1
|
Ji Y, Chen D, Shao M, Liu Z, Li M, Yu Q. The P-type calcium pump Spf1 regulates immune response by maintenance of the endoplasmic reticulum-plasma membrane contacts during Candida albicans systemic infection. Mycology 2024; 16:856-875. [PMID: 40415905 PMCID: PMC12096691 DOI: 10.1080/21501203.2024.2409299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/20/2024] [Indexed: 01/03/2025] Open
Abstract
Spf1 is an important P-type ATPase in Candida albicans, which functions as an endoplasmic reticulum calcium pump to maintain calcium homoeostasis. The deficiency of Spf1 attenuates the virulence of C. albicans. However, its impact on immune response remains to be investigated. This study discovered that deletion of SPF1 resulted in a reduction of endoplasmic reticulum-plasma membrane contacts, an important structure mediating material and information exchange. This effect was attributed to the reduced plasma membrane localisation of the crucial endoplasmic reticulum-plasma membrane tethering proteins Ist2 and Tcb1/3. The reduction of the contacts led to a decrease in secretion of the virulence factors phospholipase, secreted aspartyl protease (SAP), candidalysin, and the cell wall-anchored protein Hwp1 during infection. Immunofluorescence staining and quantitative PCR assays further showed that the SPF1 deletion led to a remarkable decrease in the levels of pro-inflammatory cytokines, suggesting the alleviation of the fungus-induced inflammatory response. Ultimately, the regulatory role of Spf1 in immune response significantly weakened the infectivity of C. albicans, and increased the survival rate of the hosts. This finding elucidated the role of fungal calcium pump-governed endoplasmic reticulum-plasma membrane contacts in regulation of immune response. It also makes it possible to regulate the host's immune response via control of SPF1 expression and functions, providing a theoretical basis for treating fungal infections.
Collapse
Affiliation(s)
- Yuchao Ji
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, China
| | - Dou Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, China
| | - Menglin Shao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhuo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingchun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, China
| | - Qilin Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Davis MJ, Martin RE, Pinheiro GM, Hoke ES, Moyer S, Ueno K, Rodriguez-Gil JL, Mallett MA, Khillan JS, Pavan WJ, Chang YC, Kwon-Chung KJ. Inbred SJL mice recapitulate human resistance to Cryptococcus infection due to differential immune activation. mBio 2023; 14:e0212323. [PMID: 37800917 PMCID: PMC10653822 DOI: 10.1128/mbio.02123-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Cryptococcosis studies often utilize the common C57BL/6J mouse model. Unfortunately, infection in these mice fails to replicate the basic course of human disease, particularly hampering immunological studies. This work demonstrates that SJL/J mice can recapitulate human infection better than other mouse strains. The immunological response to Cryptococcus infection in SJL/J mice was markedly different from C57BL/6J and much more productive in combating this infection. Characterization of infected mice demonstrated strain-specific genetic linkage and differential regulation of multiple important immune-relevant genes in response to Cryptococcus infection. While our results validate many of the previously identified immunological features of cryptococcosis, we also demonstrate limitations from previous mouse models as they may be less translatable to human disease. We concluded that SJL/J mice more faithfully recapitulate human cryptococcosis serving as an exciting new animal model for immunological and genetic studies.
Collapse
Affiliation(s)
- M. J. Davis
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - R. E. Martin
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - G. M. Pinheiro
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - E. S. Hoke
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - S. Moyer
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - K. Ueno
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - J. L. Rodriguez-Gil
- Genomics, Development and Disease Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - M. A. Mallett
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - J. S. Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - W. J. Pavan
- Genomics, Development and Disease Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Y. C. Chang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - K. J. Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
3
|
Goughenour KD, Nair AS, Xu J, Olszewski MA, Wozniak KL. Dendritic Cells: Multifunctional Roles in Host Defenses to Cryptococcus Infections. J Fungi (Basel) 2023; 9:1050. [PMID: 37998856 PMCID: PMC10672120 DOI: 10.3390/jof9111050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Fungal infections are an increasingly growing public health concern, and Cryptococcus is one of the most problematic fungal organisms causing substantial mortality and morbidity worldwide. Clinically, this high incidence of cryptococcosis is most commonly seen in immunocompromised patients, especially those who lack an adaptive T cell response, such as HIV/AIDS patients. However, patients with other underlying immunodeficiencies are also at an increased risk for cryptococcosis. The adaptive immune response, in particular the Th1/Th17 T-cell-mediated responses, to pulmonary Cryptococcus infections are required for host protection. Dendritic cells (DCs), encompassing multiple subsets identified to date, are recognized as the major professional antigen-presenting cell (APC) subset essential for the initiation and execution of T-cell immunity. Apart from their prominent role in orchestration of the adaptive arm of the immune defenses, DCs are fully armed cells from the innate immune system capable of the recognition, uptake, and killing of the fungal cells. Thus, DCs serve as a critical point for the endpoint outcomes of either fungal control or unrestrained fungal infection. Multiple studies have shown that DCs are required for anti-cryptococcal defense in the lungs. In addition, the role of DCs in Cryptococcus gattii infections is just starting to be elucidated. C. gattii has recently risen to prominence with multiple outbreaks in the US and Canada, demonstrating increased virulence in non-immunocompromised individuals. C. gattii infection fails to generate an inflammatory immune response or a protective Th1/Th17 T cell response, at least in part, through a lack of proper DC function. Here we summarize the multiple roles of DCs, including subsets of DCs in both mouse and human models, the roles of DCs during cryptococcal infection, and mechanisms by cryptococcal cells to attempt to undermine these host defenses.
Collapse
Affiliation(s)
- Kristie D. Goughenour
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Healthcare System, Ann Arbor, MI 48105, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Ayesha S. Nair
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jintao Xu
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Healthcare System, Ann Arbor, MI 48105, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Michal A. Olszewski
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Healthcare System, Ann Arbor, MI 48105, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
4
|
Cheng X, Zhu H, Bai S, Zou Y, Xia Z, Yang R. Pathogenicity of phospholipase B1 of Trichosporon asahii in immunosuppressed mice. Mycoses 2023; 66:467-476. [PMID: 36680377 DOI: 10.1111/myc.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/28/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Trichosporon asahii is an opportunistic pathogenic yeast-like fungus. Phospholipase B1 (PLB1) is an important virulence factor of pathogenic fungi such as Candida albicans and Cryptococcus neoformans, and there are few studies on the role of PLB1 in the pathogenicity of T. asahii. OBJECTIVES To investigate the role of PLB1 in the pathogenicity of T. asahii. METHODS A strain with low secretion of PLB1 (4848) was screened, a PLB1 overexpression strain (PLB1OX ) was constructed, and the differences in histopathology, fungal load of organ, survival time of mice, the levels of IL-6, IL-10, TNF-α, and GM-GSF in the serum and organs caused by the two strains were compared. RESULTS Histopathology showed that spores and hyphae were observed in both groups, and PLB1OX led to more fungal invasion. The fungal loads in the kidney, lung, spleen and liver in the PLB1OX group were significantly higher than those in the 4848 group, and the survival time of mice was significantly lower than that in the 4848 group. The levels of TNF-α in the serum, liver, spleen, lung and kidney of the PLB1OX group were lower than those of the 4848 group, while the level of IL-10 in the serum was higher than that of the 4848 group. CONCLUSIONS These results suggest that PLB1 can enhance the invasive function of T. asahii and affect the secretion of TNF-α and IL-10 which may affect the host antifungal immune response, providing evidence that PLB1 plays a role in the pathogenic infection of T. asahii.
Collapse
Affiliation(s)
- Xiaoxian Cheng
- Chinese PLA Medical School, Peking, China.,Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China
| | - He Zhu
- Chinese PLA Medical School, Peking, China.,Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China
| | - Shuang Bai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Dermatology, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Yuekun Zou
- Chinese PLA Medical School, Peking, China.,Department of Geriatrics, The Sixth Medical Center of PLA General Hospital, Peking, China
| | - Zhikuan Xia
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Rongya Yang
- Chinese PLA Medical School, Peking, China.,Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China
| |
Collapse
|
5
|
Sharma J, Mudalagiriyappa S, Nanjappa SG. T cell responses to control fungal infection in an immunological memory lens. Front Immunol 2022; 13:905867. [PMID: 36177012 PMCID: PMC9513067 DOI: 10.3389/fimmu.2022.905867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Collapse
Affiliation(s)
| | | | - Som Gowda Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
6
|
Eastman AJ, Xu J, Bermik J, Potchen N, den Dekker A, Neal LM, Zhao G, Malachowski A, Schaller M, Kunkel S, Osterholzer JJ, Kryczek I, Olszewski MA. Epigenetic stabilization of DC and DC precursor classical activation by TNFα contributes to protective T cell polarization. SCIENCE ADVANCES 2019; 5:eaaw9051. [PMID: 31840058 PMCID: PMC6892624 DOI: 10.1126/sciadv.aaw9051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 10/18/2019] [Indexed: 05/16/2023]
Abstract
Epigenetic modifications play critical roles in inducing long-lasting immunological memory in innate immune cells, termed trained immunity. Whether similar epigenetic mechanisms regulate dendtritic cell (DC) function to orchestrate development of adaptive immunity remains unknown. We report that DCs matured with IFNγ and TNFα or matured in the lungs during invasive fungal infection with endogenous TNFα acquired a stable TNFα-dependent DC1 program, rendering them resistant to both antigen- and cytokine-induced alternative activation. TNFα-programmed DC1 had increased association of H3K4me3 with DC1 gene promoter regions. Furthermore, MLL1 inhibition blocked TNFα-mediated DC1 phenotype stabilization. During IFI, TNFα-programmed DC1s were required for the development of sustained TH1/TH17 protective immunity, and bone marrow pre-DCs exhibited TNFα-dependent preprogramming, supporting continuous generation of programmed DC1 throughout the infection. TNFα signaling, associated with epigenetic activation of DC1 genes particularly via H3K4me3, critically contributes to generation and sustenance of type 1/17 adaptive immunity and the immune protection against persistent infection.
Collapse
Affiliation(s)
- Alison J. Eastman
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor VA Hospital, Ann Arbor, MI 48105, USA
| | - Jintao Xu
- Ann Arbor VA Hospital, Ann Arbor, MI 48105, USA
| | - Jennifer Bermik
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Aaron den Dekker
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lori M. Neal
- Department of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guolei Zhao
- Ann Arbor VA Hospital, Ann Arbor, MI 48105, USA
| | | | - Matt Schaller
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Steven Kunkel
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John J. Osterholzer
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor VA Hospital, Ann Arbor, MI 48105, USA
- Department of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ilona Kryczek
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michal A. Olszewski
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor VA Hospital, Ann Arbor, MI 48105, USA
- Department of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Fa Z, Xu J, Yi J, Sang J, Pan W, Xie Q, Yang R, Fang W, Liao W, Olszewski MA. TNF-α-Producing Cryptococcus neoformans Exerts Protective Effects on Host Defenses in Murine Pulmonary Cryptococcosis. Front Immunol 2019; 10:1725. [PMID: 31404168 PMCID: PMC6677034 DOI: 10.3389/fimmu.2019.01725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) plays a critical role in the control of cryptococcal infection, and its insufficiency promotes cryptococcal persistence. To explore the therapeutic potential of TNF-α supplementation as a booster of host anti-cryptococcal responses, we engineered a C. neoformans strain expressing murine TNF-α. Using a murine model of pulmonary cryptococcosis, we demonstrated that TNF-α-producing C. neoformans strain enhances protective elements of host response including preferential T-cell accumulation and improved Th1/Th2 cytokine balance, diminished pulmonary eosinophilia and alternative activation of lung macrophages at the adaptive phase of infection compared to wild type strain-infected mice. Furthermore, TNF-α expression by C. neoformans enhanced the fungicidal activity of macrophages in vitro. Finally, mice infected with the TNF-α-producing C. neoformans strain showed improved fungal control and considerably prolonged survival compared to wild type strain-infected mice, but could not induce sterilizing immunity. Taken together, our results support that TNF-α expression by an engineered C. neoformans strain while insufficient to drive complete immune protection, strongly enhanced protective responses during primary cryptococcal infection.
Collapse
Affiliation(s)
- Zhenzong Fa
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China.,Department of Dermatology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI, United States
| | - Jiu Yi
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Junjun Sang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qun Xie
- Department of Anesthesiology, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Runping Yang
- Department of Dermatology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Wei Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States.,Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Birkl D, Quiros M, García-Hernández V, Zhou DW, Brazil JC, Hilgarth R, Keeney J, Yulis M, Bruewer M, García AJ, O´Leary MN, Parkos CA, Nusrat A. TNFα promotes mucosal wound repair through enhanced platelet activating factor receptor signaling in the epithelium. Mucosal Immunol 2019; 12:909-918. [PMID: 30971752 PMCID: PMC6599476 DOI: 10.1038/s41385-019-0150-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/14/2019] [Accepted: 02/10/2019] [Indexed: 02/04/2023]
Abstract
Pathobiology of several chronic inflammatory disorders, including ulcerative colitis and Crohn's disease is related to intermittent, spontaneous injury/ulceration of mucosal surfaces. Disease morbidity has been associated with pathologic release of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). In this report, we show that TNFα promotes intestinal mucosal repair through upregulation of the GPCR platelet activating factor receptor (PAFR) in the intestinal epithelium. Platelet activating factor (PAF) was increased in healing mucosal wounds and its engagement with epithelial PAFR leads to activation of epidermal growth factor receptor, Src and Rac1 signaling to promote wound closure. Consistent with these findings, delayed colonic mucosal repair was observed after administration of a neutralizing TNFα antibody and in mice lacking PAFR. These findings suggest that in the injured mucosa, the pro-inflammatory milieu containing TNFα and PAF sets the stage for reparative events mediated by PAFR signaling.
Collapse
Affiliation(s)
- Dorothee Birkl
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miguel Quiros
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Dennis W. Zhou
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jennifer C. Brazil
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roland Hilgarth
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin Keeney
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark Yulis
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthias Bruewer
- Department of Surgery, St. Franziskus-Hospital Münster, 48145 Münster, Germany
| | - Andrés J. García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA,Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Monique N. O´Leary
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Correspondence: Asma Nusrat, , Monique N. O’Leary,
| | - Charles A. Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA,Correspondence: Asma Nusrat, , Monique N. O’Leary,
| |
Collapse
|
9
|
Decote-Ricardo D, LaRocque-de-Freitas IF, Rocha JDB, Nascimento DO, Nunes MP, Morrot A, Freire-de-Lima L, Previato JO, Mendonça-Previato L, Freire-de-Lima CG. Immunomodulatory Role of Capsular Polysaccharides Constituents of Cryptococcus neoformans. Front Med (Lausanne) 2019; 6:129. [PMID: 31275938 PMCID: PMC6593061 DOI: 10.3389/fmed.2019.00129] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Cryptococcosis is a systemic fungal infection caused by Cryptococcus neoformans. In immunocompetent patients, cryptococcal infection is often confined to the lungs. In immunocompromised individuals, C. neoformans may cause life-threatening illness, either from novel exposure or through reactivation of a previously acquired latent infection. For example, cryptococcal meningitis is a severe clinical disease that can manifest in people that are immunocompromised due to AIDS. The major constituents of the Cryptococcus polysaccharide capsule, glucuronoxylomannan (GXM), and galactoxylomannan (GalXM), also known as glucuronoxylomanogalactan (GXMGal), are considered the primary virulence factors of Cryptococcus. Despite the predominance of GXM in the polysaccharide capsule, GalXM has more robust immunomodulatory effects on host cellular immunity. This review summarizes current knowledge regarding host-Crytococcus neoformans interactions and the role of capsular polysaccharides in host immunomodulation. Future studies will likely facilitate a better understanding of the mechanisms involved in antigenic recognition and host immune response to C. neoformans and lead to the development of new therapeutic pathways for cryptococcal infection.
Collapse
Affiliation(s)
- Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Juliana Dutra B Rocha
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle O Nascimento
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marise P Nunes
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucia Mendonça-Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
10
|
Beardsley J, Hoang NLT, Kibengo FM, Tung NLN, Binh TQ, Hung LQ, Chierakul W, Thwaites GE, Chau NVV, Nguyen TTT, Geskus RB, Day JN. Do Intracerebral Cytokine Responses Explain the Harmful Effects of Dexamethasone in Human Immunodeficiency Virus-associated Cryptococcal Meningitis? Clin Infect Dis 2019; 68:1494-1501. [PMID: 30169607 PMCID: PMC6481995 DOI: 10.1093/cid/ciy725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The CryptoDex trial showed that dexamethasone caused poorer clinical outcomes and slowed fungal clearance in human immunodeficiency virus-associated cryptococcal meningitis. We analyzed cerebrospinal fluid (CSF) cytokine concentrations from participants over the first week of treatment to investigate mechanisms of harm and test 2 hypotheses: (1) dexamethasone reduced proinflammatory cytokine concentrations, leading to poorer outcomes and (2) leukotriene A4 hydrolase (LTA4H) genotype influenced the clinical impact of dexamethasone, as observed in tuberculous meningitis. METHODS We included participants from Vietnam, Thailand, and Uganda. Using the Luminex system, we measured CSF concentrations of the following: interferon γ, tumor necrosis factor (TNF) α, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant 1, macrophage inflammatory protein 1α, and interleukin 6, 12p70, 8, 4, 10, and 17. We determined the LTA4H genotype based on the promoter region single-nucleotide polymorphism rs17525495. We assessed the impact of dexamethasone on cytokine concentration dynamics and the association between cytokine concentration dynamics and fungal clearance with mixed effect models. We measured the influence of LTA4H genotype on outcomes with Cox regression models. RESULTS Dexamethasone increased the rate TNF-α concentration's decline in (-0.13 log2pg/mL/d (95% confidence interval, -.22 to -.06 log2pg/mL/d; P = .03), which was associated with slower fungal clearance (correlation, -0.62; 95% confidence interval, -.83 to -.26). LTA4H genotype had no statistically significant impact on outcome or response to dexamethasone therapy. Better clinical outcomes were associated with higher baseline concentrations of interferon γ. CONCLUSIONS Dexamethasone may slow fungal clearance and worsen outcomes by increasing TNF-α concentration's rate of decline.
Collapse
Affiliation(s)
- Justin Beardsley
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford, United Kingdom
- Marie Bashir Institute, University of Sydney, New South Wales, Australia
| | - Nhat L T Hoang
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Tran Q Binh
- Department of Tropical Medicine, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Le Q Hung
- Department of Tropical Medicine, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Wirongrong Chierakul
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford, United Kingdom
| | | | - Thuong T T Nguyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Ronald B Geskus
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Jeremy N Day
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford, United Kingdom
| |
Collapse
|
11
|
Teitz-Tennenbaum S, Viglianti SP, Roussey JA, Levitz SM, Olszewski MA, Osterholzer JJ. Autocrine IL-10 Signaling Promotes Dendritic Cell Type-2 Activation and Persistence of Murine Cryptococcal Lung Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:2004-2015. [PMID: 30097531 DOI: 10.4049/jimmunol.1800070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/21/2018] [Indexed: 12/14/2022]
Abstract
The substantial morbidity and mortality caused by invasive fungal pathogens, including Cryptococcus neoformans, necessitates increased understanding of protective immune responses against these infections. Our previous work using murine models of cryptococcal lung infection demonstrated that dendritic cells (DCs) orchestrate critical transitions from innate to adaptive immunity and that IL-10 signaling blockade improves fungal clearance. To further understand interrelationships among IL-10 production, fungal clearance, and the effect of IL-10 on lung DCs, we performed a comparative temporal analysis of cryptococcal lung infection in wild type C57BL/6J mice (designated IL-10+/+) and IL-10-/- mice inoculated intratracheally with C. neoformans (strain 52D). Early and sustained IL-10 production by lung leukocytes was associated with persistent infection in IL-10+/+ mice, whereas fungal clearance was improved in IL-10-/- mice during the late adaptive phase of infection. Numbers of monocyte-derived DCs, T cells, and alveolar and exudate macrophages were increased in lungs of IL-10-/- versus IL-10+/+ mice concurrent with evidence of enhanced DC type-1, Th1/Th17 CD4 cell, and classical macrophage activation. Bone marrow-derived DCs stimulated with cryptococcal mannoproteins, a component of the fungal capsule, upregulated expression of IL-10 and IL-10R, which promoted DC type-2 activation in an autocrine manner. Thus, our findings implicate fungus-triggered autocrine IL-10 signaling and DC type-2 activation as important contributors to the development of nonprotective immune effector responses, which characterize persistent cryptococcal lung infection. Collectively, this study informs and strengthens the rationale for IL-10 signaling blockade as a novel treatment for fungal infections.
Collapse
Affiliation(s)
- Seagal Teitz-Tennenbaum
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Steven P Viglianti
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105
| | - Jonathan A Roussey
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical Center, Worcester, MA 01605
| | - Michal A Olszewski
- Research Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109.,Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109; and
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; .,Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109; and.,Pulmonary Section Medical Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105
| |
Collapse
|
12
|
McDermott AJ, Klein BS. Helper T-cell responses and pulmonary fungal infections. Immunology 2018; 155:155-163. [PMID: 29781185 DOI: 10.1111/imm.12953] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
The mucosal surface of the respiratory tract encounters microbes, such as fungal particles, with every inhaled breath. When pathogenic fungi breach the physical barrier and innate immune system within the lung to establish an infection, adaptive immunity is engaged, often in the form of helper CD4 T-cell responses. Type 1 responses, characterized by interferon-γ production from CD4 cells, promote clearance of Histoplasma capsulatum and Cryptococcus neoformans infection. Likewise, interleukin-17A (IL-17A) production from Th17 cells promotes immunity to Blastomyces dermatitidis and Coccidioides species infection by recruiting neutrophils. In contrast the development of T helper type 2 responses, characterized by IL-5 production from T cells and eosinophil influx into the lungs, drives allergic bronchopulmonary aspergillosis and poor outcomes during C. neoformans infection. Experimental vaccines against several endemic mycoses, including Histoplasma capsulatum, Coccidioides, Cryptococcus and Blastomyces dermatitidis, induce protective T-cell responses and foreshadow the development of vaccines against pulmonary fungal infections for use in humans. Additionally, recent work using antifungal T cells as immunotherapy to protect immune-compromised patients from opportunist fungal infections also shows great promise. This review covers the role of T-cell responses in driving protection and pathology in response to pulmonary fungal infections, and highlights promising therapeutic applications of antifungal T cells.
Collapse
Affiliation(s)
- Andrew J McDermott
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bruce S Klein
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
13
|
Tumor Necrosis Factor Alpha Antagonism Reveals a Gut/Lung Axis That Amplifies Regulatory T Cells in a Pulmonary Fungal Infection. Infect Immun 2018; 86:IAI.00109-18. [PMID: 29581197 DOI: 10.1128/iai.00109-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor (TNF) antagonists are popular therapies for inflammatory diseases. These agents enhance the numbers and function of regulatory T cells (Tregs), which are important in controlling inflammatory diseases. However, elevated Treg levels increase susceptibility to infections, including histoplasmosis. We determined the mechanism by which Tregs expand in TNF-neutralized mice infected with Histoplasma capsulatum Lung CD11c+ CD11b+ dendritic cells (DCs), but not alveolar macrophages, from H. capsulatum-infected mice treated with anti-TNF induced a higher percentage of Tregs than control DCs in vitro CD11b+ CD103+ DCs, understood to be unique to the intestines, were augmented in lungs with anti-TNF treatment. In the absence of this subset, DCs from anti-TNF-treated mice failed to amplify Tregs in vitro CD11b+ CD103+ DCs from TNF-neutralized mice displayed higher retinaldehyde dehydrogenase 2 (RALDH2) gene expression, and CD11b+ CD103+ RALDH+ DCs exhibited greater enzyme activity. To determine if CD11b+ CD103+ DCs migrated from gut to lung, fluorescent beads were delivered to the gut via oral gavage, and the lungs were assessed for bead-containing DCs. Anti-TNF induced migration of CD11b+ CD103+ DCs from the gut to the lung that enhanced the generation of Tregs in H. capsulatum-infected mice. Therefore, TNF neutralization promotes susceptibility to pulmonary H. capsulatum infection by promoting a gut/lung migration of DCs that enhances Tregs.
Collapse
|
14
|
Dutra FF, Albuquerque PC, Rodrigues ML, Fonseca FL. Warfare and defense: The host response to Cryptococcus infection. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Gonçalves Silva E, Marilia de Souza Silva S, Rodrigues Paula C, da Silva Ruiz L, Latercia Tranches Dias A. Modulatory effect of voriconazole on the production of proinflammatory cytokines in experimental cryptococcosis in mice with severe combined immunodeficiency. J Mycol Med 2017; 28:106-111. [PMID: 29273275 DOI: 10.1016/j.mycmed.2017.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Cryptococcosis is a subacute or chronic disease. For many years, amphotericin B has been used in severe fungal infections. Voriconazole is a triazole with high bioavailability, a large distribution volume, and excellent penetration of the central nervous system (CNS). The objective of this study was to evaluate the production of pro-inflammatory cytokines in the lungs during an experimental infection caused by C. neoformans in murine model (SCID) that was treated with amphotericin B and voriconazole. After intravenous inoculation with 3.0×105 viable yeast cells, the animals were treated with amphotericin B and voriconazole. The daily treatments began 24hours after inoculation and lasted 15 days. We evaluated the survival curve and we measured the levels of TNF-α, IL-6 and IL-10. For all treatments, there was a significant increase in survival compared to the untreated group of animals and the group treated with voriconazole (maximum concentration). The levels of pro-inflammatory cytokines were significantly lower in the groups treated with voriconazole (maximum concentration) and amphotericin B (minimum concentration). Under the conditions studied, we can suggest by that the production of pro-inflammatory cytokines mediated by amphotericin B and voriconazole is dependent on the concentration administered.
Collapse
Affiliation(s)
- E Gonçalves Silva
- University of São Paulo, Faculdade de Odontologia - FOUSP, avenida Professor Lineu-Prestes, 2227, Cidade Universitária, CEP: 05508-000, São Paulo, Brazil.
| | - S Marilia de Souza Silva
- Universidade Federal do ABC - UFABC, avenida dos Estados, 5001 Bairro Santa Terezinha, Santo André, 09210-580 São Paulo, Brazil
| | - C Rodrigues Paula
- University of São Paulo, Faculdade de Odontologia - FOUSP, avenida Professor Lineu-Prestes, 2227, Cidade Universitária, CEP: 05508-000, São Paulo, Brazil
| | - L da Silva Ruiz
- Instituto Adolfo Lutz, Bauru, rua Rubens Arruda, quadra 6, Altos da Cidade, 17015-110 Bauru, Brazil
| | - A Latercia Tranches Dias
- Universidade Federal de Alfenas, Alfenas, rua Gabriel Monteiro da Silva, 700 Alfenas, 37130-001 Minas Gerais, Brazil
| |
Collapse
|
16
|
Fa Z, Xie Q, Fang W, Zhang H, Zhang H, Xu J, Pan W, Xu J, Olszewski MA, Deng X, Liao W. RIPK3/Fas-Associated Death Domain Axis Regulates Pulmonary Immunopathology to Cryptococcal Infection Independent of Necroptosis. Front Immunol 2017; 8:1055. [PMID: 28919893 PMCID: PMC5585137 DOI: 10.3389/fimmu.2017.01055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/14/2017] [Indexed: 01/08/2023] Open
Abstract
Fas-associated death domain (FADD) and receptor interacting protein kinase 3 (RIPK3) are multifunctional regulators of cell death and immune response. Using a mouse model of cryptococcal infection, the roles of FADD and RIPK3 in anti-cryptococcal defense were investigated. Deletion of RIPK3 alone led to increased inflammatory cytokine production in the Cryptococcus neoformans-infected lungs, but in combination with FADD deletion, it led to a robust Th1-biased response with M1-biased macrophage activation. Rather than being protective, these responses led to paradoxical C. neoformans expansion and rapid clinical deterioration in Ripk3−/− and Ripk3−/−Fadd−/− mice. The increased mortality of Ripk3−/− and even more accelerated mortality in Ripk3−/−Fadd−/− mice was attributed to profound pulmonary damage due to neutrophil-dominant infiltration with prominent upregulation of pro-inflammatory cytokines. This phenomenon was partially associated with selective alterations in the apoptotic frequency of some leukocyte subsets, such as eosinophils and neutrophils, in infected Ripk3−/−Fadd−/− mice. In conclusion, our study shows that RIPK3 in concert with FADD serve as physiological “brakes,” preventing the development of excessive inflammation and Th1 bias, which in turn contributes to pulmonary damage and defective fungal clearance. This novel link between the protective effect of FADD and RIPK3 in antifungal defense and sustenance of immune homeostasis may be important for the development of novel immunomodulatory therapies against invasive fungal infections.
Collapse
Affiliation(s)
- Zhenzong Fa
- PLA Key Laboratory of Mycosis, Department of Dermatology and Venereology, Changzheng Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States
| | - Qun Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China.,Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China.,Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haibing Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haiwei Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States
| | - Weihua Pan
- PLA Key Laboratory of Mycosis, Department of Dermatology and Venereology, Changzheng Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Michal A Olszewski
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, United States
| | - Xiaoming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wanqing Liao
- PLA Key Laboratory of Mycosis, Department of Dermatology and Venereology, Changzheng Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| |
Collapse
|
17
|
Lowther AL, Somani AK, Camouse M, Florentino FT, Somach SC. Invasive Trichophyton Rubrum Infection Occurring with Infliximab and Long-Term Prednisone Treatment. J Cutan Med Surg 2016; 11:84-8. [PMID: 17374319 DOI: 10.2310/7750.2007.00009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: A 64-year-old woman presented with erythematous plaques, tender nodules, and pustules of the dorsal right hand and both legs following long-term treatment with systemic steroids and infliximab. Skin biopsy demonstrated dermal inflammation with foci of necrosis and multinucleated giant cells containing fungal spores. Tissue culture grew Trichophyton rubrum. Objective: To report a case that demonstrates the pathophysiology of invasive T. rubrum infection, the mechanisms of action and uses of tumor necrosis factor α (TNF-α)-inhibiting drugs, and how these drugs may increase patients' risk of invasive dermatophytosis. Conclusion: Dermatophytes such as T. rubrum rarely cause invasive disease. This unusual presentation of invasive T. rubrum occurred with immunosuppression by infliximab and systemic steroids. Patients should have a thorough examination for signs of latent infection before TNF-α inhibitors are prescribed, including inspection of the skin and nails for signs of dermatophytosis.
Collapse
Affiliation(s)
- Abigail L Lowther
- Metrohealth Medical Center, Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | | | | | | | | |
Collapse
|
18
|
Eastman AJ, Osterholzer JJ, Olszewski MA. Role of dendritic cell-pathogen interactions in the immune response to pulmonary cryptococcal infection. Future Microbiol 2016; 10:1837-57. [PMID: 26597428 DOI: 10.2217/fmb.15.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review discusses the unique contributions of dendritic cells (DCs) to T-cell priming and the generation of effective host defenses against Cryptococcus neoformans (C.neo) infection. We highlight DC subsets involved in the early and later stages of anticryptococcal immune responses, interactions between C.neo pathogen-associated molecular patterns and pattern recognition receptors expressed by DC, and the influence of DC on adaptive immunity. We emphasize recent studies in mouse models of cryptococcosis that illustrate the importance of DC-derived cytokines and costimulatory molecules and the potential role of DC epigenetic modifications that support maintenance of these signals throughout the immune response to C.neo. Lastly, we stipulate where these advances can be developed into new, immune-based therapeutics for treatment of this global pathogen.
Collapse
Affiliation(s)
- Alison J Eastman
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - John J Osterholzer
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Michal A Olszewski
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.,Division of Pulmonary & Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Bourne EL, Dimou J. Invasive central nervous system aspergillosis in a patient with Crohn’s disease after treatment with infliximab and corticosteroids. J Clin Neurosci 2016; 30:163-164. [DOI: 10.1016/j.jocn.2016.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/30/2016] [Accepted: 02/14/2016] [Indexed: 01/18/2023]
|
20
|
Xu J, Eastman AJ, Flaczyk A, Neal LM, Zhao G, Carolan J, Malachowski AN, Stolberg VR, Yosri M, Chensue SW, Curtis JL, Osterholzer JJ, Olszewski MA. Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection. mBio 2016; 7:e00510-16. [PMID: 27406560 PMCID: PMC4958242 DOI: 10.1128/mbio.00510-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Anti-tumor necrosis factor alpha (anti-TNF-α) therapies have been increasingly used to treat inflammatory diseases and are associated with increased risk of invasive fungal infections, including Cryptococcus neoformans infection. Using a mouse model of cryptococcal infection, we investigated the mechanism by which disruption of early TNF-α signaling results in the development of nonprotective immunity against C. neoformans We found that transient depletion of TNF-α inhibited pulmonary fungal clearance and enhanced extrapulmonary dissemination of C. neoformans during the adaptive phase of the immune response. Higher fungal burdens in TNF-α-depleted mice were accompanied by markedly impaired Th1 and Th17 responses in the infected lungs. Furthermore, early TNF-α depletion also resulted in disrupted transcriptional initiation of the Th17 polarization program and subsequent upregulation of Th1 genes in CD4(+) T cells in the lung-associated lymph nodes (LALN) of C. neoformans-infected mice. These defects in LALN T cell responses were preceded by a dramatic shift from a classical toward an alternative activation of dendritic cells (DC) in the LALN of TNF-α-depleted mice. Taken together, our results indicate that early TNF-α signaling is required for optimal DC activation, and the initial Th17 response followed by Th1 transcriptional prepolarization of T cells in the LALN, which further drives the development of protective immunity against cryptococcal infection in the lungs. Thus, administration of anti-TNF-α may introduce a particularly greater risk for newly acquired fungal infections that require generation of protective Th1/Th17 responses for their containment and clearance. IMPORTANCE Increased susceptibility to invasive fungal infections in patients on anti-TNF-α therapies underlines the need for understanding the cellular effects of TNF-α signaling in promoting protective immunity to fungal pathogens. Here, we demonstrate that early TNF-α signaling is required for classical activation and accumulation of DC in LALN of C. neoformans-infected mice. Subsequent transcriptional initiation of Th17 followed by Th1 programming in LALN results in pulmonary accumulation of gamma interferon- and interleukin-17A-producing T cells and effective fungal clearance. All of these crucial steps are severely impaired in mice that undergo anti-TNF-α treatment, consistent with their inability to clear C. neoformans This study identified critical interactions between cells of the innate immune system (DC), the emerging T cell responses, and cytokine networks with a central role for TNF-α which orchestrate the development of the immune protection against cryptococcal infection. This information will be important in aiding development and understanding the potential side effects of immunotherapies.
Collapse
Affiliation(s)
- Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Alison J Eastman
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Adam Flaczyk
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Lori M Neal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Guolei Zhao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Jacob Carolan
- Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Antoni N Malachowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Valerie R Stolberg
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Mohammed Yosri
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Stephen W Chensue
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, Michigan, USA Pulmonary Section, Medical Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Induction of Protective Immunity to Cryptococcal Infection in Mice by a Heat-Killed, Chitosan-Deficient Strain of Cryptococcus neoformans. mBio 2016; 7:mBio.00547-16. [PMID: 27165801 PMCID: PMC4959652 DOI: 10.1128/mbio.00547-16] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cryptococcus neoformans is a major opportunistic fungal pathogen that causes fatal meningoencephalitis in immunocompromised individuals and is responsible for a large proportion of AIDS-related deaths. The fungal cell wall is an essential organelle which undergoes constant modification during various stages of growth and is critical for fungal pathogenesis. One critical component of the fungal cell wall is chitin, which in C. neoformans is predominantly deacetylated to chitosan. We previously reported that three chitin deacetylase (CDA) genes have to be deleted to generate a chitosan-deficient C. neoformans strain. This cda1Δ2Δ3Δ strain was avirulent in mice, as it was rapidly cleared from the lungs of infected mice. Here, we report that clearance of the cda1Δ2Δ3Δ strain was associated with sharply spiked concentrations of proinflammatory molecules that are known to be critical mediators of the orchestration of a protective Th1-type adaptive immune response. This was followed by the selective enrichment of the Th1-type T cell population in the cda1Δ2Δ3Δ strain-infected mouse lung. Importantly, this response resulted in the development of robust protective immunity to a subsequent lethal challenge with a virulent wild-type C. neoformans strain. Moreover, protective immunity was also induced in mice vaccinated with heat-killed cda1Δ2Δ3Δ cells and was effective in multiple mouse strains. The results presented here provide a strong framework to develop the cda1Δ2Δ3Δ strain as a potential vaccine candidate for C. neoformans infection. The most commonly used anticryptococcal therapies include amphotericin B, 5-fluorocytosine, and fluconazole alone or in combination. Major drawbacks of these treatment options are their limited efficacy, poor availability in limited resource areas, and potential toxicity. The development of antifungal vaccines and immune-based therapeutic interventions is promising and an attractive alternative to chemotherapeutics. Currently, there are no fungal vaccines in clinical use. This is the first report of a C. neoformans deletion strain with an avirulent phenotype in mice exhibiting protective immunity when used as a vaccine after heat inactivation, although other strains that overexpress fungal or murine proteins have recently been shown to induce a protective response. The data presented here demonstrate the potential for developing the avirulent cda1Δ2Δ3Δ strain into a vaccine-based therapy to treat C. neoformans infection.
Collapse
|
22
|
Zhang M, Sun D, Shi M. Dancing cheek to cheek: Cryptococcus neoformans and phagocytes. SPRINGERPLUS 2015; 4:410. [PMID: 26266081 PMCID: PMC4531118 DOI: 10.1186/s40064-015-1192-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/29/2015] [Indexed: 01/04/2023]
Abstract
Meningoencephalitis caused by Cryptococcus neoformans (Cn) has become one of the leading causes of mortality in AIDS patients. Understanding the interactions between Cn and phagocytes is fundamental in exploring the pathogenicity of cryptococcal meningoencephalitis. Cn may be extracellular or contained in the monocytes, macrophages, neutrophils, dendritic cells and even endothelial cells. The internalized Cn may proliferate inside the host cells, or cause the lysis of host cells, or leave the host cells via non-lytic exocytosis, or even hijack the host cells (Trojan horse) for the brain dissemination, which are regulated by microbe factors and also immune molecules. Coexistence of protective and deleterious roles of phagocytes in the progression of cryptococcosis warrant further investigation.
Collapse
Affiliation(s)
- Mingshun Zhang
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD USA ; Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu China
| | - Donglei Sun
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD USA
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD USA
| |
Collapse
|
23
|
Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and gamma interferon production. Infect Immun 2013; 82:937-48. [PMID: 24324191 DOI: 10.1128/iai.01477-13] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infection of C57BL/6 mice with the moderately virulent Cryptococcus neoformans strain 52D models the complex adaptive immune response observed in HIV-negative patients with persistent fungal lung infections. In this model, Th1 and Th2 responses evolve over time, yet the contribution of interleukin-17A (IL-17A) to antifungal host defense is unknown. In this study, we show that fungal lung infection promoted an increase in Th17 T cells that persisted to 8 weeks postinfection. Our comparison of fungal lung infection in wild-type mice and IL-17A-deficient mice (IL-17A(-/-) mice; C57BL/6 genetic background) demonstrated that late fungal clearance was impaired in the absence of IL-17A. This finding was associated with reduced intracellular containment of the organism within lung macrophages and deficits in the accumulation of total lung leukocytes, including specific reductions in CD11c+ CD11b+ myeloid cells (dendritic cells and exudate macrophages), B cells, and CD8+ T cells, and a nonsignificant trend in the reduction of lung neutrophils. Although IL-17A did not alter the total number of CD4 T cells, decreases in the total number of CD4 T cells and CD8 T cells expressing gamma interferon (IFN-γ) were observed in IL-17A(-/-) mice. Lastly, expression of major histocompatibility complex class II (MHC-II) and the costimulatory molecules CD80 and CD86 on CD11c+ CD11b+ myeloid cells was diminished in IL-17A(-/-) mice. Collectively, these data indicate that IL-17A enhances host defenses against a moderately virulent strain of C. neoformans through effects on leukocyte recruitment, IFN-γ production by CD4 and CD8 T cells, and the activation of lung myeloid cells.
Collapse
|
24
|
Bernardino S, Pina A, Felonato M, Costa TA, Frank de Araújo E, Feriotti C, Bazan SB, Keller AC, Leite KRM, Calich VLG. TNF-α and CD8+ T cells mediate the beneficial effects of nitric oxide synthase-2 deficiency in pulmonary paracoccidioidomycosis. PLoS Negl Trop Dis 2013; 7:e2325. [PMID: 23936574 PMCID: PMC3731220 DOI: 10.1371/journal.pntd.0002325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 06/09/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Nitric oxide (NO), a key antimicrobial molecule, was previously shown to exert a dual role in paracoccidioidomycosis, an endemic fungal infection in Latin America. In the intravenous and peritoneal models of infection, NO production was associated with efficient fungal clearance but also with non-organized granulomatous lesions. Because paracoccidioidomycosis is a pulmonary infection, we aimed to characterize the role of NO in a pulmonary model of infection. METHODOLOGY/PRINCIPAL FINDINGS C57Bl/6 wild type (WT) and iNOS(-/-) mice were i.t. infected with 1×10(6) Paracoccidioides brasiliensis yeasts and studied at several post-infection periods. Unexpectedly, at week 2 of infection, iNOS(-/-) mice showed decreased pulmonary fungal burdens associated with an M2-like macrophage profile, which expressed high levels of TGF-β impaired ability of ingesting fungal cells. This early decreased fungal loads were concomitant with increased DTH reactions, enhanced TNF-α synthesis and intense migration of activated macrophages, CD4(+) and CD8(+) T cells into the lungs. By week 10, iNOS(-/-) mice showed increased fungal burdens circumscribed, however, by compact granulomas containing elevated numbers of activated CD4(+) T cells. Importantly, the enhanced immunological reactivity of iNOS(-/-) mice resulted in decreased mortality rates. In both mouse strains, depletion of TNF-α led to non-organized lesions and excessive influx of inflammatory cells into the lungs, but only the iNOS(-/-) mice showed increased mortality rates. In addition, depletion of CD8(+) cells abolished the increased migration of inflammatory cells and decreased the number of TNF-α and IFN-γ CD4(+) and CD8(+) T cells into the lungs of iNOS(-/-) mice. CONCLUSIONS/SIGNIFICANCE Our study demonstrated that NO plays a deleterious role in pulmonary paracoccidioidomycosis due to its suppressive action on TNF-α production, T cell immunity and organization of lesions resulting in precocious mortality of mice. It was also revealed that uncontrolled fungal growth can be overcome by an efficient immune response.
Collapse
Affiliation(s)
- Simone Bernardino
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Adriana Pina
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Maíra Felonato
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Tânia A. Costa
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Eliseu Frank de Araújo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Cláudia Feriotti
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Silvia Boschi Bazan
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Alexandre C. Keller
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Katia R. M. Leite
- Departamento de Patologia, Hospital Sírio Libanês de São Paulo, São Paulo, Brasil
| | - Vera L. G. Calich
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
25
|
Martin PL, Bugelski PJ. Concordance of preclinical and clinical pharmacology and toxicology of monoclonal antibodies and fusion proteins: soluble targets. Br J Pharmacol 2012; 166:806-22. [PMID: 22168335 DOI: 10.1111/j.1476-5381.2011.01812.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Monoclonal antibodies (mAbs) and fusion proteins directed towards soluble targets make an important contribution to the treatment of disease. The purpose of this review was to correlate the clinical and preclinical data on the 14 currently approved mAbs and fusion proteins targeted to soluble targets. The principal sources used to gather data were: the peer reviewed Literature; European Medicines Agency 'Scientific Discussions' and United States Food and Drug Administration 'Pharmacology/Toxicology Reviews' and package inserts (United States Prescribing Information). Data on the following approved biopharmaceuticals were included: adalimumab, anakinra, bevacizumab, canakinumab, certolizumab pegol, denosumab, eculizumab, etanercept, golimumab, infliximab, omalizumab, ranibizumab, rilonacept and ustekinumab. Some related biopharmaceuticals in late-stage development were also included for comparison. Good concordance with human pharmacodynamics was found for both non-human primates (NHPs) receiving the human biopharmaceutical and mice receiving rodent homologues (surrogates). In contrast, there was limited concordance for human adverse effects in genetically deficient mice, mice receiving surrogates or NHPs receiving the human pharmaceutical. In summary, the results of this survey show that although both mice and NHPs have good predictive value for human pharmacodynamics, neither species have good predictive value for human adverse effects. No evidence that NHPs have superior predictive value was found.
Collapse
Affiliation(s)
- Pauline L Martin
- Biologics Toxicology, Janssen Research & Development, Radnor, PA 19087, USA.
| | | |
Collapse
|
26
|
Biondo C, Malara A, Costa A, Signorino G, Cardile F, Midiri A, Galbo R, Papasergi S, Domina M, Pugliese M, Teti G, Mancuso G, Beninati C. Recognition of fungal RNA by TLR7 has a nonredundant role in host defense against experimental candidiasis. Eur J Immunol 2012; 42:2632-43. [PMID: 22777843 DOI: 10.1002/eji.201242532] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/06/2012] [Accepted: 06/27/2012] [Indexed: 01/24/2023]
Abstract
Despite convincing evidence for involvement of members of the Toll-like receptor (TLR) family in fungal recognition, little is known of the functional role of individual TLRs in antifungal defenses. We found here that TLR7 was partially required for the induction of IL-12 (IL-12p70) by Candida albicans or Saccharomyces cerevisiae. Moreover, the IL-12p70 response was completely abrogated in cells from 3d mice, which are unable to mobilize TLRs to endosomal compartments, as well as in cells from mice lacking either the TLR adaptor MyD88 or the IRF1 transcription factor. Notably, purified fungal RNA recapitulated IL-12p70 induction by whole yeast. Although RNA could also induce moderate TLR7-dependent IL-23 and tumor necrosis factor-alpha (TNF-α) secretion, TLR7 and other endosomal TLRs were redundant for IL-23 or TNF-α induction by whole fungi. Importantly, mice lacking TLR7 or IRF1 were hypersusceptible to systemic C. albicans infection. Our data suggest that IRF1 is downstream of a novel, nonredundant fungal recognition pathway that has RNA as a major target and requires phagosomal recruitment of intracellular TLRs. This pathway differs from those involved in IL-23 or TNF-α responses, which we show here to be independent from translocation of intracellular TLRs, phagocytosis, or phagosomal acidification.
Collapse
Affiliation(s)
- Carmelo Biondo
- The Elie Metchnikoff Department, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Qiu Y, Zeltzer S, Zhang Y, Wang F, Chen GH, Dayrit J, Murdock BJ, Bhan U, Toews GB, Osterholzer JJ, Standiford TJ, Olszewski MA. Early induction of CCL7 downstream of TLR9 signaling promotes the development of robust immunity to cryptococcal infection. THE JOURNAL OF IMMUNOLOGY 2012; 188:3940-8. [PMID: 22422883 DOI: 10.4049/jimmunol.1103053] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We investigated mechanisms by which TLR9 signaling promoted the development of the protective response to Cryptococcus neoformans in mice with cryptococcal pneumonia. The afferent (week 1) and efferent (week 3) phase immune parameters were analyzed in the infected wild-type (TLR9(+/+)) and TLR-deficient (TLR9(-/-)) mice. TLR9 deletion diminished 1) accumulation and activation of CD11b(+) dendritic cells (DCs), 2) the induction of IFN-γ and CCR2 chemokines CCL7, CCL12, but not CCL2, at week 1, and 3) pulmonary accumulation and activation of the major effector cells CD4(+) and CD8(+) T cells, CD11b(+) lung DCs, and exudate macrophages at week 3. The significance of CCL7 induction downstream of TLR9 signaling was investigated by determining whether CCL7 reconstitution would improve immunological parameters in C. neoformans-infected TLR9(-/-) mice. Early reconstitution with CCL7 1) improved accumulation and activation of CD11b(+) DCs at week 1, 2) restored early IFN-γ production in the lungs, and 3) restored the accumulation of major effector cell subsets. CCL7 administration abolished the difference in lung fungal burdens between TLR9(+/+) and TLR9(-/-) mice at week 3; however, significant reduction of fungal burdens between PBS- and CCL7-treated mice has not been observed, suggesting that additional mechanism(s) apart from early CCL7 induction contribute to optimal fungal clearance in TLR9(+/+) mice. Collectively, we show that TLR9 signaling during the afferent phase contributes to the development of protective immunity by promoting the early induction of CCL7 and IFN-γ and the subsequent early recruitment and activation of DCs and additional effector cells in mice with cryptococcal pneumonia.
Collapse
Affiliation(s)
- Yafeng Qiu
- Department of Research Service, Veterans Administration Ann Arbor Health System, Ann Arbor, MI 48105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tavares AH, Derengowski LS, Ferreira KS, Silva SS, Macedo C, Bocca AL, Passos GA, Almeida SR, Silva-Pereira I. Murine dendritic cells transcriptional modulation upon Paracoccidioides brasiliensis infection. PLoS Negl Trop Dis 2012; 6:e1459. [PMID: 22235359 PMCID: PMC3250510 DOI: 10.1371/journal.pntd.0001459] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/18/2011] [Indexed: 02/02/2023] Open
Abstract
Limited information is available regarding the modulation of genes involved in the innate host response to Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis. Therefore, we sought to characterize, for the first time, the transcriptional profile of murine bone marrow-derived dendritic cells (DCs) at an early stage following their initial interaction with P. brasiliensis. DCs connect innate and adaptive immunity by recognizing invading pathogens and determining the type of effector T-cell that mediates an immune response. Gene expression profiles were analyzed using microarray and validated using real-time RT-PCR and protein secretion studies. A total of 299 genes were differentially expressed, many of which are involved in immunity, signal transduction, transcription and apoptosis. Genes encoding the cytokines IL-12 and TNF-α, along with the chemokines CCL22, CCL27 and CXCL10, were up-regulated, suggesting that P. brasiliensis induces a potent proinflammatory response in DCs. In contrast, pattern recognition receptor (PRR)-encoding genes, particularly those related to Toll-like receptors, were down-regulated or unchanged. This result prompted us to evaluate the expression profiles of dectin-1 and mannose receptor, two other important fungal PRRs that were not included in the microarray target cDNA sequences. Unlike the mannose receptor, the dectin-1 receptor gene was significantly induced, suggesting that this β-glucan receptor participates in the recognition of P. brasiliensis. We also used a receptor inhibition assay to evaluate the roles of these receptors in coordinating the expression of several immune-related genes in DCs upon fungal exposure. Altogether, our results provide an initial characterization of early host responses to P. brasiliensis and a basis for better understanding the infectious process of this important neglected pathogen. Paracoccidioidomycosis is a systemic disease that has an important mortality and morbidity impact in Latin America, mainly affecting rural workers of Argentina, Colombia, Venezuela and Brazil. Upon host infection, one of the most important aspects contributing to disease outcome is the initial encounter of the Paracoccidioides brasiliensis fungus with dendritic cells. This phagocytic cell is specialized in decoding microbial information and triggering specific immune responses. Thus, using a molecular biology technique to examine the response of thousand of genes, we aimed to identify the ways in which murine dendritic cells interact with P. brasiliensis during an early time point following infection. This approach allowed us to recognize diverse modulated genes, in particular those associated with a proinflamatory response and fungal recognition. Our work provides an initial molecular characterization of early infection process and should promote further investigations into the innate host response to this important fungal pathogen.
Collapse
Affiliation(s)
- Aldo H. Tavares
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, Brasil
| | | | - Karen S. Ferreira
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Simoneide S. Silva
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brasil
| | - Cláudia Macedo
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil
| | - Anamélia L. Bocca
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brasil
| | - Geraldo A. Passos
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil
| | - Sandro R. Almeida
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil
| | | |
Collapse
|
29
|
Cai T, Li X, Ding J, Luo W, Li J, Huang C. A cross-talk between NFAT and NF-κB pathways is crucial for nickel-induced COX-2 expression in Beas-2B cells. Curr Cancer Drug Targets 2011; 11:548-59. [PMID: 21486220 DOI: 10.2174/156800911795656001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/30/2010] [Indexed: 01/09/2023]
Abstract
Cyclooxygenase-2 (COX-2) is a critical enzyme implicated in chronic inflammation-associated cancer development. Our studies have shown that the exposure of Beas-2B cells, a human bronchial epithelial cell line, to lung carcinogenic nickel compounds results in increased COX-2 expression. However, the signaling pathways leading to nickel-induced COX-2 expression are not well understood. In the current study, we found that the exposure of Beas-2B cells to nickel compounds resulted in the activation of both nuclear factor of activated T cell (NFAT) and nuclear factor-κB (NF-κB). The expression of COX-2 induced upon nickel exposure was inhibited by either a NFAT pharmacological inhibitor or the knockdown of NFAT3 by specific siRNA. We further found that the activation of NFAT and NF-κB was dependent on each other. Since our previous studies have shown that NF-κB activation is critical for nickel-induced COX-2 expression in Beas-2B cells exposed to nickel compounds under same experimental condition, we anticipate that there might be a cross-talk between the activation of NFAT and NF-κB for the COX-2 induction due to nickel exposure in Beas-2B cells. Furthermore, we showed that the scavenging of reactive oxygen species (ROS) by introduction of mitochondrial catalase inhibited the activation of both NFAT and NF-κB, and the induction of COX-2 due to nickel exposure. Taken together, our results defining the evidence showing a key role of the cross-talk between NFAT and NF-κB pathways in regulating nickel-induced COX-2 expression, further provide insight into the understanding of the molecular mechanisms linking nickel exposure to its lung carcinogenic effects.
Collapse
Affiliation(s)
- Tongjian Cai
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | | | | | | | | | |
Collapse
|
30
|
Effect of cytokine interplay on macrophage polarization during chronic pulmonary infection with Cryptococcus neoformans. Infect Immun 2011; 79:1915-26. [PMID: 21383052 DOI: 10.1128/iai.01270-10] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immune response to Cryptococcus neoformans following pulmonary infection of C57BL/6 wild-type (WT) mice results in the development of persistent infection with characteristics of allergic bronchopulmonary mycosis (ABPM). To further clarify the role of Th1/Th2 polarizing cytokines in this model, we performed kinetic analysis of cytokine responses and compared cytokine profiles, pathologies, and macrophage (Mac) polarization status in C. neoformans-infected WT, interleukin-4-deficient (IL-4(-/-)), and gamma interferon-deficient (IFN-γ(-/-)) C57BL/6 mice. Results show that cytokine expression in the infected WT mice is not permanently Th2 biased but changes dynamically over time. Using multiple Mac activation markers, we further demonstrate that IL-4 and IFN-γ regulate the polarization state of Macs in this model. A higher IL-4/IFN-γ ratio leads to the development of alternatively activated Macs (aaMacs), whereas a higher IFN-γ/IL-4 ratio leads to the generation of classically activated Macs (caMacs). WT mice that coexpress IL-4 and IFN-γ during fungal infection concurrently display both types of Mac polarization markers. Concurrent stimulation of Macs with IFN-γ and IL-4 results in an upregulation of both sets of markers within the same cells, i.e., formation of an intermediate aaMac/caMac phenotype. These cells express both inducible nitric oxide synthase (important for clearance) and arginase (associated with chronic/progressive infection). Together, our data demonstrate that the interplay between Th1 and Th2 cytokines supports chronic infection, chronic inflammation, and the development of ABPM pathology in C. neoformans-infected lungs. This cytokine interplay modulates Mac differentiation, including generation of an intermediate caMac/aaMac phenotype, which in turn may support chronic "steady-state" fungal infection and the resultant ABPM pathology.
Collapse
|
31
|
Osterholzer JJ, Chen GH, Olszewski MA, Zhang YM, Curtis JL, Huffnagle GB, Toews GB. Chemokine receptor 2-mediated accumulation of fungicidal exudate macrophages in mice that clear cryptococcal lung infection. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:198-211. [PMID: 21224057 DOI: 10.1016/j.ajpath.2010.11.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/27/2010] [Accepted: 09/02/2010] [Indexed: 12/20/2022]
Abstract
Clearance of pulmonary infection with the fungal pathogen Cryptococcus neoformans is associated with the accumulation and activation of lung macrophages. However, the phenotype of these macrophages and the mechanisms contributing to their accumulation are not well-defined. In this study, we used an established murine model of cryptococcal lung infection and flow cytometric analysis to identify alveolar macrophages (AMs) and the recently described exudate macrophages (ExMs). Exudate macrophages are distinguished from AMs by their strong expression of CD11b and major histocompatibility complex class II and modest expression of costimulatory molecules. Exudate macrophages substantially outnumber AMs during the effector phase of the immune response; and accumulation of ExMs, but not AMs, was chemokine receptor 2 (CCR2) dependent and attributable to the recruitment and subsequent differentiation of Ly-6C(high) monocytes originating from the bone marrow and possibly the spleen. Peak ExM accumulation in wild-type (CCR2(+/+)) mice coincided with maximal lung expression of mRNA for inducible nitric oxide synthase and correlated with the known onset of cryptococcal clearance in this strain of mice. Exudate macrophages purified from infected lungs displayed a classically activated effector phenotype characterized by cryptococcal-enhanced production of inducible nitric oxide synthase and tumor necrosis factor α. Cryptococcal killing by bone marrow-derived ExMs was CCR2 independent and superior to that of AMs. We conclude that clearance of cryptococcal lung infection requires the CCR2-mediated massive accumulation of fungicidal ExMs derived from circulating Ly-6C(high) monocytes.
Collapse
Affiliation(s)
- John J Osterholzer
- Pulmonary Section, Medical Service, Ann Arbor Veterans Affairs Health System, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Chen GH, Osterholzer JJ, Choe MY, McDonald RA, Olszewski MA, Huffnagle GB, Toews GB. Dual roles of CD40 on microbial containment and the development of immunopathology in response to persistent fungal infection in the lung. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2459-71. [PMID: 20864680 DOI: 10.2353/ajpath.2010.100141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Persistent pulmonary infection with Cryptococcus neoformans in C57BL/6 mice results in chronic inflammation that is characterized by an injurious Th2 immune response. In this study, we performed a comparative analysis of cryptococcal infection in wild-type versus CD40-deficient mice (in a C57BL/6 genetic background) to define two important roles of CD40 in the modulation of fungal clearance as well as Th2-mediated immunopathology. First, CD40 promoted microanatomic containment of the organism within the lung tissue. This protective effect was associated with: i) a late reduction in fungal burden within the lung; ii) a late accumulation of lung leukocytes, including macrophages, CD4+ T cells, and CD8+ T cells; iii) both early and late production of tumor necrosis factor-α and interferon-γ by lung leukocytes; and iv) early IFN-γ production at the site of T cell priming in the regional lymph nodes. In the absence of CD40, systemic cryptococcal dissemination was increased, and mice died of central nervous system infection. Second, CD40 promoted pathological changes in the airways, including intraluminal mucus production and subepithelial collagen deposition, but did not alter eosinophil recruitment or the alternative activation of lung macrophages. Collectively, these results demonstrate that CD40 helps limit progressive cryptococcal growth in the lung and protects against lethal central nervous system dissemination. CD40 also promotes some, but not all, elements of Th2-mediated immunopathology in response to persistent fungal infection in the lung.
Collapse
Affiliation(s)
- Gwo-Hsiao Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6220 MSRB III, Box 0624, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhang Y, Wang F, Bhan U, Huffnagle GB, Toews GB, Standiford TJ, Olszewski MA. TLR9 signaling is required for generation of the adaptive immune protection in Cryptococcus neoformans-infected lungs. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:754-65. [PMID: 20581055 DOI: 10.2353/ajpath.2010.091104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To determine whether TLR9 signaling contributes to the development of the adaptive immune response to cryptococcal infection, wild-type (TLR9+/+) and TLR9 knockout (TLR9-/-) BALB/c mice were infected intratracheally with 10(4) C. neoformans 52D. We evaluated 1) organ microbial burdens, 2) pulmonary leukocyte recruitment, 3) pulmonary and systemic cytokine induction, and 4) macrophage activation profiles. TLR9 deletion did not affect pulmonary growth during the innate phase, but profoundly impaired pulmonary clearance during the adaptive phase of the immune response (a 1000-fold difference at week 6). The impaired clearance in TLR9-/- mice was associated with: 1) significantly reduced CD4(+), CD8+ T cell, and CD19+ B cell recruitment into the lungs; 2) defects in Th polarization indicated by altered cytokine responses in the lungs, lymphonodes, and spleen; and 3) diminished macrophage accumulation and altered activation profile, including robust up-regulation of Arg1 and FIZZ1 (indicators of alternative activation) and diminished induction of inducible nitric oxide synthase (an indicator of classical activation). Histological analysis revealed defects in granuloma formation and increased numbers of intracellular yeast residing within macrophages in the lungs of TLR9-/- mice. We conclude that TLR9 signaling plays an important role in the development of robust protective immunity, proper recruitment and function of effector cells (lymphocytes and macrophages), and, ultimately, effective cryptococcal clearance from the infected lungs.
Collapse
Affiliation(s)
- Yanmei Zhang
- Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Antigen-presenting dendritic cells rescue CD4-depleted CCR2-/- mice from lethal Histoplasma capsulatum infection. Infect Immun 2010; 78:2125-37. [PMID: 20194586 DOI: 10.1128/iai.00065-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Excessive production of interleukin-4 impairs clearance of the fungal pathogen Histoplasma capsulatum in mice lacking the chemokine receptor CCR2. An increase in the interleukin-4 level is associated with decreased recruitment of dendritic cells to lungs; therefore, we investigated the possibility that these cells influence interleukin-4 production. Adoptive transfer of wild-type or CCR2(-/-) bone marrow-derived dendritic cells loaded with heat-killed yeast cells to infected CCR2(-/-) mice suppressed interleukin-4 transcription. Surprisingly, transfer of cells did not reduce the fungal burden despite the fact that it limited interleukin-4 transcription. Yeast cell-loaded bone marrow-derived dendritic cell-mediated regulation of interleukin-4 transcription was dependent on major histocompatibility complex II antigen presentation to CD4(+) T cells. We previously showed that CD4(+) T cells were a source of interleukin-4 in infected CCR2(-/-) mice, but their contribution to the TH2 phenotype was unclear. Here we demonstrated that these cells were functionally important since elimination of them prior to infection, but not elimination of them at the time of infection, reduced the interleukin-4 level in infected CCR2(-/-) mice. However, the fungal burden was reduced only in CD4-depleted CCR2(-/-) mice that received yeast cell-loaded bone marrow-derived dendritic cells. Taken together, the data indicate that generation of excess interleukin-4 in lungs of H. capsulatum-infected CCR2(-/-) mice is at least partially a consequence of decreased recruitment of dendritic cells capable of antigen presentation. Furthermore, CD4(+) T cells had a deleterious impact on immunity in infected CCR2(-/-) mice.
Collapse
|
35
|
Osterholzer JJ, Chen GH, Olszewski MA, Curtis JL, Huffnagle GB, Toews GB. Accumulation of CD11b+ lung dendritic cells in response to fungal infection results from the CCR2-mediated recruitment and differentiation of Ly-6Chigh monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:8044-53. [PMID: 19933856 PMCID: PMC4043300 DOI: 10.4049/jimmunol.0902823] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pulmonary clearance of the encapsulated yeast Cryptococcus neoformans is associated with the CCR2-mediated accumulation of lung dendritic cells (DC) and the development of a T1 adaptive immune response. The objective of this study was to identify the circulating DC precursor(s) responsible for this large increase in lung DC numbers. An established murine model was used to evaluate putative DC precursors in the blood, bone marrow, and lungs of CCR2(+/+) mice and CCR2(-/-) mice throughout a time course following infection with C. neoformans. Results demonstrate that numbers of Ly-6C(high) monocytes increased in parallel in the peripheral blood and lungs of CCR(+/+) mice, whereas CD11c(+) MHC class II(+) pre-DC were 10-fold less prevalent in the peripheral blood and did not differ between the two strains. Accumulation of Ly-6C(high) monocytes correlated with a substantial increase in the numbers of CD11b(+) DC in the lungs of infected CCR2(+/+) mice. Comparative phenotypic analysis of lung cells recovered in vivo suggests that Ly-6C(high) monocytes differentiate into CD11b(+) DC in the lung; differentiation is associated with up-regulation of costimulatory molecules and decreased Ly-6C expression. Furthermore, in vitro experiments confirmed that Ly-6C(high) monocytes differentiate into CD11b(+) DC. Accumulation of Ly-6C(high) monocytes and CD11b(+) DC was not attributable to their proliferation in situ. We conclude that the CCR2-mediated accumulation of CD11b(+) DC in the lungs of Cryptococcus-infected mice is primarily attributable to the continuous recruitment and differentiation of Ly-6C(high) monocytes.
Collapse
MESH Headings
- Animals
- Antigens, Ly/biosynthesis
- Antigens, Ly/physiology
- CD11b Antigen/biosynthesis
- Cell Count
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Cell Proliferation
- Cryptococcosis/immunology
- Cryptococcosis/metabolism
- Cryptococcosis/pathology
- Cryptococcus neoformans/immunology
- Cytokinesis/genetics
- Cytokinesis/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Female
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Lung Diseases, Fungal/immunology
- Lung Diseases, Fungal/microbiology
- Lung Diseases, Fungal/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Monocytes/immunology
- Monocytes/metabolism
- Monocytes/pathology
- Receptors, CCR2/biosynthesis
- Receptors, CCR2/deficiency
- Receptors, CCR2/physiology
- Stem Cells/immunology
- Stem Cells/metabolism
- Stem Cells/pathology
Collapse
Affiliation(s)
- John J Osterholzer
- Pulmonary Section, Medical Service, Ann Arbor Veterans Affairs Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Zhang Y, Wang F, Tompkins KC, McNamara A, Jain AV, Moore BB, Toews GB, Huffnagle GB, Olszewski MA. Robust Th1 and Th17 immunity supports pulmonary clearance but cannot prevent systemic dissemination of highly virulent Cryptococcus neoformans H99. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2489-500. [PMID: 19893050 DOI: 10.2353/ajpath.2009.090530] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present study dissected the role of a Th2 bias in pathogenesis of Cryptococcus neoformans H99 infection by comparing inhalational H99 infections in wild-type BALB/c and IL-4/IL-13 double knockout mice. H99-infected wild-type mice showed all major hallmarks of Th2 but not Th1/Th17 immunity in the lungs and lung-associated lymph nodes. In contrast, the IL-4/13(-/-) mice developed robust hallmarks of Th1 and Th17 but not Th2 polarization. The IL-4/IL-13 deletion prevented pulmonary eosinophilia, goblet cell metaplasia in the airways and resulted in elevated serum IgE, and a switch from alternative to classical activation of macrophages. The development of a robust Th1/Th17 response and classical activation of macrophages resulted in significant containment of H99 in the lungs of IL-4/13(-/-) mice compared with unopposed growth of H99 in the lungs of wild-type mice. However, IL-4/13(-/-) mice showed only 1-week longer survival compared with wild-type mice. The comparison of brain and spleen cryptococcal loads at weeks 2, 3, and 4 postinfection revealed that the systemic dissemination in IL-4/13(-/-) mice occurred with an approximate 1-week delay but subsequently progressed with similar rate as in the wild-type mice. Furthermore, wild-type and IL-4/13(-/-) mice developed equivalently severe meningitis/encephalitis at the time of death. These data indicate that the Th2 immune bias is a crucial mechanism for pulmonary virulence of H99, whereas other mechanisms are largely responsible for its central nervous system tropism and systemic dissemination.
Collapse
Affiliation(s)
- Yanmei Zhang
- VA Ann Arbor Health System, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wozniak KL, Ravi S, Macias S, Young ML, Olszewski MA, Steele C, Wormley FL. Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis. PLoS One 2009; 4:e6854. [PMID: 19727388 PMCID: PMC2731172 DOI: 10.1371/journal.pone.0006854] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 08/03/2009] [Indexed: 11/18/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes life-threatening pneumonia and meningoencephalitis in immune compromised individuals. Previous studies have shown that immunization of BALB/c mice with an IFN-gamma-producing C. neoformans strain, H99gamma, results in complete protection against a second pulmonary challenge with an otherwise lethal cryptococcal strain. The current study evaluated local anamnestic cell-mediated immune responses against pulmonary cryptococcosis in mice immunized with C. neoformans strain H99gamma compared to mice immunized with heat-killed C. neoformans (HKC.n.). Mice immunized with C. neoformans strain H99gamma had significantly reduced pulmonary fungal burden post-secondary challenge compared to mice immunized with HKC.n. Protection against pulmonary cryptococcosis was associated with increased pulmonary granulomatous formation and leukocyte infiltration followed by a rapid resolution of pulmonary inflammation, which protected the lungs from severe allergic bronchopulmonary mycosis (ABPM)-pathology that developed in the lungs of mice immunized with HKC.n. Pulmonary challenge of interleukin (IL)-4 receptor, IL-12p40, IL-12p35, IFN-gamma, T cell and B cell deficient mice with C. neoformans strain H99gamma demonstrated a requirement for Th1-type T cell-mediated immunity, but not B cell-mediated immunity, for the induction of H99gamma-mediated protective immune responses against pulmonary C. neoformans infection. CD4(+) T cells, CD11c(+) cells, and Gr-1(+) cells were increased in both proportion and absolute number in protected mice. In addition, significantly increased production of Th1-type/pro-inflammatory cytokines and chemokines, and conversely, reduced Th2-type cytokine production was observed in the lungs of protected mice. Interestingly, protection was not associated with increased production of cytokines IFN-gamma or TNF-alpha in lungs of protected mice. In conclusion, immunization with C. neoformans strain H99gamma results in the development of protective anti-cryptococcal immune responses that may be measured and subsequently used in the development of immune-based therapies to combat pulmonary cryptococcosis.
Collapse
Affiliation(s)
- Karen L. Wozniak
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Sailatha Ravi
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Sandra Macias
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Mattie L. Young
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Michal A. Olszewski
- VA Ann Arbor Health System, University of Michigan Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Chad Steele
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Floyd L. Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
38
|
Role of dendritic cells and alveolar macrophages in regulating early host defense against pulmonary infection with Cryptococcus neoformans. Infect Immun 2009; 77:3749-58. [PMID: 19564388 DOI: 10.1128/iai.00454-09] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Successful pulmonary clearance of the encapsulated yeast Cryptococcus neoformans requires a T1 adaptive immune response. This response takes up to 3 weeks to fully develop. The role of the initial, innate immune response against the organism is uncertain. In this study, an established model of diphtheria toxin-mediated depletion of resident pulmonary dendritic cells (DC) and alveolar macrophages (AM) was used to assess the contribution of these cells to the initial host response against cryptococcal infection. The results demonstrate that depletion of DC and AM one day prior to infection results in rapid clinical deterioration and death of mice within 6 days postinfection; this effect was not observed in infected groups of control mice not depleted of DC and AM. Depletion did not alter the microbial burden or total leukocyte recruitment in the lung. Mortality (in mice depleted of DC and AM) was associated with increased neutrophil and B-cell accumulation accompanied by histopathologic evidence of suppurative neutrophilic bronchopneumonia, cyst formation, and alveolar damage. Collectively, these data define an important role for DC and AM in regulating the initial innate immune response following pulmonary infection with C. neoformans. These findings provide important insight into the cellular mechanisms which coordinate early host defense against an invasive fungal pathogen in the lung.
Collapse
|
39
|
Osterholzer JJ, Surana R, Milam JE, Montano GT, Chen GH, Sonstein J, Curtis JL, Huffnagle GB, Toews GB, Olszewski MA. Cryptococcal urease promotes the accumulation of immature dendritic cells and a non-protective T2 immune response within the lung. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:932-43. [PMID: 19218345 DOI: 10.2353/ajpath.2009.080673] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Urease, a major virulence factor for Cryptococcus neoformans, promotes lethal meningitis/encephalitis in mice. The effect of urease within the lung, the primary site of most invasive fungal infections, is unknown. An established model of murine infection that utilizes either urease-producing (wt and ure1::URE1) or urease-deficient (ure1) strains (H99) of C. neoformans was used to characterize fungal clearance and the resultant immune response evoked by these strains within the lung. Results indicate that mice infected with urease-producing strains of C. neoformans demonstrate a 100-fold increase in fungal burden beginning 2 weeks post-infection (as compared with mice infected with urease-deficient organisms). Infection with urease-producing C. neoformans was associated with a highly polarized T2 immune response as evidenced by increases in the following: 1) pulmonary eosinophils, 2) serum IgE levels, 3) T2 cytokines (interleukin-4, -13, and -4 to interferon-gamma ratio), and 4) alternatively activated macrophages. Furthermore, the percentage and total numbers of immature dendritic cells within the lung-associated lymph nodes was markedly increased in mice infected with urease-producing C. neoformans. Collectively, these data define cryptococcal urease as a pulmonary virulence factor that promotes immature dendritic cell accumulation and a potent, yet non-protective, T2 immune response. These findings provide new insights into mechanisms by which microbial factors contribute to the immunopathology associated with invasive fungal disease.
Collapse
Affiliation(s)
- John J Osterholzer
- Veterans Affairs Ann Arbor Health System, Ann Arbor, 2215 Fuller Rd., Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sukumar N, Love CF, Conover MS, Kock ND, Dubey P, Deora R. Active and passive immunizations with Bordetella colonization factor A protect mice against respiratory challenge with Bordetella bronchiseptica. Infect Immun 2009; 77:885-95. [PMID: 19064638 PMCID: PMC2632038 DOI: 10.1128/iai.01076-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/27/2008] [Accepted: 11/26/2008] [Indexed: 01/08/2023] Open
Abstract
Bordetella colonization factor A (BcfA) is an outer membrane immunogenic protein, which is critical for efficient colonization of the murine respiratory tract. These properties of BcfA prompted us to examine its utility in inducing a protective immune response against Bordetella bronchiseptica in a mouse model of intranasal infection. Mice vaccinated with BcfA demonstrated reduced pathology in the lungs and harbored lower bacterial burdens in the respiratory tract. Immunization with BcfA led to the generation of BcfA-specific antibodies in both the sera and lungs, and passive immunization led to the reduction of B. bronchiseptica in the tracheas and lungs. These results suggest that protection after immunization with BcfA is mediated in part by antibodies against BcfA. To further investigate the mechanism of BcfA-induced immune clearance, we examined the role of neutrophils and macrophages. Our results demonstrate that neutrophils are critical for anti-BcfA antibody-mediated clearance and that opsonization with anti-BcfA serum enhances phagocytosis of B. bronchiseptica by murine macrophages. We show that immunization with BcfA results in the production of gamma interferon and subclasses of immunoglobulin G antibodies that are consistent with the induction of a Th1-type immune response. In combination, our findings suggest that the mechanism of BcfA-mediated immunity involves humoral and cellular responses. Expression of BcfA is conserved among multiple clinical isolates of B. bronchiseptica. Our results demonstrate the striking protective efficacy of BcfA-mediated immunization, thereby highlighting its utility as a potential vaccine candidate. These results also provide a model for the development of cell-free vaccines against B. bronchiseptica.
Collapse
Affiliation(s)
- Neelima Sukumar
- Department of Microbiology and Immunology, Wake Forest University Health Sciences, Medical Center Blvd., Gray 5086, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
41
|
Siegemund S, Alber G. Cryptococcus neoformans activates bone marrow-derived conventional dendritic cells rather than plasmacytoid dendritic cells and down-regulates macrophages. ACTA ACUST UNITED AC 2008; 52:417-27. [PMID: 18336384 DOI: 10.1111/j.1574-695x.2008.00391.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Induction of IL-12 and IL-23 is essential for protective immunity against Cryptococcusneoformans. The contribution of dendritic cells vs. macrophages to IL-12/23 production in response to C. neoformans infection is unclear. Activation of conventional bone marrow-derived dendritic cells (BMDC), plasmacytoid BMDC, and bone marrow-derived macrophages (BMMPhi) was assessed by analyzing cytokine responses and the expression of MHC-II, CD86, and CD80 in each cell type. Cryptococcus neoformans induced the release of IL-12/23p40 by BMDC, but not by BMMPhi, in a TLR2- and TLR4-independent but MyD88-dependent manner. Conventional BMDC rather than plasmacytoid BMDC up-regulated MHC-II and CD86, while BMMPhi down-regulated MHC-II and CD86 in response to C. neoformans. The up-regulation of MHC-II and CD86 on BMDC required MyD88. Our data point to conventional DC as critical IL-12/23-producing antigen-presenting cells during cryptococcosis.
Collapse
Affiliation(s)
- Sabine Siegemund
- Institute of Immunology, College of Veterinary Medicine, Leipzig, Germany
| | | |
Collapse
|
42
|
Biondo C, Midiri A, Gambuzza M, Gerace E, Falduto M, Galbo R, Bellantoni A, Beninati C, Teti G, Leanderson T, Mancuso G. IFN-alpha/beta signaling is required for polarization of cytokine responses toward a protective type 1 pattern during experimental cryptococcosis. THE JOURNAL OF IMMUNOLOGY 2008; 181:566-73. [PMID: 18566423 DOI: 10.4049/jimmunol.181.1.566] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The antiviral activities of type I IFNs have long been established. However, comparatively little is known of their role in defenses against nonviral pathogens. We examined here the effects of type I IFNs on host resistance against the model pathogenic yeast Cryptococcus neoformans. After intratracheal or i.v. challenge with this fungus, most mice lacking either the IFN-alpha/beta receptor (IFN-alpha/betaR) or IFN-beta died from unrestrained pneumonia and encephalitis, while all wild-type controls survived. The pulmonary immune response of IFN-alpha/betaR-/- mice was characterized by increased expression of IL-4, IL-13, and IL-10, decreased expression of TNF-alpha, IFN-gamma, inducible NO synthetase, and CXCL10, and similar levels of IL-12 mRNA, compared with wild-type controls. Histopathological analysis showed eosinophilic infiltrates in the lungs of IFN-alpha/betaR-/- mice, although this change was less extensive than that observed in similarly infected IFN-gammaR-deficient animals. Type I IFN responses could not be detected in the lung after intratracheal challenge. However, small, but statistically significant, elevations in IFN-beta levels were measured in the supernatants of bone marrow-derived macrophages or dendritic cells infected with C. neoformans. Our data demonstrate that type I IFN signaling is required for polarization of cytokine responses toward a protective type I pattern during cryptococcal infection.
Collapse
Affiliation(s)
- Carmelo Biondo
- Dipartimento di Patologia e Microbiologia Sperimentale, Università degli Studi di Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Fungal infections of the central nervous system, once a relatively rare occurrence, are increasingly common due to the expansion of immunocompromised populations at risk, and therefore are important to recognize early and manage appropriately. RECENT FINDINGS The specific infectious risk posed by novel immune-modifying therapies can, in most cases, be predicted on the basis of the immune target and medication timing. In addition, major advances in noninvasive diagnostic tests (e.g. serum beta glucan and galactomannan assays), and the recent introduction of more effective antifungal therapies, have led to a dramatic improvement in clinical outcomes. SUMMARY The current review provides approaches to patients with suspected central nervous system fungal infections based on host-risk factors, clinical syndromes and specific pathogens.
Collapse
|
44
|
Osterholzer JJ, Curtis JL, Polak T, Ames T, Chen GH, McDonald R, Huffnagle GB, Toews GB. CCR2 mediates conventional dendritic cell recruitment and the formation of bronchovascular mononuclear cell infiltrates in the lungs of mice infected with Cryptococcus neoformans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:610-20. [PMID: 18566428 PMCID: PMC2735104 DOI: 10.4049/jimmunol.181.1.610] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pulmonary clearance of the encapsulated yeast Cryptococcus neoformans requires the development of T1-type immunity. CCR2-deficient mice infected with C. neoformans develop a non-protective T2 immune response and persistent infection. The mechanisms responsible for this aberrant response are unknown. The objective of this study was to define the number, phenotype, and microanatomic location of dendritic cells (DC) residing within the lung of CCR2+/+ or CCR2-/- mice throughout a time course following infection with C. neoformans. Results demonstrate the CCR2-mediated recruitment of conventional DC expressing modest amounts of costimulatory molecules. DC recruitment was preceded by the up-regulation in the lung of the CCR2 ligands CCL2 and CCL7. Colocalization of numerous DC and CD4+ T cells within bronchovascular infiltrates coincided with increased expression of IL-12 and IFN-gamma. By contrast, in the absence of CCR2, DC recruitment was markedly impaired, bronchovascular infiltrates were diminished, and mice developed features of T2 responses, including bronchovascular collagen deposition and IL-4 production. Our results demonstrate that CCR2 is required for the recruitment of large numbers of conventional DC to bronchovascular infiltrates in mice mounting a T1 immune response against a fungal pathogen. These findings shed new insight into the mechanism(s) by which DC recruitment alters T cell polarization in response to an infectious challenge within the lung.
Collapse
Affiliation(s)
- John J Osterholzer
- Pulmonary Section, Medical Service, Department of Veterans Affairs Health System, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Wissinger EL, Saldana J, Didierlaurent A, Hussell T. Manipulation of acute inflammatory lung disease. Mucosal Immunol 2008; 1:265-78. [PMID: 19079188 PMCID: PMC7100270 DOI: 10.1038/mi.2008.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/26/2008] [Indexed: 02/04/2023]
Abstract
Inflammatory lung disease to innocuous antigens or infectious pathogens is a common occurrence and in some cases, life threatening. Often, the inflammatory infiltrate that accompanies these events contributes to pathology by deleterious effects on otherwise healthy tissue and by compromising lung function by consolidating (blocking) the airspaces. A fine balance, therefore, exists between a lung immune response and immune-mediated damage, and in some the "threshold of ignorance" may be set too low. In most cases, the contributing, potentially offending, cell population or immune pathway is known, as are factors that regulate them. Why then are targeted therapeutic strategies to manipulate them not more commonplace in clinical medicine? This review highlights immune homeostasis in the lung, how and why this is lost during acute lung infection, and strategies showing promise as future immune therapeutics.
Collapse
Affiliation(s)
- E L Wissinger
- Imperial College London, Kennedy Institute of Rheumatology, London, UK
| | - J Saldana
- Imperial College London, Kennedy Institute of Rheumatology, London, UK
| | - A Didierlaurent
- Imperial College London, Kennedy Institute of Rheumatology, London, UK
- Present Address: Present address: GlaxoSmithKline Biologicals, Rue de l'Institut 89, Rixensart B-1330, Belgium,
| | - T Hussell
- Imperial College London, Kennedy Institute of Rheumatology, London, UK
| |
Collapse
|
46
|
Sex differences in the genetic architecture of susceptibility to Cryptococcus neoformans pulmonary infection. Genes Immun 2008; 9:536-45. [PMID: 18563168 DOI: 10.1038/gene.2008.48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cryptococcus neoformans is a major cause of fungal pneumonia, meningitis and disseminated disease in the immune compromised host. Here we have used a clinically relevant model to investigate the genetic determinants of susceptibility to progressive cryptococcal pneumonia in C57BL/6J and CBA/J inbred mice. At 5 weeks after infection, the lung fungal burden was over 1000-fold higher in C57BL/6J compared to CBA/J mice. A genome-wide scan performed on 210 male and 203 female (CBA/J x C57BL/6J) F2 progeny using lung colony-forming units as a quantitative trait revealed a sex difference in genetic architecture with three loci (designated Cnes1-Cnes3) associated with susceptibility to cryptococcal pneumonia. Single locus analysis identified significant loci on chromosomes 3 (Cnes1) and 17 (Cnes2) with logarithm of the odds (LOD) scores of 4.09 (P=0.0110) and 7.30 (P<0.0001) that explained 8.9 and 15.9% of the phenotypic variance, respectively, in female CBAB6F2 and one significant locus on chromosome 17 (Cnes3) with a LOD score of 4.04 (P=0.010) that explained 8.6% of the phenotypic variance in male CBAB6F2 mice. Genome-wide pair-wise analysis revealed significant quantitative trait locus interactions in both the female and male CBAB6F2 progeny that collectively explained 43.8 and 19.5% of phenotypic variance in each sex, respectively.
Collapse
|
47
|
Inheritance of immune polarization patterns is linked to resistance versus susceptibility to Cryptococcus neoformans in a mouse model. Infect Immun 2008; 76:2379-91. [PMID: 18391002 DOI: 10.1128/iai.01143-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genetic background variation between inbred strains accounts for different levels of susceptibility to Cryptococcus neoformans in the mouse infection model. To elucidate the inheritance of immunophenotypic traits and their associations with clearance outcomes during cryptococcal infection, we compared C57BL/6, BALB/c, and their first-generation hybrid, CB6F1 (F1), mice. Mice from each group were infected with C. neoformans (10(4) CFU) and analyzed at weekly intervals over a 6-week period. BALB/c mice progressively cleared the cryptococcal infection in the lungs and showed a Th1-skewed immune response: a Th1-shifted cytokine profile, modest lung pathology, and no significant elevation in the systemic immunoglobulin E (IgE) level. In contrast, C57BL/6 mice developed a chronic infection with a Th2-skewed immune response: a Th2-shifted cytokine profile, pulmonary eosinophilia, severe lung pathology, elevated serum IgE, fungemia, and cryptococcal dissemination in the central nervous system. F1 mice demonstrated intermediate resistance to C. neoformans, with a stronger resemblance to the immunophenotype of the resistant (BALB/c) mice. F1 mice also demonstrated enhanced pulmonary recruitment of lymphocytes, especially CD8(+) T cells, in comparison to both parental strains, suggesting positive heterosis. We conclude that the inheritance of traits responsible for early cytokine induction in the infected lungs and dendritic-cell maturation/activation status in draining nodes is responsible for the intermediate immune response polarization and clearance outcome observed initially in the lungs of F1 mice. The enhanced pulmonary lymphocyte recruitment could be responsible for a gradual shutdown of the undesirable Th2 arm of the immune response and subsequently improved anticryptococcal resistance in F1 mice.
Collapse
|
48
|
Berndt BE, Zhang M, Chen GH, Huffnagle GB, Kao JY. The role of dendritic cells in the development of acute dextran sulfate sodium colitis. THE JOURNAL OF IMMUNOLOGY 2007; 179:6255-62. [PMID: 17947701 DOI: 10.4049/jimmunol.179.9.6255] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs) are essential mediators of the host immune response to surrounding microbes. In this study, we investigate the role of DCs in the pathogenesis of a widely used colitis model, dextran sulfate sodium-induced colitis. The effect of dextran sulfate sodium on the production of proinflammatory cytokines and chemokines by bone marrow-derived DCs (BM-DCs) was analyzed. BM-DCs were adoptively transferred into C57BL/6 mice or DCs were ablated using transgenic CD11c-DTR/GFP mice before treatment with 5% dextran sulfate sodium in drinking water. We found that dextran sulfate sodium induced production of proinflammatory cytokines (IL-12 and TNF-alpha) and chemokines (KC, MIP-1alpha, MIP-2, and MCP-1) by DCs. Adoptive transfer of BM-DCs exacerbated dextran sulfate sodium colitis while ablation of DCs attenuated the colitis. We conclude that DCs are critical in the development of acute dextran sulfate sodium colitis and may serve a key role in immune balance of the gut mucosa.
Collapse
|
49
|
Milam JE, Herring-Palmer AC, Pandrangi R, McDonald RA, Huffnagle GB, Toews GB. Modulation of the pulmonary type 2 T-cell response to Cryptococcus neoformans by intratracheal delivery of a tumor necrosis factor alpha-expressing adenoviral vector. Infect Immun 2007; 75:4951-8. [PMID: 17646355 PMCID: PMC2044519 DOI: 10.1128/iai.00176-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C57BL/6 mice develop an allergic bronchopulmonary mycosis following intratracheal inoculation of Cryptococcus neoformans 24067. We determined that only low levels of tumor necrosis factor alpha (TNF-alpha) are produced in the lungs following infection. Thus, the objective of the present studies was to determine whether treatment with a TNF-alpha-expressing adenoviral vector (adenoviral vector with the murine TNF-alpha transgene under the control of the human cytomegalovirus promoter [AdTNFalpha]) could switch the type 2 (T2) T-cell response/T1 T-cell response balance toward the T1 T-cell response. AdTNFalpha induced an increase in TNF-alpha expression at days 3 and 7. At days 7 to 14, the number of cryptococcal lung CFU continued to increase in both untreated and control adenoviral vector (empty adenovirus type 5 backbone)-treated mice, but the number was ultimately 100-fold lower following AdTNFalpha treatment. AdTNFalpha markedly increased neutrophil and macrophage numbers, and pulmonary eosinophilia did not develop. CXCL1, CXCL2, and gamma interferon were also up-regulated, while eotaxin, interleukin-4 (IL-4), and IL-5 were down-regulated. AdTNFalpha treatment also increased the number of CD80(+) and CD40(+) cells and decreased the number of CD86(+) cells (CD11b(+) and CD11c(+)) in the lungs. Major histocompatibility complex class II levels on CD11b(+) cells were increased. Whole-lung expression of inducible nitric oxide synthase was increased, while YM2 expression and acidic mammalian chitinase expression were decreased. None of these effects were observed with the control (empty) adenoviral vector. Overall, these results support the hypothesis that early TNF-alpha expression promotes a shift in T-cell and macrophage polarization from T2/alternatively activated macrophages toward T1/classically activated macrophages, resulting in control of the fungal infection and prevention of the allergic response.
Collapse
Affiliation(s)
- Jami E Milam
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0642, USA
| | | | | | | | | | | |
Collapse
|
50
|
Chen GH, Olszewski MA, McDonald RA, Wells JC, Paine R, Huffnagle GB, Toews GB. Role of granulocyte macrophage colony-stimulating factor in host defense against pulmonary Cryptococcus neoformans infection during murine allergic bronchopulmonary mycosis. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1028-40. [PMID: 17322386 PMCID: PMC1864884 DOI: 10.2353/ajpath.2007.060595] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the role of granulocyte macrophage colony-stimulating factor (GM-CSF) in host defense in a murine model of pulmonary cryptococcosis induced by intratracheal inoculation of Cryptococcus neoformans. Pulmonary C. neoformans infection of C57BL/6 mice is an established model of an allergic bronchopulmonary mycosis. Our objective was to determine whether GM-CSF regulates the pulmonary Th2 immune response in C. neoformans-infected C57BL/6 mice. Long-term pulmonary fungistasis was lost in GM-CSF knockout (GM(-/-)) mice, resulting in increased pulmonary burden of fungi between weeks 3 and 5. GM-CSF was required for the early influx of macrophages and CD4 and CD8 T cells into the lungs but was not required later in the infection. Lack of GM-CSF also resulted in reduced eosinophil recruitment and delayed recruitment of mononuclear cells into the airspace. Macrophages from GM(+/+) mice showed numerous hallmarks of alternatively activated macrophages: higher numbers of intracellular cryptococci, YM1 crystals, and induction of CCL17. These hallmarks are absent in macrophages from GM(-/-) mice. Mucus-producing goblet cells were abundantly present within the bronchial epithelial layer in GM(+/+) mice but not in GM(-/-) mice at week 5 after infection. Production of both Th1 and Th2 cytokines was impaired in the absence of GM-CSF, consistent with both reduced C. neoformans clearance and absence of allergic lung pathology.
Collapse
Affiliation(s)
- Gwo-Hsiao Chen
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0642, USA.
| | | | | | | | | | | | | |
Collapse
|