1
|
Abstract
The spirochetes Borrelia (Borreliella) burgdorferi and Borrelia hermsii, the etiologic agents of Lyme disease and relapsing fever, respectively, cycle in nature between an arthropod vector and a vertebrate host. They have extraordinarily unusual genomes that are highly segmented and predominantly linear. The genetic analyses of Lyme disease spirochetes have become increasingly more sophisticated, while the age of genetic investigation in the relapsing fever spirochetes is just dawning. Molecular tools available for B. burgdorferi and related species range from simple selectable markers and gene reporters to state-of-the-art inducible gene expression systems that function in the animal model and high-throughput mutagenesis methodologies, despite nearly overwhelming experimental obstacles. This armamentarium has empowered borreliologists to build a formidable genetic understanding of the cellular physiology of the spirochete and the molecular pathogenesis of Lyme disease.
Collapse
Affiliation(s)
- Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| | - D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
2
|
Salo J, Jaatinen A, Söderström M, Viljanen MK, Hytönen J. Decorin binding proteins of Borrelia burgdorferi promote arthritis development and joint specific post-treatment DNA persistence in mice. PLoS One 2015; 10:e0121512. [PMID: 25816291 PMCID: PMC4376631 DOI: 10.1371/journal.pone.0121512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/28/2015] [Indexed: 01/01/2023] Open
Abstract
Decorin binding proteins A and B (DbpA and B) of Borrelia burgdorferi are of critical importance for the virulence of the spirochete. The objective of the present study was to further clarify the contribution of DbpA and B to development of arthritis and persistence of B. burgdorferi after antibiotic treatment in a murine model of Lyme borreliosis. With that goal, mice were infected with B. burgdorferi strains expressing either DbpA or DbpB, or both DbpA and B, or with a strain lacking the adhesins. Arthritis development was monitored up to 15 weeks after infection, and bacterial persistence was studied after ceftriaxone and immunosuppressive treatments. Mice infected with the B. burgdorferi strain expressing both DbpA and B developed an early and prominent joint swelling. In contrast, while strains that expressed DbpA or B alone, or the strain that was DbpA and B deficient, were able to colonize mouse joints, they caused only negligible joint manifestations. Ceftriaxone treatment at two or six weeks of infection totally abolished joint swelling, and all ceftriaxone treated mice were B. burgdorferi culture negative. Antibiotic treated mice, which were immunosuppressed by anti-TNF-alpha, remained culture negative. Importantly, among ceftriaxone treated mice, B. burgdorferi DNA was detected by PCR uniformly in joint samples of mice infected with DbpA and B expressing bacteria, while this was not observed in mice infected with the DbpA and B deficient strain. In conclusion, these results show that both DbpA and B adhesins are crucial for early and prominent arthritis development in mice. Also, post-treatment borrelial DNA persistence appears to be dependent on the expression of DbpA and B on B. burgdorferi surface. Results of the immunosuppression studies suggest that the persisting material in the joints of antibiotic treated mice is DNA or DNA containing remnants rather than live bacteria.
Collapse
Affiliation(s)
- Jemiina Salo
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
- Turku Doctoral Programme of Biomedical Sciences, TuBS, Turku, Finland
- * E-mail:
| | - Annukka Jaatinen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Mirva Söderström
- Department of Pathology, Turku University Hospital and University of Turku, Turku, Finland
| | - Matti K. Viljanen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Jukka Hytönen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Shi Y, Dadhwal P, Li X, Liang FT. BosR functions as a repressor of the ospAB operon in Borrelia burgdorferi. PLoS One 2014; 9:e109307. [PMID: 25271631 PMCID: PMC4182837 DOI: 10.1371/journal.pone.0109307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022] Open
Abstract
The Lyme disease spirochete, Borrelia burgdorferi, must abundantly produce outer surface lipoprotein A (OspA) in the tick vector but downregulate OspA in mammals in order to evade the immune system and maintain its natural enzootic cycle. Here, we show that BosR binds two regulatory elements of the ospAB operon and that increasing BosR expression leads to downregulation of OspA. Both regulatory sequences, cisI and cisII, showed strong BosR-binding and cisII bound much tighter than cisI. A promoterless bosR gene fused with an inducible promoter was introduced into an rpoS mutant and a wild-type strain to assess RpoS-independent and -dependent downregulation of OspA by BosR. With the induction of BosR expression, OspA expression was reduced more significantly in the RpoS-deficient than wild-type background, but not completely repressed. In the presence of constitutive expression of OspC, DbpA and DbpB, increasing BosR production resulted in complete repression of OspA in the RpoS mutant. Taken together, the study clearly demonstrated BosR serves as a repressor that binds both regulatory elements of the ospAB operon and shuts off expression.
Collapse
Affiliation(s)
- Yanlin Shi
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Poonam Dadhwal
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Xin Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Fang Ting Liang
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
4
|
Groshong AM, Blevins JS. Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics. ADVANCES IN APPLIED MICROBIOLOGY 2014; 86:41-143. [PMID: 24377854 DOI: 10.1016/b978-0-12-800262-9.00002-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Borrelia burgdorferi, the vector-borne bacterium that causes Lyme disease, was first identified in 1982. It is known that much of the pathology associated with Lyme borreliosis is due to the spirochete's ability to infect, colonize, disseminate, and survive within the vertebrate host. Early studies aimed at defining the biological contributions of individual genes during infection and transmission were hindered by the lack of adequate tools and techniques for molecular genetic analysis of the spirochete. The development of genetic manipulation techniques, paired with elucidation and annotation of the B. burgdorferi genome sequence, has led to major advancements in our understanding of the virulence factors and the molecular events associated with Lyme disease. Since the dawn of this genetic era of Lyme research, genes required for vector or host adaptation have garnered significant attention and highlighted the central role that these components play in the enzootic cycle of this pathogen. This chapter covers the progress made in the Borrelia field since the application of mutagenesis techniques and how they have allowed researchers to begin ascribing roles to individual genes. Understanding the complex process of adaptation and survival as the spirochete cycles between the tick vector and vertebrate host will lead to the development of more effective diagnostic tools as well as identification of novel therapeutic and vaccine targets. In this chapter, the Borrelia genes are presented in the context of their general biological roles in global gene regulation, motility, cell processes, immune evasion, and colonization/dissemination.
Collapse
Affiliation(s)
- Ashley M Groshong
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jon S Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
5
|
Chen L, Xu Q, Tu J, Ge Y, Liu J, Liang FT. Increasing RpoS expression causes cell death in Borrelia burgdorferi. PLoS One 2013; 8:e83276. [PMID: 24358270 PMCID: PMC3865164 DOI: 10.1371/journal.pone.0083276] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/11/2013] [Indexed: 01/25/2023] Open
Abstract
RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.
Collapse
Affiliation(s)
- Linxu Chen
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Qilong Xu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jiagang Tu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Taxes, United States of America
| | - Yihe Ge
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Taxes, United States of America
| | - Fang Ting Liang
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
6
|
Imai D, Holden K, Velazquez EM, Feng S, Hodzic E, Barthold SW. Influence of arthritis-related protein (BBF01) on infectivity of Borrelia burgdorferi B31. BMC Microbiol 2013; 13:100. [PMID: 23651628 PMCID: PMC3701516 DOI: 10.1186/1471-2180-13-100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/16/2013] [Indexed: 11/10/2022] Open
Abstract
Background Lyme borreliosis, caused by tick-borne Borrelia burgdorferi, is a multi-phasic, multi-system disease in humans. Similar to humans, C3H mice develop arthritis and carditis, with resolution and periodic bouts of recurrence over the course of persistent infection. Borrelia burgdorferi arthritis-related protein (Arp/BBF01), a highly conserved protein among B. burgdorferi s.s. isolates, has been shown to be antigenic in humans with Lyme borreliosis, and a target for antibody-mediated disease resolution in the mouse model. Results A mutant strain of B. burgdorferi s.s. deficient of the arp gene and a complemented version of that mutant were created and examined for phenotypic effects in mice compared to wild-type B. burgdorferi. Deletion of arp did not abolish infectivity, but did result in a higher infectious dose compared to wild-type B. burgdorferi, which was restored by complementation. Spirochete burdens in tissues of C3H-scid mice were lower when infected with the arp mutant, compared to wild-type, but arthritis was equally severe. Spirochete burdens were also lower in C3H mice infected with the arp mutant, but disease was markedly reduced. Ticks that fed upon infected C3H mice were able to acquire infection with both wild-type and arp mutant spirochetes. Arp mutant spirochetes were marginally able to be transmitted to naïve hosts by infected ticks. Conclusion These results indicated that deletion of BBF01/arp did not abrogate, but diminished infectivity and limited spirochete burdens in tissues of both immunocompetent and immunodeficient hosts, and attenuated, but did not abolish the ability of ticks to acquire or transmit infection.
Collapse
Affiliation(s)
- Denise Imai
- Center for Comparative Medicine, Schools of Veterinary Medicine and Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
7
|
Xu Q, Shi Y, Dadhwal P, Liang FT. RpoS regulates essential virulence factors remaining to be identified in Borrelia burgdorferi. PLoS One 2012; 7:e53212. [PMID: 23300893 PMCID: PMC3531368 DOI: 10.1371/journal.pone.0053212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/27/2012] [Indexed: 11/24/2022] Open
Abstract
Background Since the RpoN-RpoS regulatory network was revealed in the Lyme disease spirochete Borrelia burgdorferi a decade ago, both upstream and downstream of the pathway have been intensively investigated. While significant progress has been made into understanding of how the network is regulated, most notably, discovering a relationship of the network with Rrp2 and BosR, only three crucial virulence factors, including outer surface protein C (OspC) and decorin-binding proteins (Dbps) A and B, are associated with the pathway. Moreover, for more than 10 years no single RpoS-controlled gene has been found to be critical for infection, raising a question about whether additional RpoS-dependent virulence factors remain to be identified. Methodology/Principal Findings The rpoS gene was deleted in B. burgdorferi; resulting mutants were modified to constitutively express all the known virulence factors, OspC, DbpA and DbpB. This genetic modification was unable to restore the rpoS mutant with infectivity. Conclusions/Significance The inability to restore the rpoS mutant with infectivity by simultaneously over-expressing all the three virulence factors allows us to conclude RpoS also regulates essential genes that remain to be identified in B. burgdorferi.
Collapse
Affiliation(s)
- Qilong Xu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Yanlin Shi
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Poonam Dadhwal
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Fang Ting Liang
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
8
|
Seemanapalli SV, Xu Q, McShan K, Liang FT. Outer surface protein C is a dissemination-facilitating factor of Borrelia burgdorferi during mammalian infection. PLoS One 2010; 5:e15830. [PMID: 21209822 PMCID: PMC3013124 DOI: 10.1371/journal.pone.0015830] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/27/2010] [Indexed: 11/30/2022] Open
Abstract
Background The Lyme disease spirochete Borrelia burgdorferi dramatically upregulates outer surface protein C (OspC) in response to fresh bloodmeal during transmission from the tick vector to a mammal, and abundantly produces the antigen during early infection. As OspC is an effective immune target, to evade the immune system B. burgdorferi downregulates the antigen once the anti-OspC humoral response has developed, suggesting an important role for OspC during early infection. Methodology/Principal Findings In this study, a borrelial mutant producing an OspC antigen with a 5-amino-acid deletion was generated. The deletion didn't significantly increase the 50% infectious dose or reduce the tissue bacterial burden during infection of the murine host, indicating that the truncated OspC can effectively protect B. burgdorferi against innate elimination. However, the deletion greatly impaired the ability of B. burgdorferi to disseminate to remote tissues after inoculation into mice. Conclusions/Significance The study indicates that OspC plays an important role in dissemination of B. burgdorferi during mammalian infection.
Collapse
Affiliation(s)
- Sunita V Seemanapalli
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | | | | | | |
Collapse
|
9
|
High-throughput plasmid content analysis of Borrelia burgdorferi B31 by using Luminex multiplex technology. Appl Environ Microbiol 2010; 77:1483-92. [PMID: 21169439 DOI: 10.1128/aem.01877-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease in North America, is an invasive pathogen that causes persistent multiorgan manifestations in humans and other mammals. Genetic studies of this bacterium are complicated by the presence of multiple plasmid replicons, many of which are readily lost during in vitro culture. The analysis of B. burgdorferi plasmid content by plasmid-specific PCR and agarose gel electrophoresis or other existing techniques is informative, but these techniques are cumbersome and challenging to perform in a high-throughput manner. In this study, a PCR-based Luminex assay was developed for determination of the plasmid content of the strain B. burgdorferi B31. This multiplex, high-throughput method allows simultaneous detection of the plasmid contents of many B. burgdorferi strains in a 96-well format. The procedure was used to evaluate the occurrence of plasmid loss in 44 low-passage B. burgdorferi B31 clones and in a library of over 4,000 signature-tagged mutagenesis (STM) transposon mutant clones. This analysis indicated that only 40% of the clones contained all plasmids, with (in order of decreasing frequency) lp5, lp56, lp28-1, lp25, cp9, lp28-4, lp28-2, and lp21 being the most commonly missing plasmids. These results further emphasize the need for careful plasmid analysis in Lyme disease Borrelia studies. Adaptations of this approach may also be useful in the evaluation of plasmid content and chromosomal gene variations in additional Lyme disease Borrelia strains and other organisms with variable genomes and in the correlation of these genetic differences with pathogenesis and other biological properties.
Collapse
|
10
|
BB0250 of Borrelia burgdorferi is a conserved and essential inner membrane protein required for cell division. J Bacteriol 2010; 192:6105-15. [PMID: 20870761 DOI: 10.1128/jb.00571-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene bb0250 of Borrelia burgdorferi is a homolog of the dedA family, encoding integral inner membrane proteins that are present in nearly all species of bacteria. To date, no precise function has been attributed to any dedA gene. Unlike many bacterial species, such as Escherichia coli, which has eight dedA genes, B. burgdorferi possesses only one, annotated bb0250, providing a unique opportunity to investigate the functions of the dedA family. Here, we show that bb0250 is able to restore normal growth and cell division to a temperature-sensitive E. coli mutant with simultaneous deletions of two dedA genes, yqjA and yghB, and encodes a protein that localizes to the inner membrane of E. coli. The bb0250 gene could be deleted from B. burgdorferi only after introduction of a promoterless bb0250 under the control of an inducible lac promoter, indicating that it is an essential gene in this organism. Growth of the mutant in the absence of isopropyl-β-d-thiogalactopyranoside resulted in cell death, preceded by cell division defects characterized by elongated cells and membrane bulges, demonstrating that bb0250 is required for proper cell division and envelope integrity. Finally, we show that BB0250 depletion leads to imbalanced membrane phospholipid composition in borrelia. These results demonstrate a strong conservation of function of the dedA gene family across diverse species of Gram-negative bacteria and a requirement for this protein family for normal membrane lipid composition and cell division.
Collapse
|
11
|
Role of the surface lipoprotein BBA07 in the enzootic cycle of Borrelia burgdorferi. Infect Immun 2010; 78:2910-8. [PMID: 20421380 DOI: 10.1128/iai.00372-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Borrelia burgdorferi, the Lyme disease pathogen, dramatically alters its protein profile when it is transmitted between ticks and mammals. Several differentially expressed proteins have been shown to be critical for the enzootic cycle of B. burgdorferi. In this study, we demonstrated that expression of the surface lipoprotein-encoding gene bba07 is induced by an elevated temperature and a reduced pH during in vitro cultivation, as well as during nymphal tick feeding. Expression of bba07 is regulated by the Rrp2-RpoN-RpoS pathway, a central regulatory network that is activated during nymphal feeding. By generating a bba07 mutant of an infectious strain of B. burgdorferi, we demonstrated that although BBA07-deficient spirochetes were capable of infecting mice via needle inoculation and surviving in ticks, they were defective in infection of mammals via tick transmission. Complementation of the bba07 mutant with a wild-type copy of bba07 partially restored the transmission defect of the bba07 mutant. Based on these findings, we concluded that the surface lipoprotein BBA07 is produced during tick feeding and facilitates optimal transmission of B. burgdorferi from the tick vector to a mammalian host.
Collapse
|
12
|
Xu Q, McShan K, Liang FT. Two regulatory elements required for enhancing ospA expression in Borrelia burgdorferi grown in vitro but repressing its expression during mammalian infection. MICROBIOLOGY-SGM 2010; 156:2194-2204. [PMID: 20395273 PMCID: PMC3068683 DOI: 10.1099/mic.0.036608-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During cycling between the tick vector and a mammal, the Lyme disease spirochaete Borrelia burgdorferi must coordinate expression of outer-surface proteins (Osps) A and B to quickly respond to environmental changes. The pathogen abundantly produces OspA/B in the tick, but represses their expression during mammalian infection. This paper reports a regulatory structure, consisting of two sequences flanking the ospAB promoter, that is required for enhancing ospA expression in B. burgdorferi grown in vitro, but repressing its expression during murine infection. Deletion or replacement of either the upstream or downstream sequence of the ospAB promoter caused a significant decrease in ospA expression in vitro, but a dramatic increase during murine infection. Fusion of either sequence with the flaB reporter promoter led to increased expression of an ospA reporter gene in vitro, but a decrease in the murine host. Furthermore, simultaneous fusion of both sequences with the reporter promoter showed a synergistic effect in enhancing expression of the ospA reporter in vitro, but repressing its expression during murine infection. Taken together, the results demonstrate that the regulatory structure functions oppositely in the two different environments and potentially provides B. burgdorferi with a molecular mechanism to quickly adapt to the distinct environments during its enzootic life cycle.
Collapse
Affiliation(s)
- Qilong Xu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kristy McShan
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fang Ting Liang
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
13
|
Li C, Xu H, Zhang K, Liang FT. Inactivation of a putative flagellar motor switch protein FliG1 prevents Borrelia burgdorferi from swimming in highly viscous media and blocks its infectivity. Mol Microbiol 2010; 75:1563-76. [PMID: 20180908 DOI: 10.1111/j.1365-2958.2010.07078.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The flagellar motor switch complex protein FliG plays an essential role in flagella biosynthesis and motility. In most motile bacteria, only one fliG homologue is present in the genome. However, several spirochete species have two putative fliG genes (referred to as fliG1 and fliG2) and their roles in flagella assembly and motility remain unknown. In this report, the Lyme disease spirochete Borrelia burgdorferi was used as a genetic model to investigate the roles of these two fliG homologues. It was found that fliG2 encodes a typical motor switch complex protein that is required for the flagellation and motility of B. burgdorferi. In contrast, the function of fliG1 is quite unique. Disruption of fliG1 did not affect flagellation and the mutant was still motile but failed to translate in highly viscous media. GFP-fusion and motion tracking analyses revealed that FliG1 asymmetrically locates at one end of cells and the loss of fliG1 somehow impacted one bundle of flagella rotation. In addition, animal studies demonstrated that the fliG1- mutant was quickly cleared after inoculation into the murine host, which highlights the importance of the ability to swim in highly viscous media in the infectivity of B. burgdorferi and probably other pathogenic spirochetes.
Collapse
Affiliation(s)
- Chunhao Li
- Department of Oral Biology, State University of New York, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
14
|
Coutte L, Botkin DJ, Gao L, Norris SJ. Detailed analysis of sequence changes occurring during vlsE antigenic variation in the mouse model of Borrelia burgdorferi infection. PLoS Pathog 2009; 5:e1000293. [PMID: 19214205 PMCID: PMC2632889 DOI: 10.1371/journal.ppat.1000293] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 01/09/2009] [Indexed: 11/24/2022] Open
Abstract
Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained “template-independent” sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses. Lyme borreliosis is the most common vector-transmitted infection in Europe and North America, and is caused by the spirochete Borrelia burgdorferi and other closely related Borrelia species. Lyme disease Borrelia have an elaborate mechanism for varying the sequence of VlsE, a surface-localized, immunogenic lipoprotein. This antigenic variation is thought to be important in immune evasion and thus in the ability of Lyme disease Borrelia to cause long-term infection. In this study, we examined 1,399 B. burgdorferi clones isolated from infected immunocompetent and immunodeficient mice to gain a better understanding of the rate and variety of VlsE sequence changes that occur during infection. We determined that clones with few or no VlsE sequence changes are rapidly cleared in mice with active immune responses, whereas clones with many VlsE changes persist. The vls antigenic variation system can utilize any of the 15 silent cassette sequences as sequence “donors,” and does not exhibit obvious preferences in the location of changes within the vlsE cassette region or the types of VlsE sequence variations found in different tissues, such as in joints or in the heart. Our findings provide further evidence that the vls locus represents a remarkably robust recombination system and immune evasion mechanism.
Collapse
MESH Headings
- Animals
- Antigenic Variation/genetics
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Base Sequence
- Borrelia burgdorferi/genetics
- Borrelia burgdorferi/immunology
- Data Interpretation, Statistical
- Disease Models, Animal
- Female
- Gene Expression
- Lipoproteins/chemistry
- Lipoproteins/genetics
- Lipoproteins/immunology
- Lyme Disease/microbiology
- Mice
- Mice, Inbred C3H
- Mice, SCID
- Molecular Sequence Data
- Recombination, Genetic
- Sequence Analysis, DNA
- Sequence Analysis, Protein
Collapse
Affiliation(s)
- Loïc Coutte
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Douglas J. Botkin
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Lihui Gao
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Xu Q, McShan K, Liang FT. Modification of Borrelia burgdorferi to overproduce OspA or VlsE alters its infectious behaviour. MICROBIOLOGY-SGM 2008; 154:3420-3429. [PMID: 18957595 DOI: 10.1099/mic.0.2008/019737-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The surface lipoproteins of the Lyme disease spirochaete Borrelia burgdorferi directly interact with tissue microenvironments during mammalian infection, and thus potentially affect various aspects of infection. To investigate the influence of surface antigen synthesis on infectious behaviour, B. burgdorferi was modified to constitutively produce the well-characterized surface lipoproteins OspA and invariant VlsE. Although increasing OspA or VlsE production did not significantly affect synthesis of other surface lipoproteins or spirochaetal growth in vitro, overexpressing vlsE resulted in increased ospA but decreased ospC expression, and overexpressing ospA led to decreased ospC and vlsE expression in severe combined immunodeficient (SCID) mice. Increasing the expression of either ospA or vlsE did not alter the ID(50), but affected spirochaetal dissemination and significantly reduced tissue spirochaete loads in SCID mice. In immunocompetent mice, increased vlsE expression resulted in quick clearance of infection, while constitutive ospA expression led to a substantial ID(50) increase and severely impaired dissemination. Furthermore, B. burgdorferi with constitutive ospA expression persisted in the skin tissue but was cleared from both heart and joints of chronically infected immunocompetent mice. Taken together, the study indicates that increasing production of OspA or invariant VlsE influences lipoprotein gene expression in the murine host and alters the infectious behaviour of B. burgdorferi.
Collapse
Affiliation(s)
- Qilong Xu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kristy McShan
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fang Ting Liang
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
16
|
In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56. J Bacteriol 2008; 190:7885-91. [PMID: 18849429 DOI: 10.1128/jb.00324-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi is the causative agent of Lyme disease, the most common vector-borne illness in the Northern hemisphere. Low-passage-number infectious strains of B. burgdorferi exhibit extremely low transformation efficiencies-so low, in fact, as to hinder the genetic study of putative virulence factors. Two putative restriction-modification (R-M) systems, BBE02 contained on linear plasmid 25 (lp25) and BBQ67 contained on lp56, have been postulated to contribute to this poor transformability. Restriction barriers posed by other bacteria have been overcome by the in vitro methylation of DNA prior to transformation. To test whether a methylation-sensitive restriction system contributes to poor B. burgdorferi transformability, shuttle plasmids were treated with the CpG methylase M.SssI prior to the electroporation of a variety of strains harboring different putative R-M systems. We found that for B. burgdorferi strains that harbor lp56, in vitro methylation increased transformation by at least 1 order of magnitude. These results suggest that in vitro CpG methylation protects exogenous DNA from degradation by an lp56-contained R-M system, presumably BBQ67. The utility of in vitro methylation for the genetic manipulation of B. burgdorferi was exemplified by the ease of plasmid complementation of a B. burgdorferi B31 A3 BBK32 kanamycin-resistant (B31 A3 BBK32::Kan(r)) mutant, deficient in the expression of the fibronectin- and glycosaminoglycan (GAG)-binding adhesin BBK32. Consistent with the observation that several surface proteins may promote GAG binding, the B. burgdorferi B31 A3 BBK32::Kan(r) mutant demonstrated no defect in the ability to bind purified GAGs or GAGs expressed on the surfaces of cultured cells.
Collapse
|
17
|
Common and unique contributions of decorin-binding proteins A and B to the overall virulence of Borrelia burgdorferi. PLoS One 2008; 3:e3340. [PMID: 18833332 PMCID: PMC2556102 DOI: 10.1371/journal.pone.0003340] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/12/2008] [Indexed: 11/19/2022] Open
Abstract
As an extracellular bacterium, the Lyme disease spirochete Borrelia burgdorferi resides primarily in the extracellular matrix and connective tissues and between host cells during mammalian infection, where decorin and glycosaminoglycans are abundantly found, so its interactions with these host ligands potentially affect various aspects of infection. Decorin-binding proteins (Dbps) A and B, encoded by a 2-gene operon, are outer surface lipoproteins with similar molecular weights and share approximately 40% identity, and both bind decorin and glycosaminoglycans. To investigate how DbpA and DbpB contribute differently to the overall virulence of B. burgdorferi, a dbpAB mutant was modified to overproduce the adhesins. Overproduction of either DbpA or DbpB resulted in restoration of the infectivity of the mutant to the control level, measured by 50% infectious dose (ID(50)), indicating that the two virulence factors are interchangeable in this regard. Overproduction of DbpA also allowed the mutant to disseminate to some but not all distal tissues slightly slower than the control, but the mutant with DbpB overproduction showed severely impaired dissemination to all tissues that were analyzed. The mutant with DbpA overproduction colonized all tissues, albeit generating bacterial loads significantly lower than the control in heart and joint, while the mutant overproducing DbpB remained severely defective in heart colonization and registered bacterial loads substantially lower than the control in joint. Taken together, the study indicated that DbpA and DbpB play a similar role in contribution to infectivity as measured by ID(50) value but contribute differently to dissemination and tissue colonization.
Collapse
|
18
|
Xu Q, McShan K, Liang FT. Essential protective role attributed to the surface lipoproteins of Borrelia burgdorferi against innate defences. Mol Microbiol 2008; 69:15-29. [PMID: 18452586 PMCID: PMC2574894 DOI: 10.1111/j.1365-2958.2008.06264.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To initiate infection, a microbial pathogen must be able to evade innate immunity. Here we show that the Lyme disease spirochete Borrelia burgdorferi depends on its surface lipoproteins for protection against innate defences. The deficiency for OspC, an abundantly expressed surface lipoprotein during early infection, led to quick clearance of B. burgdorferi after inoculation into the skin of SCID mice. Increasing expression of any of the four randomly chosen surface lipoproteins, OspA, OspE, VlsE or DbpA, fully protected the ospC mutant from elimination from the skin tissue of SCID mice; moreover, increased OspA, OspE or VlsE expression allowed the mutant to cause disseminated infection and restored the ability to effectively colonize both joint and skin tissues, albeit the dissemination process was much slower than that of the mutant restored with OspC expression. When the ospC mutant was modified to express OspA under control of the ospC regulatory elements, it registered only a slight increase in the 50% infectious dose than the control in SCID mice but a dramatic increase in immunocompetent mice. Taken together, the study demonstrated that the surface lipoproteins provide B. burgdorferi with an essential protective function against host innate elimination.
Collapse
Affiliation(s)
- Qilong Xu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kristy McShan
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Fang Ting Liang
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
19
|
Xu Q, McShan K, Liang FT. Verification and dissection of the ospC operator by using flaB promoter as a reporter in Borrelia burgdorferi. Microb Pathog 2008; 45:70-8. [PMID: 18479884 PMCID: PMC2497006 DOI: 10.1016/j.micpath.2008.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/29/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
Abstract
The Lyme disease spirochete Borrelia burgdorferi must repress expression of outer surface protein C (OspC) to effectively evade specific humoral immunity and to establish persistent infection. This ability largely relies upon a regulatory element, the only operator that has been reported in spirochetal bacteria. Immediately upstream of the ospC promoter, two sets of inverted repeats (IRs) constitute small and large palindromes, in which the right IR of the large palindrome contains the left IR of the small one, and may collectively function as the ospC operator. In the study, the large palindrome with or without the small IR was fused with an flaB promoter, which was used to drive expression of a promoterless ospC copy as a reporter gene, and introduced into OspC-deficient B. burgdorferi. The presence of the large palindrome alone significantly reduced ospC expression driven by the fused flaB promoter in the joint tissue of severe combined immunodeficiency (SCID) mice, and rescued spirochetes from elimination by passively transferred OspC antibody in infected SCID mice and specific immune responses elicited in immunocompetent mice, confirming a function of the IRs as an operator. Inclusion of the small IR further enhanced the ability of the large palindrome to reduce the activity of the fused flaB promoter, indicating that the small IR is a part of the operator. Taken together, the study led to successful verification and dissection of the ospC operator.
Collapse
Affiliation(s)
- Qilong Xu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kristy McShan
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Fang Ting Liang
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
20
|
Both decorin-binding proteins A and B are critical for the overall virulence of Borrelia burgdorferi. Infect Immun 2008; 76:1239-46. [PMID: 18195034 DOI: 10.1128/iai.00897-07] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both decorin-binding proteins (DbpA and DbpB) of the Lyme disease spirochete Borrelia burgdorferi bind decorin and glycosaminoglycans, two important building blocks of proteoglycans that are abundantly found in the extracellular matrix (ECM) and connective tissues as well as on cell surfaces of mammals. As an extracellular pathogen, B. burgdorferi resides primarily in the ECM and connective tissues and between host cells during mammalian infection. The interactions of B. burgdorferi with these host ligands mediated by DbpA and DbpB potentially influence various aspects of infection. Here, we show that both DbpA and DbpB are critical for the overall virulence of B. burgdorferi in the murine host. Disruption of the dbpBA locus led to nearly a 10(4)-fold increase in the 50% infectious dose (ID50). Complementation of the mutant with either dbpA or dbpB reduced the ID50 from over 10(4) to roughly 10(3) organisms. Deletion of the dbpBA locus affected colonization in all tissues of infected mice. The lack of dbpA alone precluded the pathogen from colonizing the heart tissue, and B. burgdorferi deficient for DbpB was recovered only from 42% of the heart specimens of infected mice. Although B. burgdorferi lacking either dbpA or dbpB was consistently grown from joint specimens of almost all infected mice, it generated bacterial loads significantly lower than the control. The deficiency in either DbpA or DbpB did not reduce the bacterial load in skin, but lack of both significantly did. Taken together, the study results indicate that neither DbpA nor DbpB is essential for mammalian infection but that both are critical for the overall virulence of B. burgdorferi.
Collapse
|
21
|
Pal U, Wang P, Bao F, Yang X, Samanta S, Schoen R, Wormser GP, Schwartz I, Fikrig E. Borrelia burgdorferi basic membrane proteins A and B participate in the genesis of Lyme arthritis. ACTA ACUST UNITED AC 2007; 205:133-41. [PMID: 18166585 PMCID: PMC2234379 DOI: 10.1084/jem.20070962] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Lyme arthritis results from colonization of joints by Borrelia burgdorferi and the ensuing host response. Using gene array–based differential analysis of B. burgdorferi gene expression and quantitative reverse trancription-polymerase chain reaction, we identified two paralogous spirochete genes, bmpA and bmpB, that are preferentially up-regulated in mouse joints compared with other organs. Transfer of affinity-purified antibodies against either BmpA or BmpB into B. burgdorferi–infected mice selectively reduced spirochete numbers and inflammation in the joints. B. burgdorferi lacking bmpA/B were therefore generated to further explore the role of these proteins in the pathogenesis of Lyme disease. B. burgdorferi lacking bmpA/B were infectious in mice, but unable to persist in the joints, and they failed to induce severe arthritis. Complementation of the mutant spirochetes with a wild-type copy of the bmpA and bmpB genes partially restored the original phenotype. These data delineate a role for differentially produced B. burgdorferi antigens in spirochete colonization of mouse joints, and suggest new strategies for the treatment of Lyme arthritis.
Collapse
Affiliation(s)
- Utpal Pal
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jewett MW, Lawrence K, Bestor AC, Tilly K, Grimm D, Shaw P, VanRaden M, Gherardini F, Rosa PA. The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi. Mol Microbiol 2007; 64:1358-74. [PMID: 17542926 PMCID: PMC1974800 DOI: 10.1111/j.1365-2958.2007.05746.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Borrelia burgdorferi, the aetiological agent of Lyme disease, follows a life cycle that involves passage between the tick vector and the mammalian host. To investigate the role of the 36 kb linear plasmid, lp36 (also designated the B. burgdorferi K plasmid), in the infectious cycle of B. burgdorferi, we examined a clone lacking this plasmid, but containing all other plasmids known to be required for infectivity. Our results indicated that lp36 was not required for spirochete survival in the tick, but the clone lacking lp36 demonstrated low infectivity in the mammal. Restoration of lp36 to the mutant strain confirmed that the infectivity defect was due to loss of lp36. Moreover, spirochetes lacking lp36 exhibited a nearly 4-log increase in ID50 relative to the isogenic lp36+ clone. The infectivity defect of lp36-minus spirochetes was localized, in part, to loss of the bbk17 (adeC) gene, which encodes an adenine deaminase. This work establishes a vital role for lp36 in the infectious cycle of B. burgdorferi and identifies the bbk17 gene as a component of this plasmid that contributes to mammalian infectivity.
Collapse
Affiliation(s)
- Mollie W Jewett
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li X, Neelakanta G, Liu X, Beck DS, Kantor FS, Fish D, Anderson JF, Fikrig E. Role of outer surface protein D in the Borrelia burgdorferi life cycle. Infect Immun 2007; 75:4237-44. [PMID: 17620358 PMCID: PMC1951184 DOI: 10.1128/iai.00632-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi preferentially induces selected genes in mice or ticks, and studies suggest that ospD is down-regulated in response to host-specific signals. We now directly show that ospD expression is generally elevated within Ixodes scapularis compared with mice. We then assessed the importance of OspD throughout the spirochete life cycle by generating OspD-deficient B. burgdorferi and examining the mutant in the murine model of tick-transmitted Lyme borreliosis. The lack of OspD did not influence B. burgdorferi infectivity in mice or the acquisition of spirochetes by I. scapularis. OspD adhered to tick gut extracts in vitro, and the OspD-deficient B. burgdorferi strain had a threefold decrease in colonization of the tick gut in vivo. This decrease, however, did not alter subsequent spirochete transmission during a second blood meal. These data suggest that B. burgdorferi can compensate for the lack of OspD in both ticks and mice and that OspD may have a nonessential, secondary, role in B. burgdorferi persistence within I. scapularis.
Collapse
Affiliation(s)
- Xin Li
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Neelakanta G, Li X, Pal U, Liu X, Beck DS, DePonte K, Fish D, Kantor FS, Fikrig E. Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks. PLoS Pathog 2007; 3:e33. [PMID: 17352535 PMCID: PMC1817655 DOI: 10.1371/journal.ppat.0030033] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 01/22/2007] [Indexed: 11/18/2022] Open
Abstract
Survival of Borrelia burgdorferi in ticks and mammals is facilitated, at least in part, by the selective expression of lipoproteins. Outer surface protein (Osp) A participates in spirochete adherence to the tick gut. As ospB is expressed on a bicistronic operon with ospA, we have now investigated the role of OspB by generating an OspB-deficient B. burgdorferi and examining its phenotype throughout the spirochete life cycle. Similar to wild-type isolates, the OspB-deficient B. burgdorferi were able to readily infect and persist in mice. OspB-deficient B. burgdorferi were capable of migrating to the feeding ticks but had an impaired ability to adhere to the tick gut and survive within the vector. Furthermore, the OspB-deficient B. burgdorferi bound poorly to tick gut extracts. The complementation of the OspB-deficient spirochete in trans, with a wild-type copy of ospB gene, restored its ability to bind tick gut. Taken together, these data suggest that OspB has an important role within Ixodes scapularis and that B. burgdorferi relies upon multiple genes to efficiently persist in ticks. Lyme disease is the most common vector-borne disease in North America and Europe. The causative agent Borrelia burgdorferi is a bacterium that is maintained in an enzoonotic cycle between Ixodes ticks and a large range of mammals. Accidental encounters of infected Ixodes ticks with humans results in the transmission of B. burgdorferi and subsequent Lyme disease. Given that global control efforts have met with limited success, the need for developing novel interventions to combat this infection has become all the more vital. A better understanding of how B. burgdorferi interacts with its vector might lead to new ideas for combating the Lyme disease. B. burgdorferi upregulates outer surface protein (Osp) A and B during entry into ticks, and OspA contributes to the colonization of bacterium within the vector gut. We now demonstrate that OspB also facilitates the colonization and survival of B. burgdorferi in ticks. This work provides the basis for future studies as to how this protein facilitates interaction of B. burgdorferi to the tick gut and thus ultimately a basis for the development of novel strategies to interrupt the spirochete life cycle.
Collapse
Affiliation(s)
- Girish Neelakanta
- Section of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Xin Li
- Section of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Utpal Pal
- Section of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Xianzhong Liu
- Section of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Deborah S Beck
- Section of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Kathleen DePonte
- Section of Allergy and Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Durland Fish
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Fred S Kantor
- Section of Allergy and Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Erol Fikrig
- Section of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Xu Q, Seemanaplli SV, McShan K, Liang FT. Increasing the interaction of Borrelia burgdorferi with decorin significantly reduces the 50 percent infectious dose and severely impairs dissemination. Infect Immun 2007; 75:4272-81. [PMID: 17562764 PMCID: PMC1951149 DOI: 10.1128/iai.00560-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tight regulation of surface antigenic expression is crucial for the pathogenic strategy of the Lyme disease spirochete, Borrelia burgdorferi. Here, we report the influence of increasing expression of decorin-binding protein A (DbpA), one of the most investigated spirochetal surface adhesins, on the 50% infectious dose (ID(50)), dissemination, tissue colonization, pathogenicity, and persistence of B. burgdorferi in the murine host. Our in vitro assays showed that increasing DbpA expression dramatically increased the interaction of B. burgdorferi with decorin and sensitivity to growth inhibition/killing by anti-DbpA antibodies; however, this increased interaction did not affect spirochetal growth and replication in the presence of decorin. Increasing DbpA expression significantly reduced ID(50) values and severely impaired dissemination in severe combined immunodeficiency (SCID) and immunocompetent mice. During infection of SCID mice, B. burgdorferi with increased DbpA expression was able to effectively colonize heart and skin tissues, but not joint tissues, completely abrogating arthritis virulence. Although increasing DbpA expression did not affect spirochetal persistence in the skin, it diminished the ability of B. burgdorferi to persist in the heart and joint tissues during chronic infection of immunocompetent mice. Taken together, the study highlights the importance of controlling surface antigen expression in the infectivity, dissemination, tissue colonization, pathogenicity, and persistence of B. burgdorferi during mammalian infection.
Collapse
Affiliation(s)
- Qilong Xu
- Department of Pathobiological Sciences, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
26
|
Xu Q, McShan K, Liang FT. Identification of an ospC operator critical for immune evasion of Borrelia burgdorferi. Mol Microbiol 2007; 64:220-31. [PMID: 17376084 DOI: 10.1111/j.1365-2958.2007.05636.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Timely expression of the outer surface protein C (OspC) is crucial for the pathogenic strategy of the Lyme disease spirochete Borrelia burgdorferi. The pathogen abundantly expresses OspC during initial infection when the antigen is required, but downregulates when its presence poses a threat to the spirochetes once the anti-OspC humoral response has developed. Here, we show that a large palindromic sequence immediately upstream of the ospC promoter is essential for the repression of ospC expression during murine infection and for the ability of B. burgdorferi to evade specific OspC humoral immunity. Deletion of the sequence completely diminished the ability of B. burgdorferi to avoid clearance by transferred OspC antibody in SCID mice. B. burgdorferi lacking the regulatory element was able to initiate infection but unable to persist in immunocompetent mice. Taken together, the regulatory element immediately upstream of the ospC promoter serves as an operator that may interact with an unidentified repressor(s) to negatively regulate ospC expression and is essential for the immune evasion of B. burgdorferi.
Collapse
Affiliation(s)
- Qilong Xu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
27
|
Xu Q, Seemanapalli SV, Reif KE, Brown CR, Liang FT. Increasing the recruitment of neutrophils to the site of infection dramatically attenuates Borrelia burgdorferi infectivity. THE JOURNAL OF IMMUNOLOGY 2007; 178:5109-15. [PMID: 17404293 DOI: 10.4049/jimmunol.178.8.5109] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Borrelia burgdorferi infection causes an initial skin lesion called erythema migrans (EM) in human Lyme disease and in models of monkey and rabbit borreliosis. EM results from the inflammatory response triggered by spirochete replication and likely develops to contain the initial infection but allows bacterial dissemination to occur. The essential lack of neutrophil involvement in EM histopathology prompted us to examine the consequence of increasing their recruitment in the inflammatory response to the Lyme disease agent. B. burgdorferi was modified genetically to constitutively express and secrete the chemokine KC, a neutrophil chemoattractant. After inoculation into the dermis of the murine host, control spirochetes induced an infiltration of macrophages, neutrophils, and basophils within 6 h; however, the recruited neutrophils and basophils were quickly substituted by eosinophils, and the inflammatory response became macrophage dominant by 16 h. Such a response failed to contain the initial infection and allowed the spirochetes to disseminate. In contrast, B. burgdorferi with KC secretion induced an intensive neutrophil infiltration at the inoculation site, and as a result, the host's ability to control the initial infection was greatly enhanced. Taken together, this study suggests that the failure of sufficient neutrophil recruitment and activation during the initial inflammatory response may allow B. burgdorferi to effectively colonize the mammalian host.
Collapse
Affiliation(s)
- Qilong Xu
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
28
|
Xu Q, Seemanapalli SV, McShan K, Liang FT. Constitutive expression of outer surface protein C diminishes the ability of Borrelia burgdorferi to evade specific humoral immunity. Infect Immun 2006; 74:5177-84. [PMID: 16926410 PMCID: PMC1594837 DOI: 10.1128/iai.00713-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi reduces the expression of outer surface protein C (OspC) in response to the development of an anti-OspC humoral response, leading to the hypothesis that the ability to repress OspC expression is critical for the pathogen to proceed to chronic infection. B. burgdorferi was genetically modified to constitutively express OspC by introducing an extra ospC copy fused with the borrelial flagellar gene (flaB) promoter. Such a genetic modification did not reduce infectivity or pathogenicity in severe combined immunodeficiency mice but resulted in clearance of infection by passively transferred OspC antibody. Spirochetes with constitutive ospC expression were unable to establish chronic infections in immunocompetent mice unless they had undergone very destructive mutations in the introduced ospC copy. Two escape mutants were identified; one had all 7 bp deleted between the putative ribosome-binding site and the start codon, ATG, causing a failure in translational initiation, and the other mutant had an insertion of 2 bp between nucleotides 315 and 316, resulting in a nonsense mutation at codon 108. Thus, the ability of B. burgdorferi to repress ospC expression during mammalian infection allows the pathogen to avoid clearance and to preserve the integrity of the important gene for subsequent utilization during its enzootic life cycle.
Collapse
Affiliation(s)
- Qilong Xu
- Department of Pathobiological Sciences, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
29
|
Shi Y, Xu Q, Seemanapalli SV, McShan K, Liang FT. The dbpBA locus of Borrelia burgdorferi is not essential for infection of mice. Infect Immun 2006; 74:6509-12. [PMID: 16954404 PMCID: PMC1695528 DOI: 10.1128/iai.00740-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi expresses a broad array of adhesive molecules, including the decorin-binding proteins A and B (DbpA and DbpB), which are believed to play important roles in mammalian infection. The dbpBA locus was deleted; resulting mutants were able to infect both immunodeficient and immunocompetent mice, indicating that neither DbpA nor DbpB is essential for the infection of mammals, although the DbpAB deficiency may significantly attenuate infectivity potential.
Collapse
Affiliation(s)
- Yanlin Shi
- Department of Pathobiological Sciences, Louisiana State University, Skip Bertman Drive at River Road, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
30
|
Tourand Y, Bankhead T, Wilson SL, Putteet-Driver AD, Barbour AG, Byram R, Rosa PA, Chaconas G. Differential telomere processing by Borrelia telomere resolvases in vitro but not in vivo. J Bacteriol 2006; 188:7378-86. [PMID: 16936037 PMCID: PMC1636258 DOI: 10.1128/jb.00760-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Causative agents of Lyme disease and relapsing fever, including Borrelia burgdorferi and Borrelia hermsii, respectively, are unusual among bacteria in that they possess a segmented genome with linear DNA molecules terminated by hairpin ends, known as telomeres. During replication, these telomeres are processed by the essential telomere resolvase, ResT, in a unique biochemical reaction known as telomere resolution. In this study, we report the identification of the B. hermsii resT gene through cross-species hybridization. Sequence comparison of the B. hermsii protein with the B. burgdorferi orthologue revealed 67% identity, including all the regions currently known to be crucial for telomere resolution. In vitro studies, however, indicated that B. hermsii ResT was unable to process a replicated B. burgdorferi type 2 telomere substrate. In contrast, in vivo cross-species complementation in which the native resT gene of B. burgdorferi was replaced with B. hermsii resT had no discernible effect, even though B. burgdorferi strain B31 carries at least two type 2 telomere ends. The B. burgdorferi ResT protein was also able to process two telomere spacing mutants in vivo that were unresolvable in vitro. The unexpected differential telomere processing in vivo versus in vitro by the two telomere resolvases suggests the presence of one or more accessory factors in vivo that are normally involved in the reaction. Our current results are also expected to facilitate further studies into ResT structure and function, including possible interaction with other Borrelia proteins.
Collapse
Affiliation(s)
- Yvonne Tourand
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1 Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Li X, Liu X, Beck DS, Kantor FS, Fikrig E. Borrelia burgdorferi lacking BBK32, a fibronectin-binding protein, retains full pathogenicity. Infect Immun 2006; 74:3305-13. [PMID: 16714558 PMCID: PMC1479267 DOI: 10.1128/iai.02035-05] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BBK32, a fibronectin-binding protein of Borrelia burgdorferi, is one of many surface lipoproteins that are differentially expressed by the Lyme disease spirochete at various stages of its life cycle. The level of BBK32 expression in B. burgdorferi is highest during infection of the mammalian host and lowest in flat ticks. This temporal expression profile, along with its fibronectin-binding activity, strongly suggests that BBK32 may play an important role in Lyme pathogenesis in the host. To test this hypothesis, we constructed an isogenic BBK32 deletion mutant from wild-type B. burgdorferi B31 by replacing the BBK32 gene with a kanamycin resistance cassette through homologous recombination. We examined both the wild-type strain and the BBK32 deletion mutant extensively in the experimental mouse-tick model of the Borrelia life cycle. Our data indicated that B. burgdorferi lacking BBK32 retained full pathogenicity in mice, regardless of whether mice were infected artificially by syringe inoculation or naturally by tick bite. The loss of BBK32 expression in the mutant had no adverse effect on spirochete acquisition (mouse-to-tick) and transmission (tick-to-mouse) processes. These results suggest that additional B. burgdorferi proteins can complement the function of BBK32, fibronectin binding or otherwise, during the natural spirochete life cycle.
Collapse
Affiliation(s)
- Xin Li
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar St., New Haven, CT 06520-8031, USA
| | | | | | | | | |
Collapse
|