 2010 to 2018. Materials and methods: We conducted a retrospective and descriptive study based on the analysis of 2,420 isolates confirmed as L. monocytogenes and other species using biochemical and serological tests, and pulsed-field gel electrophoresis (PFGE) for molecular subtyping. Results: Of the 2,420 isolates received, 2,326 were confirmed as L. monocytogenes. The serotypes found were 4b (52%), 4d-4e (14.5%), 1/2a (11%), 1/2c (9.4%), 1/2b (9%), and 3a, 3b, 3c, 4c, 4d, 4e and 7 (less than 2%). The isolates came from Bogotá (43%), Antioquia (25%), Valle (10%), Nariño (9%), and other departments (7%). The genotypic characterization grouped the isolates in 167 PFGE patterns. The most frequent patterns were identified in various dairy and meat products, and in prepared foods. Conclusion: A 96.1% of the isolates corresponded to L. monocytogenes showing good agreement between isolates and identification. Serotype 4b, highly virulent, was the most frequent. The molecular analysis showed the possible dissemination and permanence over time of several serotypes, which highlights the importance of including this pathogen in epidemiological food surveillance programs.
Collapse
Affiliation(s)
- Ana Isabel Muñoz
- Instituto Nacional de Vigilancia de Medicamentos y Alimentos, INVIMA, Bogotá, D.C., Colombia.
| | - Edna Catering
- Instituto Nacional de Vigilancia de Medicamentos y Alimentos, INVIMA, Bogotá, D.C., Colombia.
| |
Collapse
|
16
|
Parussolo L, Sfaciotte RAP, Dalmina KA, Melo FD, Costa UMDA, Ferraz SM. Detection of virulence genes and antimicrobial susceptibility profile of Listeria monocytogenes isolates recovered from artisanal cheese produced in the Southern region of Brazil. AN ACAD BRAS CIENC 2021; 93:e20190200. [PMID: 33950134 DOI: 10.1590/0001-3765202120190200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/13/2019] [Indexed: 11/22/2022] Open
Abstract
Listeria monocytogenes is an opportunistic pathogen that causes listeriosis, a foodborne disease with low incidence but with high mortality rate in humans. This microorganism has been recovered from several dairy products, especially those produced with raw milk. The objective of this work was to investigate the presence of virulence genes, and also to define the antimicrobial susceptibility profile of L. monocytogenes isolates recovered from serrano artisanal cheese produced in Southern region of Brazil. Nine strains of L. monocytogenes (serotypes 1/2b and 4b) were evaluated through PCR to detect the presence of the virulence genes hly, inlA, inlC, inlJ, actA, plcB and iap, while antimicrobial susceptibility profile was determined via disk diffusion method. All strains exhibited the presence of the genes hly and plcB, whereas the other genes (iap, actA, inlA, inlC and inlJ) were only detected in eight strains. We verified that all strains were resistant to at least one antimicrobial agent and three of them showed multidrug resistance. These findings demonstrated the serrano artisanal cheese offers risks to consumers' health and point to a need of adaptations and monitoring of manufacturing process of this food, in order to prevent the dissemination of L. monocytogenes.
Collapse
Affiliation(s)
- Leandro Parussolo
- Universidade do Estado de Santa Catarina, Centro de Diagnóstico Microbiológico Animal, Centro de Ciências Agroveterinárias, Av. Luiz de Camões, 2090, Bairro Conta Dinheiro, 88520-000 Lages, SC, Brazil.,Instituto Federal de Santa Catarina, Av. Mauro Ramos, 950, Centro, 88020-300 Florianópolis, SC, Brazil
| | - Ricardo Antônio P Sfaciotte
- Universidade do Estado de Santa Catarina, Centro de Diagnóstico Microbiológico Animal, Centro de Ciências Agroveterinárias, Av. Luiz de Camões, 2090, Bairro Conta Dinheiro, 88520-000 Lages, SC, Brazil
| | - Karine Andrezza Dalmina
- Universidade do Estado de Santa Catarina, Centro de Diagnóstico Microbiológico Animal, Centro de Ciências Agroveterinárias, Av. Luiz de Camões, 2090, Bairro Conta Dinheiro, 88520-000 Lages, SC, Brazil
| | - Fernanda Danielle Melo
- Universidade do Estado de Santa Catarina, Centro de Diagnóstico Microbiológico Animal, Centro de Ciências Agroveterinárias, Av. Luiz de Camões, 2090, Bairro Conta Dinheiro, 88520-000 Lages, SC, Brazil
| | - Ubirajara M DA Costa
- Universidade do Estado de Santa Catarina, Centro de Diagnóstico Microbiológico Animal, Centro de Ciências Agroveterinárias, Av. Luiz de Camões, 2090, Bairro Conta Dinheiro, 88520-000 Lages, SC, Brazil
| | - Sandra Maria Ferraz
- Universidade do Estado de Santa Catarina, Centro de Diagnóstico Microbiológico Animal, Centro de Ciências Agroveterinárias, Av. Luiz de Camões, 2090, Bairro Conta Dinheiro, 88520-000 Lages, SC, Brazil
| |
Collapse
|
17
|
Li F, Ye Q, Chen M, Zhang J, Xue L, Wang J, Wu S, Zeng H, Gu Q, Zhang Y, Wei X, Ding Y, Wu Q. Multiplex PCR for the Identification of Pathogenic Listeria in Flammulina velutipes Plant Based on Novel Specific Targets Revealed by Pan-Genome Analysis. Front Microbiol 2021; 11:634255. [PMID: 33519795 PMCID: PMC7843925 DOI: 10.3389/fmicb.2020.634255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Listeria spp. is an important foodborne disease agent, often found in the fresh mushroom (Flammulina velutipes) and its production environment. The aim of this study was to develop multiplex PCR for rapid identification of Listeria monocytogenes and Listeria ivanovii, and nonpathogenic Listeria in F. velutipes plants. Pan-genome analysis was first used to identify five novel Listeria-specific targets: one for the Listeria genus, one for L. monocytogenes, and three for L. ivanovii. Primers for the novel targets were highly specific in individual reactions. The detection limits were 103-104 CFU/mL, meeting the requirements of molecular detection. A mPCR assay for the identification of pathogenic Listeria, with primers targeting the novel genes specific for Listeria genus (LMOSLCC2755_0944), L. monocytogenes (LMOSLCC2755_0090), and L. ivanovii (queT_1) was then designed. The assay specificity was robustly verified by analyzing nonpathogenic Listeria and non-Listeria spp. strains. The determined detection limits were 2.0 × 103 CFU/mL for L. monocytogenes and 3.4 × 103 CFU/mL for L. ivanovii, for pure culture analysis. Further, the assay detected 7.6 × 104 to 7.6 × 100 CFU/10 g of pathogenic Listeria spiked into F. velutipes samples following 4-12 h enrichment. The assay feasibility was evaluated by comparing with a traditional culture-based method, by analyzing 129 samples collected from different F. velutipes plants. The prevalence of Listeria spp. and L. monocytogenes was 58.1% and 41.1%, respectively. The calculated κ factors for Listeria spp., L. monocytogenes, and L. ivanovii were 0.97, 0.97, and 1, respectively. The results of the novel mPCR assay were highly consistent with those of the culture-based method. The new assay thus will allow rapid, specific, and accurate detection and monitoring of pathogenic Listeria in food and its production environment.
Collapse
Affiliation(s)
- Fan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haiyan Zeng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
18
|
Multilocus Sequence Typing (MLST) and Whole Genome Sequencing (WGS) of Listeria monocytogenes and Listeria innocua. Methods Mol Biol 2021; 2220:89-103. [PMID: 32975768 DOI: 10.1007/978-1-0716-0982-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nucleotide sequence-based methods focusing on the single-nucleotide polymorphisms (SNPs) of Listeria monocytogenes and L. innocua housekeeping genes (multilocus sequence typing) and in the core genome (core genome MLST) facilitate the rapid and interlaboratory comparison in open accessible databases as provided by Institute Pasteur ( https://bigsdb.web.pasteur.fr/listeria/listeria.html ). Strains can be compared on a global level and help to track forward and trace backward pathogen contamination events in food processing facilities and in outbreak scenarios.
Collapse
|
19
|
Why Are Some Listeria monocytogenes Genotypes More Likely To Cause Invasive (Brain, Placental) Infection? mBio 2020; 11:mBio.03126-20. [PMID: 33323519 PMCID: PMC7774001 DOI: 10.1128/mbio.03126-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although all isolates of the foodborne pathogen Listeria monocytogenes are considered to be pathogenic, epidemiological evidence indicates that certain serovar 4b lineages are more likely to cause severe invasive (neuromeningeal, maternal-fetal) listeriosis. Recently described as L. monocytogenes “hypervirulent” clones, no distinctive bacterial trait has been identified so far that could account for the differential pathogenicity of these strains. Although all isolates of the foodborne pathogen Listeria monocytogenes are considered to be pathogenic, epidemiological evidence indicates that certain serovar 4b lineages are more likely to cause severe invasive (neuromeningeal, maternal-fetal) listeriosis. Recently described as L. monocytogenes “hypervirulent” clones, no distinctive bacterial trait has been identified so far that could account for the differential pathogenicity of these strains. Here, we discuss some preliminary observations in experimentally infected mice suggesting that serovar 4b hypervirulent strains may have a hitherto unrecognized capacity for prolonged in vivo survival. We propose the hypothesis that protracted survivability in primary infection foci in liver and spleen—the first target organs after intestinal translocation—may cause L. monocytogenes serovar 4b hypervirulent clones to have a higher probability of secondary dissemination to brain and placenta.
Collapse
|
20
|
Zhang X, Ling L, Li Z, Wang J. Mining Listeria monocytogenes single nucleotide polymorphism sites to identify the major serotypes using allele-specific multiplex PCR. Int J Food Microbiol 2020; 335:108885. [DOI: 10.1016/j.ijfoodmicro.2020.108885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023]
|
21
|
Wambui J, Eshwar AK, Aalto-Araneda M, Pöntinen A, Stevens MJA, Njage PMK, Tasara T. The Analysis of Field Strains Isolated From Food, Animal and Clinical Sources Uncovers Natural Mutations in Listeria monocytogenes Nisin Resistance Genes. Front Microbiol 2020; 11:549531. [PMID: 33123101 PMCID: PMC7574537 DOI: 10.3389/fmicb.2020.549531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Nisin is a commonly used bacteriocin for controlling spoilage and pathogenic bacteria in food products. Strains possessing high natural nisin resistance that reduce or increase the potency of this bacteriocin against Listeria monocytogenes have been described. Our study sought to gather more insights into nisin resistance mechanisms in natural L. monocytogenes populations by examining a collection of 356 field strains that were isolated from different foods, food production environments, animals and human infections. A growth curve analysis-based approach was used to access nisin inhibition levels and assign the L. monocytogenes strains into three nisin response phenotypic categories; resistant (66%), intermediate (26%), and sensitive (8%). Using this categorization isolation source, serotype, genetic lineage, clonal complex (CC) and strain-dependent natural variation in nisin phenotypic resistance among L. monocytogenes field strains was revealed. Whole genome sequence analysis and comparison of high nisin resistant and sensitive strains led to the identification of new naturally occurring mutations in nisin response genes associated with increased nisin resistance and sensitivity in this bacterium. Increased nisin resistance was detected in strains harboring RsbUG77S and PBPB3V240F amino acid substitution mutations, which also showed increased detergent stress resistance as well as increased virulence in a zebra fish infection model. On the other hand, increased natural nisin sensitivity was detected among strains with mutations in sigB, vir, and dlt operons that also showed increased lysozyme sensitivity and lower virulence. Overall, our study identified naturally selected mutations involving pbpB3 (lm0441) as well as sigB, vir, and dlt operon genes that are associated with intrinsic nisin resistance in L. monocytogenes field strains recovered from various food and human associated sources. Finally, we show that combining growth parameter-based phenotypic analysis and genome sequencing is an effective approach that can be useful for the identification of novel nisin response associated genetic variants among L. monocytogenes field strains.
Collapse
Affiliation(s)
- Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mariella Aalto-Araneda
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Pöntinen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Patrick M K Njage
- Research Group for Genomic Epidemiology, Division for Global Surveillance, National Food Institute, Technical University of Denmark, Kengens Lyngby, Denmark
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Distribution, adhesion, virulence and antibiotic resistance of persistent Listeria monocytogenes in a pig slaughterhouse in Brazil. Food Microbiol 2019; 84:103234. [DOI: 10.1016/j.fm.2019.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/24/2023]
|
23
|
Ledlod S, Bunroddith K, Areekit S, Santiwatanakul S, Chansiri K. Development of a duplex lateral flow dipstick test for the detection and differentiation of Listeria spp. and Listeria monocytogenes in meat products based on loop-mediated isothermal amplification. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1139:121834. [PMID: 31812649 DOI: 10.1016/j.jchromb.2019.121834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022]
Abstract
Listeria spp. are a group of gram-positive bacteria consisting of 20 species. Among them, Listeria monocytogenes is one of the major species that infects humans since it contaminates raw fruits, vegetables, and many others food products. The conventional methods for the detection of Listeria spp. and L. monocytogenes are time-consuming, taking 5-7 days. Herein, a duplex lateral flow dipstick (DLFD) test combined with loop-mediated isothermal amplification (LAMP) was developed for the identification of Listeria spp. and L. monocytogenes within approximately 45 min with the optimized LAMP reaction times at 63 °C. Under the optimized conditions, the method detection limits (MDL) with reference to genomic DNA and pure culture were 900 femtograms (fg) and 20 cfu/mL, respectively. The LAMP-DLFD showed no cross-reactivity with eighteen - other pathogenic bacteria such as Salmonella spp., Staphylococcus aureus, Escherichia coli, Campylobacter coli, C. jejuni, Enterococcus faecalis, Vibrio cholerae, V. parahaemolyticus, Pseudomonas aeruginosa, Shigella dysenteriae, S. flexneri, Bacillus cereus, Lactobacillus acidophilus, L. casei and Pediococcus pentosaceus. Among 100 samples of food products, LAMP-DLFD demonstrated 100% accuracy when compared to other standard detection methods, such as ISO11290-1, enzyme-linked fluorescent assay (ELFA) technology (VIDAS) and PCR. In conclusion, LAMP-DLFD proved to be highly specific and sensitive assays for screening detection of Listeria spp. and L. monocytogenes.
Collapse
Affiliation(s)
- Sudarat Ledlod
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110, Thailand; CPF Laboratory, CPF Food and Beverage Co., LTD., 30/3 M 3, Suwintawong Rd, Lumpackchee, Nongjok, Bangkok 10530, Thailand; CPF Research and Development Center Co., LTD., 359 M.4, T. Lamsai, Amphoe Wang Noi, Phranakhon Sri Ayutthaya 13170, Thailand
| | - Kespunyavee Bunroddith
- Center of Excellence in Biosensors, Srinakharinwirot University, 222 M.1, Panyananthaphikkhu Chonprathan Medical Center, Tiwanon Road, Bang-talat, Pak Kret, Nonthaburi 11120, Thailand
| | - Supatra Areekit
- Innovative Learning Center, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110, Thailand; Center of Excellence in Biosensors, Srinakharinwirot University, 222 M.1, Panyananthaphikkhu Chonprathan Medical Center, Tiwanon Road, Bang-talat, Pak Kret, Nonthaburi 11120, Thailand
| | - Somchai Santiwatanakul
- Department of Pathology, Faculty of Medicine, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110, Thailand; Center of Excellence in Biosensors, Srinakharinwirot University, 222 M.1, Panyananthaphikkhu Chonprathan Medical Center, Tiwanon Road, Bang-talat, Pak Kret, Nonthaburi 11120, Thailand
| | - Kosum Chansiri
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110, Thailand; Center of Excellence in Biosensors, Srinakharinwirot University, 222 M.1, Panyananthaphikkhu Chonprathan Medical Center, Tiwanon Road, Bang-talat, Pak Kret, Nonthaburi 11120, Thailand.
| |
Collapse
|
24
|
|
25
|
Atypical Hemolytic Listeria innocua Isolates Are Virulent, albeit Less than Listeria monocytogenes. Infect Immun 2019; 87:IAI.00758-18. [PMID: 30670551 DOI: 10.1128/iai.00758-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/12/2019] [Indexed: 01/26/2023] Open
Abstract
Listeria innocua is considered a nonpathogenic Listeria species. Natural atypical hemolytic L. innocua isolates have been reported but have not been characterized in detail. Here, we report the genomic and functional characterization of representative isolates from the two known natural hemolytic L. innocua clades. Whole-genome sequencing confirmed the presence of Listeria pathogenicity islands (LIPI) characteristic of Listeria monocytogenes species. Functional assays showed that LIPI-1 and inlA genes are transcribed, and the corresponding gene products are expressed and functional. Using in vitro and in vivo assays, we show that atypical hemolytic L. innocua is virulent, can actively cross the intestinal epithelium, and spreads systemically to the liver and spleen, albeit to a lesser degree than the reference L. monocytogenes EGDe strain. Although human exposure to hemolytic L. innocua is likely rare, these findings are important for food safety and public health. The presence of virulence traits in some L. innocua clades supports the existence of a common virulent ancestor of L. monocytogenes and L. innocua.
Collapse
|
26
|
Establishment of Listeria monocytogenes in the Gastrointestinal Tract. Microorganisms 2019; 7:microorganisms7030075. [PMID: 30857361 PMCID: PMC6463042 DOI: 10.3390/microorganisms7030075] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022] Open
Abstract
Listeria monocytogenes is a Gram positive foodborne pathogen that can colonize the gastrointestinal tract of a number of hosts, including humans. These environments contain numerous stressors such as bile, low oxygen and acidic pH, which may impact the level of colonization and persistence of this organism within the GI tract. The ability of L. monocytogenes to establish infections and colonize the gastrointestinal tract is directly related to its ability to overcome these stressors, which is mediated by the efficient expression of several stress response mechanisms during its passage. This review will focus upon how and when this occurs and how this impacts the outcome of foodborne disease.
Collapse
|
27
|
Using genome-scale metabolic models to compare serovars of the foodborne pathogen Listeria monocytogenes. PLoS One 2018; 13:e0198584. [PMID: 29879172 PMCID: PMC6012718 DOI: 10.1371/journal.pone.0198584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/22/2018] [Indexed: 01/06/2023] Open
Abstract
Listeria monocytogenes is a microorganism of great concern for the food industry and the cause of human foodborne disease. Therefore, novel methods of control are needed, and systems biology is one such approach to identify them. Using a combination of computational techniques and laboratory methods, genome-scale metabolic models (GEMs) can be created, validated, and used to simulate growth environments and discern metabolic capabilities of microbes of interest, including L. monocytogenes. The objective of the work presented here was to generate GEMs for six different strains of L. monocytogenes, and to both qualitatively and quantitatively validate these GEMs with experimental data to examine the diversity of metabolic capabilities of numerous strains from the three different serovar groups most associated with foodborne outbreaks and human disease. Following qualitative validation, 57 of the 95 carbon sources tested experimentally were present in the GEMs, and; therefore, these were the compounds from which comparisons could be drawn. Of these 57 compounds, agreement between in silico predictions and in vitro results for carbon source utilization ranged from 80.7% to 91.2% between strains. Nutrient utilization agreement between in silico predictions and in vitro results were also conducted for numerous nitrogen, phosphorous, and sulfur sources. Additionally, quantitative validation showed that the L. monocytogenes GEMs were able to generate in silico predictions for growth rate and growth yield that were strongly and significantly (p < 0.0013 and p < 0.0015, respectively) correlated with experimental results. These findings are significant because they show that these GEMs for L. monocytogenes are comparable to published GEMs of other organisms for agreement between in silico predictions and in vitro results. Therefore, as with the other GEMs, namely those for Escherichia coli, Staphylococcus aureus, Vibrio vulnificus, and Salmonella spp., they can be used to determine new methods of growth control and disease treatment.
Collapse
|
28
|
Zhang L, Wang Y, Liu D, Luo L, Wang Y, Ye C. Identification and Characterization of als Genes Involved in D-Allose Metabolism in Lineage II Strain of Listeria monocytogenes. Front Microbiol 2018; 9:621. [PMID: 29670595 PMCID: PMC5893763 DOI: 10.3389/fmicb.2018.00621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/16/2018] [Indexed: 01/01/2023] Open
Abstract
Listeria monocytogenes, an important food-borne pathogen, causes listeriosis and is widely distributed in many different environments. In a previous study, we developed a novel enrichment broth containing D-allose that allows better isolation of L. monocytogenes from samples. However, the mechanism of D-allose utilization by L. monocytogenes remains unclear. In the present study, we determined the metabolism of D-allose in L. monocytogenes and found that lineage II strains of L. monocytogenes can utilize D-allose as the sole carbon source for growth, but lineage I and III strains cannot. Transcriptome analysis and sequence alignment identified six genes (lmo0734 to 0739) possibly related to D-allose metabolism that are only present in the genomes of lineage II strains. Recombinant strain ICDC-LM188 containing these genes showed utilization of D-allose by growth assays and Biolog phenotype microarrays. Moreover, lmo0734 to 0736 were verified to be essential for D-allose metabolism, lmo0737 and 0738 affected the growth rate of L. monocytogenes in D-allose medium, while lmo0739 was dispensable in the metabolism of D-allose in L. monocytogenes. This is the first study to identify the genes related to D-allose metabolism in L. monocytogenes, and their distribution in lineage II strains. Our study preliminarily determined the effects of these genes on the growth of L. monocytogenes, which will benefit the isolation and epidemiological research of L. monocytogenes.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongxin Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lijuan Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changyun Ye
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
29
|
Guariglia-Oropeza V, Orsi RH, Guldimann C, Wiedmann M, Boor KJ. The Listeria monocytogenes Bile Stimulon under Acidic Conditions Is Characterized by Strain-Specific Patterns and the Upregulation of Motility, Cell Wall Modification Functions, and the PrfA Regulon. Front Microbiol 2018; 9:120. [PMID: 29467736 PMCID: PMC5808219 DOI: 10.3389/fmicb.2018.00120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/18/2018] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes uses a variety of transcriptional regulation strategies to adapt to the extra-host environment, the gastrointestinal tract, and the intracellular host environment. While the alternative sigma factor SigB has been proposed to be a key transcriptional regulator that facilitates L. monocytogenes adaptation to the gastrointestinal environment, the L. monocytogenes' transcriptional response to bile exposure is not well-understood. RNA-seq characterization of the bile stimulon was performed in two L. monocytogenes strains representing lineages I and II. Exposure to bile at pH 5.5 elicited a large transcriptomic response with ~16 and 23% of genes showing differential transcription in 10403S and H7858, respectively. The bile stimulon includes genes involved in motility and cell wall modification mechanisms, as well as genes in the PrfA regulon, which likely facilitate survival during the gastrointestinal stages of infection that follow bile exposure. The fact that bile exposure induced the PrfA regulon, but did not induce further upregulation of the SigB regulon (beyond that expected by exposure to pH 5.5), suggests a model where at the earlier stages of gastrointestinal infection (e.g., acid exposure in the stomach), SigB-dependent gene expression plays an important role. Subsequent exposure to bile induces the PrfA regulon, potentially priming L. monocytogenes for subsequent intracellular infection stages. Some members of the bile stimulon showed lineage- or strain-specific distribution when 27 Listeria genomes were analyzed. Even though sigB null mutants showed increased sensitivity to bile, the SigB regulon was not found to be upregulated in response to bile beyond levels expected by exposure to pH 5.5. Comparison of wildtype and corresponding ΔsigB strains newly identified 26 SigB-dependent genes, all with upstream putative SigB-dependent promoters.
Collapse
Affiliation(s)
| | - Renato H Orsi
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Claudia Guldimann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Kathryn J Boor
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
30
|
Aguilar-Bultet L, Nicholson P, Rychener L, Dreyer M, Gözel B, Origgi FC, Oevermann A, Frey J, Falquet L. Genetic Separation of Listeria monocytogenes Causing Central Nervous System Infections in Animals. Front Cell Infect Microbiol 2018; 8:20. [PMID: 29459888 PMCID: PMC5807335 DOI: 10.3389/fcimb.2018.00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/16/2018] [Indexed: 11/26/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes abortion, septicemia, gastroenteritis and central nervous system (CNS) infections in ruminants and humans. L. monocytogenes strains mainly belong to two distinct phylogenetic groups, named lineages I and II. In general, clinical cases in humans and animals, in particular CNS infections, are caused by lineage I strains, while most of the environmental and food strains belong to lineage II. Little is known about why lineage I is more virulent than lineage II, even though various molecular factors and mechanisms associated with pathogenesis are known. In this study, we have used a variety of whole genome sequence analyses and comparative genomic tools in order to find characteristics that distinguish lineage I from lineage II strains and CNS infection strains from non-CNS strains. We analyzed 225 strains and identified single nucleotide variants between lineages I and II, as well as differences in the gene content. Using a novel approach based on Reads Per Kilobase per Million Mapped (RPKM), we identified 167 genes predominantly absent in lineage II but present in lineage I. These genes are mostly encoding for membrane-associated proteins. Additionally, we found 77 genes that are largely absent in the non-CNS associated strains, while 39 genes are especially lacking in our defined “non-clinical” group. Based on the RPKM analysis and the metadata linked to the L. monocytogenes strains, we identified 6 genes potentially associated with CNS cases, which include a transcriptional regulator, an ABC transporter and a non-coding RNA. Although there is not a clear separation between pathogenic and non-pathogenic strains based on phylogenetic lineages, the presence of the genes identified in our study reveals potential pathogenesis traits in ruminant L. monocytogenes strains. Ultimately, the differences that we have found in our study will help steer future studies in understanding the virulence mechanisms of the most pathogenic L. monocytogenes strains.
Collapse
Affiliation(s)
- Lisandra Aguilar-Bultet
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,BUGFri Group, Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Pamela Nicholson
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lorenz Rychener
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Margaux Dreyer
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Bulent Gözel
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Francesco C Origgi
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Frey
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Laurent Falquet
- BUGFri Group, Swiss Institute of Bioinformatics, Fribourg, Switzerland.,Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
31
|
Araujo V, Neves E, Silva AC, Martins APL, Brito LC. Listeria monocytogenes cells under nutrient deprivation showed reduced ability to infect the human intestinal cell line HT-29. J Med Microbiol 2017; 67:110-117. [PMID: 29185940 DOI: 10.1099/jmm.0.000648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This study aimed to evaluate the effect of two types of stress, cold and nutritional, on the viability and the in vitro virulence of the foodborne pathogenic bacteria Listeria monocytogenes. METHODOLOGY Ten diverse isolates were kept in phosphate-buffered saline (PBS) at optimal (37 °C) or at refrigeration temperature (7 °C), for 1 and 7 days. The viability of the cells [log colony-forming units (c.f.u.)/ml] and their in vitro virulence, before and after storage in these conditions, were investigated. In vitro virulence (log PFA) was evaluated using the human intestinal epithelial cell line HT-29 in plaque-forming assays (PFAs).Results/Key findings. In general, when compared with the conditions at 37 °C, the exposure at 7 °C for 7 days seemed to increase the resistance of the isolates to nutritional stress. Nutritional stress per se acted significantly to decrease the in vitro virulence of the isolates. After 7 days of nutrient deprivation, whether at optimal or at refrigeration temperature, the majority of the isolates assumed a low-virulence phenotype. CONCLUSION Our results suggest that when L. monocytogenes are in refrigerated post-processing environments that are unable to support their growth they may increase their resistance to nutritional stress and may decrease their virulence. This should be considered when performing risk assessments for refrigerated ready-to-eat (RTE) foods.
Collapse
Affiliation(s)
- Vânia Araujo
- LEAF - Linking Landscape, Environment, Agriculture and Food /DRAT- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| | - Elsa Neves
- LEAF - Linking Landscape, Environment, Agriculture and Food /DRAT- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal.,Escola Superior de Tecnologia e Gestão Jean Piaget do Litoral Alentejano, Bairro das Flores, Apartado 38, 7500-999 Vila Nova de Santo André, Portugal
| | - Ana Carla Silva
- LEAF - Linking Landscape, Environment, Agriculture and Food /DRAT- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| | - António P L Martins
- Instituto Nacional de Investigação Agrária e Veterinária, IP, Av. República, Quinta do Marquês, Nova Oeiras, 2784-505 Oeiras, Portugal.,DCEB - Departamento de Ciências e Engenharia de Biossistemas, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| | - Luisa Castro Brito
- LEAF - Linking Landscape, Environment, Agriculture and Food /DRAT- Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| |
Collapse
|
32
|
KILIÇ ALTUN SERAP. KEÇİ SÜTLERİNDE LİSTERİA SPP. PREVALANSI VE VİRÜLENT LİSTERİA MONOCYTOGENES’İN REAL-TİME PCR İLE BELİRLENMESİ. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2017. [DOI: 10.24880/maeuvfd.306465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
33
|
Datta AR, Burall LS. Serotype to genotype: The changing landscape of listeriosis outbreak investigations. Food Microbiol 2017; 75:18-27. [PMID: 30056958 DOI: 10.1016/j.fm.2017.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 02/07/2023]
Abstract
The classical definition of a disease outbreak is the occurrence of cases of disease in excess of what would normally be expected in a community, geographical area or time period. The establishment of an outbreak then starts with the identification of an incidence of cases above the normally expected threshold during a given time period. Subsequently, the cases are examined using a variety of subtyping methods to identify potential linkages. As listeriosis disease has a long incubation period, relating a single source or multiple sources of contaminated food to clinical disease is challenging and time consuming. The vast majority of human listeriosis cases are caused by three serotypes, 1/2a, 1/2b, and 4b. Thus serotyping of isolates from suspected foods and clinical samples, although useful for eliminating some food sources, has a very limited discriminatory power. The advent of faster and more affordable sequencing technology, coupled with increased computational power, has permitted comparisons of whole Listeria genome sequences from isolates recovered from clinical, food, and environmental sources. These analyses made it possible to identify outbreaks and the source much more accurately and faster, thus leading to a reduction in number of illnesses as well as a reduction in economic losses. Initial DNA sequence information also facilitated the development of a simple molecular serotype protocol which allowed for the identification of major disease causing serotypes of L. monocytogenes, including a clade of 4b variant (4bV) strains of L. monocytogenes involved in at least 3 more recent listeriosis outbreaks in the US. Furthermore, data generated using whole genome sequence (WGS) analyses was successfully utilized to develop a pan-genomic DNA microarray as well as a single nucleotide polymorphism (SNP) based analysis. Herein, we present and compare, the two recently developed sub-typing technologies and discuss how these methods are not only important in outbreak investigations, but could also shed light on possible adaptations to different foods and environments.
Collapse
Affiliation(s)
- Atin R Datta
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, 20708, USA.
| | - Laurel S Burall
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, 20708, USA
| |
Collapse
|
34
|
Popowska M, Krawczyk-Balska A, Ostrowski R, Desvaux M. InlL from Listeria monocytogenes Is Involved in Biofilm Formation and Adhesion to Mucin. Front Microbiol 2017; 8:660. [PMID: 28473809 PMCID: PMC5397405 DOI: 10.3389/fmicb.2017.00660] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/31/2017] [Indexed: 12/19/2022] Open
Abstract
The bacterial etiological agent of listeriosis, Listeria monocytogenes, is an opportunistic intracellular foodborne pathogen. The infection cycle of L. monocytogenes is well-characterized and involves several key virulence factors, including internalins A and B. While 35 genes encoding internalins have been identified in L. monocytogenes, less than half of them have been characterized as yet. Focusing on lmo2026, it was shown this gene encodes a class I internalin, InlL, exhibiting domains potentially involved in adhesion. Following a functional genetic approach, InlL was demonstrated to be involved in initial bacterial adhesion as well as sessile development in L. monocytogenes. In addition, InlL enables binding to mucin of type 2, i.e., the main secreted mucin making up the mucus layer, rather than to surface-located mucin of type 1. InlL thus appears as a new molecular determinant contributing to the colonization ability of L. monocytogenes.
Collapse
Affiliation(s)
- Magdalena Popowska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Agata Krawczyk-Balska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Rafał Ostrowski
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiSClermont-Ferrand, France
| |
Collapse
|
35
|
Listeriomics: an Interactive Web Platform for Systems Biology of Listeria. mSystems 2017; 2:mSystems00186-16. [PMID: 28317029 PMCID: PMC5350546 DOI: 10.1128/msystems.00186-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022] Open
Abstract
In the last decades, Listeria has become a key model organism for the study of host-pathogen interactions, noncoding RNA regulation, and bacterial adaptation to stress. To study these mechanisms, several genomics, transcriptomics, and proteomics data sets have been produced. We have developed Listeriomics, an interactive web platform to browse and correlate these heterogeneous sources of information. Our website will allow listeriologists and microbiologists to decipher key regulation mechanism by using a systems biology approach. As for many model organisms, the amount of Listeria omics data produced has recently increased exponentially. There are now >80 published complete Listeria genomes, around 350 different transcriptomic data sets, and 25 proteomic data sets available. The analysis of these data sets through a systems biology approach and the generation of tools for biologists to browse these various data are a challenge for bioinformaticians. We have developed a web-based platform, named Listeriomics, that integrates different tools for omics data analyses, i.e., (i) an interactive genome viewer to display gene expression arrays, tiling arrays, and sequencing data sets along with proteomics and genomics data sets; (ii) an expression and protein atlas that connects every gene, small RNA, antisense RNA, or protein with the most relevant omics data; (iii) a specific tool for exploring protein conservation through the Listeria phylogenomic tree; and (iv) a coexpression network tool for the discovery of potential new regulations. Our platform integrates all the complete Listeria species genomes, transcriptomes, and proteomes published to date. This website allows navigation among all these data sets with enriched metadata in a user-friendly format and can be used as a central database for systems biology analysis. IMPORTANCE In the last decades, Listeria has become a key model organism for the study of host-pathogen interactions, noncoding RNA regulation, and bacterial adaptation to stress. To study these mechanisms, several genomics, transcriptomics, and proteomics data sets have been produced. We have developed Listeriomics, an interactive web platform to browse and correlate these heterogeneous sources of information. Our website will allow listeriologists and microbiologists to decipher key regulation mechanism by using a systems biology approach.
Collapse
|
36
|
Gorski L, Parker CT, Liang AS, Walker S, Romanolo KF. The Majority of Genotypes of the Virulence Gene inlA Are Intact among Natural Watershed Isolates of Listeria monocytogenes from the Central California Coast. PLoS One 2016; 11:e0167566. [PMID: 27907153 PMCID: PMC5131979 DOI: 10.1371/journal.pone.0167566] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/16/2016] [Indexed: 11/24/2022] Open
Abstract
Internalin A is an essential virulence gene involved in the uptake of the foodborne pathogen Listeria monocytogenes into host cells. It is intact in clinical strains and often truncated due to Premature Stop Codons (PMSCs) in isolates from processed foods and processing facilities. Less information is known about environmental isolates. We sequenced the inlA alleles and did Multi Locus Variable Number Tandem Repeat Analysis (MLVA) on 112 L. monocytogenes isolates from a 3-year period from naturally contaminated watersheds near a leafy green growing area in Central California. The collection contained 14 serotype 1/2a, 12 serotype 1/2b, and 86 serotype 4b strains. Twenty-seven different inlA alleles were found. Twenty-three of the alleles are predicted to encode intact copies of InlA, while three contain PMSCs. Another allele has a 9-nucleotide deletion, previously described for a clinical strain, indicating that it is still functional. Intact inlA genes were found in 101 isolates, and 8 isolates contained the allele predicted to contain the 3-amino acid deletion. Both allele types were found throughout the 3-year sampling period. Three strains contained inlA alleles with PMSCs, and these were found only during the first 3 months of the study. SNP analysis of the intact alleles indicated clustering of alleles based on serotype and lineage with serotypes 1/2b and 4b (lineage I strains) clustering together, and serotype 1/2a (lineage II strains) clustering separately. The combination of serotype, MLVA types, and inlA allele types indicate that the 112 isolates reflect at least 49 different strains of L. monocytogenes. The finding that 90% of environmental L. monocytogenes isolates contain intact inlA alleles varies significantly from isolates found in processing plants. This information is important to public health labs and growers as to the varieties of L. monocytogenes that could potentially contaminate fresh produce in the field by various means.
Collapse
Affiliation(s)
- Lisa Gorski
- Produce Safety and Microbiology Research Unit, USDA, Agricultural Research Service, Albany, CA
- * E-mail:
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, USDA, Agricultural Research Service, Albany, CA
| | - Anita S. Liang
- Produce Safety and Microbiology Research Unit, USDA, Agricultural Research Service, Albany, CA
| | - Samarpita Walker
- Produce Safety and Microbiology Research Unit, USDA, Agricultural Research Service, Albany, CA
| | - Kelly F. Romanolo
- Produce Safety and Microbiology Research Unit, USDA, Agricultural Research Service, Albany, CA
| |
Collapse
|
37
|
Expression of Surface Protein LapB by a Wide Spectrum of Listeria monocytogenes Serotypes as Demonstrated with Anti-LapB Monoclonal Antibodies. Appl Environ Microbiol 2016; 82:6768-6778. [PMID: 27613687 DOI: 10.1128/aem.01908-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022] Open
Abstract
Protein antigens expressed on the surface of all strains of Listeria monocytogenes and absent from nonpathogenic Listeria spp. are presumably useful targets for pathogen identification, detection, and isolation using specific antibodies (Abs). To seek such surface proteins expressed in various strains of L. monocytogenes for diagnostic applications, we focused on a set of surface proteins known to be involved or putatively involved in L. monocytogenes virulence and identified Listeria adhesion protein B (LapB) as a candidate based on the bioinformatics analysis of whole-genome sequences showing that the gene coding for LapB was present in L. monocytogenes strains and absent from strains of other Listeria spp. Immunofluorescence microscopy (IFM), performed with rabbit polyclonal antibodies against the recombinant LapB protein (rLapB) of L. monocytogenes serotype 4b strain L10521, confirmed expression of LapB on the surface. A panel of 48 mouse monoclonal antibodies (MAbs) to rLaB was generated, and 7 of them bound strongly to the surface of L. monocytogenes cells as demonstrated using IFM. Further characterization of these 7 anti-LapB MAbs, using an enzyme-linked immunosorbent assay (ELISA), revealed that 6 anti-LapB MAbs (M3484, M3495, M3500, M3509, M3517, and M3519) reacted strongly with 46 (86.8%) of 53 strains representing 10 of the 12 serotypes tested (1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4ab, 4b, 4d, and 4e). These results indicate that LapB, together with companion anti-LapB MAbs, can be targeted as a biomarker for the detection and isolation of various L. monocytogenes strains from contaminated foods. IMPORTANCE Strains of L. monocytogenes are traditionally grouped into serotypes. Identification of a surface protein expressed in all or the majority of at least 12 serotypes would aid in the development of surface-binding monoclonal antibodies (MAbs) for detection and isolation of L. monocytogenes from foods. Bioinformatics analysis revealed that the gene coding for Listeria adhesion protein B (LapB), a surface protein involved in L. monocytogenes virulence, was present in L. monocytogenes strains and absent from other Listeria spp. Polyclonal antibodies against recombinant LapB (rLapB) detected the exposed epitopes on the surface of L. monocytogenes Production and extensive assessment of 48 MAbs to rLapB showed that 6 anti-LapB MAbs (M3484, M3495, M3500, M3509, M3517, and M3519) detected the expression of LapB in a wide range of L. monocytogenes isolates representing 10 of 12 serotypes tested, suggesting that LapB, together with specific MAbs, can be targeted as a biomarker for pathogen detection and isolation.
Collapse
|
38
|
Tiong HK, Muriana PM. RT-qPCR Analysis of 15 Genes Encoding Putative Surface Proteins Involved in Adherence of Listeria monocytogenes. Pathogens 2016; 5:E60. [PMID: 27706070 PMCID: PMC5198160 DOI: 10.3390/pathogens5040060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022] Open
Abstract
L. monocytogenes adherence to food-associated abiotic surfaces and the development of biofilms as one of the underlying reasons for the contamination of ready-to-eat products is well known. The over-expression of internalins that improves adherence has been noted in cells growing as attached cells or at elevated incubation temperatures. However, the role of other internalin-independent surface proteins as adhesins has been uncharacterized to date. Using two strains each of weakly- and strongly-adherent L. monocytogenes as platforms for temperature-dependent adherence assays and targeted mRNA analyses, these observations (i.e., sessile- and/or temperature-dependent gene expression) were further investigated. Microplate fluorescence assays of both surface-adherent strains exhibited significant (P < 0.05) adherence at higher incubation temperature (42 °C). Of the 15 genes selected for RT-qPCR, at least ten gene transcripts recovered from cells (weakly-adherent strain CW35, strongly-adherent strain 99-38) subject to various growth conditions were over expressed [planktonic/30 °C (10), sessile/30 °C (12), planktonic/42 °C (10)] compared to their internal control (16SrRNA transcripts). Of four genes overexpressed in all three conditions tested, three and one were implicated as virulence factors and unknown function, respectively. PCR analysis of six unexpressed genes revealed that CW35 possessed an altered genome. The results suggest the presence of other internalin-independent adhesins (induced by growth temperature and/or substratum) and that a group of suspect protein members are worthy of further analysis for their potential role as surface adhesins. Analysis of the molecular basis of adherence properties of isolates of L. monocytogenes from food-associated facilities may help identify sanitation regimens to prevent cell attachment and biofilm formation on abiotic surfaces that could play a role in reducing foodborne illness resulting from Listeria biofilms.
Collapse
Affiliation(s)
- Hung King Tiong
- Department of Animal Science, Monroe Street, Oklahoma State University, Stillwater, OK 74078, USA.
- Robert M. Kerr Food & Agricultural Products Centre, 109 FAPC Building, Monroe Street, Oklahoma State University, Stillwater, OK 74078-6055, USA.
| | - Peter M Muriana
- Department of Animal Science, Monroe Street, Oklahoma State University, Stillwater, OK 74078, USA.
- Robert M. Kerr Food & Agricultural Products Centre, 109 FAPC Building, Monroe Street, Oklahoma State University, Stillwater, OK 74078-6055, USA.
| |
Collapse
|
39
|
Rawool DB, Doijad SP, Poharkar KV, Negi M, Kale SB, Malik SVS, Kurkure NV, Chakraborty T, Barbuddhe SB. A multiplex PCR for detection of Listeria monocytogenes and its lineages. J Microbiol Methods 2016; 130:144-147. [PMID: 27671346 DOI: 10.1016/j.mimet.2016.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 10/21/2022]
Abstract
A novel multiplex PCR assay was developed to identify genus Listeria, and discriminate Listeria monocytogenes and its major lineages (LI, LII, LIII). This assay is a rapid and inexpensive subtyping method for screening and characterization of L. monocytogenes.
Collapse
Affiliation(s)
- Deepak B Rawool
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Swapnil P Doijad
- Department of Pathology, Nagpur Veterinary College, Seminary Hills, Nagpur 440006, India
| | - Krupali V Poharkar
- Institute of Medical Microbiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Mamta Negi
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Satyajit B Kale
- Department of Pathology, Nagpur Veterinary College, Seminary Hills, Nagpur 440006, India
| | - S V S Malik
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Nitin V Kurkure
- Department of Pathology, Nagpur Veterinary College, Seminary Hills, Nagpur 440006, India
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University, 35392 Giessen, Germany
| | | |
Collapse
|
40
|
Tiong HK, Hartson SD, Muriana PM. Comparison of Surface Proteomes of Adherence Variants of Listeria Monocytogenes Using LC-MS/MS for Identification of Potential Surface Adhesins. Pathogens 2016; 5:E40. [PMID: 27196934 PMCID: PMC4931391 DOI: 10.3390/pathogens5020040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/19/2016] [Accepted: 05/11/2016] [Indexed: 12/19/2022] Open
Abstract
The ability of Listeria monocytogenes to adhere and form biofilms leads to persistence in food processing plants and food-associated listeriosis. The role of specific surface proteins as adhesins to attach Listeria cells to various contact surfaces has not been well characterized to date. In prior research comparing different methods for surface protein extraction, the Ghost urea method revealed cleaner protein content as verified by the least cytoplasmic protein detected in surface extracts using LC-MS/MS. The same technique was utilized to extract and detect surface proteins among two surface-adherent phenotypic strains of L. monocytogenes (i.e., strongly and weakly adherent). Of 640 total proteins detected among planktonic and sessile cells, 21 protein members were exclusively detected in the sessile cells. Relative LC-MS/MS detection and quantification of surface-extracted proteins from the planktonic weakly adherent (CW35) and strongly adherent strains (99-38) were examined by protein mass normalization of proteins. We found that L. monocytogenes 99-38 exhibited a total of 22 surface proteins that were over-expressed: 11 proteins were detected in surface extracts of both sessile and planktonic 99-38 that were ≥5-fold over-expressed while another 11 proteins were detected only in planktonic 99-38 cells that were ≥10-fold over-expressed. Our results suggest that these protein members are worthy of further investigation for their involvement as surface adhesins.
Collapse
Affiliation(s)
- Hung King Tiong
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
- Robert M. Kerr Food & Agricultural Products Centre, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Peter M Muriana
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
- Robert M. Kerr Food & Agricultural Products Centre, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
41
|
Spears PA, Havell EA, Hamrick TS, Goforth JB, Levine AL, Abraham ST, Heiss C, Azadi P, Orndorff PE. Listeria monocytogenes wall teichoic acid decoration in virulence and cell-to-cell spread. Mol Microbiol 2016; 101:714-30. [PMID: 26871418 DOI: 10.1111/mmi.13353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2016] [Indexed: 12/11/2022]
Abstract
Wall teichoic acid (WTA) comprises a class of glycopolymers covalently attached to the peptidoglycan of gram positive bacteria. In Listeria monocytogenes, mutations that prevent addition of certain WTA decorating sugars are attenuating. However, the steps required for decoration and the pathogenic process interrupted are not well described. We systematically examined the requirement for WTA galactosylation in a mouse oral-virulent strain by first creating mutations in four genes whose products conferred resistance to a WTA-binding bacteriophage. WTA biochemical and structural studies indicated that galactosylated WTA was directly required for bacteriophage adsorption and that mutant WTA lacked appreciable galactose in all except one mutant - which retained a level ca. 7% of the parent. All mutants were profoundly attenuated in orally infected mice and were impaired in cell-to-cell spread in vitro. Confocal microscopy of cytosolic mutants revealed that all expressed ActA on their cell surface and formed actin tails with a frequency similar to the parent. However, the mutant tails were significantly shorter - suggesting a defect in actin based motility. Roles for the gene products in WTA galactosylation are proposed. Identification and interruption of WTA decoration pathways may provide a general strategy to discover non-antibiotic therapeutics for gram positive infections. © 2016 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Patricia A Spears
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - Edward A Havell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - Terri S Hamrick
- Department of Microbiology and Immunology, School of Osteopathic Medicine, Campbell University, Buies Creek, NC, 27506, USA
| | - John B Goforth
- Department of Microbiology and Immunology, School of Osteopathic Medicine, Campbell University, Buies Creek, NC, 27506, USA
| | - Alexandra L Levine
- Department of Microbiology and Immunology, School of Osteopathic Medicine, Campbell University, Buies Creek, NC, 27506, USA
| | - S Thomas Abraham
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Campbell University, Buies Creek, NC, 27506, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, 30602, USA
| | - Paul E Orndorff
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
42
|
Simmons M, Morales CA, Oakley BB, Seal BS. Recombinant Expression of a Putative Amidase Cloned from the Genome of Listeria monocytogenes that Lyses the Bacterium and its Monolayer in Conjunction with a Protease. Probiotics Antimicrob Proteins 2016; 4:1-10. [PMID: 26781731 DOI: 10.1007/s12602-011-9084-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Listeria monocytogenes is a Gram-positive, non-spore forming, catalase-positive rod that is a major bacterial food-borne disease agent associated with uncooked meats, including poultry, uncooked vegetables, soft cheeses, and unpasteurized milk. The bacterium may be carried by animals without signs of disease, can replicate at refrigeration temperatures, and is frequently associated with biofilms. There is a need to discover innovative pathogen intervention technologies for this bacterium. Consequently, bioinformatic analyses were used to identify genes encoding lytic protein sequences in the genomes of L. monocytogenes isolates. PCR primers were designed that amplified nucleotide sequences of a putative N-acetylmuramoyl-L-alanine amidase gene from L. monocytogenes strain 4b. The resultant amplification product was cloned into an expression vector, propagated in Escherichia coli Rosetta strains, and the recombinant protein was purified to homogeneity. Gene and protein sequencing confirmed that the predicted and chemically determined amino acid sequence of the recombinant protein designated PlyLM was a putative N-acetylmuramoyl-L-alanine amidase. The recombinant lytic protein was capable of lysing both the parental L. monocytogenes strain as well as other strains of the bacterium in spot and MIC/MIB assays, but was not active against other bacteria beyond the genus. A microtiter plate assay was utilized to assay for the ability of the recombinant lysin protein to potentially aid with digestion of a L. monocytogenes biofilm. Protease or lysozyme digestion alone did not significantly reduce the L. monocytogenes biofilm. Although the recombinant protein alone reduced the biofilm by only 20%, complete digestion of the bacterial monolayer was accomplished in conjunction with a protease.
Collapse
Affiliation(s)
- Mustafa Simmons
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, 950 College Station Road, 30605, Athens, GA, USA
| | - Cesar A Morales
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, 950 College Station Road, 30605, Athens, GA, USA
| | - Brian B Oakley
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, 950 College Station Road, 30605, Athens, GA, USA
| | - Bruce S Seal
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, 950 College Station Road, 30605, Athens, GA, USA.
| |
Collapse
|
43
|
Pillich H, Puri M, Chakraborty T. ActA of Listeria monocytogenes and Its Manifold Activities as an Important Listerial Virulence Factor. Curr Top Microbiol Immunol 2016; 399:113-132. [PMID: 27726006 DOI: 10.1007/82_2016_30] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes is a ubiquitously occurring gram-positive bacterium in the environment that causes listeriosis, one of the deadliest foodborne infections known today. It is a versatile facultative intracellular pathogen capable of growth within the host's cytosolic compartment. Following entry into the host cell, L. monocytogenes escapes from vacuolar compartments to the cytosol, where the bacterium begins a remarkable journey within the host cytoplasm, culminating in bacterial spread from cell to cell, to deeper tissues and organs. This dissemination process depends on the ability of the bacterium to harness central components of the host cell actin cytoskeleton using the surface bound bacterial factor ActA (actin assembly inducing protein). Hence ActA plays a major role in listerial virulence, and its absence renders bacteria intracellularly immotile and essentially non-infectious. As the bacterium, moving by building a network of filamentous actin behind itself that is often referred to as its actin tail, encounters cell-cell contacts it forms double-vacuolar protrusions that allow it to enter the neighboring cell where the cycle then continues. Recent studies have now implicated ActA in other stages of the life cycle of L. monocytogenes. These include extracellular properties of aggregation and biofilm formation to mediate colonization of the gut lumen, promotion and enhancement of bacterial host cell entry, evasion of autophagy, vacuolar exit, as well as nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) activation. These novel properties provide a new view of ActA and help explain its role as an essential virulence factor of L. monocytogenes.
Collapse
Affiliation(s)
- Helena Pillich
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Madhu Puri
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
44
|
Nyarko EB, Donnelly CW. Listeria monocytogenes: Strain Heterogeneity, Methods, and Challenges of Subtyping. J Food Sci 2015; 80:M2868-78. [PMID: 26588067 DOI: 10.1111/1750-3841.13133] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/02/2015] [Indexed: 12/28/2022]
Abstract
Listeria monocytogenes is a food-borne bacterial pathogen that is associated with 20% to 30% case fatality rate. L. monocytogenes is a genetically heterogeneous species, with a small fraction of strains (serotypes 1/2a, 1/2b, 4b) implicated in human listeriosis. Monitoring and source tracking of L. monocytogenes involve the use of subtyping methods, with the performance of genetic-based methods found to be superior to phenotypic-based ones. Various methods have been used to subtype L. monocytogenes isolates, with the pulsed-field gel electrophoresis (PFGE) being the gold standard. Although PFGE has had a massive impact on food safety through the establishment of the PulseNet, there is no doubt that whole genome sequence (WGS) typing is accurate, has a discriminatory power superior to any known method, and allows genome-wide differences between strains to be quantified through the comparison of nucleotide sequences. This review focuses on the different techniques that have been used to type L. monocytogenes strains, their performance challenges, and the tremendous impact WGS typing could have on the food safety landscape.
Collapse
Affiliation(s)
- Esmond B Nyarko
- Dept. of Animal and Food Science, Univ. of Delaware, 044 Townsend Hall, 531 S. College Avenue, Newark, Del., 19716, U.S.A
| | - Catherine W Donnelly
- Dept. of Nutrition and Food Science, Univ. of Vermont, 109 Carrigan Drive, 256 Carrigan Wing, Burlington, Vt., 05405, U.S.A
| |
Collapse
|
45
|
Fang C, Shan Y, Cao T, Xia Y, Xin Y, Cheng C, Song H, Li X, Fang W. Prevalence and Virulence Characterization of Listeria monocytogenes in Chilled Pork in Zhejiang Province, China. Foodborne Pathog Dis 2015; 13:8-12. [PMID: 26393675 DOI: 10.1089/fpd.2015.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen that can grow in refrigeration temperature and causes severe human infections. The aims of this work were to estimate the prevalence of L. monocytogenes in chilled pork in Zhejiang, China and to examine the virulence features of the isolates. Of 331 meat samples, 196 were positive for Listeria spp., with L. innocua accounting for 54.4%, L. monocytogenes for 11.5%, and L. welshimeri for 4.2%. The most prevalent L. monocytogenes serotype was 1/2c (60.5%), followed by serotypes 1/2a (28.9%), 1/2b (7.9%), and 4b (2.6%). All L. monocytogenes isolates contained virulence-associated genes examined. Adhesion and invasion ability of serotype 1/2c isolates was much lower than those of other serotypes. Only one isolate was defective in cell-to-cell spread. These findings are important for risk assessment of chilled pork as a source of potential transmission of L. monocytogenes to other food products, particularly to ready-to-eat food products.
Collapse
Affiliation(s)
- Chun Fang
- 1 Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine , Hangzhou, Zhejiang, China
| | - Ying Shan
- 1 Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine , Hangzhou, Zhejiang, China
| | - Tong Cao
- 1 Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine , Hangzhou, Zhejiang, China
| | - Ye Xia
- 1 Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine , Hangzhou, Zhejiang, China
| | - Yongping Xin
- 1 Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine , Hangzhou, Zhejiang, China
| | - Changyong Cheng
- 2 College of Animal Science and Technology, Zhejiang A&F University , Lin'an, Zhejiang, China
| | - Houhui Song
- 2 College of Animal Science and Technology, Zhejiang A&F University , Lin'an, Zhejiang, China
| | - Xiaoliang Li
- 1 Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine , Hangzhou, Zhejiang, China
| | - Weihuan Fang
- 1 Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine , Hangzhou, Zhejiang, China .,2 College of Animal Science and Technology, Zhejiang A&F University , Lin'an, Zhejiang, China
| |
Collapse
|
46
|
Doijad S, Weigel M, Barbuddhe S, Blom J, Goesmann A, Hain T, Chakraborty T. Phylogenomic grouping of Listeria monocytogenes. Can J Microbiol 2015; 61:637-46. [DOI: 10.1139/cjm-2015-0281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The precise delineation of lineages and clonal groups are a prerequisite to examine within-species genetic variations, particularly with respect to pathogenic potential. A whole-genome-based approach was used to subtype and subgroup isolates of Listeria monocytogenes. Core-genome typing was performed, employing 3 different approaches: total core genes (CG), high-scoring segment pairs (HSPs), and average nucleotide identity (ANI). Examination of 113 L. monocytogenes genomes available in-house and in public domains revealed 33 phylogenomic groups (PGs). Each PG could be differentiated into a number of genomic types (GTs), depending on the approach used: HSPs (n = 57 GTs), CG (n = 71 GTs), and ANI (n = 83 GTs). Demarcation of the PGs was concordant with the 4 known lineages and led to the identification of sublineages in the lineage groups I, II, and III. In addition, PG assignments had discriminatory power similar to multi-virulence-locus sequence typing types and clonal complexes of multilocus sequence typing. Clustering of genomically highly similar isolates from different countries, sources, and isolation dates using whole-genome-based PG suggested that dispersion of phylogenomic clones of L. monocytogenes preceded their subsequent evolution. Classification according to PG may act as a guideline for future epidemiological studies.
Collapse
Affiliation(s)
- Swapnil Doijad
- Institute of Medical Microbiology, Justus Liebig University and German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Giessen, Germany 35392
| | - Markus Weigel
- Institute of Medical Microbiology, Justus Liebig University and German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Giessen, Germany 35392
| | - Sukhadeo Barbuddhe
- National Institute of Biotic Stress Management, Raipur, Chhattisgarh, India
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University, Giessen, Germany 35392
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University, Giessen, Germany 35392
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University and German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Giessen, Germany 35392
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University and German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Giessen, Germany 35392
| |
Collapse
|
47
|
Carvalho F, Atilano ML, Pombinho R, Covas G, Gallo RL, Filipe SR, Sousa S, Cabanes D. L-Rhamnosylation of Listeria monocytogenes Wall Teichoic Acids Promotes Resistance to Antimicrobial Peptides by Delaying Interaction with the Membrane. PLoS Pathog 2015; 11:e1004919. [PMID: 26001194 PMCID: PMC4441387 DOI: 10.1371/journal.ppat.1004919] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/27/2015] [Indexed: 11/29/2022] Open
Abstract
Listeria monocytogenes is an opportunistic Gram-positive bacterial pathogen responsible for listeriosis, a human foodborne disease. Its cell wall is densely decorated with wall teichoic acids (WTAs), a class of anionic glycopolymers that play key roles in bacterial physiology, including protection against the activity of antimicrobial peptides (AMPs). In other Gram-positive pathogens, WTA modification by amine-containing groups such as D-alanine was largely correlated with resistance to AMPs. However, in L. monocytogenes, where WTA modification is achieved solely via glycosylation, WTA-associated mechanisms of AMP resistance were unknown. Here, we show that the L-rhamnosylation of L. monocytogenes WTAs relies not only on the rmlACBD locus, which encodes the biosynthetic pathway for L-rhamnose, but also on rmlT encoding a putative rhamnosyltransferase. We demonstrate that this WTA tailoring mechanism promotes resistance to AMPs, unveiling a novel link between WTA glycosylation and bacterial resistance to host defense peptides. Using in vitro binding assays, fluorescence-based techniques and electron microscopy, we show that the presence of L-rhamnosylated WTAs at the surface of L. monocytogenes delays the crossing of the cell wall by AMPs and postpones their contact with the listerial membrane. We propose that WTA L-rhamnosylation promotes L. monocytogenes survival by decreasing the cell wall permeability to AMPs, thus hindering their access and detrimental interaction with the plasma membrane. Strikingly, we reveal a key contribution of WTA L-rhamnosylation for L. monocytogenes virulence in a mouse model of infection. Listeria monocytogenes is a foodborne bacterial pathogen that preferentially infects immunocompromised hosts, eliciting a severe and often lethal disease. In humans, clinical manifestations range from asymptomatic intestinal carriage and gastroenteritis to harsher systemic states of the disease such as sepsis, meningitis or encephalitis, and fetal infections. The surface of L. monocytogenes is decorated with wall teichoic acids (WTAs), a class of carbohydrate-based polymers that contributes to cell surface-related events with implications in physiological processes, such as bacterial division or resistance to antimicrobial peptides (AMPs). The addition of other molecules to the backbone of WTAs modulates their chemical properties and consequently their functionality. In this context, we studied the role of WTA tailoring mechanisms in L. monocytogenes, whose WTAs are strictly decorated with monosaccharides. For the first time, we link WTA glycosylation with AMP resistance by showing that the decoration of L. monocytogenes WTAs with l-rhamnose confers resistance to host defense peptides. We suggest that this resistance is based on changes in the permeability of the cell wall that delay its crossing by AMPs and therefore promote the protection of the bacterial membrane integrity. Importantly, we also demonstrate the significance of this WTA modification in L. monocytogenes virulence.
Collapse
Affiliation(s)
- Filipe Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Magda L Atilano
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rita Pombinho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Gonçalo Covas
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Richard L Gallo
- Division of Dermatology, Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Sérgio R Filipe
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sandra Sousa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Didier Cabanes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Porto, Portugal
| |
Collapse
|
48
|
Eugster MR, Morax LS, Hüls VJ, Huwiler SG, Leclercq A, Lecuit M, Loessner MJ. Bacteriophage predation promotes serovar diversification in Listeria monocytogenes. Mol Microbiol 2015; 97:33-46. [PMID: 25825127 DOI: 10.1111/mmi.13009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2015] [Indexed: 11/30/2022]
Abstract
Listeria monocytogenes is a bacterial pathogen classified into distinct serovars (SVs) based on somatic and flagellar antigens. To correlate phenotype with genetic variation, we analyzed the wall teichoic acid (WTA) glycosylation genes of SV 1/2, 3 and 7 strains, which differ in decoration of the ribitol-phosphate backbone with N-acetylglucosamine (GlcNAc) and/or rhamnose. Inactivation of lmo1080 or the dTDP-l-rhamnose biosynthesis genes rmlACBD (lmo1081-1084) resulted in loss of rhamnose, whereas disruption of lmo1079 led to GlcNAc deficiency. We found that all SV 3 and 7 strains actually originate from a SV 1/2 background, as a result of small mutations in WTA rhamnosylation and/or GlcNAcylation genes. Genetic complementation of different SV 3 and 7 isolates using intact alleles fully restored a characteristic SV 1/2 WTA carbohydrate pattern, including antisera reactions and phage adsorption. Intriguingly, phage-resistant L. monocytogenes EGDe (SV 1/2a) isolates featured the same glycosylation gene mutations and were serotyped as SV 3 or 7 respectively. Again, genetic complementation restored both carbohydrate antigens and phage susceptibility. Taken together, our data demonstrate that L. monocytogenes SV 3 and 7 originate from point mutations in glycosylation genes, and we show that phage predation represents a major driving force for serovar diversification and evolution of L. monocytogenes.
Collapse
Affiliation(s)
- Marcel R Eugster
- Institute of Food, Nutrition and Health, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Laurent S Morax
- Institute of Food, Nutrition and Health, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Vanessa J Hüls
- Institute of Food, Nutrition and Health, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Simona G Huwiler
- Institute of Food, Nutrition and Health, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Alexandre Leclercq
- Institut Pasteur, French National Reference Center and WHO Collaborating Center for Listeria, 75015, Paris, France
| | - Marc Lecuit
- Institut Pasteur, French National Reference Center and WHO Collaborating Center for Listeria, 75015, Paris, France
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, CH-8092, Zurich, Switzerland
| |
Collapse
|
49
|
Geographical and longitudinal analysis of Listeria monocytogenes genetic diversity reveals its correlation with virulence and unique evolution. Microbiol Res 2015; 175:84-92. [PMID: 25912377 DOI: 10.1016/j.micres.2015.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 11/23/2022]
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens causing severe diseases with a mortality rate of 24%. However, the genetic diversity and evolution of L. monocytogenes, particularly at the worldwide level, are poorly defined. In this study, we performed multilocus sequence typing (MLST) and multi virulence locus sequence typing (MVLST) for 86 L. monocytogenes strains derived from 8 countries from 1926 to 2012 in order to better understand the molecular evolution and genetic characteristics of this pathogen. A total of 13 clonal complexes (CCs) were detected, of which CC1, CC2, CC3, CC7, CC9, CC4 are the most prevalent. Notably, polymorphism of housekeeping genes of isolates belong to CC1 (STs = 47) increased more rapidly over the time. MLST-based phylogenetic analysis showed that serotype 1/2b and 4b strains had an "interval-type" evolution pattern, while serotype 1/2a and 1/2c strains had a "progressive-type" evolution pattern. Furthermore, strains from temporally and geographically unrelated outbreaks in different countries were clustered in the same subgroup of phylogenetic tree, indicating that that L. monocytogenes developed highly similar virulence genes and genetic characteristics to adaptation in a special ecological niche. Interestingly, there was a high correlation between the population structure of MVLST and MLST among the isolates of cluster IA corresponding to CC1, CC2, CC4 and CC6 that had the highest potential to cause listeriosis outbreaks, strengthening that surveillance of these CCs is important for prevention of listeriosis. The present study offers insights into the internal relationships between the population structure, distribution and pathogenicity of L. monocytogenes.
Collapse
|
50
|
Quereda JJ, Ortega ÁD, Pucciarelli MG, García-del Portillo F. The Listeria Small RNA Rli27 Regulates a Cell Wall Protein inside Eukaryotic Cells by Targeting a Long 5'-UTR Variant. PLoS Genet 2014; 10:e1004765. [PMID: 25356775 PMCID: PMC4214639 DOI: 10.1371/journal.pgen.1004765] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/19/2014] [Indexed: 12/21/2022] Open
Abstract
Listeria monocytogenes is a bacterial pathogen whose genome encodes many cell wall proteins that bind covalently to peptidoglycan. Some members of this protein family have a key role in virulence, and recent studies show that some of these, such as Lmo0514, are upregulated in bacteria that colonize eukaryotic cells. The regulatory mechanisms that lead to these changes in cell wall proteins remain poorly characterized. Here we studied the regulation responsible for increased Lmo0514 protein levels in intracellular bacteria. The amount of this protein increased markedly in intracellular bacteria (>200-fold), which greatly exceeded the increase in lmo0514 transcript levels (∼6-fold). Rapid amplification of 5'-cDNA ends (RACE) assays identified two lmo0514 transcripts with 5'-untranslated regions (5'-UTR) of 28 and 234 nucleotides. The transcript containing the long 5'-UTR is upregulated by intracellular bacteria. The 234-nucleotide 5'-UTR is also the target of a small RNA (sRNA) denoted Rli27, which we identified by bioinformatics analysis as having extensive base pairing potential with the long 5'-UTR. The interaction is predicted to increase accessibility of the Shine-Dalgarno sequence occluded in the long 5'-UTR and thus to promote Lmo0514 protein production inside the eukaryotic cell. Real-time quantitative PCR showed that Rli27 is upregulated in intracellular bacteria. In vivo experiments indicated a decrease in Lmo0514 protein levels in intracellular bacteria that lacked Rli27. Wild-type Lmo0514 levels were restored by expressing the wild-type Rli27 molecule but not a mutated version unable to interact with the lmo0514 long 5'-UTR. These findings emphasize how 5'-UTR length affects regulation by defined sRNA. In addition, they demonstrate how alterations in the relative abundance of two transcripts with distinct 5'-UTR confine the action of an sRNA for a specific target to bacteria that occupy the intracellular eukaryotic niche.
Collapse
Affiliation(s)
- Juan J. Quereda
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Álvaro D. Ortega
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO-CSIC), Madrid, Spain
- * E-mail: (MGP); (FGdP)
| | - Francisco García-del Portillo
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- * E-mail: (MGP); (FGdP)
| |
Collapse
|