1
|
Gordon JL, Oliva Chavez AS, Martinez D, Vachiery N, Meyer DF. Possible biased virulence attenuation in the Senegal strain of Ehrlichia ruminantium by ntrX gene conversion from an inverted segmental duplication. PLoS One 2023; 18:e0266234. [PMID: 36800354 PMCID: PMC9937504 DOI: 10.1371/journal.pone.0266234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/16/2022] [Indexed: 02/18/2023] Open
Abstract
Ehrlichia ruminantium is a tick-borne intracellular pathogen of ruminants that causes heartwater, a disease present in Sub-saharan Africa, islands in the Indian Ocean and the Caribbean, inducing significant economic losses. At present, three avirulent strains of E. ruminantium (Gardel, Welgevonden and Senegal isolates) have been produced by a process of serial passaging in mammalian cells in vitro, but unfortunately their use as vaccines do not offer a large range of protection against other strains, possibly due to the genetic diversity present within the species. So far no genetic basis for virulence attenuation has been identified in any E. ruminantium strain that could offer targets to facilitate vaccine production. Virulence attenuated Senegal strains have been produced twice independently, and require many fewer passages to attenuate than the other strains. We compared the genomes of a virulent and attenuated Senegal strain and identified a likely attenuator gene, ntrX, a global transcription regulator and member of a two-component system that is linked to environmental sensing. This gene has an inverted partial duplicate close to the parental gene that shows evidence of gene conversion in different E. ruminantium strains. The pseudogenisation of the gene in the avirulent Senegal strain occurred by gene conversion from the duplicate to the parent, transferring a 4 bp deletion which is unique to the Senegal strain partial duplicate amongst the wild isolates. We confirmed that the ntrX gene is not expressed in the avirulent Senegal strain by RT-PCR. The inverted duplicate structure combined with the 4 bp deletion in the Senegal strain can explain both the attenuation and the faster speed of attenuation in the Senegal strain relative to other strains of E. ruminantium. Our results identify nrtX as a promising target for the generation of attenuated strains of E. ruminantium by random or directed mutagenesis that could be used for vaccine production.
Collapse
Affiliation(s)
- Jonathan L. Gordon
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
| | - Adela S. Oliva Chavez
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
| | | | | | - Damien F. Meyer
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
2
|
Marcelino I, Colomé-Calls N, Holzmuller P, Lisacek F, Reynaud Y, Canals F, Vachiéry N. Sweet and Sour Ehrlichia: Glycoproteomics and Phosphoproteomics Reveal New Players in Ehrlichia ruminantium Physiology and Pathogenesis. Front Microbiol 2019; 10:450. [PMID: 30930869 PMCID: PMC6429767 DOI: 10.3389/fmicb.2019.00450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/20/2019] [Indexed: 01/31/2023] Open
Abstract
Unraveling which proteins and post-translational modifications (PTMs) affect bacterial pathogenesis and physiology in diverse environments is a tough challenge. Herein, we used mass spectrometry-based assays to study protein phosphorylation and glycosylation in Ehrlichia ruminantium Gardel virulent (ERGvir) and attenuated (ERGatt) variants and, how they can modulate Ehrlichia biological processes. The characterization of the S/T/Y phosphoproteome revealed that both strains share the same set of phosphoproteins (n = 58), 36% being overexpressed in ERGvir. The percentage of tyrosine phosphorylation is high (23%) and 66% of the identified peptides are multi-phosphorylated. Glycoproteomics revealed a high percentage of glycoproteins (67% in ERGvir) with a subset of glycoproteins being specific to ERGvir (n = 64/371) and ERGatt (n = 36/343). These glycoproteins are involved in key biological processes such as protein, amino-acid and purine biosynthesis, translation, virulence, DNA repair, and replication. Label-free quantitative analysis revealed over-expression in 31 proteins in ERGvir and 8 in ERGatt. While further PNGase digestion confidently localized 2 and 5 N-glycoproteins in ERGvir and ERGatt, respectively, western blotting suggests that many glycoproteins are O-GlcNAcylated. Twenty-three proteins were detected in both the phospho- and glycoproteome, for the two variants. This work represents the first comprehensive assessment of PTMs on Ehrlichia biology, rising interesting questions regarding ER–host interactions. Phosphoproteome characterization demonstrates an increased versatility of ER phosphoproteins to participate in different mechanisms. The high number of glycoproteins and the lack of glycosyltransferases-coding genes highlight ER dependence on the host and/or vector cellular machinery for its own protein glycosylation. Moreover, these glycoproteins could be crucial to interact and respond to changes in ER environment. PTMs crosstalk between of O-GlcNAcylation and phosphorylation could be used as a major cellular signaling mechanism in ER. As little is known about the Ehrlichia proteins/proteome and its signaling biology, the results presented herein provide a useful resource for further hypothesis-driven exploration of Ehrlichia protein regulation by phosphorylation and glycosylation events. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD012589.
Collapse
Affiliation(s)
- Isabel Marcelino
- CIRAD, UMR ASTRE, Petit-Bourg, France.,ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France.,Unitè TReD-Path (Transmission Rèservoirs et Diversitè des Pathogènes), Institut Pasteur de Guadeloupe, Les Abymes, France
| | - Núria Colomé-Calls
- Proteomics Laboratory, Vall Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Philippe Holzmuller
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France.,CIRAD, UMR ASTRE, Montpellier, France
| | - Frédérique Lisacek
- Proteome Informatics, Swiss Institute of Bioinformatics, Geneva, Switzerland.,Computer Science Department and Section of Biology, University of Geneva, Geneva, Switzerland
| | - Yann Reynaud
- Unitè TReD-Path (Transmission Rèservoirs et Diversitè des Pathogènes), Institut Pasteur de Guadeloupe, Les Abymes, France
| | - Francesc Canals
- Proteomics Laboratory, Vall Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Nathalie Vachiéry
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France.,CIRAD, UMR ASTRE, Montpellier, France
| |
Collapse
|
3
|
Vechtova P, Sterbova J, Sterba J, Vancova M, Rego ROM, Selinger M, Strnad M, Golovchenko M, Rudenko N, Grubhoffer L. A bite so sweet: the glycobiology interface of tick-host-pathogen interactions. Parasit Vectors 2018; 11:594. [PMID: 30428923 PMCID: PMC6236881 DOI: 10.1186/s13071-018-3062-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/14/2018] [Indexed: 11/10/2022] Open
Abstract
Vector-borne diseases constitute 17% of all infectious diseases in the world; among the blood-feeding arthropods, ticks transmit the highest number of pathogens. Understanding the interactions between the tick vector, the mammalian host and the pathogens circulating between them is the basis for the successful development of vaccines against ticks or the tick-transmitted pathogens as well as for the development of specific treatments against tick-borne infections. A lot of effort has been put into transcriptomic and proteomic analyses; however, the protein-carbohydrate interactions and the overall glycobiology of ticks and tick-borne pathogens has not been given the importance or priority deserved. Novel (bio)analytical techniques and their availability have immensely increased the possibilities in glycobiology research and thus novel information in the glycobiology of ticks and tick-borne pathogens is being generated at a faster pace each year. This review brings a comprehensive summary of the knowledge on both the glycosylated proteins and the glycan-binding proteins of the ticks as well as the tick-transmitted pathogens, with emphasis on the interactions allowing the infection of both the ticks and the hosts by various bacteria and tick-borne encephalitis virus.
Collapse
Affiliation(s)
- Pavlina Vechtova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.
| | - Jarmila Sterbova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Jan Sterba
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Marie Vancova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Selinger
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Strnad
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Maryna Golovchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Nataliia Rudenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| |
Collapse
|
4
|
Hebert KS, Seidman D, Oki AT, Izac J, Emani S, Oliver LD, Miller DP, Tegels BK, Kannagi R, Marconi RT, Carlyon JA. Anaplasma marginale Outer Membrane Protein A Is an Adhesin That Recognizes Sialylated and Fucosylated Glycans and Functionally Depends on an Essential Binding Domain. Infect Immun 2017; 85:e00968-16. [PMID: 27993973 PMCID: PMC5328490 DOI: 10.1128/iai.00968-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
Anaplasma marginale causes bovine anaplasmosis, a debilitating and potentially fatal tick-borne infection of cattle. Because A. marginale is an obligate intracellular organism, its adhesins that mediate entry into host cells are essential for survival. Here, we demonstrate that A. marginale outer membrane protein A (AmOmpA; AM854) contributes to the invasion of mammalian and tick host cells. AmOmpA exhibits predicted structural homology to OmpA of A. phagocytophilum (ApOmpA), an adhesin that uses key lysine and glycine residues to interact with α2,3-sialylated and α1,3-fucosylated glycan receptors, including 6-sulfo-sialyl Lewis x (6-sulfo-sLex). Antisera against AmOmpA or its predicted binding domain inhibits A. marginale infection of host cells. Residues G55 and K58 are contributory, and K59 is essential for recombinant AmOmpA to bind to host cells. Enzymatic removal of α2,3-sialic acid and α1,3-fucose residues from host cell surfaces makes them less supportive of AmOmpA binding. AmOmpA is both an adhesin and an invasin, as coating inert beads with it confers adhesiveness and invasiveness. Recombinant forms of AmOmpA and ApOmpA competitively antagonize A. marginale infection of host cells, but a monoclonal antibody against 6-sulfo-sLex fails to inhibit AmOmpA adhesion and A. marginale infection. Thus, the two OmpA proteins bind related but structurally distinct receptors. This study provides a detailed understanding of AmOmpA function, identifies its essential residues that can be targeted by blocking antibody to reduce infection, and determines that it binds to one or more α2,3-sialylated and α1,3-fucosylated glycan receptors that are unique from those targeted by ApOmpA.
Collapse
Affiliation(s)
- Kathryn S Hebert
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - David Seidman
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Aminat T Oki
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Jerilyn Izac
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Sarvani Emani
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Lee D Oliver
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Brittney K Tegels
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Reiji Kannagi
- Research Complex for Medical Frontiers, Aichi Medical University, Yazako, Nagakute, Japan
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
5
|
Hammac GK, Pierlé SA, Cheng X, Scoles GA, Brayton KA. Global transcriptional analysis reveals surface remodeling of Anaplasma marginale in the tick vector. Parasit Vectors 2014; 7:193. [PMID: 24751137 PMCID: PMC4022386 DOI: 10.1186/1756-3305-7-193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/08/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Pathogens dependent upon vectors for transmission to new hosts undergo environment specific changes in gene transcription dependent on whether they are replicating in the vector or the mammalian host. Differential gene transcription, especially of potential vaccine candidates, is of interest in Anaplasma marginale, the tick-borne causative agent of bovine anaplasmosis. METHODS RNA-seq technology allowed a comprehensive analysis of the transcriptional status of A. marginale genes in two conditions: bovine host blood and tick derived cell culture, a model for the tick vector. Quantitative PCR was used to assess transcription of a set of genes in A. marginale infected tick midguts and salivary glands at two time points during the transmission cycle. RESULTS Genes belonging to fourteen pathways or component groups were found to be differentially transcribed in A. marginale in the bovine host versus the tick vector. One of the most significantly altered groups was composed of surface proteins. Of the 56 genes included in the surface protein group, eight were up regulated and 26 were down regulated. The down regulated surface protein encoding genes include several that are well studied due to their immunogenicity and function. Quantitative PCR of a set of genes demonstrated that transcription in tick cell culture most closely approximates transcription in salivary glands of recently infected ticks. CONCLUSIONS The ISE6 tick cell culture line is an acceptable model for early infection in tick salivary glands, and reveals disproportionate down regulation of surface protein genes in the tick. Transcriptional profiling in other cell lines may help us simulate additional microenvironments. Understanding vector-specific alteration of gene transcription, especially of surface protein encoding genes, may aid in the development of vaccines or transmission blocking therapies.
Collapse
Affiliation(s)
| | | | | | | | - Kelly A Brayton
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G, Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA.
| |
Collapse
|
6
|
Mass spectrometric analysis of Ehrlichia chaffeensis tandem repeat proteins reveals evidence of phosphorylation and absence of glycosylation. PLoS One 2010; 5:e9552. [PMID: 20209062 PMCID: PMC2832021 DOI: 10.1371/journal.pone.0009552] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/12/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Ehrlichia chaffeensis has a small subset of immunoreactive secreted, acidic (pI approximately 4), tandem repeat (TR)-containing proteins (TRPs), which exhibit abnormally large electrophoretic masses that have been associated with glycosylation of the TR domain. METHODOLOGY/PRINCIPAL FINDINGS In this study, we examined the extent and nature of posttranslational modifications on the native TRP47 and TRP32 using mass spectrometry. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) demonstrated that the mass of native TRP47 (33,104.5 Da) and TRP32 (22,736.8 Da) were slightly larger (179- and 288-Da, respectively) than their predicted masses. The anomalous migration of native and recombinant TRP47, and the recombinant TR domain (C-terminal region) were normalized by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) modification of negatively charged carboxylates to neutral amides. Exhaustive tandem mass spectrometric analysis (92% coverage) performed on trypsin and Asp-N digested native TRP47 identified peptides consistent with their predicted masses. Two TRP47 peptides not identified were located in the normally migrating amino (N)-terminal region of TRP47 and contained predicted phosphorylation sites (tyrosine and serine residues). Moreover, native TRP47 was immunoprecipitated from E. chaffeensis-infected cell lysate with anti-phosphotyrosine (anti-pTyr) antibody. CONCLUSIONS/SIGNIFICANCE TRP47 and TRP32 are not modified by glycans and the substantial net negative charge of the ehrlichial TRPs, and particularly the highly acidic TRs present within the ehrlichial TRPs, is responsible for larger-than-predicted masses. Furthermore, this study provides evidence that the N-terminal region of the TRP47 is tyrosine phosphorylated.
Collapse
|
7
|
de la Fuente J, Kocan KM, Blouin EF, Zivkovic Z, Naranjo V, Almazán C, Esteves E, Jongejan F, Daffre S, Mangold AJ. Functional genomics and evolution of tick-Anaplasma interactions and vaccine development. Vet Parasitol 2009; 167:175-86. [PMID: 19819630 DOI: 10.1016/j.vetpar.2009.09.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The genus Anaplasma (Rickettsiales: Anaplasmataceae) includes several tick-transmitted pathogens that impact veterinary and human health. Tick-borne pathogens cycle between tick vectors and vertebrate hosts and their interaction is mediated by molecular mechanisms at the tick-pathogen interface. These mechanisms have evolved characteristics that involve traits from both the tick vector and the pathogen to insure their mutual survival. Herein, we review the information obtained from functional genomics and genetic studies to characterize the tick-Anaplasma interface and evolution of A. marginale and A. phagocytophilum. Anaplasma and tick genes and proteins involved in tick-pathogen interactions were characterized. The results of these studies demonstrated that common and Anaplasma species-specific molecular mechanism occur by which pathogen and tick cell gene expression mediates or limits Anaplasma developmental cycle and trafficking through ticks. These results have advanced our understanding of the biology of tick-Anaplasma interactions and have opened new avenues for the development of improved methods for the control of tick infestations and the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- José de la Fuente
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Site-selective chemical protein glycosylation protects from autolysis and proteolytic degradation. Carbohydr Res 2009; 344:1508-14. [DOI: 10.1016/j.carres.2009.06.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/13/2009] [Accepted: 06/17/2009] [Indexed: 11/19/2022]
|
9
|
Differential expression and glycosylation of anaplasma phagocytophilum major surface protein 2 paralogs during cultivation in sialyl Lewis x-deficient host cells. Infect Immun 2009; 77:1746-56. [PMID: 19223475 PMCID: PMC2681760 DOI: 10.1128/iai.01530-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many microbial pathogens alter expression and/or posttranslational modifications of their surface proteins in response to dynamics within their host microenvironments to retain optimal interactions with their host cells and/or to evade the humoral immune response. Anaplasma phagocytophilum is an intragranulocytic bacterium that utilizes sialyl Lewis x (sLe(x))-modified P-selectin glycoprotein ligand 1 as a receptor for infecting myeloid cells. Bacterial populations that do not rely on this receptor can be obtained through cultivation in sLe(x)-defective cell lines. A. phagocytophilum major surface protein 2 [Msp2(P44)] is encoded by members of a paralogous gene family and is speculated to play roles in host adaptation. We assessed the complement of Msp2(P44) paralogs expressed by A. phagocytophilum during infection of sLe(x)-competent HL-60 cells and two HL-60 cell lines defective for sLe(x) expression. Multiple Msp2(P44) and N-terminally truncated 25- to 27-kDa isoforms having various isoelectric points and electrophoretic mobilities were expressed in each cell line. The complement of expressed msp2(p44) paralogs and the glycosyl residues modifying Msp2(P44) varied considerably among bacterial populations recovered from sLe(x)-competent and -deficient host cells. Thus, loss of host cell sLe(x) expression coincided with both differential expression and glycosylation of A. phagocytophilum Msp2(P44). This reinforces the hypothesis that this bacterium is able to generate a large variety of surface-exposed molecules that could provide great antigenic diversity and result in multiple binding properties.
Collapse
|
10
|
Ganta RR, Peddireddi L, Seo GM, Dedonder SE, Cheng C, Chapes SK. Molecular characterization of Ehrlichia interactions with tick cells and macrophages. FRONT BIOSCI-LANDMRK 2009; 14:3259-73. [PMID: 19273271 PMCID: PMC4392924 DOI: 10.2741/3449] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several tick-transmitted Anaplasmataceae family rickettsiales of the genera Ehrlichia and Anaplasma have been discovered in recent years. Some species are classified as pathogens causing emerging diseases with growing health concern for people. They include human monocytic ehrlichiosis, human granulocytic ewingii ehrlichiosis and human granulocytic anaplasmosis which are caused by Ehrlichia chaffeensis, E. ewingii and Anaplasma phagocytophilum, respectively. Despite the complex cellular environments and defense systems of arthropod and vertebrate hosts, rickettsials have evolved strategies to evade host clearance and persist in both vertebrate and tick host environments. For example, E. chaffeensis growing in vertebrate macrophages has distinct patterns of global host cell-specific protein expression and differs considerably in morphology compared with its growth in tick cells. Immunological studies suggest that host cell-specific differences in Ehrlichia gene expression aid the pathogen, extending its survival. Bacteria from tick cells persist longer when injected into mice compared with mammalian macrophage-grown bacteria, and the host response is also significantly different. This review presents the current understanding of tick-Ehrlichia interactions and implications for future.
Collapse
Affiliation(s)
- Roman Reddy Ganta
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Canales M, Almazán C, Pérez de la Lastra JM, de la Fuente J. Anaplasma marginale major surface protein 1a directs cell surface display of tick BM95 immunogenic peptides on Escherichia coli. J Biotechnol 2008; 135:326-32. [DOI: 10.1016/j.jbiotec.2008.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 04/25/2008] [Accepted: 05/08/2008] [Indexed: 11/15/2022]
|
12
|
Postigo M, Taoufik A, Bell-Sakyi L, Bekker C, de Vries E, Morrison W, Jongejan F. Host cell-specific protein expression in vitro in Ehrlichia ruminantium. Vet Microbiol 2008; 128:136-47. [DOI: 10.1016/j.vetmic.2007.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/21/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
|
13
|
Anaplasma phagocytophilum MSP2(P44)-18 predominates and is modified into multiple isoforms in human myeloid cells. Infect Immun 2008; 76:2090-8. [PMID: 18285495 PMCID: PMC2346672 DOI: 10.1128/iai.01594-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum is the etiologic agent of human granulocytic anaplasmosis. MSP2(P44), the bacterium's major surface protein, is encoded by a paralogous gene family and has been implicated in a variety of pathobiological processes, including antigenic variation, host adaptation, adhesion, porin activity, and structural integrity. The consensus among several studies performed at the DNA and RNA levels is that a heterogeneous mix of a limited number of msp2(p44) transcripts is expressed by A. phagocytophilum during in vitro cultivation. Such analyses have yet to be extended to the protein level. In this study, we used proteomic and molecular approaches to determine that MSP2(P44)-18 is the predominant if not the only paralog expressed and is modified into multiple 42- to 44-kDa isoforms by A. phagocytophilum strain HGE1 during infection of HL-60 cells. The msp2(p44) expression profile was homogeneous for msp2(p44)-18. Thus, MSP2(P44)-18 may have a fitness advantage in HL-60 cell culture in the absence of selective immune pressure. Several novel 22- to 27-kDa MSP2 isoforms lacking most of the N-terminal conserved region were also identified. A. phagocytophilum MSP2(P44) orthologs expressed by other pathogens in the family Anaplasmataceae are glycosylated. Gas chromatography revealed that recombinant MSP2(P44)-18 is modified by glucose, galactose, xylose, mannose, and trace amounts of other glycosyl residues. These data are the first to confirm differential modification of any A. phagocytophilum MSP2(P44) paralog and the first to provide evidence for expression of truncated versions of such proteins.
Collapse
|
14
|
Kocan KM, de la Fuente J, Blouin EF. Targeting the tick/pathogen interface for developing new anaplasmosis vaccine strategies. Vet Res Commun 2007; 31 Suppl 1:91-6. [PMID: 17682853 DOI: 10.1007/s11259-007-0070-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bovine anaplasmosis is a tick-borne hemolytic disease of cattle that occurs worldwide caused by the intraerythrocytic rickettsiae Anaplasma marginale. Control measures, including use of acaricides, administration of antibiotics and vaccines, have varied with geographic location. Our research is focused on the tick-pathogen interface for development of new vaccine strategies with the goal of reducing anaplasmosis, tick infestations and the vectorial capacity of ticks. Toward this approach, we have targeted (1) development of an A. marginale cell culture system to provide a non-bovine antigen source, (2) characterization of an A. marginale adhesion protein, and (3) identification of key tick protective antigens for reduction of tick infestations. A cell culture system for propagation of A. marginale was developed and provided a non-bovine source of A. marginale vaccine antigen. The A. marginale adhesion protein, MSP1a, was characterized and use of recombinant MSP1a in vaccine formulations reduced clinical anaplasmosis and infection levels in ticks that acquired infection on immunized cattle. Most recently, we identified a tick-protective antigen, subolesin, that reduced tick infestations, as well as the vectorial capacity of ticks for acquisition and transmission of A marginale. This integrated approach to vaccine development shows promise for developing new strategies for control of bovine anaplasmosis.
Collapse
Affiliation(s)
- K M Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, USA.
| | | | | |
Collapse
|
15
|
de la Fuente J, Ayoubi P, Blouin EF, Almazán C, Naranjo V, Kocan KM. Anaplasmosis: focusing on host-vector-pathogen interactions for vaccine development. Ann N Y Acad Sci 2007; 1078:416-23. [PMID: 17114750 DOI: 10.1196/annals.1374.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Anaplasma marginale and A. phagocytophylum are intracellular rickettsiae that cause bovine anaplasmosis and human granulocytic anaplasmosis, respectively. The ultimate vaccine for the control of anaplasmosis would be one that reduces infection and transmission of the pathogen by ticks. Effective vaccines for control of anaplasmosis are not available despite attempts using different approaches, such as attenuated strains, infected erythrocyte and tick cell-derived purified antigens, and recombinant pathogen and tick-derived proteins. Three lines of functional analyses were conducted by our laboratory to characterize host-tick-Anaplasma interactions to discover potential vaccine candidate antigens to control tick infestations and the infection and transmission of Anaplasma spp.: (1) characterization of A. marginale adhesins involved in infection and transmission of the pathogen, (2) global expression analysis of genes differentially expressed in HL-60 human promyelocytic cells in response to infection with A. phagocytophilum, and (3) identification and characterization of tick-protective antigens by expression library immunization (ELI) and analysis of expressed sequence tags (EST) in a mouse model of tick infestations and by RNA interference in ticks. These experiments have resulted in the characterization of the A. marginale MSP1a as an adhesin for bovine erythrocytes and tick cells, providing support for its use as candidate vaccine antigen for the control of bovine . Microarray analysis of genes differentially expressed in human cells infected with A. phagocytophilum identified key molecules involved in pathogen infection and multiplication. The screening for tick-protective antigens resulted in vaccine candidates reducing tick infestation, molting, and oviposition and affecting Anaplasma infection levels in ticks.
Collapse
Affiliation(s)
- José de la Fuente
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | |
Collapse
|
16
|
de la Fuente J, Canales M, Kocan KM. The importance of protein glycosylation in development of novel tick vaccine strategies. Parasite Immunol 2006; 28:687-8. [PMID: 17096649 DOI: 10.1111/j.1365-3024.2006.00902.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Singu V, Peddireddi L, Sirigireddy KR, Cheng C, Munderloh U, Ganta RR. Unique macrophage and tick cell-specific protein expression from the p28/p30-outer membrane protein multigene locus in Ehrlichia chaffeensis and Ehrlichia canis. Cell Microbiol 2006; 8:1475-87. [PMID: 16922866 DOI: 10.1111/j.1462-5822.2006.00727.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ehrlichia chaffeensis and Ehrlichia canis are tick-transmitted rickettsial pathogens that cause human and canine monocytic ehrlichiosis respectively. We tested the hypothesis that these pathogens express unique proteins in response to their growth in vertebrate and tick host cells and that this differential expression is similar in closely related Ehrlichia species. Evaluation of nine E. chaffeensis isolates and one E. canis isolate demonstrated that protein expression was host cell-dependent. The differentially expressed proteins included those from the p28/30-Omp multigene locus. E. chaffeensis and E. canis proteins expressed in infected macrophages were primarily the products of the p28-Omp 19 and 20 genes or their orthologues. In cultured tick cells, E. canis expressed only the p30-10 protein, an orthologue of the E. chaffeensis p28-Omp 14 protein which is the only protein expressed by E. chaffeensis propagated in cultured tick cells. The expressed Omp proteins were post-translationally modified to generate multiple molecular forms. E. chaffeensis gene expression from the p28/30-Omp locus was similar in tick cell lines derived from both vector (Amblyomma americanum) and non-vector (Ixodes scapularis) ticks. Differential expression of proteins within the p28/p30-Omp locus may therefore be vital for adaptation of Ehrlichia species to their dual host life cycle.
Collapse
Affiliation(s)
- Vijayakrishna Singu
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, USA
| | | | | | | | | | | |
Collapse
|
18
|
Wang X, Kikuchi T, Rikihisa Y. Two monoclonal antibodies with defined epitopes of P44 major surface proteins neutralize Anaplasma phagocytophilum by distinct mechanisms. Infect Immun 2006; 74:1873-82. [PMID: 16495562 PMCID: PMC1418626 DOI: 10.1128/iai.74.3.1873-1882.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum is an obligatory intracellular bacterium that causes human granulocytic anaplasmosis. The polymorphic 44-kDa major outer membrane proteins of A. phagocytophilum are dominant antigens recognized by patients and infected animals. However, the ability of anti-P44 antibody to neutralize the infection has been unclear due to a mixture of P44 proteins with diverse hypervariable region amino acid sequences expressed by a given bacterial population and lack of epitope-defined antibodies. Monoclonal antibodies (MAbs) 5C11 and 3E65 are directed to different domains of P44 proteins, the N-terminal conserved region and P44-18 central hypervariable region, respectively. Passive immunization with either MAb 5C11 or 3E65 partially protects mice from infection with A. phagocytophilum. In the present study, we demonstrated that the two monoclonal antibodies recognize bacterial surface-exposed epitopes of naturally folded P44 proteins and mapped these epitopes to specific peptide sequences. The two MAbs almost completely blocked the infection of the A. phagocytophilum population that predominantly expressed P44-18 in HL-60 cells by distinct mechanisms: MAb 5C11 blocked the binding, but MAb 3E65 did not block binding or internalization. Instead, MAb 3E65 inhibited internalized A. phagocytophilum to develop into microcolonies called morulae. Some plasma from experimentally infected horses and mice reacted with these two epitopes. Taken together, these data indicate the presence of at least two distinct bacterial surface-exposed neutralization epitopes in P44 proteins. The results indicate that antibodies directed to certain epitopes of P44 proteins have a critical role in inhibiting A. phagocytophilum infection of host cells.
Collapse
Affiliation(s)
- Xueqi Wang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Rd., Columbus, OH 43210-1093, USA
| | | | | |
Collapse
|
19
|
Lopez JE, Siems WF, Palmer GH, Brayton KA, McGuire TC, Norimine J, Brown WC. Identification of novel antigenic proteins in a complex Anaplasma marginale outer membrane immunogen by mass spectrometry and genomic mapping. Infect Immun 2006; 73:8109-18. [PMID: 16299305 PMCID: PMC1307060 DOI: 10.1128/iai.73.12.8109-8118.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Immunization with purified Anaplasma marginale outer membranes induces complete protection against infection that is associated with CD4+ T-lymphocyte-mediated gamma interferon secretion and immunoglobulin G2 (IgG2) antibody titers. However, knowledge of the composition of the outer membrane immunogen is limited. Recent sequencing and annotation of the A. marginale genome predicts at least 62 outer membrane proteins (OMP), enabling a proteomic and genomic approach for identification of novel OMP by use of IgG serum antibody from outer membrane vaccinates. Outer membrane proteins were separated by two-dimensional electrophoresis, and proteins recognized by total IgG and IgG2 in immune sera of outer membrane-vaccinated cattle were detected by immunoblotting. Immunoreactive protein spots were excised and subjected to liquid chromatography-tandem mass spectrometry. A database search of the A. marginale genome identified 24 antigenic proteins that were predicted to be outer membrane, inner membrane, or membrane-associated proteins. These included the previously characterized surface-exposed outer membrane proteins MSP2, operon associated gene 2 (OpAG2), MSP3, and MSP5 as well as recently identified appendage-associated proteins. Among the 21 newly described antigenic proteins, 14 are annotated in the A. marginale genome and include type IV secretion system proteins, elongation factor Tu, and members of the MSP2 superfamily. The identification of these novel antigenic proteins markedly expands current understanding of the composition of the protective immunogen and provides new candidates for vaccine development.
Collapse
Affiliation(s)
- Job E Lopez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Dinglasan RR, Jacobs-Lorena M. Insight into a conserved lifestyle: protein-carbohydrate adhesion strategies of vector-borne pathogens. Infect Immun 2006; 73:7797-807. [PMID: 16299269 PMCID: PMC1307025 DOI: 10.1128/iai.73.12.7797-7807.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Rhoel R Dinglasan
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, W4008, Baltimore, MD 21205, USA.
| | | |
Collapse
|
21
|
de la Fuente J, Lew A, Lutz H, Meli ML, Hofmann-Lehmann R, Shkap V, Molad T, Mangold AJ, Almazán C, Naranjo V, Gortázar C, Torina A, Caracappa S, García-Pérez AL, Barral M, Oporto B, Ceci L, Carelli G, Blouin EF, Kocan KM. Genetic diversity of anaplasma species major surface proteins and implications for anaplasmosis serodiagnosis and vaccine development. Anim Health Res Rev 2005; 6:75-89. [PMID: 16164010 DOI: 10.1079/ahr2005104] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The genus Anaplasma (Rickettsiales: Anaplasmataceae) includes several pathogens of veterinary and human medical importance. An understanding of the diversity of Anaplasma major surface proteins (MSPs), including those MSPs that modulate infection, development of persistent infections, and transmission of pathogens by ticks, is derived in part, by characterization and phylogenetic analyses of geographic strains. Information concerning the genetic diversity of Anaplasma spp. MSPs will likely influence the development of serodiagnostic assays and vaccine strategies for the control of anaplasmosis.
Collapse
Affiliation(s)
- José de la Fuente
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078-2007, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rodríguez JL, Palmer GH, Knowles DP, Brayton KA. Distinctly different msp2 pseudogene repertoires in Anaplasma marginale strains that are capable of superinfection. Gene 2005; 361:127-32. [PMID: 16202540 DOI: 10.1016/j.gene.2005.06.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/11/2005] [Accepted: 06/27/2005] [Indexed: 10/25/2022]
Abstract
Lifelong persistent infection of cattle is a hallmark of the tick transmitted pathogen Anaplasma marginale. Antigenic variation of Major Surface Protein 2 (MSP2) plays an important role in evasion of the host immune response to allow persistence. Antigenic variation of MSP2 is achieved by gene conversion of pseudogenes into the single operon linked expression site and the diversity of variants is defined by the pseudogene repertoire. Once an animal is persistently infected with one strain of A. marginale, infection with a second strain (superinfection) is rare. However, we recently detected animals superinfected with different strains of A. marginale and hypothesized that the msp2 pseudogene repertoire would be distinct in these superinfecting strains, consistent with encoding different sets of surface variants. Five strains of A. marginale were selected in order to identify and compare msp2 pseudogene content; these included strains with similar and different msp1alpha genotypes, and genotypes that were representative of the strains that were found in the superinfected animals. Southern blot analysis of strains associated with superinfection revealed distinctly different msp2 banding patterns, in contrast to a pattern suggesting identical pseudogene content among related strains not associated with superinfection. Indeed, targeted sequence analysis of msp2 pseudogenes showed identical pseudogene repertoires in genotypically closely related strains and varying amounts of dissimilarity in the pseudogene repertoire in strains with distinctly different msp1alpha genotypes, but totally different msp2 pseudogene repertoires between the strains that were found in superinfected animals. This finding supports the hypothesis that the occurrence of superinfection reflects the differences in the msp2 repertoire and corresponding diversity of variants.
Collapse
Affiliation(s)
- José-Luis Rodríguez
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | | | | | | |
Collapse
|
23
|
Palmer GH, Knowles DP, Rodriguez JL, Gnad DP, Hollis LC, Marston T, Brayton KA. Stochastic transmission of multiple genotypically distinct Anaplasma marginale strains in a herd with high prevalence of Anaplasma infection. J Clin Microbiol 2005; 42:5381-4. [PMID: 15528749 PMCID: PMC525272 DOI: 10.1128/jcm.42.11.5381-5384.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple genotypically unique strains of the tick-borne pathogen Anaplasma marginale occur and are transmitted within regions where the organism is endemic. In this study, we tested the hypothesis that specific A. marginale strains are preferentially transmitted. The study herd of cattle (n = 261) had an infection prevalence of 29% as determined by competitive inhibition enzyme-linked immunosorbent assay and PCR, with complete concordance between results of the two assays. Genotyping revealed the presence of 11 unique strains within the herd. Although the majority of the individuals (70 of 75) were infected with only a single A. marginale strain, five animals each carried two strains with markedly distinct genotypes, indicating that superinfection does occur with distinct A. marginale strains, as has been reported with A. marginale and A. marginale subsp. centrale strains. Identification of strains in animals born into and infected within the herd during the period from 1998 to 2003 revealed no significant difference from the overall strain prevalence in the herd, results that do not support the occurrence of preferential strain transmission within a population of persistently infected animals and are most consistent with pathogen strain transmission being stochastic.
Collapse
Affiliation(s)
- Guy H Palmer
- Program in Vector-borne Diseases, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Singu V, Liu H, Cheng C, Ganta RR. Ehrlichia chaffeensis expresses macrophage- and tick cell-specific 28-kilodalton outer membrane proteins. Infect Immun 2005; 73:79-87. [PMID: 15618143 PMCID: PMC538988 DOI: 10.1128/iai.73.1.79-87.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis, a tick-transmitted rickettsial agent, causes human monocyte/macrophage-tropic ehrlichiosis. In this study, proteomic approaches were used to demonstrate host cell-specific antigenic expression by E. chaffeensis. The differentially expressed antigens include those from the 28-kDa outer membrane protein (p28-Omp) multigene locus. The proteins expressed in infected macrophages are the products of p28-Omp19 and p28-Omp20 genes, whereas in tick cells, the protein expressed is the p28-Omp14 gene product. The differentially expressed proteins are posttranslationally modified by phosphorylation and glycosylation to generate multiple expressed forms. Host cell-specific protein expression is not influenced by growth temperatures and is reversible. Host cell-specific protein expression coupled with posttranslational modifications may be a hallmark for the pathogen's adaptation to a dual-host life cycle and its persistence.
Collapse
Affiliation(s)
- Vijayakrishna Singu
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave., Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
25
|
Garcia-Garcia JC, de la Fuente J, Kocan KM, Blouin EF, Halbur T, Onet VC, Saliki JT. Mapping of B-cell epitopes in the N-terminal repeated peptides of Anaplasma marginale major surface protein 1a and characterization of the humoral immune response of cattle immunized with recombinant and whole organism antigens. Vet Immunol Immunopathol 2004; 98:137-51. [PMID: 15010223 DOI: 10.1016/j.vetimm.2003.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 11/25/2003] [Accepted: 11/25/2003] [Indexed: 11/22/2022]
Abstract
Major surface protein (MSP) 1a of the genus type species Anaplasma marginale (Rickettsiales: Anaplasmataceae) together with MSP1b forms the MSP1 complex. MSP1a has been shown to be involved in adhesion, infection and tick transmission of A. marginale, as well as to contribute to protective immunity in cattle. A differential antibody response to MSP1a and MSP1b was observed in cattle immunized with A. marginale derived from bovine erythrocytes (anti-MSP1a response) or cultured tick cells (anti-MSP1b response). In this study, we further characterized the MSP1a antibody response of cattle using several immunogens, including recombinant MSP1a (rMSP1a) protein, erythrocyte- or tick cell culture-derived A. marginale, or a combination of tick cell culture-derived A. marginale and rMSP1a. The MSP1a antibody response to all these immunogens was directed primarily against the N-terminal region of MSP1a that contains tandemly repeated peptides, whereas low antibody levels were detected against the C-terminal portion. Linear B-cell epitopes of MSP1a were mapped using synthetic peptides representing the entire sequence of the protein that were prepared by SPOT synthesis technology. Only two peptides in the N-terminal repeats were recognized by sera from immunized cattle. These peptides shared the sequence SSAGGQQQESS, which is likely to contain the linear B-cell epitope that was recognized by the pools of bovine sera. The average differential of antibody titers against MSP1a minus those against MSP1b correlated with lower percent reductions in PCV. A preferential antibody response to MSP1a was observed in cattle immunized with erythrocyte-derived, cell culture-derived plus rMSP1a or rMSP1a alone, and the percent reduction PCV was significantly lower in these cattle as compared with the other immunization groups. These results provide insight into the bovine antibody response against A. marginale and the role of MSP1a in protection of cattle against A. marginale infection.
Collapse
Affiliation(s)
- Jose C Garcia-Garcia
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, 250 McElroy Hall, Stillwater, OK 74078-2007, USA
| | | | | | | | | | | | | |
Collapse
|