1
|
Shrestha A, Mehdizadeh Gohari I, Li J, Navarro M, Uzal FA, McClane BA. The biology and pathogenicity of Clostridium perfringens type F: a common human enteropathogen with a new(ish) name. Microbiol Mol Biol Rev 2024; 88:e0014023. [PMID: 38864615 PMCID: PMC11426027 DOI: 10.1128/mmbr.00140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
SUMMARYIn the 2018-revised Clostridium perfringens typing classification system, isolates carrying the enterotoxin (cpe) and alpha toxin genes but no other typing toxin genes are now designated as type F. Type F isolates cause food poisoning and nonfoodborne human gastrointestinal (GI) diseases, which most commonly involve type F isolates carrying, respectivefooly, a chromosomal or plasmid-borne cpe gene. Compared to spores of other C. perfringens isolates, spores of type F chromosomal cpe isolates often exhibit greater resistance to food environment stresses, likely facilitating their survival in improperly prepared or stored foods. Multiple factors contribute to this spore resistance phenotype, including the production of a variant small acid-soluble protein-4. The pathogenicity of type F isolates involves sporulation-dependent C. perfringens enterotoxin (CPE) production. C. perfringens sporulation is initiated by orphan histidine kinases and sporulation-associated sigma factors that drive cpe transcription. CPE-induced cytotoxicity starts when CPE binds to claudin receptors to form a small complex (which also includes nonreceptor claudins). Approximately six small complexes oligomerize on the host cell plasma membrane surface to form a prepore. CPE molecules in that prepore apparently extend β-hairpin loops to form a β-barrel pore, allowing a Ca2+ influx that activates calpain. With low-dose CPE treatment, caspase-3-dependent apoptosis develops, while high-CPE dose treatment induces necroptosis. Those effects cause histologic damage along with fluid and electrolyte losses from the colon and small intestine. Sialidases likely contribute to type F disease by enhancing CPE action and, for NanI-producing nonfoodborne human GI disease isolates, increasing intestinal growth and colonization.
Collapse
Affiliation(s)
- Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mauricio Navarro
- Instituto de Patologia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, California, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Ou L, Ye B, Sun M, Qi N, Li J, Lv M, Lin X, Cai H, Hu J, Song Y, Chen X, Zhu Y, Yin L, Zhang J, Liao S, Zhang H. Mechanisms of intestinal epithelial cell damage by Clostridiumperfringens. Anaerobe 2024; 87:102856. [PMID: 38609034 DOI: 10.1016/j.anaerobe.2024.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Clostridium perfringens, a Gram-positive bacterium, causes intestinal diseases in humans and livestock through its toxins, related to alpha toxin (CPA), beta toxin (CPB), C. perfringens enterotoxin (CPE), epsilon toxin (ETX), Iota toxin (ITX), and necrotic enteritis B-like toxin (NetB). These toxins disrupt intestinal barrier, leading to various cell death mechanisms such as necrosis, apoptosis, and necroptosis. Additionally, non-toxin factors like adhesins and degradative enzymes contribute to virulence by enhancing colonization and survival of C. perfringens. A vicious cycle of intestinal barrier breach, misregulated cell death, and subsequent inflammation is at the heart of chronic inflammatory and infectious gastrointestinal diseases. Understanding these mechanisms is essential for developing targeted therapies against C. perfringens-associated intestinal diseases.
Collapse
Affiliation(s)
- Lanxin Ou
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; College of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Bijin Ye
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; College of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yongle Song
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiangjie Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yibin Zhu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lijun Yin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianfei Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Haoji Zhang
- College of Life Science and Engineering, Foshan University, Foshan, 528225, China.
| |
Collapse
|
3
|
Finnie JW. Clostridium perfringens Type D Epsilon Toxin Causes Blood-Retinal Barrier Microvascular Damage and Diffuse Retinal Vasogenic Oedema. Vet Sci 2023; 11:2. [PMID: 38275918 PMCID: PMC10818779 DOI: 10.3390/vetsci11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Clostridium perfringens type D epsilon toxin (ETX) causes severe retinal microvascular endothelial injury in the rat. The resulting blood-retinal barrier (BRB) breakdown leads to increased vascular permeability, which was detected immunohistochemically by the extravasation of plasma albumin as a vascular tracer, and ensuing severe, diffuse, vasogenic retinal oedema. This microvascular damage was also confirmed by a loss of endothelial barrier antigen, a marker of an intact BRB in rats. Since similar microvascular lesions are found in EXT-exposed laboratory rodent and sheep brains, and the BRB resembles the BBB, they are also likely to occur in the eyes of naturally epsilon-intoxicated sheep and goats, but this remains to be determined. Moreover, while retinal oedema is a common and important component of many human and veterinary ocular disorders, more effective treatments are required. Accordingly, the retinal vasogenic oedema reliably and reproducibly induced by ETX in rats provides a useful model in which to study the pathogenesis of retinal oedema development and evaluate its prevention or amelioration by putative pharmacological interventions.
Collapse
Affiliation(s)
- John W Finnie
- Division of Research and Innovation, School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
4
|
Ma Y, Sannino D, Linden JR, Haigh S, Zhao B, Grigg JB, Zumbo P, Dündar F, Butler D, Profaci CP, Telesford K, Winokur PN, Rumah KR, Gauthier SA, Fischetti VA, McClane BA, Uzal FA, Zexter L, Mazzucco M, Rudick R, Danko D, Balmuth E, Nealon N, Perumal J, Kaunzner U, Brito IL, Chen Z, Xiang JZ, Betel D, Daneman R, Sonnenberg GF, Mason CE, Vartanian T. Epsilon toxin-producing Clostridium perfringens colonize the multiple sclerosis gut microbiome overcoming CNS immune privilege. J Clin Invest 2023; 133:e163239. [PMID: 36853799 PMCID: PMC10145940 DOI: 10.1172/jci163239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/23/2023] [Indexed: 03/01/2023] Open
Abstract
Multiple sclerosis (MS) is a complex disease of the CNS thought to require an environmental trigger. Gut dysbiosis is common in MS, but specific causative species are unknown. To address this knowledge gap, we used sensitive and quantitative PCR detection to show that people with MS were more likely to harbor and show a greater abundance of epsilon toxin-producing (ETX-producing) strains of C. perfringens within their gut microbiomes compared with individuals who are healthy controls (HCs). Isolates derived from patients with MS produced functional ETX and had a genetic architecture typical of highly conjugative plasmids. In the active immunization model of experimental autoimmune encephalomyelitis (EAE), where pertussis toxin (PTX) is used to overcome CNS immune privilege, ETX can substitute for PTX. In contrast to PTX-induced EAE, where inflammatory demyelination is largely restricted to the spinal cord, ETX-induced EAE caused demyelination in the corpus callosum, thalamus, cerebellum, brainstem, and spinal cord, more akin to the neuroanatomical lesion distribution seen in MS. CNS endothelial cell transcriptional profiles revealed ETX-induced genes that are known to play a role in overcoming CNS immune privilege. Together, these findings suggest that ETX-producing C. perfringens strains are biologically plausible pathogens in MS that trigger inflammatory demyelination in the context of circulating myelin autoreactive lymphocytes.
Collapse
Affiliation(s)
- Yinghua Ma
- Feil Family Brain and Mind Research Institute
| | | | | | | | - Baohua Zhao
- Feil Family Brain and Mind Research Institute
| | - John B. Grigg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease
- Joan and Sanford I. Weill Department of Medicine, and
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Immunology and Microbial Pathogenesis Program and
| | - Paul Zumbo
- Applied Bioinformatics Core, Division of Hematology/Oncology, Department of Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Friederike Dündar
- Applied Bioinformatics Core, Division of Hematology/Oncology, Department of Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Daniel Butler
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Caterina P. Profaci
- Departments of Pharmacology and Neurosciences, UCSD, San Diego, California, USA
| | | | - Paige N. Winokur
- Harold and Margaret Milliken Hatch Laboratory of Neuro-endocrinology and
| | - Kareem R. Rumah
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Susan A. Gauthier
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, UCD, Davis, California, USA
| | - Lily Zexter
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | | | | | - David Danko
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | | | - Nancy Nealon
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Jai Perumal
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Ulrike Kaunzner
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, USA
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, and
| | - Jenny Z. Xiang
- Genomics Resources Core Facility, Core Laboratories Center, Weill Cornell Medicine, New York, New York, USA
| | - Doron Betel
- Applied Bioinformatics Core, Division of Hematology/Oncology, Department of Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Richard Daneman
- Departments of Pharmacology and Neurosciences, UCSD, San Diego, California, USA
| | - Gregory F. Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease
- Joan and Sanford I. Weill Department of Medicine, and
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Immunology and Microbial Pathogenesis Program and
| | - Christopher E. Mason
- Feil Family Brain and Mind Research Institute
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Timothy Vartanian
- Feil Family Brain and Mind Research Institute
- Immunology and Microbial Pathogenesis Program and
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
5
|
Pathology and Pathogenesis of Brain Lesions Produced by Clostridium perfringens Type D Epsilon Toxin. Int J Mol Sci 2022; 23:ijms23169050. [PMID: 36012315 PMCID: PMC9409160 DOI: 10.3390/ijms23169050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Clostridium perfringens type D epsilon toxin (ETX) produces severe, and frequently fatal, neurologic disease in ruminant livestock. The disorder is of worldwide distribution and, although vaccination has reduced its prevalence, ETX still causes substantial economic loss in livestock enterprises. The toxin is produced in the intestine as a relatively inactive prototoxin, which is subsequently fully enzymatically activated to ETX. When changed conditions in the intestinal milieu, particularly starch overload, favor rapid proliferation of this clostridial bacterium, large amounts of ETX can be elaborated. When sufficient toxin is absorbed from the intestine into the systemic circulation and reaches the brain, two neurologic syndromes can develop from this enterotoxemia. If the brain is exposed to large amounts of ETX, the lesions are fundamentally vasculocentric. The neurotoxin binds to microvascular endothelial receptors and other brain cells, the resulting damage causing increased vascular permeability and extravasation of plasma protein and abundant fluid into the brain parenchyma. While plasma protein, particularly albumin, pools largely perivascularly, the vasogenic edema becomes widely distributed in the brain, leading to a marked rise in intracranial pressure, coma, sometimes cerebellar herniation, and, eventually, often death. When smaller quantities of ETX are absorbed into the bloodstream, or livestock are partially immune, a more protracted clinical course ensues. The resulting brain injury is characterized by bilaterally symmetrical necrotic foci in certain selectively vulnerable neuroanatomic sites, termed focal symmetrical encephalomalacia. ETX has also been internationally listed as a potential bioterrorism agent. Although there are no confirmed human cases of ETX intoxication, the relatively wide species susceptibility to this toxin and its high toxicity mean it is likely that human populations would also be vulnerable to its neurotoxic actions. While the pathogenesis of ETX toxicity in the brain is incompletely understood, the putative mechanisms involved in neural lesion development are discussed.
Collapse
|
6
|
The Specificity of ParR Binding Determines the Incompatibility of Conjugative Plasmids in Clostridium perfringens. mBio 2022; 13:e0135622. [PMID: 35726914 PMCID: PMC9426499 DOI: 10.1128/mbio.01356-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Plasmids that encode the same replication machinery are generally unable to coexist in the same bacterial cell. However, Clostridium perfringens strains often carry multiple conjugative toxin or antibiotic resistance plasmids that are closely related and encode similar Rep proteins. In many bacteria, plasmid partitioning upon cell division involves a ParMRC system; in C. perfringens plasmids, there are approximately 10 different ParMRC families, with significant differences in amino acid sequences between each ParM family (15% to 54% identity). Since plasmids carrying genes belonging to the same ParMRC family are not observed in the same strain, these families appear to represent the basis for plasmid compatibility in C. perfringens. To understand this process, we examined the key recognition steps between ParR DNA-binding proteins and their parC binding sites. The ParR proteins bound to sequences within a parC site from the same ParMRC family but could not interact with a parC site from a different ParMRC family. These data provide evidence that compatibility of the conjugative toxin plasmids of C. perfringens is mediated by their parMRC-like partitioning systems. This process provides a selective advantage by enabling the host bacterium to maintain separate plasmids that encode toxins that are specific for different host targets.
Collapse
|
7
|
Sarmah H, Hazarika R, Tamuly S, Deka P, Manoharan S, Sharma RK. Evaluation of different antigenic preparations against necrotic enteritis in broiler birds using a novel Clostridium perfringens type G strain. Anaerobe 2021; 70:102377. [PMID: 33957249 DOI: 10.1016/j.anaerobe.2021.102377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Keeping in view, the constraints faced by the Indian broiler industry with lack of a suitable vaccine against Necrotic Enteritis (NE), a study has been proposed to explore the prevalence and detail characterization of C. perfringens type G in NE suspected broiler chicken in the process of suitable vaccine development. METHODS Intestinal scrapings/faecal contents of NE suspected broiler chickens were screened to establish the prevalence of C.perfringens type G in broiler birds. A most pathogenic, highly resistant type G isolate of C. perfringens, bearing both tpeL and gapC gene was selected for preparation of three different vaccine formulations, and to evaluate their immunogenic potential in broiler birds. RESULTS Screening of clinical samples of NE suspected broiler birds revealed C. perfringens type G, bearing gapC gene in 51.22% samples, of which 47.62% revealed tpeL gene. Seven of the tpeLpos type G isolates were comparatively more pathogenic for mice, of which, one exhibited multidrug resistance towards ciprofloxacin, norfloxacin, tetracycline and levofloxacin. The sonicated supernatant (SS) prepared from the selected tpeL and gapC positive isolate could maintain a significantly higher protective IgG response than toxoid and bacterin preparation from the 21st to 28thday of age in immunized birds. CONCLUSION The additional TpeL toxin in C. perfringens type G has been proved to be an additional key biological factor in the pathogenesis of NE in broiler chickens. Considering the release of more immunogenic proteins, the SS proved to be a better immunogenic preparation against NE with a multiple immunization dose.
Collapse
Affiliation(s)
- Hiramoni Sarmah
- Department of Microbiology, College of Veterinary Science, AAU., Khanapara, Guwahati, Assam, India
| | - Ritam Hazarika
- Department of Microbiology, College of Veterinary Science, AAU., Khanapara, Guwahati, Assam, India
| | - Shantonu Tamuly
- Department of Animal Biochemistry, College of Veterinary Science, AAU., Khanapara, Guwahati, Assam, India
| | - Pankaj Deka
- Department of Microbiology, College of Veterinary Science, AAU., Khanapara, Guwahati, Assam, India
| | - Seeralan Manoharan
- Vaccine Research Centre-Bacterial Vaccines, Centre for Animal Health Studies, TANUVAS, Chennai, India
| | - Rajeev K Sharma
- Department of Microbiology, College of Veterinary Science, AAU., Khanapara, Guwahati, Assam, India.
| |
Collapse
|
8
|
Wang YH. Sialidases From Clostridium perfringens and Their Inhibitors. Front Cell Infect Microbiol 2020; 9:462. [PMID: 31998664 PMCID: PMC6966327 DOI: 10.3389/fcimb.2019.00462] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/16/2019] [Indexed: 12/27/2022] Open
Abstract
Clostridium perfringens is an important human and animal pathogen that is the primary causative agent of necrotizing enteritis and enterotoxemia in many types of animals; it causes traumatic gas gangrene in humans and animals and is associated with cases of food poisoning in humans. C. perfringens produces a variety of toxins as well as many enzymes, including three sialidases, NanH, NanI, and NanJ. Sialidases could be important virulence factors that promote the pathogenesis of C. perfringens. Among them, NanI promotes the colonization of C. perfringens in the intestinal tract and enhances the cytotoxic activity and association of several major C. perfringens toxins with host cells. In recent years, studies on the structure and functions of sialidases have yielded interesting results, and the functions of sialic acid and sialidases in bacterial pathogenesis have become a hot research topic. An in-depth understanding and additional studies of sialidases will further elucidate mechanisms of C. perfringens pathogenesis and could promote the development and clinical applications of sialidase inhibitors. This article reviews the structural characteristics, expression regulation, roles of sialidases in C. perfringens pathogenesis, and effects of their inhibitors.
Collapse
Affiliation(s)
- Yan-Hua Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
9
|
Linden JR, Flores C, Schmidt EF, Uzal FA, Michel AO, Valenzuela M, Dobrow S, Vartanian T. Clostridium perfringens epsilon toxin induces blood brain barrier permeability via caveolae-dependent transcytosis and requires expression of MAL. PLoS Pathog 2019; 15:e1008014. [PMID: 31703116 PMCID: PMC6867657 DOI: 10.1371/journal.ppat.1008014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 11/20/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Clostridium perfringens epsilon toxin (ETX) is responsible for causing the economically devastating disease, enterotoxaemia, in livestock. It is well accepted that ETX causes blood brain barrier (BBB) permeability, however the mechanisms involved in this process are not well understood. Using in vivo and in vitro methods, we determined that ETX causes BBB permeability in mice by increasing caveolae-dependent transcytosis in brain endothelial cells. When mice are intravenously injected with ETX, robust ETX binding is observed in the microvasculature of the central nervous system (CNS) with limited to no binding observed in the vasculature of peripheral organs, indicating that ETX specifically targets CNS endothelial cells. ETX binding to CNS microvasculature is dependent on MAL expression, as ETX binding to CNS microvasculature of MAL-deficient mice was not detected. ETX treatment also induces extravasation of molecular tracers including 376Da fluorescein salt, 60kDA serum albumin, 70kDa dextran, and 155kDA IgG. Importantly, ETX-induced BBB permeability requires expression of both MAL and caveolin-1, as mice deficient in MAL or caveolin-1 did not exhibit ETX-induced BBB permeability. Examination of primary murine brain endothelial cells revealed an increase in caveolae in ETX-treated cells, resulting in dynamin and lipid raft-dependent vacuolation without cell death. ETX-treatment also results in a rapid loss of EEA1 positive early endosomes and accumulation of large, RAB7-positive late endosomes and multivesicular bodies. Based on these results, we hypothesize that ETX binds to MAL on the apical surface of brain endothelial cells, causing recruitment of caveolin-1, triggering caveolae formation and internalization. Internalized caveolae fuse with early endosomes which traffic to late endosomes and multivesicular bodies. We believe that these multivesicular bodies fuse basally, releasing their contents into the brain parenchyma. Clostridium perfringens epsilon toxin (ETX) is an extremely lethal bacterial toxin known to cause a devastating disease in livestock animals and may be a possible cause of multiple sclerosis in humans. ETX is well known to cause disruption of the blood-brain barrier (BBB), a critical structure necessary for proper brain function. Deterioration of this barrier allows entry of toxic blood-borne material to enter the brain. Although ETX-induced BBB dysfunction is well accepted, how this happens is unknown. Here, we demonstrate that ETX causes BBB permeability by inducing formation of cell-surface invaginations called caveolae in endothelial cells, the cells that line blood vessels. Importantly, only endothelial cells from the brain and other central nervous system organs appear to be a target of ETX, as the toxin only binds to blood vessels in these organs and not blood vessels from other organs. These ETX-induced caveolae fuse with other caveolae and specialized intracellular vesicles called endosomes. We predict that these endosomes engulf blood-borne material during their internalization, allowing material to travel from the blood, through the cell, and into brain tissue. We also show that expression of the protein MAL and caveolin-1 is necessary for ETX-induced BBB permeability.
Collapse
Affiliation(s)
- Jennifer R. Linden
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Claudia Flores
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Eric F. Schmidt
- Laboratory of Molecular Biology, The Rockefeller University, New York, New York, United States of America
| | - Francisco A. Uzal
- California Animal Health & Food Safety Laboratory System, San Bernardino Branch, University of California, Davis, San Bernardino, California, United States of America
| | - Adam O. Michel
- Laboratory of Comparative Pathology, Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York, United States of America
| | - Marissa Valenzuela
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Sebastian Dobrow
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
| | - Timothy Vartanian
- The Brain and Mind Research Institute and the Department of Neurology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Revitt-Mills SA, Vidor CJ, Watts TD, Lyras D, Rood JI, Adams V. Virulence Plasmids of the Pathogenic Clostridia. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0034-2018. [PMID: 31111816 PMCID: PMC11257192 DOI: 10.1128/microbiolspec.gpp3-0034-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
The clostridia cause a spectrum of diseases in humans and animals ranging from life-threatening tetanus and botulism, uterine infections, histotoxic infections and enteric diseases, including antibiotic-associated diarrhea, and food poisoning. The symptoms of all these diseases are the result of potent protein toxins produced by these organisms. These toxins are diverse, ranging from a multitude of pore-forming toxins to phospholipases, metalloproteases, ADP-ribosyltransferases and large glycosyltransferases. The location of the toxin genes is the unifying theme of this review because with one or two exceptions they are all located on plasmids or on bacteriophage that replicate using a plasmid-like intermediate. Some of these plasmids are distantly related whilst others share little or no similarity. Many of these toxin plasmids have been shown to be conjugative. The mobile nature of these toxin genes gives a ready explanation of how clostridial toxin genes have been so widely disseminated both within the clostridial genera as well as in the wider bacterial community.
Collapse
Affiliation(s)
- Sarah A Revitt-Mills
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Callum J Vidor
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas D Watts
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Dena Lyras
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Vicki Adams
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
11
|
Rood JI, Adams V, Lacey J, Lyras D, McClane BA, Melville SB, Moore RJ, Popoff MR, Sarker MR, Songer JG, Uzal FA, Van Immerseel F. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 2018; 53:5-10. [PMID: 29866424 PMCID: PMC6195859 DOI: 10.1016/j.anaerobe.2018.04.011] [Citation(s) in RCA: 374] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
Abstract
Clostridium perfringens causes many different histotoxic and enterotoxic diseases in humans and animals as a result of its ability to produce potent protein toxins, many of which are extracellular. The current scheme for the classification of isolates was finalized in the 1960s and is based on their ability to produce a combination of four typing toxins - α-toxin, β-toxin, ε-toxin and ι-toxin - to divide C. perfringens strains into toxinotypes A to E. However, this scheme is now outdated since it does not take into account the discovery of other toxins that have been shown to be required for specific C. perfringens-mediated diseases. We present a long overdue revision of this toxinotyping scheme. The principles for the expansion of the typing system are described, as is a mechanism by which new toxinotypes can be proposed and subsequently approved. Based on these criteria two new toxinotypes have been established. C. perfringens type F consists of isolates that produce C. perfringens enterotoxin (CPE), but not β-toxin, ε-toxin or ι-toxin. Type F strains will include strains responsible for C. perfringens-mediated human food poisoning and antibiotic associated diarrhea. C. perfringens type G comprises isolates that produce NetB toxin and thereby cause necrotic enteritis in chickens. There are at least two candidates for future C. perfringens toxinotypes, but further experimental work is required before these toxinotypes can formally be proposed and accepted.
Collapse
Affiliation(s)
- Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Vicki Adams
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jake Lacey
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Robert J Moore
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Michel R Popoff
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | | | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory, San Bernardino Branch, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA 92408, USA
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
12
|
Uzal FA, Navarro MA, Li J, Freedman JC, Shrestha A, McClane BA. Comparative pathogenesis of enteric clostridial infections in humans and animals. Anaerobe 2018; 53:11-20. [PMID: 29883627 DOI: 10.1016/j.anaerobe.2018.06.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023]
Abstract
Several enteric clostridial diseases can affect humans and animals. Of these, the enteric infections caused by Clostridium perfringens and Clostridium difficile are amongst the most prevalent and they are reviewed here. C. perfringens type A strains encoding alpha toxin (CPA) are frequently associated with enteric disease of many animal mammalian species, but their role in these diseased mammals remains to be clarified. C. perfringens type B encoding CPA, beta (CPB) and epsilon (ETX) toxins causes necro-hemorrhagic enteritis, mostly in sheep, and these strains have been recently suggested to be involved in multiple sclerosis in humans, although evidence of this involvement is lacking. C. perfringens type C strains encode CPA and CPB and cause necrotizing enteritis in humans and animals, while CPA and ETX producing type D strains of C. perfringens produce enterotoxemia in sheep, goats and cattle, but are not known to cause spontaneous disease in humans. The role of C. perfringens type E in animal or human disease remains poorly defined. The newly revised toxinotype F encodes CPA and enterotoxin (CPE), the latter being responsible for food poisoning in humans, and the less prevalent antibiotic associated and sporadic diarrhea. The role of these strains in animal disease has not been fully described and remains controversial. Another newly created toxinotype, G, encodes CPA and necrotic enteritis toxin B-like (NetB), and is responsible for avian necrotic enteritis, but has not been associated with human disease. C. difficile produces colitis and/or enterocolitis in humans and multiple animal species. The main virulence factors of this microorganism are toxins A, B and an ADP-ribosyltransferase (CDT). Other clostridia causing enteric diseases in humans and/or animals are Clostridium spiroforme, Clostridium piliforme, Clostridium colinum, Clostridium sordellii, Clostridium chauvoei, Clostridium septicum, Clostridium botulinum, Clostridium butyricum and Clostridium neonatale. The zoonotic transmission of some, but not all these clostridsial species, has been demonstrated.
Collapse
Affiliation(s)
- Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, University of California, Davis, CA, USA.
| | - Mauricio A Navarro
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, University of California, Davis, CA, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John C Freedman
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Native or Proteolytically Activated NanI Sialidase Enhances the Binding and Cytotoxic Activity of Clostridium perfringens Enterotoxin and Beta Toxin. Infect Immun 2017; 86:IAI.00730-17. [PMID: 29038129 DOI: 10.1128/iai.00730-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 01/16/2023] Open
Abstract
Many Clostridium perfringens strains produce NanI as their major sialidase. Previous studies showed that NanI could potentiate C. perfringens epsilon toxin cytotoxicity by enhancing the binding of this toxin to host cells. The present study first determined that NanI exerts similar cytotoxicity-enhancing effects on C. perfringens enterotoxin and beta toxin, which are also important toxins for C. perfringens diseases (enteritis and enterotoxemia) originating in the gastrointestinal (GI) tract. Building upon previous work demonstrating that purified trypsin can activate NanI activity, this study next determined that purified chymotrypsin or mouse intestinal fluids can also activate NanI activity. Amino acid sequencing then showed that this effect involves the N-terminal processing of the NanI protein. Recombinant NanI (rNanI) species corresponding to major chymotrypsin- or small intestinal fluid-generated NanI fragments possessed more sialidase activity than did full-length rNanI, further supporting the proteolytic activation of NanI activity. rNanI species corresponding to proteolysis products also promoted the cytotoxic activity and binding of enterotoxin and beta toxin more strongly than did full-length rNanI. Since enterotoxin and beta toxin are produced in the intestines during human and animal disease, these findings suggest that intestinal proteases may enhance NanI activity, which in turn could further potentiate the activity of intestinally active toxins during disease. Coupling these new results with previous findings demonstrating that NanI is important for the adherence of C. perfringens to enterocyte-like cells, NanI sialidase is now emerging as a potential auxiliary virulence factor for C. perfringens enteritis and enterotoxemia.
Collapse
|
14
|
Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin. Pflugers Arch 2016; 469:77-90. [DOI: 10.1007/s00424-016-1902-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 01/01/2023]
|
15
|
Fernandez-Miyakawa ME, Marcellino R, Uzal FA. Clostridium Perfringens type A Toxin Production in 3 Commonly Used Culture Media. J Vet Diagn Invest 2016; 19:184-6. [PMID: 17402614 DOI: 10.1177/104063870701900208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In vitro toxin production is an important tool not only for diagnostic purposes but also for the study of pathogenesis of Clostridium perfringens infections. The present study was carried out to compare the level of toxin production by several strains of C. perfringens type A, isolated from the intestine of animals, when cultured in 3 different conventional culture media. Six strains of C. perfringens type A isolated from the small intestine of healthy sheep were cultured in commercial cooked meat medium (CMM), brain heart infusion (BHI), and tryptone glucose yeast (TGY). Intravenous lethality in mice and phospholipase C (PLC) activity were measured in filtered culture supernatants. Lethality of culture supernatants was highest for all isolates when grown in BHI, followed by CMM. No supernatants from any isolates grown in TGY produced lethality in mice. Phospholipase C activity was highest when the isolates were grown in BHI and CMM and significantly lower when grown in TGY.
Collapse
Affiliation(s)
- Mariano E Fernandez-Miyakawa
- California Animal Health and Food Safety Laboratory, San Bernardino Branch, Faculty of Veterinary Medicine, University of California Davis, San Bernardino, CA 92408, USA
| | | | | |
Collapse
|
16
|
Freedman JC, McClane BA, Uzal FA. New insights into Clostridium perfringens epsilon toxin activation and action on the brain during enterotoxemia. Anaerobe 2016; 41:27-31. [PMID: 27321761 DOI: 10.1016/j.anaerobe.2016.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/07/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023]
Abstract
Epsilon toxin (ETX), produced by Clostridium perfringens types B and D, is responsible for diseases that occur mostly in ruminants. ETX is produced in the form of an inactive prototoxin that becomes proteolytically-activated by several proteases. A recent ex vivo study using caprine intestinal contents demonstrated that ETX prototoxin is processed in a step-wise fashion into a stable, active ∼27 kDa band on SDS-PAGE. When characterized further by mass spectrometry, the stable ∼27 kDa band was shown to contain three ETX species with varying C-terminal residues; each of these ETX species is cytotoxic. This study also demonstrated that, in addition to trypsin and chymotrypsin, proteases such as carboxypeptidases are involved in processing ETX prototoxin. Once absorbed, activated ETX species travel to several internal organs, including the brain, where this toxin acts on the vasculature to cross the blood-brain barrier, produces perivascular edema and affects several types of brain cells including neurons, astrocytes, and oligodendrocytes. In addition to perivascular edema, affected animals show edema within the vascular walls. This edema separates the astrocytic end-feet from affected blood vessels, causing hypoxia of nervous system tissue. Astrocytes of rats and sheep affected by ETX show overexpression of aquaporin-4, a membrane channel protein that is believed to help remove water from affected perivascular spaces in an attempt to resolve the perivascular edema. Amyloid precursor protein, an early astrocyte damage indicator, is also observed in the brains of affected sheep. These results show that ETX activation in vivo seems to be more complex than previously thought and this toxin acts on the brain, affecting vascular permeability, but also damaging neurons and other cells.
Collapse
Affiliation(s)
- John C Freedman
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory, San Bernardino Branch, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA, USA.
| |
Collapse
|
17
|
Li J, Freedman JC, McClane BA. NanI Sialidase, CcpA, and CodY Work Together To Regulate Epsilon Toxin Production by Clostridium perfringens Type D Strain CN3718. J Bacteriol 2015; 197:3339-53. [PMID: 26260460 PMCID: PMC4573732 DOI: 10.1128/jb.00349-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/05/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Clostridium perfringens type D strains are usually associated with diseases of livestock, and their virulence requires the production of epsilon toxin (ETX). We previously showed (J. Li, S. Sayeed, S. Robertson, J. Chen, and B. A. McClane, PLoS Pathog 7:e1002429, 2011, http://dx.doi.org/10.1371/journal.ppat.1002429) that BMC202, a nanI null mutant of type D strain CN3718, produces less ETX than wild-type CN3718 does. The current study proved that the lower ETX production by strain BMC202 is due to nanI gene disruption, since both genetic and physical (NanI or sialic acid) complementation increased ETX production by BMC202. Furthermore, a sialidase inhibitor that interfered with NanI activity also reduced ETX production by wild-type CN3718. The NanI effect on ETX production was shown to involve reductions in codY and ccpA gene transcription levels in BMC202 versus wild-type CN3718. Similar to CodY, CcpA was found to positively control ETX production. A double codY ccpA null mutant produced even less ETX than a codY or ccpA single null mutant. CcpA bound directly to sequences upstream of the etx or codY start codon, and bioinformatics identified putative CcpA-binding cre sites immediately upstream of both the codY and etx start codons, suggesting possible direct CcpA regulatory effects. A ccpA mutation also decreased codY transcription, suggesting that CcpA effects on ETX production can be both direct and indirect, including effects on codY transcription. Collectively, these results suggest that NanI, CcpA, and CodY work together to regulate ETX production, with NanI-generated sialic acid from the intestines possibly signaling type D strains to upregulate their ETX production and induce disease. IMPORTANCE Clostridium perfringens NanI was previously shown to increase ETX binding to, and cytotoxicity for, MDCK host cells. The current study demonstrates that NanI also regulates ETX production via increased transcription of genes encoding the CodY and CcpA global regulators. Results obtained using single ccpA or codY null mutants and a ccpA codY double null mutant showed that codY and ccpA regulate ETX production independently of one another but that ccpA also affects codY transcription. Electrophoretic mobility shift assays and bioinformatic analyses suggest that both CodY and CcpA may directly regulate etx transcription. Collectively, results of this study suggest that sialic acid generated by NanI from intestinal sources signals ETX-producing C. perfringens strains, via CcpA and CodY, to upregulate ETX production and cause disease.
Collapse
Affiliation(s)
- Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John C Freedman
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Smith J, Gangadharan D, Weyant R. Review of Restricted Experiment Requests, Division of Select Agents and Toxins, Centers for Disease Control and Prevention, 2006-2013. Health Secur 2015; 13:307-16. [PMID: 26347984 DOI: 10.1089/hs.2015.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Centers for Disease Control and Prevention (CDC) Division of Select Agents and Toxins (DSAT) regulates laboratories that possess, use, or transfer select agents and toxins in the United States. DSAT also mitigates biosafety risks through the review of "restricted experiments," which under the select agent regulations are experiments that pose heightened biosafety risks. From January 2006 through December 2013, DSAT received 618 requests from 109 entities to perform potentially restricted experiments. Of these requests, 85% were determined not to meet the regulatory definition of a restricted experiment, while 15% of the requests met the definition of a restricted experiment. Of the 91 restricted experiments proposed, DSAT approved 31 (34%) requests because the biosafety conditions proposed were commensurate with the experiments' biosafety risk. All 31 approved restricted experiments were for work with select toxins. DSAT did not approve 60 restricted experiment requests due to potentially serious biosafety risks to public health and safety. All 60 denied restricted experiments proposed inserting drug resistance traits into select agents that could compromise the control of disease. The select agents and toxins associated most frequently with requests that met the regulatory definition of a restricted experiment are Shiga toxin (n = 16), Burkholderia mallei (n = 15), Botulinum neurotoxin (n = 14), and Brucella abortus (n = 14). In general, all restricted experiment decisions are determined on a case-by-case basis. This article describes the trends and characteristics of the data associated with restricted experiment requests among select agents that have an impact on public health and safety (HHS only agents) or both public health and safety and animal health or products (overlap agents). The information presented here, coupled with the information published in the restricted experiment guidance document ( www.selectagents.gov ), is intended to promote awareness among the research community of the type of experiments that meet the regulatory definition of a restricted experiment as well as to provide a greater understanding of the restricted experiment review process.
Collapse
|
19
|
Perfringolysin O: The Underrated Clostridium perfringens Toxin? Toxins (Basel) 2015; 7:1702-21. [PMID: 26008232 PMCID: PMC4448169 DOI: 10.3390/toxins7051702] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/08/2015] [Indexed: 12/21/2022] Open
Abstract
The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease development in both humans and animals. One such toxin is perfringolysin O (PFO, classically referred to as θ toxin), a pore-forming cholesterol-dependent cytolysin (CDC). PFO is secreted as a water-soluble monomer that recognizes and binds membranes via cholesterol. Membrane-bound monomers undergo structural changes that culminate in the formation of an oligomerized prepore complex on the membrane surface. The prepore then undergoes conversion into the bilayer-spanning pore measuring approximately 250–300 Å in diameter. PFO is expressed in nearly all identified C. perfringens strains and harbors interesting traits that suggest a potential undefined role for PFO in disease development. Research has demonstrated a role for PFO in gas gangrene progression and bovine necrohemorrhagic enteritis, but there is limited data available to determine if PFO also functions in additional disease presentations caused by C. perfringens. This review summarizes the known structural and functional characteristics of PFO, while highlighting recent insights into the potential contributions of PFO to disease pathogenesis.
Collapse
|
20
|
Characterization of Clostridium perfringens TpeL toxin gene carriage, production, cytotoxic contributions, and trypsin sensitivity. Infect Immun 2015; 83:2369-81. [PMID: 25824828 DOI: 10.1128/iai.03136-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/20/2015] [Indexed: 12/14/2022] Open
Abstract
Large clostridial toxins (LCTs) are produced by at least four pathogenic clostridial species, and several LCTs are proven pivotal virulence factors for both human and veterinary diseases. TpeL is a recently identified LCT produced by Clostridium perfringens that has received relatively limited study. In response, the current study surveyed carriage of the tpeL gene among different C. perfringens strains, detecting this toxin gene in some type A, B, and C strains but not in any type D or E strains. This study also determined that all tested strains maximally produce, and extracellularly release, TpeL at the late-log or early-stationary growth stage during in vitro culture, which is different from the maximal late-stationary-phase production reported previously for other LCTs and for TpeL production by C. perfringens strain JIR12688. In addition, the present study found that TpeL levels in culture supernatants can be repressed by either glucose or sucrose. It was also shown that, at natural production levels, TpeL is a significant contributor to the cytotoxic activity of supernatants from cultures of tpeL-positive strain CN3685. Lastly, this study identified TpeL, which presumably is produced in the intestines during diseases caused by TpeL-positive type B and C strains, as a toxin whose cytotoxicity decreases after treatment with trypsin; this finding may have pathophysiologic relevance by suggesting that, like beta toxin, TpeL contributes to type B and C infections in hosts with decreased trypsin levels due to disease, diet, or age.
Collapse
|
21
|
Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awad MM, Adams V, Moore RJ, Rood JI, McClane BA. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol 2015; 9:361-77. [PMID: 24762309 DOI: 10.2217/fmb.13.168] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clostridium perfringens uses its arsenal of >16 toxins to cause histotoxic and intestinal infections in humans and animals. It has been unclear why this bacterium produces so many different toxins, especially since many target the plasma membrane of host cells. However, it is now established that C. perfringens uses chromosomally encoded alpha toxin (a phospholipase C) and perfringolysin O (a pore-forming toxin) during histotoxic infections. In contrast, this bacterium causes intestinal disease by employing toxins encoded by mobile genetic elements, including C. perfringens enterotoxin, necrotic enteritis toxin B-like, epsilon toxin and beta toxin. Like perfringolysin O, the toxins with established roles in intestinal disease form membrane pores. However, the intestinal disease-associated toxins vary in their target specificity, when they are produced (sporulation vs vegetative growth), and in their sensitivity to intestinal proteases. Producing many toxins with diverse characteristics likely imparts virulence flexibility to C. perfringens so it can cause an array of diseases.
Collapse
Affiliation(s)
- Francisco A Uzal
- California Animal Health & Food Safety Laboratory System, University of California-Davis, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Proteolytic processing and activation of Clostridium perfringens epsilon toxin by caprine small intestinal contents. mBio 2014; 5:e01994-14. [PMID: 25336460 PMCID: PMC4212841 DOI: 10.1128/mbio.01994-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Epsilon toxin (ETX), a pore-forming toxin produced by type B and D strains of Clostridium perfringens, mediates severe enterotoxemia in livestock and possibly plays a role in human disease. During enterotoxemia, the nearly inactive ETX prototoxin is produced in the intestines but then must be activated by proteolytic processing. The current study sought to examine ETX prototoxin processing and activation ex vivo using the intestinal contents of a goat, a natural host species for ETX-mediated disease. First, this study showed that the prototoxin has a KEIS N-terminal sequence with a molecular mass of 33,054 Da. When the activation of ETX prototoxin ex vivo by goat small intestinal contents was assessed by SDS-PAGE, the prototoxin was processed in a stepwise fashion into an ~27-kDa band or higher-molecular-mass material that could be toxin oligomers. Purified ETX corresponding to the ~27-kDa band was cytotoxic. When it was biochemically characterized by mass spectrometry, the copresence of three ETX species, each with different C-terminal residues, was identified in the purified ~27-kDa ETX preparation. Cytotoxicity of each of the three ETX species was then demonstrated using recombinant DNA approaches. Serine protease inhibitors blocked the initial proteotoxin processing, while carboxypeptidase inhibitors blocked further processing events. Taken together, this study provides important new insights indicating that, in the intestinal lumen, serine protease (including trypsin and possibly chymotrypsin) initiates the processing of the prototoxin but other proteases, including carboxypeptidases, then process the prototoxin into multiple active and stable species. Processing and activation by intestinal proteases is a prerequisite for ETX-induced toxicity. Previous studies had characterized the activation of ETX using only arbitrarily chosen amounts of purified trypsin and/or chymotrypsin. Therefore, the current study examined ETX activation ex vivo by natural host intestinal contents. These analyses demonstrated that (i) ETX processing in host intestinal contents occurs in an ordered, stepwise fashion, (ii) processing of prototoxin by host intestinal contents results in higher-molecular-mass material and 3 distinct ~27-kDa ETX species, and (iii) serine proteases, such as trypsin, chymotrypsin, and other proteases, including carboxypeptidases, play a role in the activation of ETX by intestinal contents. These studies provide new insights into the activation and processing of ETX and demonstrate that this process is more complicated than previously appreciated.
Collapse
|
23
|
Garcia JP, Beingesser J, Bohorov O, Bohorova N, Goodman C, Kim D, Pauly M, Velasco J, Whaley K, Zeitlin L, Roy CJ, Uzal FA. Prevention and treatment of Clostridium perfringens epsilon toxin intoxication in mice with a neutralizing monoclonal antibody (c4D7) produced in Nicotiana benthamiana. Toxicon 2014; 88:93-8. [PMID: 24950050 PMCID: PMC4119486 DOI: 10.1016/j.toxicon.2014.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/24/2014] [Accepted: 06/10/2014] [Indexed: 11/16/2022]
Abstract
Epsilon toxin (ETX), produced by Clostridium perfringens types B and D, is among the most lethal toxins known. ETX is a potential bioterrorism threat that was listed as a Category B agent by the U.S. Centers for Disease Control until 2012 and it still remains a toxin of interest for several government agencies. We produced a monoclonal antibody (MAb) against ETX (ETX MAb c4D7) in Nicotiana benthamiana and characterized its preventive and therapeutic efficacy in mice. The ETX preparation used was highly lethal for mice (LD50 = 1.6 μg/kg) and resulted in a mean time from inoculation to death of 18 and 180 min when administered intravenously or intraperitoneally, respectively. High lethal challenge resulted in dramatic increases of a variety of pro-inflammatory cytokines in serum, while lower, but still lethal doses, did not elicit such responses. ETX MAb c4D7 was highly effective prophylactically (ED50 = 0.3 mg/kg; ED100 = 0.8 mg/kg) and also provided protection when delivered 15-30 min post-ETX intoxication. These data suggest that ETX MAb c4D7 may have use as a pre- and post-exposure treatment for ETX intoxication.
Collapse
Affiliation(s)
- J P Garcia
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California, Davis, San Bernardino, CA 92408, USA
| | - J Beingesser
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California, Davis, San Bernardino, CA 92408, USA
| | - O Bohorov
- Mapp Biopharmaceutical, Inc., San Diego, CA, USA
| | - N Bohorova
- Mapp Biopharmaceutical, Inc., San Diego, CA, USA
| | - C Goodman
- Mapp Biopharmaceutical, Inc., San Diego, CA, USA
| | - D Kim
- Mapp Biopharmaceutical, Inc., San Diego, CA, USA
| | - M Pauly
- Mapp Biopharmaceutical, Inc., San Diego, CA, USA
| | - J Velasco
- Mapp Biopharmaceutical, Inc., San Diego, CA, USA
| | - K Whaley
- Mapp Biopharmaceutical, Inc., San Diego, CA, USA
| | - L Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA, USA
| | - C J Roy
- Microbiology Division, Tulane National Primate Research Center, Covington, LA, USA
| | - F A Uzal
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California, Davis, San Bernardino, CA 92408, USA.
| |
Collapse
|
24
|
Abstract
In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract.
Collapse
|
25
|
Clostridium perfringens epsilon toxin: a malevolent molecule for animals and man? Toxins (Basel) 2013; 5:2138-60. [PMID: 24284826 PMCID: PMC3847718 DOI: 10.3390/toxins5112138] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 12/27/2022] Open
Abstract
Clostridium perfringens is a prolific, toxin-producing anaerobe causing multiple diseases in humans and animals. One of these toxins is epsilon, a 33 kDa protein produced by Clostridium perfringens (types B and D) that induces fatal enteric disease of goats, sheep and cattle. Epsilon toxin (Etx) belongs to the aerolysin-like toxin family. It contains three distinct domains, is proteolytically-activated and forms oligomeric pores on cell surfaces via a lipid raft-associated protein(s). Vaccination controls Etx-induced disease in the field. However, therapeutic measures are currently lacking. This review initially introduces C. perfringens toxins, subsequently focusing upon the Etx and its biochemistry, disease characteristics in various animals that include laboratory models (in vitro and in vivo), and finally control mechanisms (vaccines and therapeutics).
Collapse
|
26
|
|
27
|
Epsilon toxin is essential for the virulence of Clostridium perfringens type D infection in sheep, goats, and mice. Infect Immun 2013; 81:2405-14. [PMID: 23630957 DOI: 10.1128/iai.00238-13] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens type D causes disease in sheep, goats, and other ruminants. Type D isolates produce, at minimum, alpha and epsilon (ETX) toxins, but some express up to five different toxins, raising questions about which toxins are necessary for the virulence of these bacteria. We evaluated the contribution of ETX to C. perfringens type D pathogenicity in an intraduodenal challenge model in sheep, goats, and mice using a virulent C. perfringens type D wild-type strain (WT), an isogenic ETX null mutant (etx mutant), and a strain where the etx mutation has been reversed (etx complemented). All sheep and goats, and most mice, challenged with the WT isolate developed acute clinical disease followed by death in most cases. Sheep developed various gross and/or histological changes that included edema of brain, lungs, and heart as well as hydropericardium. Goats developed various effects, including necrotizing colitis, pulmonary edema, and hydropericardium. No significant gross or histological abnormalities were observed in any mice infected with the WT strain. All sheep, goats, and mice challenged with the isogenic etx mutant remained clinically healthy for ≥24 h, and no gross or histological abnormalities were observed in those animals. Complementation of etx knockout restored virulence; most goats, sheep, and mice receiving this complemented mutant developed clinical and pathological changes similar to those observed in WT-infected animals. These results indicate that ETX is necessary for type D isolates to induce disease, supporting a key role for this toxin in type D disease pathogenesis.
Collapse
|
28
|
Wioland L, Dupont JL, Bossu JL, Popoff MR, Poulain B. Attack of the nervous system by Clostridium perfringens Epsilon toxin: from disease to mode of action on neural cells. Toxicon 2013; 75:122-35. [PMID: 23632158 DOI: 10.1016/j.toxicon.2013.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 03/29/2013] [Accepted: 04/10/2013] [Indexed: 12/24/2022]
Abstract
Epsilon toxin (ET), produced by Clostridium perfringens types B and D, ranks among the four most potent poisonous substances known so far. ET-intoxication is responsible for enterotoxaemia in animals, mainly sheep and goats. This disease comprises several manifestations indicating the attack of the nervous system. This review aims to summarize the effects of ET on central nervous system. ET binds to endothelial cells of brain capillary vessels before passing through the blood-brain barrier. Therefore, it induces perivascular oedema and accumulates into brain. ET binding to different brain structures and to different component in the brain indicates regional susceptibility to the toxin. Histological examination has revealed nerve tissue and cellular lesions, which may be directly or indirectly caused by ET. The naturally occurring disease caused by ET-intoxication can be reproduced experimentally in rodents. In mice and rats, ET recognizes receptor at the surface of different neural cell types, including certain neurons (e.g. the granule cells in cerebellum) as well as oligodendrocytes, which are the glial cells responsible for the axons myelination. Moreover, ET induces release of glutamate and other transmitters, leading to firing of neural network. The precise mode of action of ET on neural cells remains to be determined.
Collapse
Affiliation(s)
- Laetitia Wioland
- Centre National de la Recherche Scientifique (CNRS) and Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR 3212, Strasbourg, France
| | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
| | - Sergey M. Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
30
|
Harkness JM, Li J, McClane BA. Identification of a lambda toxin-negative Clostridium perfringens strain that processes and activates epsilon prototoxin intracellularly. Anaerobe 2012; 18:546-52. [PMID: 22982043 DOI: 10.1016/j.anaerobe.2012.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/23/2012] [Accepted: 09/03/2012] [Indexed: 01/06/2023]
Abstract
Clostridium perfringens type B and D strains produce epsilon toxin (ETX), which is one of the most potent clostridial toxins and is involved in enteritis and enterotoxemias of domestic animals. ETX is produced initially as an inactive prototoxin that is typically then secreted and processed by intestinal proteases or possibly, for some strains, lambda toxin. During the current work a unique C. perfringens strain was identified that intracellularly processes epsilon prototoxin to an active form capable of killing MDCK cells. This activated toxin is not secreted but instead is apparently released upon lysis of bacterial cells entering stationary phase. These findings broaden understanding of the pathogenesis of type B and D infections by identifying a new mechanism of ETX activation.
Collapse
Affiliation(s)
- Justine M Harkness
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
31
|
Miyamoto K, Li J, McClane BA. Enterotoxigenic Clostridium perfringens: detection and identification. Microbes Environ 2012; 27:343-9. [PMID: 22504431 PMCID: PMC4103540 DOI: 10.1264/jsme2.me12002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent advances in understanding the genetics of enterotoxigenic Clostridium perfringens, including whole genome sequencing of a chromosomal cpe strain and sequencing of several cpe-carrying large plasmids, have led to the development of molecular approaches to more precisely investigate isolates involved in human gastrointestinal diseases and isolates present in the environment. Sequence-based PCR genotyping of the cpe locus (cpe genotyping PCR assays) has provided new information about cpe-positive type A C. perfringens including: 1) Foodborne C. perfringens outbreaks can be caused not only by chromosomal cpe type A strains with extremely heat-resistant spores, but also less commonly by less heat-resistant spore-forming plasmid cpe type A strains; 2) Both chromosomal cpe and plasmid cpe C. perfringens type A strains can be found in retail foods, healthy human feces and the environment, such as in sewage; 3) Most environmental cpe-positive C. perfringens type A strains carry their cpe gene on plasmids. Moreover, recent studies indicated that the cpe loci of type C, D, and E strains differ from the cpe loci of type A strains and from the cpe loci of each other, indicating that the cpe loci of C. perfringens have remarkable diversity. Multi-locus sequence typing (MLST) indicated that the chromosomal cpe strains responsible for most food poisoning cases have distinct genetic characteristics that provide unique biological properties, such as the formation of highly heat-resistant spores. These and future advances should help elucidate the epidemiology of enterotoxigenic C. perfringens and also contribute to the prevention of C. perfringens food poisoning outbreaks and other CPE-associated human diseases.
Collapse
Affiliation(s)
- Kazuaki Miyamoto
- Department of Microbiology, Wakayama Medical University School of Medicine, 811–1 Kimiidera, Wakayama 641–0012, Japan.
| | | | | |
Collapse
|
32
|
Epsilon-toxin production by Clostridium perfringens type D strain CN3718 is dependent upon the agr operon but not the VirS/VirR two-component regulatory system. mBio 2011; 2:mBio.00275-11. [PMID: 22167225 PMCID: PMC3236063 DOI: 10.1128/mbio.00275-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens type B and D strains cause enterotoxemias and enteritis in livestock after proliferating in the intestines and producing epsilon-toxin (ETX), alpha-toxin (CPA), and, usually, perfringolysin O (PFO). Although ETX is one of the most potent bacterial toxins, the regulation of ETX production by type B or D strains remains poorly understood. The present work determined that the type D strain CN3718 upregulates production of ETX upon close contact with enterocyte-like Caco-2 cells. This host cell-induced upregulation of ETX expression was mediated at the transcriptional level. Using an isogenic agrB null mutant and complemented strain, the agr operon was shown to be required when CN3718 produces ETX in broth culture or, via a secreted signal consistent with a quorum-sensing (QS) effect, upregulates ETX production upon contact with host cells. These findings provide the first insights into the regulation of ETX production, as well as additional evidence that the Agr-like QS system functions as a global regulator of C. perfringens toxin production. Since it was proposed previously that the Agr-like QS system regulates C. perfringens gene expression via the VirS/VirR two-component regulatory system, an isogenic virR null mutant of CN3718 was constructed to evaluate the importance of VirS/VirR for CN3718 toxin production. This mutation affected production of CPA and PFO, but not ETX, by CN3718. These results provide the first indication that C. perfringens toxin expression regulation by the Agr-like quorum-sensing system may not always act via the VirS/VirR two-component system. IMPORTANCE Mechanisms by which Clostridium perfringens type B and D strains regulate production of epsilon-toxin (ETX), a CDC class B select toxin, are poorly understood. Production of several other toxins expressed by C. perfringens is wholly or partially regulated by both the Agr-like quorum-sensing (QS) system and the VirS/VirR two-component regulatory system, so the present study tested whether ETX expression by type D strain CN3718 also requires these regulatory systems. The agr operon was shown to be essential for signaling CN3718 to produce ETX in broth culture or to upregulate ETX production upon close contact with enterocyte-like Caco-2 cells, which may have pathogenic relevance since ETX is produced intestinally. However, ETX production remained at wild-type levels after inactivation of the VirS/VirR system in CN3718. These findings provide the first information regarding regulation of ETX production and suggest Agr-like QS toxin production regulation in C. perfringens does not always require the VirS/VirR system.
Collapse
|
33
|
Morris WE, Dunleavy MV, Diodati J, Berra G, Fernandez-Miyakawa ME. Effects of Clostridium perfringens alpha and epsilon toxins in the bovine gut. Anaerobe 2011; 18:143-7. [PMID: 22178571 DOI: 10.1016/j.anaerobe.2011.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 09/10/2011] [Accepted: 12/06/2011] [Indexed: 11/15/2022]
Abstract
Clostridium perfringens alpha and epsilon toxins produce enterotoxaemia in sheep and goats. However, the information regarding the pathophysiology of alpha and epsilon toxins in the bovine intestine is still scanty. In this study, intestinal loops were performed in the ileum and colon of three one-week-old Holstein and two four-week-old crossbreed calves. Laparotomy was performed in all calves under anaesthesia and four loops -three cm long- were performed in the small and large intestines. For both intestines, loops were inoculated with alpha or epsilon toxins. Tissue samples from all loops were obtained and processed for routine histology and for transmission electron microscopy. Congestion was observed in toxin treated loops. Fluid accumulation in the gut lumen was prominent in all treated loops, but in epsilon treated ones the mucous was also haemorrhagic. The histology revealed large amount of exfoliated epithelial cells in the lumen of alpha toxin treated loops and severe haemorrhage was observed in the lamina propria of epsilon toxin treated colonic loops. Despite some necrotic exfoliated enterocytes, no ultraestructural changes were observed in alpha toxin treated loops, though with epsilon toxin the loops exhibited dilation of the intercellular space in the mucosa of both, small and large intestines. These observations indicate that both, alpha and epsilon toxins can alter the intestinal barrier, in calves and are pathogenic for this species.
Collapse
Affiliation(s)
- Winston E Morris
- Veterinary and Agronomic Research Centre (CICVyA), National Institute of Agricultural Technology (INTA), Castelar, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
34
|
Sialidases affect the host cell adherence and epsilon toxin-induced cytotoxicity of Clostridium perfringens type D strain CN3718. PLoS Pathog 2011; 7:e1002429. [PMID: 22174687 PMCID: PMC3234242 DOI: 10.1371/journal.ppat.1002429] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/26/2011] [Indexed: 11/19/2022] Open
Abstract
Clostridium perfringens type B or D isolates, which cause enterotoxemias or enteritis in livestock, produce epsilon toxin (ETX). ETX is exceptionally potent, earning it a listing as a CDC class B select toxin. Most C. perfringens strains also express up to three different sialidases, although the possible contributions of those enzymes to type B or D pathogenesis remain unclear. Type D isolate CN3718 was found to carry two genes (nanI and nanJ) encoding secreted sialidases and one gene (nanH) encoding a cytoplasmic sialidase. Construction in CN3718 of single nanI, nanJ and nanH null mutants, as well as a nanI/nanJ double null mutant and a triple sialidase null mutant, identified NanI as the major secreted sialidase of this strain. Pretreating MDCK cells with NanI sialidase, or with culture supernatants of BMC206 (an isogenic CN3718 etx null mutant that still produces sialidases) enhanced the subsequent binding and cytotoxic effects of purified ETX. Complementation of BMC207 (an etx/nanH/nanI/nanJ null mutant) showed this effect is mainly attributable to NanI production. Contact between BMC206 and certain mammalian cells (e.g., enterocyte-like Caco-2 cells) resulted in more rapid sialidase production and this effect involved increased transcription of BMC206 nanI gene. BMC206 was shown to adhere to some (e.g. Caco-2 cells), but not all mammalian cells, and this effect was dependent upon sialidase, particularly NanI, expression. Finally, the sialidase activity of NanI (but not NanJ or NanH) could be enhanced by trypsin. Collectively these in vitro findings suggest that, during type D disease originating in the intestines, trypsin may activate NanI, which (in turn) could contribute to intestinal colonization by C. perfringens type D isolates and also increase ETX action. Clostridium perfringens type D strains cause enteritis and enterotoxemias in livestock after colonizing the intestines and then producing toxins, notably epsilon toxin (ETX). Initially produced and secreted in an inactive form, ETX can be rapidly proteolytically-activated by trypsin and other intestinal proteases. While most C. perfringens strains produce three sialidases, no pathogenic role has yet been identified for these enzymes that remove terminal sialic acid residues from glycoproteins and glycolipids. Our current study found that trypsin increases the activity of the NanI sialidase made by type D strain CN3718. This effect enhanced the ability of NanI to modify the surface of MDCK cells, leading to increased ETX binding and cytotoxicity. We also found that modification of the host cell surface by NanI sialidase allows efficient attachment of CN3718 cells to Caco-2 cells. These results identify interactions between intestinal proteases, ETX, sialidases, and ETX-producing bacteria, whereby trypsin activates not only ETX but also NanI sialidase. If similar effects occur in the intestines, the activated NanI sialidase may modify the host cell surface to facilitate bacterial attachment and thereby worsen disease by facilitating intestinal colonization by type D strains to prolong toxin delivery and, in some species, increase ETX binding.
Collapse
|
35
|
Popoff MR. Multifaceted interactions of bacterial toxins with the gastrointestinal mucosa. Future Microbiol 2011; 6:763-97. [PMID: 21797691 DOI: 10.2217/fmb.11.58] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The digestive tract is one of the ecosystems that harbors the largest number and greatest variety of bacteria. Among them, certain bacteria have developed various strategies, including the synthesis of virulence factors such as toxins, to interact with the intestinal mucosa, and are responsible for various pathologies. A large variety of bacterial toxins of different sizes, structures and modes of action are able to interact with the gastrointestinal mucosa. Some toxins, termed enterotoxins, directly stimulate fluid secretion in enterocytes or cause their death, whereas other toxins pass through the intestinal barrier and disseminate by the general circulation to remote organs or tissues, where they are active. After recognition of a membrane receptor on target cells, toxins can act at the cell membrane by transducing a signal across the membrane in a hormone-like manner, by pore formation or by damaging membrane compounds. Other toxins can enter the cells and modify an intracellular target leading to a disregulation of certain physiological processes or disorganization of some structural architectures and cell death. Toxins are fascinating molecules, which mimic or interfere with eukaryotic physiological processes. Thereby, they have permitted the identification and characterization of new natural hormones or regulatory pathways. Besides use as protective antigens in vaccines, toxins offer multiple possibilities in pharmacology, such as immune modulation or specific delivery of a protein of interest into target cells.
Collapse
Affiliation(s)
- M R Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, 25 rue du Dr Roux, 757245 Paris cedex 15, France.
| |
Collapse
|
36
|
Robertson SL, Li J, Uzal FA, McClane BA. Evidence for a prepore stage in the action of Clostridium perfringens epsilon toxin. PLoS One 2011; 6:e22053. [PMID: 21814565 PMCID: PMC3140917 DOI: 10.1371/journal.pone.0022053] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 06/16/2011] [Indexed: 11/25/2022] Open
Abstract
Clostridium perfringens epsilon toxin (ETX) rapidly kills MDCK II cells at 37°C, but not 4°C. The current study shows that, in MDCK II cells, ETX binds and forms an oligomeric complex equally well at 37°C and 4°C but only forms a pore at 37°C. However, the complex formed in MDCK cells treated with ETX at 4°C has the potential to form an active pore, since shifting those cells to 37°C results in rapid cytotoxicity. Those results suggested that the block in pore formation at 4°C involves temperature-related trapping of ETX in a prepore intermediate on the MDCK II cell plasma membrane surface. Evidence supporting this hypothesis was obtained when the ETX complex in MDCK II cells was shown to be more susceptible to pronase degradation when formed at 4°C vs. 37°C; this result is consistent with ETX complex formed at 4°C remaining present in an exposed prepore on the membrane surface, while the ETX prepore complex formed at 37°C is unaccessible to pronase because it has inserted into the plasma membrane to form an active pore. In addition, the ETX complex rapidly dissociated from MDCK II cells at 4°C, but not 37°C; this result is consistent with the ETX complex being resistant to dissociation at 37°C because it has inserted into membranes, while the ETX prepore readily dissociates from cells at 4°C because it remains on the membrane surface. These results support the identification of a prepore stage in ETX action and suggest a revised model for ETX cytotoxicity, i) ETX binds to an unidentified receptor, ii) ETX oligomerizes into a prepore on the membrane surface, and iii) the prepore inserts into membranes, in a temperature-sensitive manner, to form an active pore.
Collapse
Affiliation(s)
- Susan L. Robertson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
37
|
The VirS/VirR two-component system regulates the anaerobic cytotoxicity, intestinal pathogenicity, and enterotoxemic lethality of Clostridium perfringens type C isolate CN3685. mBio 2011; 2:e00338-10. [PMID: 21264065 PMCID: PMC3025664 DOI: 10.1128/mbio.00338-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 12/29/2010] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens vegetative cells cause both histotoxic infections (e.g., gas gangrene) and diseases originating in the intestines (e.g., hemorrhagic necrotizing enteritis or lethal enterotoxemia). Despite their medical and veterinary importance, the molecular pathogenicity of C. perfringens vegetative cells causing diseases of intestinal origin remains poorly understood. However, C. perfringens beta toxin (CPB) was recently shown to be important when vegetative cells of C. perfringens type C strain CN3685 induce hemorrhagic necrotizing enteritis and lethal enterotoxemia. Additionally, the VirS/VirR two-component regulatory system was found to control CPB production by CN3685 vegetative cells during aerobic infection of cultured enterocyte-like Caco-2 cells. Using an isogenic virR null mutant, the current study now reports that the VirS/VirR system also regulates CN3685 cytotoxicity during infection of Caco-2 cells under anaerobic conditions, as found in the intestines. More importantly, the virR mutant lost the ability to cause hemorrhagic necrotic enteritis in rabbit small intestinal loops. Western blot analyses demonstrated that the VirS/VirR system mediates necrotizing enteritis, at least in part, by controlling in vivo CPB production. In addition, vegetative cells of the isogenic virR null mutant were, relative to wild-type vegetative cells, strongly attenuated in their lethality in a mouse enterotoxemia model. Collectively, these results identify the first regulator of in vivo pathogenicity for C. perfringens vegetative cells causing disease originating in the complex intestinal environment. Since VirS/VirR also mediates histotoxic infections, this two-component regulatory system now assumes a global role in regulating a spectrum of infections caused by C. perfringens vegetative cells.
Collapse
|
38
|
Polymer partitioning and ion selectivity suggest asymmetrical shape for the membrane pore formed by epsilon toxin. Biophys J 2010; 99:782-9. [PMID: 20682255 DOI: 10.1016/j.bpj.2010.05.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/27/2010] [Accepted: 05/03/2010] [Indexed: 12/25/2022] Open
Abstract
Using poly-(ethylene glycol)s of different molecular weights, we probe the channels formed in planar lipid bilayers by epsilon toxin secreted by the anaerobic bacterium Clostridium perfringens. We find that the pore is highly asymmetric. The cutoff size of polymers entering the pore through its opening from the cis side, the side of toxin addition, is approximately 500 Da, whereas the cutoff size for the polymers entering from the trans side is approximately 2300 Da. Comparing these characteristic molecular weights with those reported earlier for OmpF porin and the alpha-Hemolysin channel, we estimate the radii of cis and trans openings as 0.4 nm and 1.0 nm, respectively. The simplest geometry corresponding to these findings is that of a truncated cone. The asymmetry of the pore is also confirmed by measurements of the reversal potential at oppositely directed salt gradients. The moderate anionic selectivity of the channel is salted-out more efficiently when the salt concentration is higher at the trans side of the pore.
Collapse
|
39
|
Li J, Miyamoto K, Sayeed S, McClane BA. Organization of the cpe locus in CPE-positive clostridium perfringens type C and D isolates. PLoS One 2010; 5:e10932. [PMID: 20532170 PMCID: PMC2880595 DOI: 10.1371/journal.pone.0010932] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/07/2010] [Indexed: 01/06/2023] Open
Abstract
Clostridium perfringens enterotoxin (encoded by the cpe gene) contributes to several important human, and possibly veterinary, enteric diseases. The current study investigated whether cpe locus organization in type C or D isolates resembles one of the three (one chromosomal and two plasmid-borne) cpe loci commonly found amongst type A isolates. Multiplex PCR assays capable of detecting sequences in those type A cpe loci failed to amplify products from cpe-positive type C and D isolates, indicating these isolates possess different cpe locus arrangements. Therefore, restriction fragments containing the cpe gene were cloned and sequenced from two type C isolates and one type D isolate. The obtained cpe locus sequences were then used to construct an overlapping PCR assay to assess cpe locus diversity amongst other cpe-positive type C and D isolates. All seven surveyed cpe-positive type C isolates had a plasmid-borne cpe locus partially resembling the cpe locus of type A isolates carrying a chromosomal cpe gene. In contrast, all eight type D isolates shared the same plasmid-borne cpe locus, which differed substantially from the cpe locus present in other C. perfringens by containing two copies of an ORF with 67% identity to a transposase gene (COG4644) found in Tn1546, but not previously associated with the cpe gene. These results identify greater diversity amongst cpe locus organization than previously appreciated, providing new insights into cpe locus evolution. Finally, evidence for cpe gene mobilization was found for both type C and D isolates, which could explain their cpe plasmid diversity.
Collapse
Affiliation(s)
- Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kazuaki Miyamoto
- Department of Microbiology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Sameera Sayeed
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
Clostridia produce the highest number of toxins of any type of bacteria and are involved in severe diseases in humans and other animals. Most of the clostridial toxins are pore-forming toxins responsible for gangrenes and gastrointestinal diseases. Among them, perfringolysin has been extensively studied and it is the paradigm of the cholesterol-dependent cytolysins, whereas Clostridium perfringens epsilon-toxin and Clostridium septicum alpha-toxin, which are related to aerolysin, are the prototypes of clostridial toxins that form small pores. Other toxins active on the cell surface possess an enzymatic activity, such as phospholipase C and collagenase, and are involved in the degradation of specific cell-membrane or extracellular-matrix components. Three groups of clostridial toxins have the ability to enter cells: large clostridial glucosylating toxins, binary toxins and neurotoxins. The binary and large clostridial glucosylating toxins alter the actin cytoskeleton by enzymatically modifying the actin monomers and the regulatory proteins from the Rho family, respectively. Clostridial neurotoxins proteolyse key components of neuroexocytosis. Botulinum neurotoxins inhibit neurotransmission at neuromuscular junctions, whereas tetanus toxin targets the inhibitory interneurons of the CNS. The high potency of clostridial toxins results from their specific targets, which have an essential cellular function, and from the type of modification that they induce. In addition, clostridial toxins are useful pharmacological and biological tools.
Collapse
Affiliation(s)
- Michel R Popoff
- Institut Pasteur, Bactéries Anaérobies et Toxines, 75724 Paris cedex 15, France.
| | | |
Collapse
|
41
|
Vidal JE, Ohtani K, Shimizu T, McClane BA. Contact with enterocyte-like Caco-2 cells induces rapid upregulation of toxin production by Clostridium perfringens type C isolates. Cell Microbiol 2009; 11:1306-28. [PMID: 19438515 DOI: 10.1111/j.1462-5822.2009.01332.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium perfringens type C isolates cause necrotizing enteritis in humans and domestic animals. In vitro, type C isolates often produce beta toxin (CPB), beta2 toxin (CPB2), alpha toxin (CPA), perfringolysin O (PFO) and TpeL during (or after) late log-phase growth. In contrast, the current study found that many type C isolates respond to close contact with enterocyte-like Caco-2 cells by producing all toxins, except TpeL, much more rapidly than occurs during in vitro growth. This in vivo effect involves rapid transcriptional upregulation of the cpb, cpb2, pfoA and plc toxin genes. Rapid Caco-2 cell-induced upregulation of CPB and PFO production involves the VirS/VirR two-component system, since upregulated in vivo transcription of the pfoA and cpb genes was blocked by inactivating the virR gene and was reversible by complementation to restore VirR expression. However, the luxS quorum-sensing system is not required for the rapid upregulation of type C toxin production induced by contact with Caco-2 cells. These results provide the first indication of host cell:pathogen cross-talk affecting toxin production kinetics by any pathogenic Clostridium spp., identify in vivo versus in vitro differences in C. perfringens toxin expression, and implicate VirS/VirR as a possible contributor to some C. perfringens enteric diseases.
Collapse
Affiliation(s)
- Jorge E Vidal
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
42
|
Pore-forming activity of alpha-toxin is essential for clostridium septicum-mediated myonecrosis. Infect Immun 2009; 77:943-51. [PMID: 19139192 DOI: 10.1128/iai.01267-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium septicum alpha-toxin is a beta-barrel pore-forming cytolysin that is functionally similar to aerolysin. Residues important in receptor binding, oligomerization, and pore formation have been identified; however, little is known about the activity of the toxin in an infection, although it is essential for disease. We have now shown that deletion of a small portion of the transmembrane domain, so that the toxin is no longer able to form pores, completely abrogates its ability to contribute to disease, as does replacement of the sole cysteine residue with leucine. However, although previous biochemical and cytotoxicity assays clearly indicated that mutations in residues important in oligomerization, binding, and prepore conversion greatly reduced activity or rendered the toxin inactive, once the mutated toxins were overexpressed by the natural host in the context of an infection it was found they were able to cause disease in a mouse model of myonecrosis. These results highlight the importance of testing the activity of virulence determinants in the normal host background and in an infectious disease context and provide unequivocal evidence that it is the ability of alpha-toxin to form a pore that confers its toxicity in vivo.
Collapse
|
43
|
Abildgaard L, Engberg RM, Pedersen K, Schramm A, Hojberg O. Sequence variation in the alpha-toxin encoding plc gene of Clostridium perfringens strains isolated from diseased and healthy chickens. Vet Microbiol 2008; 136:293-9. [PMID: 19070974 DOI: 10.1016/j.vetmic.2008.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
The aim of the present study was to analyse the genetic diversity of the alpha-toxin encoding plc gene and the variation in alpha-toxin production of Clostridium perfringens type A strains isolated from presumably healthy chickens and chickens suffering from either necrotic enteritis (NE) or cholangio-hepatitis. The alpha-toxin encoding plc genes from 60 different pulsed-field gel electrophoresis (PFGE) types (strains) of C. perfringens were sequenced and translated in silico to amino acid sequences and the alpha-toxin production was investigated in batch cultures of 45 of the strains using an enzyme-linked immunosorbent assay (ELISA) approach. Overall, the truncated amino acid sequences showed close similarity (>98% at the amino acid level) to previously reported sequences from chicken-derived C. perfringens isolates. Variations were however observed in 23 out of 379 aa positions leading to the definition of 26 different alpha-toxin sequence types among the 60 strains. Moreover, a type II intron of 834 non-coding nucleotides was identified in the plc gene of three of the investigated strains. The in vitro alpha-toxin production investigated in 45 of the strains, including the three harbouring the intron, revealed no correlation between PFGE type, alpha-toxin sequence type, health status of the host chickens and level of alpha-toxin production. It is therefore concluded that neither plc gene type nor alpha-toxin production level seems to correlate to origin (healthy or diseased chicken) of the C. perfringens strains.
Collapse
Affiliation(s)
- Lone Abildgaard
- Institute of Animal Health, Welfare and Nutrition, Faculty of Agricultural Sciences, University of Aarhus, DK-8830 Tjele, Denmark
| | | | | | | | | |
Collapse
|
44
|
Miyamoto K, Li J, Sayeed S, Akimoto S, McClane BA. Sequencing and diversity analyses reveal extensive similarities between some epsilon-toxin-encoding plasmids and the pCPF5603 Clostridium perfringens enterotoxin plasmid. J Bacteriol 2008; 190:7178-88. [PMID: 18776010 PMCID: PMC2580689 DOI: 10.1128/jb.00939-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 08/22/2008] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens type B and D isolates produce epsilon-toxin, the third most potent clostridial toxin. The epsilon-toxin gene (etx) is plasmid borne in type D isolates, but etx genetics have been poorly studied in type B isolates. This study reports the first sequencing of any etx plasmid, i.e., pCP8533etx, from type B strain NCTC8533. This etx plasmid is 64.7 kb, carries tcp conjugative transfer genes, and encodes additional potential virulence factors including beta2-toxin, sortase, and collagen adhesin but not beta-toxin. Interestingly, nearly 80% of pCP8533etx open reading frames (ORFs) are also present on pCPF5603, an enterotoxin-encoding plasmid from type A isolate F5603. Pulsed-field gel electrophoresis and overlapping PCR indicated that a pCP8533etx-like etx plasmid is also present in most, if not all, other type B isolates and some beta2-toxin-positive, cpe-negative type D isolates, while other type D isolates carry different etx plasmids. Sequences upstream of the etx gene vary between type B isolates and some type D isolates that do not carry a pCP8533etx-like etx plasmid. However, nearly all type B and D isolates have an etx locus with an upstream IS1151, and those etx loci typically reside near a dcm ORF. These results suggest that pCPF5603 and pCP8533etx evolved from insertion of mobile genetic elements carrying enterotoxin or etx genes, respectively, onto a common progenitor plasmid.
Collapse
Affiliation(s)
- Kazuaki Miyamoto
- Department of Microbiology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | | | | | | | | |
Collapse
|
45
|
Uzal FA, Fisher DJ, Saputo J, Sayeed S, McClane BA, Songer G, Trinh HT, Miyakawa FME, Gard S. Ulcerative Enterocolitis in Two Goats Associated with Enterotoxin- and beta2 Toxin–Positive Clostridium Perfringens Type D. J Vet Diagn Invest 2008; 20:668-72. [DOI: 10.1177/104063870802000526] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enterotoxemia caused by Clostridium perfringens type D in sheep is believed to result from the action of epsilon toxin (ETX). However, the sole role of ETX in the intestinal changes of the acute and chronic forms of enterotoxemia in goats remains controversial, and the synergistic action of other C. perfringens toxins has been suggested previously. The current study examined 2 goats that were found dead without premonitory clinical signs. Gross lesions at necropsy consisted of multifocal fibrinonecrotic enterocolitis, edematous lungs, and excess pleural fluid. Histologically, there were multifocal fibrinonecrotic and ulcerative ileitis and colitis, edema of the colonic serosa, and proteinaceous interstitial edema of the lungs. Clostridium perfringens type D carrying the genes for enterotoxin (CPE) and beta2 toxin (CPB2) was cultured from intestinal content and feces of 1 of 2 goats, while C. perfringens type D CPB2–positive was isolated from the other animal. When multiple colonies of the primary isolations from both animals were tested by Western blot, most of the isolates expressed CPB2, and only a few isolates from the first case expressed CPE. Alpha toxin and ETX were detected in ileal and colonic contents and feces of both animals by antigen capture enzyme-linked immunosorbent assay. CPB2, but not CPE, was identified in the small and large intestines of both goats by immunohistochemistry. These findings indicate that CPB2 may have contributed to the necrotic changes observed in the intestine, possibly assisting ETX transit across the intestinal mucosa.
Collapse
Affiliation(s)
- Francisco A. Uzal
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, University of California, Davis, CA
| | - Derek J. Fisher
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Juliann Saputo
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, University of California, Davis, CA
| | - Sameera Sayeed
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Bruce A. McClane
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Glenn Songer
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, AZ
| | - Hien T. Trinh
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, AZ
| | - Fernandez Mariano E. Miyakawa
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, University of California, Davis, CA
| | - Sharon Gard
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, University of California, Davis, CA
| |
Collapse
|
46
|
Veschi JLA, Bruzzone OA, Losada-Eaton DM, Dutra IS, Fernandez-Miyakawa ME. Naturally acquired antibodies against Clostridium perfringens epsilon toxin in goats. Vet Immunol Immunopathol 2008; 125:198-202. [PMID: 18538416 DOI: 10.1016/j.vetimm.2008.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/15/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
Abstract
Clostridium perfringens type D-producing epsilon toxin is a common cause of death in sheep and goats worldwide. Although anti-epsilon toxin serum antibodies have been detected in healthy non-vaccinated sheep, the information regarding naturally acquired antibodies in ruminants is scanty. The objective of the present report was to characterize the development of naturally acquired antibodies against C. perfringens epsilon toxin in goats. The levels of anti-epsilon toxin antibodies in blood serum of goat kids from two different herds were examined continuously for 14 months. Goats were not vaccinated against any clostridial disease and received heterologous colostrums from cows that were not vaccinated against any clostridial disease. During the survey one of these flocks suffered an unexpectedly severe C. perfringens type D enterotoxemia outbreak. The results showed that natural acquired antibodies against C. perfringens epsilon toxin can appear as early as 6 weeks in young goats and increase with the age without evidence of clinical disease. The enterotoxemia outbreak was coincident with a significant increase in the level of anti-epsilon toxin antibodies.
Collapse
Affiliation(s)
- Josir Laine A Veschi
- Laboratório de Sanidade Animal, Embrapa Semi-Arido, BR 428, Km 152, 56302-970 Petrolina, PE, Brazil
| | | | | | | | | |
Collapse
|
47
|
Losada-Eaton DM, Uzal FA, Fernández Miyakawa ME. Clostridium perfringens epsilon toxin is absorbed from different intestinal segments of mice. Toxicon 2008; 51:1207-13. [PMID: 18457853 DOI: 10.1016/j.toxicon.2008.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 02/07/2008] [Accepted: 02/08/2008] [Indexed: 11/30/2022]
Abstract
Clostridium perfringens epsilon toxin is a potent toxin responsible for a rapidly fatal enterotoxaemia in several animal species. The pathogenesis of epsilon toxin includes toxicity to endothelial cells and neurons. Although epsilon toxin is absorbed from the gastrointestinal tract, the intestinal regions where the toxin is absorbed and the conditions favoring epsilon toxin absorption are unknown. The aim of this paper was to determine the toxicity of epsilon toxin absorbed from different gastrointestinal segments of mice and to evaluate the influence of the intestinal environment in the absorption of this toxin. Epsilon toxin diluted in one of several different saline solutions was surgically introduced into ligated stomach or intestinal segments of mice. Comparison of the toxicity of epsilon toxin injected in different sections of the gastrointestinal tract showed that this toxin can be absorbed from the small and the large intestine but not from the stomach of mice. The lethality of epsilon toxin was higher when this toxin was injected in the colon than in the small intestine. Low pH, and Na(+) and glucose added to the saline solution increased the toxicity of epsilon toxin injected into the small intestine. This study shows that absorption of epsilon toxin can occur in any intestinal segment of mice and that the physicochemical characteristics of the intestinal content can affect the absorption of this toxin.
Collapse
Affiliation(s)
- D M Losada-Eaton
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | | | | |
Collapse
|
48
|
Fernandez-Miyakawa ME, Jost BH, Billington SJ, Uzal FA. Lethal effects of Clostridium perfringens epsilon toxin are potentiated by alpha and perfringolysin-O toxins in a mouse model. Vet Microbiol 2007; 127:379-85. [PMID: 17997054 DOI: 10.1016/j.vetmic.2007.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 09/11/2007] [Accepted: 09/26/2007] [Indexed: 11/26/2022]
Abstract
Epsilon toxin (ETX) is the most important virulence factor of Clostridium perfringens type D. Two other important toxins, alpha toxin (CPA) and perfringolysin-O (PFO), are encoded and potentially produced by most C. perfringens type D isolates. The biological effects of these toxins are dissimilar although they are all lethal. Since the possible interaction of these toxins during infection is unknown, the effects of CPA and PFO on the lethal activity of ETX were studied in a mouse model. Mice were injected intravenously or intragastrically with CPA or PFO with or without ETX. Sublethal doses of CPA or PFO did not affect the lethality of ETX when either was injected together with the latter intravenously. However, sublethal or lethal doses of CPA or PFO resulted in reduction of the survival time of mice injected simultaneously with ETX when compared with the intravenous effect of ETX injected alone. When PFO was inoculated intragastrically with ETX, a reduction of the survival time was observed. CPA did not alter the survival time when inoculated intragastrically with ETX. The results of the present study suggest that both CPA and PFO have the potential to enhance the ETX lethal effects during enterotoxemia in natural hosts such as sheep and goats.
Collapse
Affiliation(s)
- Mariano E Fernandez-Miyakawa
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California, Davis, 105 W Central Avenue, San Bernardino, CA 92408, USA
| | | | | | | |
Collapse
|
49
|
Hughes ML, Poon R, Adams V, Sayeed S, Saputo J, Uzal FA, McClane BA, Rood JI. Epsilon-toxin plasmids of Clostridium perfringens type D are conjugative. J Bacteriol 2007; 189:7531-8. [PMID: 17720791 PMCID: PMC2168747 DOI: 10.1128/jb.00767-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isolates of Clostridium perfringens type D produce the potent epsilon-toxin (a CDC/U.S. Department of Agriculture overlap class B select agent) and are responsible for several economically significant enterotoxemias of domestic livestock. It is well established that the epsilon-toxin structural gene, etx, occurs on large plasmids. We show here that at least two of these plasmids are conjugative. The etx gene on these plasmids was insertionally inactivated using a chloramphenicol resistance cassette to phenotypically tag the plasmid. High-frequency conjugative transfer of the tagged plasmids into the C. perfringens type A strain JIR325 was demonstrated, and the resultant transconjugants were shown to act as donors in subsequent mating experiments. We also demonstrated the transfer of "unmarked" native epsilon-toxin plasmids into strain JIR325 by exploiting the high transfer frequency. The transconjugants isolated in these experiments expressed functional epsilon-toxin since their supernatants had cytopathic effects on MDCK cells and were toxic in mice. Using the widely accepted multiplex PCR approach for toxin genotyping, these type A-derived transconjugants were genotypically type D. These findings have significant implications for the C. perfringens typing system since it is based on the toxin profile of each strain. Our study demonstrated the fluid nature of the toxinotypes and their dependence upon the presence or absence of toxin plasmids, some of which have for the first time been shown to be conjugative.
Collapse
Affiliation(s)
- Meredith L Hughes
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Fernandez-Miyakawa ME, Sayeed S, Fisher DJ, Poon R, Adams V, Rood JI, McClane BA, Saputo J, Uzal FA. Development and application of an oral challenge mouse model for studying Clostridium perfringens type D infection. Infect Immun 2007; 75:4282-8. [PMID: 17562765 PMCID: PMC1951146 DOI: 10.1128/iai.00562-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens type D isolates cause enterotoxemia in sheep, goats, and probably cattle. While the major disease signs and lesions of type D animal disease are usually attributed to epsilon toxin, a class B select agent, these bacteria typically produce several lethal toxins. Understanding of disease pathogenesis and development of improved vaccines are hindered by the lack of a small-animal model mimicking natural disease caused by type D isolates. Addressing this need, we developed an oral challenge mouse model of C. perfringens type D enterotoxemia. When BALB/c mice with a sealed anus were inoculated by intragastric gavage with type D isolates, 7 of 10 type D isolates were lethal, as defined by spontaneous death or severe clinical signs necessitating euthanasia. The lethalities of the seven type D isolates varied between 14 and 100%. Clinical signs in the lethally challenged mice included seizures, convulsions, hyperexcitability, and/or depression. Mild intestinal gas distention and brain edema were observed at necropsy in a few mice, while histology showed multifocal acute tubular necrosis of the kidney and edema in the lungs of most challenged mice that developed a clinical response. When the lethality of type D isolates in this model was compared with in vitro toxin production, only a limited correlation was observed. However, mice could be protected against lethality by intravenous passive immunization with an epsilon toxin antibody prior to oral challenge. This study provides an economical new model for studying the pathogenesis of C. perfringens type D infections.
Collapse
Affiliation(s)
- Mariano E Fernandez-Miyakawa
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, University of California--Davis, 105 West Central Avenue, San Bernardino, CA 92408, USA
| | | | | | | | | | | | | | | | | |
Collapse
|