1
|
Tosiano MA, Lanni F, Mitchell AP, McManus CJ. Roles of P-body factors in Candida albicans filamentation and stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.09.602714. [PMID: 40161774 PMCID: PMC11952329 DOI: 10.1101/2024.07.09.602714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Hyphal growth is strongly associated with virulence in the human fungal pathogen Candida albicans. While hyphal transcriptional networks have been the subject of intense study, relatively little is known about post-transcriptional regulation. Previous work reported that P-Body (PB) factors Dhh1 and Edc3 were required for C. albicans virulence and filamentation, suggesting an essential role for post-transcriptional regulation of these processes. However, the molecular roles of these factors have not been determined. To further study the function of PB factors in filamentation, we generated homozygous deletions of DHH1 and EDC3 in diverse prototrophic clinical strains using transient CRISPR-Cas9. Homozygous DHH1 deletion strongly impaired growth, altered filamentation, and exhibited unusual colony morphology in response to heat stress in five strain backgrounds. Using RNA-seq, we found DHH1 deletion disrupts the regulation of thousands of genes under both yeast and hyphal growth conditions in SC5314 and P57055. This included upregulation of many stress response genes in the absence of external stress, similar to deletion of the S. cerevisiae DHH1 homolog. In contrast, we found EDC3 was not required for heat tolerance or filamentation in diverse strains. These results support a model in which DHH1, but not EDC3, represses hyphal stress response transcripts in yeast and remodels the transcriptome during filamentation. Our work supports distinct requirements for specific mRNA decay factors, bolstering evidence for post-transcriptional regulation of filamentation in C. albicans.
Collapse
Affiliation(s)
- Melissa A. Tosiano
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
2
|
Tosiano MA, Lanni F, Mitchell AP, McManus CJ. Roles of P-body factors in Candida albicans filamentation and stress response. PLoS Genet 2025; 21:e1011632. [PMID: 40096135 PMCID: PMC11975087 DOI: 10.1371/journal.pgen.1011632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 04/07/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
Hyphal growth is strongly associated with virulence in the human fungal pathogen Candida albicans. While hyphal transcriptional networks have been the subject of intense study, relatively little is known about post-transcriptional regulation. Previous work reported that P-Body (PB) factors Dhh1 and Edc3 were required for C. albicans virulence and filamentation, suggesting an essential role for post-transcriptional regulation of these processes. However, the molecular roles of these factors have not been determined. To further study the function of PB factors in filamentation, we generated homozygous deletions of DHH1 and EDC3 in diverse prototrophic clinical strains using transient CRISPR-Cas9. Homozygous DHH1 deletion strongly impaired growth, altered filamentation, and exhibited unusual colony morphology in response to heat stress in five strain backgrounds. Using RNA-seq, we found DHH1 deletion disrupts the regulation of thousands of genes under both yeast and hyphal growth conditions in SC5314 and P57055. This included upregulation of many stress response genes in the absence of external stress, similar to deletion of the S. cerevisiae DHH1 homolog. In contrast, we found EDC3 was not required for heat tolerance or filamentation in diverse strains. These results support a model in which DHH1, but not EDC3, represses hyphal stress response transcripts in yeast and remodels the transcriptome during filamentation. Our work supports distinct requirements for specific mRNA decay factors, bolstering evidence for post-transcriptional regulation of filamentation in C. albicans.
Collapse
Affiliation(s)
- Melissa A. Tosiano
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
3
|
The Protein Kinase A-Dependent Phosphoproteome of the Human Pathogen Aspergillus fumigatus Reveals Diverse Virulence-Associated Kinase Targets. mBio 2020; 11:mBio.02880-20. [PMID: 33323509 PMCID: PMC7773993 DOI: 10.1128/mbio.02880-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PKA is essential for the virulence of eukaryotic human pathogens. Understanding PKA signaling mechanisms is therefore fundamental to deciphering pathogenesis and developing novel therapies. Protein kinase A (PKA) signaling plays a critical role in the growth and development of all eukaryotic microbes. However, few direct targets have been characterized in any organism. The fungus Aspergillus fumigatus is a leading infectious cause of death in immunocompromised patients, but the specific molecular mechanisms responsible for its pathogenesis are poorly understood. We used this important pathogen as a platform for a comprehensive and multifaceted interrogation of both the PKA-dependent whole proteome and phosphoproteome in order to elucidate the mechanisms through which PKA signaling regulates invasive microbial disease. Employing advanced quantitative whole-proteomic and phosphoproteomic approaches with two complementary phosphopeptide enrichment strategies, coupled to an independent PKA interactome analysis, we defined distinct PKA-regulated pathways and identified novel direct PKA targets contributing to pathogenesis. We discovered three previously uncharacterized virulence-associated PKA effectors, including an autophagy-related protein, Atg24; a CCAAT-binding transcriptional regulator, HapB; and a CCR4-NOT complex-associated ubiquitin ligase, Not4. Targeted mutagenesis, combined with in vitro kinase assays, multiple murine infection models, structural modeling, and molecular dynamics simulations, was employed to characterize the roles of these new PKA targets in growth, environmental and antimicrobial stress responses, and pathogenesis in a mammalian system. We also elucidated the molecular mechanisms of PKA regulation for these effectors by defining the functionality of phosphorylation at specific PKA target sites. We have comprehensively characterized the PKA-dependent phosphoproteome and validated PKA targets as direct regulators of infectious disease for the first time in any pathogen, providing new insights into PKA signaling and control over microbial pathogenesis.
Collapse
|
4
|
Candida albicans rvs161Δ and rvs167Δ Endocytosis Mutants Are Defective in Invasion into the Oral Cavity. mBio 2019; 10:mBio.02503-19. [PMID: 31719181 PMCID: PMC6851284 DOI: 10.1128/mbio.02503-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Oropharyngeal candidiasis (OPC) is a common fungal infection that is associated with severe morbidity. Another concern is that patients at risk for developing OPC often take long courses of antifungal drugs, which can lead to the emergence of drug-resistant C. albicans strains. We therefore identified nine mutants with defects in undergoing invasive hyphal growth in the oral cavity, increasing the number of genes known to be involved in OPC by more than 30%. The two strongest mutants, rvs161Δ and rvs167Δ, have defects in endocytosis. The rvsΔ mutants appear to have a specific defect in initiating invasive growth, as preinducing the cells to form hyphae prior to infection restored their ability to cause OPC. These results indicate that blocking endocytosis could have therapeutic value in preventing the initiation of OPC without leading to development of resistance against drugs currently used to treat fungal infections. Invasive growth in tissues by the human fungal pathogen Candida albicans is promoted by a switch from budding to hyphal morphogenesis that is stimulated by multiple environmental factors that can vary at different sites of infection. To identify genes that promote invasive growth in the oral cavity to cause oropharyngeal candidiasis (OPC), we first identified C. albicans mutants that failed to invade agar medium. Analysis of nine severely defective mutants in a mouse model of OPC revealed that the strongest defects were seen for the rvs161Δ and rvs167Δ mutants, which lack amphiphysin proteins needed for endocytosis. The rvsΔ mutants initially adhered to the tongue but failed to invade efficiently and were lost from the oral cavity. Previous studies indicated that rvsΔ mutants formed filamentous hyphae in the kidney albeit with morphological abnormalities, suggesting that the rvsΔ mutants were influenced by factors that vary at different sites of infection. Consistent with this, increasing concentrations of CO2, an inducer of hyphal growth that is more abundant in internal organs than air, partially rescued the invasive-growth defects of the rvsΔ mutants in vitro. Interestingly, preinduction of the rvsΔ mutants to form hyphae prior to introduction into the oral cavity restored their ability to cause OPC, identifying a key role for endocytosis in initiating invasive hyphal growth. These results highlight the influence of distinct environmental factors in promoting invasive hyphal growth in the oral cavity and indicate that blocking endocytosis could have therapeutic value in preventing the initiation of OPC.
Collapse
|
5
|
Bui DC, Son H, Shin JY, Kim JC, Kim H, Choi GJ, Lee YW. The FgNot3 Subunit of the Ccr4-Not Complex Regulates Vegetative Growth, Sporulation, and Virulence in Fusarium graminearum. PLoS One 2016; 11:e0147481. [PMID: 26799401 PMCID: PMC4723064 DOI: 10.1371/journal.pone.0147481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/05/2016] [Indexed: 01/23/2023] Open
Abstract
The Ccr4-Not complex is evolutionarily conserved and important for multiple cellular functions in eukaryotic cells. In this study, the biological roles of the FgNot3 subunit of this complex were investigated in the plant pathogenic fungus Fusarium graminearum. Deletion of FgNOT3 resulted in retarded vegetative growth, retarded spore germination, swollen hyphae, and hyper-branching. The ΔFgnot3 mutants also showed impaired sexual and asexual sporulation, decreased virulence, and reduced expression of genes related to conidiogenesis. Fgnot3 deletion mutants were sensitive to thermal stress, whereas NOT3 orthologs in other model eukaryotes are known to be required for cell wall integrity. We found that FgNot3 functions as a negative regulator of the production of secondary metabolites, including trichothecenes and zearalenone. Further functional characterization of other components of the Not module of the Ccr4-Not complex demonstrated that the module is conserved. Each subunit primarily functions within the context of a complex and might have distinct roles outside of the complex in F. graminearum. This is the first study to functionally characterize the Not module in filamentous fungi and provides novel insights into signal transduction pathways in fungal development.
Collapse
Affiliation(s)
- Duc-Cuong Bui
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Ji Young Shin
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Jin-Cheol Kim
- Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Hun Kim
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gyung Ja Choi
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
6
|
Panepinto JC, Heinz E, Traven A. The cellular roles of Ccr4-NOT in model and pathogenic fungi-implications for fungal virulence. Front Genet 2013; 4:302. [PMID: 24391665 PMCID: PMC3868889 DOI: 10.3389/fgene.2013.00302] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/09/2013] [Indexed: 11/13/2022] Open
Abstract
The fungal Ccr4-NOT complex has been implicated in orchestrating gene expression networks that impact on pathways key for virulence in pathogenic species. The activity of Ccr4-NOT regulates cell wall integrity, antifungal drug susceptibility, adaptation to host temperature, and the developmental switches that enable the formation of pathogenic structures, such as filamentous hyphae. Moreover, Ccr4-NOT impacts on DNA repair pathways and genome stability, opening the possibility that this gene regulator could control adaptive responses in pathogens that are driven by chromosomal alterations. Here we provide a synthesis of the cellular roles of the fungal Ccr4-NOT, focusing on pathways important for virulence toward animals. Our review is based on studies in models yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and two species that cause serious human infections, Candida albicans and Cryptococcus neoformans. We hypothesize that the activity of Ccr4-NOT could be targeted for future antifungal drug discovery, a proposition supported by the fact that inactivation of the genes encoding subunits of Ccr4-NOT in C. albicans and C. neoformans reduces virulence in the mouse infection model. We performed bioinformatics analysis to identify similarities and differences between Ccr4-NOT subunits in fungi and animals, and discuss this knowledge in the context of future antifungal strategies.
Collapse
Affiliation(s)
- John C Panepinto
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York Buffalo, NY, USA
| | - Eva Heinz
- Department of Microbiology, Monash University Clayton, VIC, Australia ; Victorian Bioinformatics Consortium, School of Biomedical Sciences, Monash University Clayton, VIC, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| |
Collapse
|
7
|
da Silva JDF, de Oliveira HC, Marcos CM, da Silva RAM, da Costa TA, Calich VLG, Almeida AMF, Mendes-Giannini MJS. Paracoccidoides brasiliensis 30 kDa adhesin: identification as a 14-3-3 protein, cloning and subcellular localization in infection models. PLoS One 2013; 8:e62533. [PMID: 23638109 PMCID: PMC3640054 DOI: 10.1371/journal.pone.0062533] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/21/2013] [Indexed: 02/04/2023] Open
Abstract
Paracoccidoides brasiliensis adhesion to lung epithelial cells is considered an essential event for the establishment of infection and different proteins participate in this process. One of these proteins is a 30 kDa adhesin, pI 4.9 that was described as a laminin ligand in previous studies, and it was more highly expressed in more virulent P. brasiliensis isolates. This protein may contribute to the virulence of this important fungal pathogen. Using Edman degradation and mass spectrometry analysis, this 30 kDa adhesin was identified as a 14-3-3 protein. These proteins are a conserved group of small acidic proteins involved in a variety of processes in eukaryotic organisms. However, the exact function of these proteins in some processes remains unknown. Thus, the goal of the present study was to characterize the role of this protein during the interaction between the fungus and its host. To achieve this goal, we cloned, expressed the 14-3-3 protein in a heterologous system and determined its subcellular localization in in vitro and in vivo infection models. Immunocytochemical analysis revealed the ubiquitous distribution of this protein in the yeast form of P. brasiliensis, with some concentration in the cytoplasm. Additionally, this 14-3-3 protein was also present in P. brasiliensis cells at the sites of infection in C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells for 72 h (acute infections) and 30 days (chronic infection). An apparent increase in the levels of the 14-3-3 protein in the cell wall of the fungus was also noted during the interaction between P. brasiliensis and A549 cells, suggesting that this protein may be involved in host-parasite interactions, since inhibition assays with the protein and this antibody decreased P. brasiliensis adhesion to A549 epithelial cells. Our data may lead to a better understanding of P. brasiliensis interactions with host tissues and paracoccidioidomycosis pathogenesis.
Collapse
Affiliation(s)
- Julhiany de Fatima da Silva
- Department of Clinical Analyses, Faculty of Pharmaceutical Sciences, São Paulo State University - University Estadual Paulista Araraquara, São Paulo, Brazil
| | - Haroldo César de Oliveira
- Department of Clinical Analyses, Faculty of Pharmaceutical Sciences, São Paulo State University - University Estadual Paulista Araraquara, São Paulo, Brazil
| | - Caroline Maria Marcos
- Department of Clinical Analyses, Faculty of Pharmaceutical Sciences, São Paulo State University - University Estadual Paulista Araraquara, São Paulo, Brazil
| | - Rosângela Aparecida Moraes da Silva
- Department of Clinical Analyses, Faculty of Pharmaceutical Sciences, São Paulo State University - University Estadual Paulista Araraquara, São Paulo, Brazil
| | - Tania Alves da Costa
- Department of Immunology, Biomedical Institute, São Paulo University, São Paulo, Brazil
| | | | - Ana Marisa Fusco Almeida
- Department of Clinical Analyses, Faculty of Pharmaceutical Sciences, São Paulo State University - University Estadual Paulista Araraquara, São Paulo, Brazil
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analyses, Faculty of Pharmaceutical Sciences, São Paulo State University - University Estadual Paulista Araraquara, São Paulo, Brazil
| |
Collapse
|
8
|
Bradford LL, Ravel J, Bruno V. Understanding Vulvovaginal Candidiasis Through a Community Genomics Approach. CURRENT FUNGAL INFECTION REPORTS 2013. [DOI: 10.1007/s12281-013-0135-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Abstract
Oropharyngeal candidiasis is a frequent cause of morbidity in patients with defects in cell-mediated immunity or saliva production. Animal models of this infection are important for studying disease pathogenesis and evaluating vaccines and antifungal therapies. Here we describe a simple mouse model of oropharyngeal candidiasis. Mice are rendered susceptible to oral infection by injection with cortisone acetate and then inoculated by placing a swab saturated with Candida albicans sublingually. This process results in a reproducible level of infection, the histopathology of which mimics that of pseudomembranous oropharyngeal candidiasis in humans. By using this model, data are obtained after 5-9 d of work.
Collapse
Affiliation(s)
- Norma V Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | | |
Collapse
|
10
|
Deletion of Candida albicans SPT6 is not lethal but results in defective hyphal growth. Fungal Genet Biol 2010; 47:288-96. [PMID: 20060921 DOI: 10.1016/j.fgb.2010.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/30/2009] [Accepted: 01/04/2010] [Indexed: 11/23/2022]
Abstract
As a means to study surface proteins involved in the yeast to hypha transition, human monoclonal antibody fragments (single-chain variable fragments, scFv) have been generated that bind to antigens expressed on the surface of Candida albicans yeast and/or hyphae. A cDNA expression library was constructed from hyphae, and screened for immunoreactivity with scFv5 as a means to identify its cognate antigen. A reactive clone contained the 3' end of the C. albicans gene, orf 19.7136, designated SPT6 based on homology to Saccharomyces cerevisiae, where its product functions as a transcription elongation factor. A mutant containing a homozygous deletion of SPT6 was isolated, demonstrating that unlike S. cerevisiae, deletion of this gene in C. albicans is not lethal. Growth of this strain was severely impaired, however, as was its capacity to undergo filamentous growth. Reactivity with scFv5 was not detected in the mutant strain, although its impaired growth complicates the interpretation of this finding. To assess C. albicansSPT6 function, expression of the C. albicans gene was induced in a defined S. cerevisiaespt6 mutant. Partial complementation was seen, confirming that the C. albicans and S. cerevisiae genes are functionally related in these species.
Collapse
|
11
|
Nguyen KT, Ta P, Hoang BT, Cheng S, Hao B, Nguyen MH, Clancy CJ. Characterising the post-antifungal effects of micafungin against Candida albicans, Candida glabrata, Candida parapsilosis and Candida krusei isolates. Int J Antimicrob Agents 2010; 35:80-4. [DOI: 10.1016/j.ijantimicag.2009.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
12
|
Anidulafungin is fungicidal and exerts a variety of postantifungal effects against Candida albicans, C. glabrata, C. parapsilosis, and C. krusei isolates. Antimicrob Agents Chemother 2009; 53:3347-52. [PMID: 19364856 DOI: 10.1128/aac.01480-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anidulafungin targets the cell walls of Candida species by inhibiting beta-1,3-glucan synthase, thereby killing isolates and exerting prolonged postantifungal effects (PAFEs). We performed time-kill and PAFE experiments on Candida albicans (n = 4), C. glabrata (n = 3), C. parapsilosis (n = 3), and C. krusei (n = 2) isolates and characterized the PAFEs in greater detail. MICs were 0.008 to 0.125 microg/ml against C. albicans, C. glabrata, and C. krusei and 1.0 to 2.0 microg/ml against C. parapsilosis. During time-kill experiments, anidulafungin caused significant kills at 16x MIC (range, log 2.68 to 3.89) and 4x MIC (log 1.87 to 3.19), achieving fungicidal levels (>or=log 3) against nine isolates. A 1-hour drug exposure during PAFE experiments resulted in kills ranging from log 1.55 to 3.47 and log 1.18 to 2.89 (16x and 4x MIC, respectively), achieving fungicidal levels against four isolates. Regrowth of all 12 isolates was inhibited for >or=12 h after drug washout. Isolates of each species collected 8 h after a 1-hour exposure to anidulafungin (16x and 4x MIC) were hypersusceptible to sodium dodecyl sulfate (0.01 to 0.04%) and calcofluor white (40 microg/ml). Moreover, PAFEs were associated with major cell wall disturbances, as evident in electron micrographs of viable cells, and significant reductions in adherence to buccal epithelial cells (P <or= 0.01). Finally, three of four PAFE isolates tested were hypersusceptible to killing by J774 macrophages (P <or= 0.007). Our data suggest that the efficacy of anidulafungin in the treatment of candidiasis might stem from both direct fungicidal activity and indirect PAFEs that lessen the ability of Candida cells to establish invasive disease and to persist within infected hosts.
Collapse
|
13
|
Candida albicans RFX2 encodes a DNA binding protein involved in DNA damage responses, morphogenesis, and virulence. EUKARYOTIC CELL 2009; 8:627-39. [PMID: 19252121 DOI: 10.1128/ec.00246-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously showed that Candida albicans orf19.4590, which we have renamed RFX2, expresses a protein that is reactive with antibodies in persons with candidiasis. In this study, we demonstrate that C. albicans RFX2 shares some functional redundancy with Saccharomyces cerevisiae RFX1. Complementation of an S. cerevisiae rfx1 mutant with C. albicans RFX2 partially restored UV susceptibility and the repression of DNA damage response genes. DNA damage- and UV-induced genes RAD6 and DDR48 were derepressed in a C. albicans rfx2 null mutant strain under basal conditions, and the mutant was significantly more resistant to UV irradiation, heat shock, and ethanol than wild-type strain SC5314. The rfx2 mutant was hyperfilamentous on solid media and constitutively expressed hypha-specific genes HWP1, ALS3, HYR1, ECE1, and CEK1. The mutant also demonstrated increased invasion of solid agar and significantly increased adherence to human buccal epithelial cells. During hematogenously disseminated candidiasis, mice infected with the mutant had a significantly delayed time to death compared to the wild type. During oropharyngeal candidiasis, mice infected with the mutant had significantly lower tissue burdens in the oral cavity and esophagus at 7 days and they were less likely to develop disseminated infections because of mucosal translocation. The data demonstrate that C. albicans Rfx2p regulates DNA damage responses, morphogenesis, and virulence.
Collapse
|
14
|
Clancy CJ, Cheng S, Nguyen MH. Antibody-based strategy to identify Candida albicans genes expressed during infections. Methods Mol Biol 2009; 470:169-85. [PMID: 19089384 DOI: 10.1007/978-1-59745-204-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Investigators have long used antibody-based screening strategies to identify Candida albicans immunogenic proteins and the genes that encode them during infections. With the recent availability of the C. albicans genome sequence and the development of genomic and proteomic technologies, it is now possible to efficiently conduct large-scale screening in standard research labs. C. albicans proteins and genes identified with a variety of screening methods have been implicated as important determinants of candidal virulence and exploited as vaccine and therapeutic targets. In this chapter, we describe methods used in our lab, in which sera recovered from patients with candidiasis are used to screen a C. albicans genomic DNA expression library. Immunoreactive colonies are detected by reaction with anti-human immunoglobulin, and the corresponding open reading frames are identified using the genome sequence database. The methods are also suitable for use with cDNA expression libraries, and they are complementary to proteomic screening strategies described elsewhere in this volume.
Collapse
Affiliation(s)
- Cornelius J Clancy
- University of Florida College of Medicine and North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | | | | |
Collapse
|
15
|
Abstract
Animal models are powerful tools to study the pathogenesis of diverse types of candidiasis. Murine models are particularly attractive because of cost, ease of handling, technical feasibility, and experience with their use. In this chapter, we describe methods for two of the most popular murine models of disease caused by Candida albicans. In an intravenously disseminated candidiasis (DC) model, immunocompetent mice are infected by lateral tail vein injections of a C. albicans suspension. Endpoints include mortality, tissue burdens of infection (most importantly in the kidneys, although spleens and livers are sometimes also assessed), and histopathology of infected organs. In a model of oral/esophageal candidiasis, mice are immunosuppressed with cortisone acetate and inoculated in the oral cavities using swabs saturated with a C. albicans suspension. Since mice do not die from oral candidiasis in this model, endpoints are tissue burden of infection and histopathology. The DC and oral/esophageal models are most commonly used for studies of C. albicans virulence, in which the disease-causing ability of a mutant strain is compared with an isogenic parent strain. Nevertheless, the basic techniques we describe are also applicable to models adapted to investigate other aspects of pathogenesis, such as spatiotemporal patterns of gene expression, specific aspects of host immune response and assessment of antifungal agents, immunomodulatory strategies, and vaccines.
Collapse
Affiliation(s)
- Cornelius J Clancy
- University of Florida College of Medicine and North Florida/South Georgia Veterans Health System, Gainsville, FL, USA
| | | | | |
Collapse
|
16
|
Abstract
Rodent models of oral, vaginal and gastrointestinal Candida infection are described and discussed in terms of their scientific merits. The common feature of all experimental mucosal Candida infections is the need for some level of host immunocompromise or exogenous treatment to ensure quantitatively reproducible disease. A growing literature describes the contributions of such candidiasis models to our understanding of certain aspects of fungal virulence and host response to mucosal Candida albicans challenge. Evidence to date shows that T-lymphocyte responses dominate host immune defences to oral and gastrointestinal challenge, while other, highly compartmentalized responses defend vaginal surfaces. By contrast the study of C. albicans virulence factors in mucosal infection models has only begun to unravel the complex of attributes required to define the difference between strongly and weakly muco-invasive strains.
Collapse
Affiliation(s)
- Julian R Naglik
- Department of Oral Immunology, King's College London Dental Institute, King's College London, London, UK.
| | | | | |
Collapse
|
17
|
Immunoglobulin G responses to a panel of Candida albicans antigens as accurate and early markers for the presence of systemic candidiasis. J Clin Microbiol 2008; 46:1647-54. [PMID: 18322056 DOI: 10.1128/jcm.02018-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Despite shortcomings, cultures of blood and sterile sites remain the "gold standard" for diagnosing systemic candidiasis. Alternative diagnostic markers, including antibody detection, have been developed, but none are widely accepted. In this study, we used an enzyme-linked immunosorbent assay to measure serum antibody responses against 15 recombinant Candida albicans antigens among 60 patients with systemic candidiasis due to various Candida spp. and 24 uninfected controls. Mean immunoglobulin G (IgG) responses against all 15 antigens were significantly higher among patients with systemic candidiasis than among controls, whereas IgM responses were higher against only seven antigens. Using discriminant analysis that included IgG responses against the 15 antigens, we derived a mathematical prediction model that identified patients with systemic candidiasis with an error rate of 3.7%, a sensitivity of 96.6%, and a specificity of 95.6%. Furthermore, a prediction model using a subset of four antigens (SET1, ENO1, PGK1-2, and MUC1-2) identified through backward elimination and canonical correlation analyses performed as accurately as the full panel. Using the simplified model, we predicted systemic candidiasis in a separate test sample of 32 patients and controls with 100% sensitivity and 87.5% specificity. We also demonstrated that IgG titers against each of the four antigens included in the prediction model were significantly higher in convalescent-phase sera than in paired acute-phase sera. Taken together, our findings suggest that IgG responses against a panel of candidal antigens might represent an accurate and early marker of systemic candidiasis, a hypothesis that should be tested in future trials.
Collapse
|
18
|
Raman SB, Nguyen MH, Zhang Z, Cheng S, Jia HY, Weisner N, Iczkowski K, Clancy CJ. Candida albicans SET1 encodes a histone 3 lysine 4 methyltransferase that contributes to the pathogenesis of invasive candidiasis. Mol Microbiol 2006; 60:697-709. [PMID: 16629671 DOI: 10.1111/j.1365-2958.2006.05121.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Candida albicans causes diverse mucosal and systemic diseases. Although this versatility likely depends upon carefully co-ordinated gene expression, epigenetic regulation in C. albicans remains poorly characterized. Screening a genomic expression library, we identified C. albicans Set1p as an immunogenic protein with homology to a lysine histone methyltransferase of Saccharomyces cerevisiae. In this study, we demonstrated that total immunoglobulin, IgG and IgM titers against a unique Set1p N-terminal fragment were significantly higher among patients with disseminated candidiasis (DC) or oropharyngeal candidiasis than controls. Disruption of SET1 resulted in complete loss of methylation of histone 3 at lysine residue 4, hyperfilamentous growth under embedded conditions, less negative cell surface charges and diminished adherence to epithelial cells, effects that were reversed upon gene re-insertion at a disrupted locus. During murine DC, the null mutant was associated with prolonged survival and lower tissue burdens. Taken together, our findings suggest that SET1 regulates multiple processes important to the pathogenesis of candidiasis. The Set1p N-terminal fragment does not exhibit significant homology to eukaryotic or microbial proteins, and might represent a novel therapeutic, preventive or diagnostic target.
Collapse
Affiliation(s)
- Suresh Babu Raman
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|