1
|
Fanijavadi S, Jensen LH. Dysbiosis-NK Cell Crosstalk in Pancreatic Cancer: Toward a Unified Biomarker Signature for Improved Clinical Outcomes. Int J Mol Sci 2025; 26:730. [PMID: 39859442 PMCID: PMC11765696 DOI: 10.3390/ijms26020730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis, primarily due to its immunosuppressive tumor microenvironment (TME), which contributes to treatment resistance. Recent research shows that the microbiome, including microbial communities in the oral cavity, gut, bile duct, and intratumoral environments, plays a key role in PDAC development, with microbial imbalances (dysbiosis) promoting inflammation, cancer progression, therapy resistance, and treatment side effects. Microbial metabolites can also affect immune cells, especially natural killer (NK) cells, which are vital for tumor surveillance, therapy response and treatment-related side effects. Dysbiosis can affect NK cell function, leading to resistance and side effects. We propose that a combined biomarker approach, integrating microbiome composition and NK cell profiles, can help predict treatment resistance and side effects, enabling more personalized therapies. This review examines how dysbiosis contributes to NK cell dysfunction in PDAC and discusses strategies (e.g., antibiotics, probiotics, vaccines) to modulate the microbiome and enhance NK cell function. Targeting dysbiosis could modulate NK cell activity, improve the effectiveness of PDAC treatments, and reduce side effects. However, further research is needed to develop unified NK cell-microbiome interaction-based biomarkers for more precise and effective patient outcomes.
Collapse
Affiliation(s)
- Sara Fanijavadi
- Cancer Polyclinic, Levanger Hospital, 7601 Levanger, Trøndelag, Norway
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
| | - Lars Henrik Jensen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Department of Oncology, Institute of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| |
Collapse
|
2
|
Santacroce L, Topi S, Cafiero C, Palmirotta R, Jirillo E. The Role of the Immune Response to Helicobacter pylori Antigens and Its Relevance in Gastric Disorders. GASTROINTESTINAL DISORDERS 2025; 7:6. [DOI: 10.3390/gidisord7010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
Helicobacter pylori (H.p.) is a Gram-negative bacterium endowed with gastric tropism. H.p. infection is widely spread throughout the world, accounting for various pathologies, such as peptic ulcer, gastric cancer, mucosa-associated lymphoid tissue lymphoma, and extra-gastric manifestations. This bacterium possesses several virulence factors, e.g., lipopolysaccharides (LPS), the toxins CagA and VacA, and adhesins, which elicit a robust immune response during the initial phase of the infection. Of note, the lipid A moiety of the LPS exhibits a lower endotoxic potency than that of other LPSs, thus facilitating infection through a mechanism of immune escape. H.p. colonization of the gastric mucosa induces an initial protective immune response with innate immune cells, e.g., neutrophils, monocytes, and macrophages, which engulf and kill bacteria. Moreover, the same cells, along with gastric epithelial cells, secrete cytokines and chemokines, which recruit T cells [T helper (h)1 and Th17 cells] to the site of infection, thus leading to H.p. eradication. In a large subset of individuals, the perturbation of such an immune equilibrium leads to a harmful response, with an expansion of T regulatory (TREG) cells, which suppress the protective immune response. In fact, TREG cells, via the production of interleukin (IL)-10, downregulate Th1- and Th17-related cytokines, thus allowing H.p. survival and the perpetuation of inflammation. As far as the humoral immune response is concerned, B cells, upon H.p. stimulation, produce autoreactive antibodies, and IgG anti-Lex antibodies are harmful to the gastric mucosa. In this review, the structure and function of H.p. antigenic components and immune mechanisms elicited by this bacterium will be described in relation to gastric damage.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania
| | - Skender Topi
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania
| | | | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
3
|
Santacroce L, Topi S, Bottalico L, Charitos IA, Jirillo E. Current Knowledge about Gastric Microbiota with Special Emphasis on Helicobacter pylori-Related Gastric Conditions. Curr Issues Mol Biol 2024; 46:4991-5009. [PMID: 38785567 PMCID: PMC11119845 DOI: 10.3390/cimb46050299] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The gastric milieu, because of its very low acidic pH, is very harsh for bacterial growth. The discovery of Helicobacter pylori (H.p.) has opened a new avenue for studies on the gastric microbiota, thus indicating that the stomach is not a sterile environment. Nowadays, new technologies of bacterial identification have demonstrated the existence of other microorganisms in the gastric habitat, which play an important role in health and disease. This bacterium possesses an arsenal of compounds which enable its survival but, at the same time, damage the gastric mucosa. Toxins, such as cytotoxin-associated gene A, vacuolar cytotoxin A, lipopolysaccharides, and adhesins, determine an inflammatory status of the gastric mucosa which may become chronic, ultimately leading to a gastric carcinoma. In the initial stage, H.p. persistence alters the gastric microbiota with a condition of dysbiosis, predisposing to inflammation. Probiotics and prebiotics exhibit beneficial effects on H.p. infection, and, among them, anti-inflammatory, antioxidant, and antibacterial activities are the major ones. Moreover, the association of probiotics with prebiotics (synbiotics) to conventional anti-H.p. therapy contributes to a more efficacious eradication of the bacterium. Also, polyphenols, largely present in the vegetal kingdom, have been demonstrated to alleviate H.p.-dependent pathologies, even including the inhibition of tumorigenesis. The gastric microbiota composition in health and disease is described. Then, cellular and molecular mechanisms of H.p.-mediated damage are clarified. Finally, the use of probiotics, prebiotics, and polyphenols in experimental models and in patients infected with H.p. is discussed.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Skender Topi
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania; (S.T.)
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania; (S.T.)
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, Institute of Bari, 70124 Bari, Italy;
| | - Emilio Jirillo
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| |
Collapse
|
4
|
Constantin M, Chifiriuc MC, Mihaescu G, Corcionivoschi N, Burlibasa L, Bleotu C, Tudorache S, Mitache MM, Filip R, Munteanu SG, Gradisteanu Pircalabioru G. Microbiome and cancer: from mechanistic implications in disease progression and treatment to development of novel antitumoral strategies. Front Immunol 2024; 15:1373504. [PMID: 38715617 PMCID: PMC11074409 DOI: 10.3389/fimmu.2024.1373504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/23/2024] Open
Abstract
Cancer is a very aggressive disease and one of mankind's most important health problems, causing numerous deaths each year. Its etiology is complex, including genetic, gender-related, infectious diseases, dysbiosis, immunological imbalances, lifestyle, including dietary factors, pollution etc. Cancer patients also become immunosuppressed, frequently as side effects of chemotherapy and radiotherapy, and prone to infections, which further promote the proliferation of tumor cells. In recent decades, the role and importance of the microbiota in cancer has become a hot spot in human biology research, bringing together oncology and human microbiology. In addition to their roles in the etiology of different cancers, microorganisms interact with tumor cells and may be involved in modulating their response to treatment and in the toxicity of anti-tumor therapies. In this review, we present an update on the roles of microbiota in cancer with a focus on interference with anticancer treatments and anticancer potential.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology, Bucharest of Romanian Academy, Bucharest, Romania
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
- Romanian Academy of Scientists, Bucharest, Romania
| | | | - Coralia Bleotu
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Sorin Tudorache
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Suceava Emergency County Hospital, Suceava, Romania
| | | | - Gratiela Gradisteanu Pircalabioru
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Romanian Academy of Scientists, Bucharest, Romania
- eBio-Hub Research Centre, National University of Science and Technology Politehnica Bucharest, Bucharest, Romania
| |
Collapse
|
5
|
Anthofer M, Windisch M, Haller R, Ehmann S, Wrighton S, Miller M, Schernthanner L, Kufferath I, Schauer S, Jelušić B, Kienesberger S, Zechner EL, Posselt G, Vales-Gomez M, Reyburn HT, Gorkiewicz G. Immune evasion by proteolytic shedding of natural killer group 2, member D ligands in Helicobacter pylori infection. Front Immunol 2024; 15:1282680. [PMID: 38318189 PMCID: PMC10839011 DOI: 10.3389/fimmu.2024.1282680] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Background Helicobacter pylori (H. pylori) uses various strategies that attenuate mucosal immunity to ensure its persistence in the stomach. We recently found evidence that H. pylori might modulate the natural killer group 2, member 2 (NKG2D) system. The NKG2D receptor and its ligands are a major activation system of natural killer and cytotoxic T cells, which are important for mucosal immunity and tumor immunosurveillance. The NKG2D system allows recognition and elimination of infected and transformed cells, however viruses and cancers often subvert its activation. Here we aimed to identify a potential evasion of the NKG2D system in H. pylori infection. Methods We analyzed expression of NKG2D system genes in gastric tissues of H. pylori gastritis and gastric cancer patients, and performed cell-culture based infection experiments using H. pylori isogenic mutants and epithelial and NK cell lines. Results In biopsies of H. pylori gastritis patients, NKG2D receptor expression was reduced while NKG2D ligands accumulated in the lamina propria, suggesting NKG2D evasion. In vitro, H. pylori induced the transcription and proteolytic shedding of NKG2D ligands in stomach epithelial cells, and these effects were associated with specific H. pylori virulence factors. The H. pylori-driven release of soluble NKG2D ligands reduced the immunogenic visibility of infected cells and attenuated the cytotoxic activity of effector immune cells, specifically the anti-tumor activity of NK cells. Conclusion H. pylori manipulates the NKG2D system. This so far unrecognized strategy of immune evasion by H. pylori could potentially facilitate chronic bacterial persistence and might also promote stomach cancer development by allowing transformed cells to escape immune recognition and grow unimpeded to overt malignancy.
Collapse
Affiliation(s)
- Margit Anthofer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Markus Windisch
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Rosa Haller
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Sandra Ehmann
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Michael Miller
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Iris Kufferath
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Barbara Jelušić
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Interuniversity Cooperation, BioTechMed-Graz, Graz, Austria
| | - Ellen L. Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Interuniversity Cooperation, BioTechMed-Graz, Graz, Austria
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Mar Vales-Gomez
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, Madrid, Spain
| | - Hugh T. Reyburn
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, Madrid, Spain
| | - Gregor Gorkiewicz
- Institute of Pathology, Medical University of Graz, Graz, Austria
- Interuniversity Cooperation, BioTechMed-Graz, Graz, Austria
| |
Collapse
|
6
|
Vlasac IM, Christensen BC, Salas LA. Normal gastric tissue Helicobacter pylori infection is associated with epigenetic age acceleration, increased mitotic tick rate, tissue cell composition, and Natural Killer cell methylation alterations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546926. [PMID: 37425894 PMCID: PMC10327075 DOI: 10.1101/2023.06.28.546926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background Gastric adenocarcinomas are a leading cause of global mortality, associated with chronic infection with Helicobacter pylori. The mechanisms by which infection with H. pylori contributes to carcinogenesis are not well understood. Recent studies from subjects with and without gastric cancer have identified significant DNA methylation alterations in normal gastric mucosa associated with H. pylori infection and gastric cancer risk. Here we further investigated DNA methylation alterations in normal gastric mucosa in gastric cancer cases (n = 42) and control subjects (n = 42) with H. pylori infection data. We assessed tissue cell type composition, DNA methylation alterations within cell populations, epigenetic aging, and repetitive element methylation. Results In normal gastric mucosa of both gastric cancer cases and control subjects, we observed increased epigenetic age acceleration associated with H. pylori infection. We also observed an increased mitotic tick rate associated with H. pylori infection in both gastric cancer cases and controls. Significant differences in immune cell populations associated with H. pylori infection in normal tissue from cancer cases and controls were identified using DNA methylation cell type deconvolution. We also found natural killer cell-specific methylation alterations in normal mucosa from gastric cancer patients with H. pylori infection. Conclusions Our findings from normal gastric mucosa provide insight into underlying cellular composition and epigenetic aspects of H. pylori associated gastric cancer etiology.
Collapse
Affiliation(s)
- Irma M. Vlasac
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Lucas A. Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
7
|
Jiao Y, Yan Z, Yang A. The Roles of Innate Lymphoid Cells in the Gastric Mucosal Immunology and Oncogenesis of Gastric Cancer. Int J Mol Sci 2023; 24:ijms24076652. [PMID: 37047625 PMCID: PMC10095467 DOI: 10.3390/ijms24076652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a group of innate immune cells that have garnered considerable attention due to their critical roles in regulating immunity and tissue homeostasis. They are particularly abundant in the gastrointestinal tract, where they have been shown to interact with commensal bacteria, pathogens, and other components of the local microenvironment to influence host immune responses to infection and oncogenesis. Their tissue-residency properties enable gastric ILCs a localized and rapid response to alert and stress, which indicates their key potential in regulating immunosurveillance. In this review, we discuss the current understanding of the role of ILCs in the gastric mucosa, with a focus on their interactions with the gastric microbiota and Helicobacter pylori and their contributions to tissue homeostasis and inflammation. We also highlight recent findings on the involvement of ILCs in the pathogenesis of gastric cancer and the implications of targeting ILCs as a therapeutic approach. Overall, this review provides an overview of the diverse functions of ILCs in gastric mucosa and highlights their potential as targets for future therapies for gastric cancer.
Collapse
Affiliation(s)
- Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- 4 + 4 M.D. Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
8
|
Gao GF, Liu D, Zhan X, Li B. Analysis of KIR gene variants in The Cancer Genome Atlas and UK Biobank using KIRCLE. BMC Biol 2022; 20:191. [PMID: 36002830 PMCID: PMC9400285 DOI: 10.1186/s12915-022-01392-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells represent a critical component of the innate immune system's response against cancer and viral infections, among other diseases. To distinguish healthy host cells from infected or tumor cells, killer immunoglobulin receptors (KIR) on NK cells bind and recognize Human Leukocyte Antigen (HLA) complexes on their target cells. However, NK cells exhibit great diversity in their mechanism of activation, and the outcomes of their activation are not yet understood fully. Just like the HLAs they bind, KIR receptors exhibit high allelic diversity in the human population. Here we provide a method to identify KIR allele variants from whole exome sequencing data and uncover novel associations between these variants and various molecular and clinical correlates. RESULTS In order to better understand KIRs, we have developed KIRCLE, a novel method for genotyping individual KIR genes from whole exome sequencing data, and used it to analyze approximately sixty-thousand patient samples in The Cancer Genome Atlas (TCGA) and UK Biobank. We were able to assess population frequencies for different KIR alleles and demonstrate that, similar to HLA alleles, individuals' KIR alleles correlate strongly with their ethnicities. In addition, we observed associations between different KIR alleles and HLA alleles, including HLA-B*53 with KIR3DL2*013 (Fisher's exact FDR = 7.64e-51). Finally, we showcased statistically significant associations between KIR alleles and various clinical correlates, including peptic ulcer disease (Fisher's exact FDR = 0.0429) and age of onset of atopy (Mann-Whitney U FDR = 0.0751). CONCLUSIONS We show that KIRCLE is able to infer KIR variants accurately and consistently, and we demonstrate its utility using data from approximately sixty-thousand individuals from TCGA and UK Biobank to discover novel molecular and clinical correlations with KIR germline variants. Peptic ulcer disease and atopy are just two diseases in which NK cells may play a role beyond their "classical" realm of anti-tumor and anti-viral responses. This tool may be used both as a benchmark for future KIR-variant-inference algorithms, and to better understand the immunogenomics of and disease processes involving KIRs.
Collapse
Affiliation(s)
- Galen F Gao
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dajiang Liu
- Institute for Personalized Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Xiaowei Zhan
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Bo Li
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Oosting M, Brouwer M, Vrijmoeth HD, Pascual Domingo R, Greco A, ter Hofstede H, van den Bogaard EH, Schalkwijk J, Netea MG, Joosten LA. Borrelia burgdorferi is strong inducer of IFN-γ production by human primary NK cells. Cytokine 2022; 155:155895. [DOI: 10.1016/j.cyto.2022.155895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
|
10
|
Lenti MV, Facciotti F, Miceli E, Vanoli A, Fornasa G, Lahner E, Spadoni I, Giuffrida P, Arpa G, Pasini A, Rovedatti L, Caprioli F, Travelli C, Lattanzi G, Conti L, Klersy C, Vecchi M, Paulli M, Annibale B, Corazza GR, Rescigno M, Di Sabatino A. Mucosal Overexpression of Thymic Stromal Lymphopoietin and Proinflammatory Cytokines in Patients With Autoimmune Atrophic Gastritis. Clin Transl Gastroenterol 2022; 13:e00510. [PMID: 35905420 PMCID: PMC10476748 DOI: 10.14309/ctg.0000000000000510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 09/06/2023] Open
Abstract
INTRODUCTION The immune mechanisms underlying human autoimmune atrophic gastritis (AAG) are poorly understood. We sought to assess immune mucosal alterations in patients with AAG. METHODS In 2017-2021, we collected gastric corpus biopsies from 24 patients with AAG (median age 62 years, interquartile range 56-67, 14 women), 26 age-matched and sex-matched healthy controls (HCs), and 14 patients with Helicobacter pylori infection (HP). We investigated the lamina propria mononuclear cell (LPMC) populations and the mucosal expression of thymic stromal lymphopoietin (TSLP) and nicotinamide phosphoribosyltransferase (NAMPT). Ex vivo cytokine production by organ culture biopsies, under different stimuli (short TSLP and zinc-l-carnosine), and the gastric vascular barrier through plasmalemma vesicle-associated protein-1 (PV1) were also assessed. RESULTS In the subset of CD19+ LPMC, CD38+ cells (plasma cells) were significantly higher in AAG compared with HC. Ex vivo production of tumor necrosis factor (TNF)-α, interleukin (IL)-15, and transforming growth factor β1 was significantly higher in AAG compared with HC. At immunofluorescence, both IL-7R and TSLP were more expressed in AAG compared with HC and HP, and short TSLP transcripts were significantly increased in AAG compared with HC. In the supernatants of AAG corpus mucosa, short TSLP significantly reduced TNF-α, while zinc-l-carnosine significantly reduced interferon-γ, TNF-α, IL-21, IL-6, and IL-15. NAMPT transcripts were significantly increased in AAG compared with HC. PV1 was almost absent in AAG, mildly expressed in HC, and overexpressed in HP. DISCUSSION Plasma cells, proinflammatory cytokines, and altered gastric vascular barrier may play a major role in AAG. TSLP and NAMPT may represent potential therapeutic targets, while zinc-l-carnosine may dampen mucosal inflammation.
Collapse
Affiliation(s)
- Marco Vincenzo Lenti
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Emanuela Miceli
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Alessandro Vanoli
- Unit of Anatomic Pathology, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Giulia Fornasa
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Edith Lahner
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, University La Sapienza, Rome, Italy
| | - Ilaria Spadoni
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Paolo Giuffrida
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Giovanni Arpa
- Unit of Anatomic Pathology, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Alessandra Pasini
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Laura Rovedatti
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, IRCCS Ca' Granda Hospital Foundation, University of Milan, Milan, Italy
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, University of Pavia, Pavia, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
| | - Laura Conti
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, University La Sapienza, Rome, Italy
| | - Catherine Klersy
- Clinical Epidemiology & Biometry, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, IRCCS Ca' Granda Hospital Foundation, University of Milan, Milan, Italy
| | - Marco Paulli
- Unit of Anatomic Pathology, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Bruno Annibale
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, University La Sapienza, Rome, Italy
| | - Gino Roberto Corazza
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Yi R, Wang FB, Tan F, Long X, Pan Y, Zhao X. Intervention effects of lotus leaf flavonoids on gastric mucosal lesions in mice infected with Helicobacter pylori. RSC Adv 2020; 10:23510-23521. [PMID: 35517367 PMCID: PMC9055112 DOI: 10.1039/d0ra03311a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the main factors that cause gastric lesions. The lotus leaf is an edible plant used in traditional Eastern medicine. This study evaluates the intervention effects of lotus leaf flavonoids (LLF) on gastric mucosal lesions in mice infected with H. pylori and explores their mechanism of action. High-performance liquid chromatography analysis reveals that LLF contain kaempferitrin (kaempferol-3,7-dirhamnoside), hypericin, astragalin (kaempferol-3-glucoside), phlorizin, and quercetin. LLF can reduce the number of gastric mucosal lesions and tissue lesions in mice with H. pylori-induced gastric lesions. LLF can increase the levels of somatostatin and vasoactive intestinal peptide in the serum of mice with gastric lesions and decrease the levels of substance P and endothelin-1 to inhibit gastric lesions. LLF can also reduce the levels of interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-α, and interferon-gamma cytokines in the serum of mice with gastric lesions. Using a quantitative polymerase chain reaction assay it can be seen that LLF can downregulate mRNA expressions of TNF-α, IL-1β, myeloperoxidase, keratin (KRT) 16, KRT6b, and transglutaminase 3 epidermal in the gastric tissues of mice with gastric lesions. Western blot analysis indicates that LLF can downregulate the protein expressions of caspase-1, Nod-like receptor protein 3, IL-1β, TNF-α, and Toll-like receptor 4 in the gastric tissues of mice with gastric lesions. LLF have beneficial effects on gastric lesions induced by H. pylori. Meanwhile LLF is more active in competition with ranitidine. LLF represent an active substance that can inhibit H. pylori-induced gastric lesions. The flavones of LLF may enhance the inhibition of gastric mucosal lesions by promoting the interaction between the compounds.
Collapse
Affiliation(s)
- Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 P. R. China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 P. R. China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 P. R. China
| | - Feng-Bo Wang
- Department of Rehabilitation, First Affiliated Hospital of Chengdu Medical College Chengdu 610500 P. R. China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University Valenzuela 838 Philippines
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 P. R. China +86-23-6265-3650
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 P. R. China +86-23-6265-3650
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 P. R. China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 P. R. China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 P. R. China
| |
Collapse
|
12
|
Mechanisms of Inflammasome Signaling, microRNA Induction and Resolution of Inflammation by Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:267-302. [PMID: 31123893 DOI: 10.1007/978-3-030-15138-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammasome-controlled transcription and subsequent cleavage-mediated activation of mature IL-1β and IL-18 cytokines exemplify a crucial innate immune mechanism to combat intruding pathogens. Helicobacter pylori represents a predominant persistent infection in humans, affecting approximately half of the population worldwide, and is associated with the development of chronic gastritis, peptic ulcer disease, and gastric cancer. Studies in knockout mice have demonstrated that the pro-inflammatory cytokine IL-1β plays a central role in gastric tumorigenesis. Infection by H. pylori was recently reported to stimulate the inflammasome both in cells of the mouse and human immune systems. Using mouse models and in vitro cultured cell systems, the bacterial pathogenicity factors and molecular mechanisms of inflammasome activation have been analyzed. On the one hand, it appears that H. pylori-stimulated IL-1β production is triggered by engagement of the immune receptors TLR2 and NLRP3, and caspase-1. On the other hand, microRNA hsa-miR-223-3p is induced by the bacteria, which controls the expression of NLRP3. This regulating effect by H. pylori on microRNA expression was also described for more than 60 additionally identified microRNAs, indicating a prominent role for inflammatory and other responses. Besides TLR2, TLR9 becomes activated by H. pylori DNA and further TLR10 stimulated by the bacteria induce the secretion of IL-8 and TNF, respectively. Interestingly, TLR-dependent pathways can accelerate both pro- and anti-inflammatory responses during H. pylori infection. Balancing from a pro-inflammation to anti-inflammation phenotype results in a reduction in immune attack, allowing H. pylori to persistently colonize and to survive in the gastric niche. In this chapter, we will pinpoint the role of H. pylori in TLR- and NLRP3 inflammasome-dependent signaling together with the differential functions of pro- and anti-inflammatory cytokines. Moreover, the impact of microRNAs on H. pylori-host interaction will be discussed, and its role in resolution of infection versus chronic infection, as well as in gastric disease development.
Collapse
|
13
|
The Effects of L-Arginine on Oxidative and Nitrosative Stress and Inflammation Factors in Patients Infected with Helicobacter pylori. IRANIAN RED CRESCENT MEDICAL JOURNAL 2018. [DOI: 10.5812/ircmj.63590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Chen J, Hou X, Jia H, Cui G, Wu Z, Wang L, Lu C, Wu W, Wei Y, Uede T, Li L, Lian Z, Diao H. Regulatory T cells with a defect in inhibition on co-stimulation deteriorated primary biliary cholangitis. Oncotarget 2017; 8:108406-108417. [PMID: 29312539 PMCID: PMC5752452 DOI: 10.18632/oncotarget.22658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/28/2017] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) play an indispensable role in the progression of primary biliary cholangitis (PBC). Although Tregs could normalize costimulation in in vivo and in vitro models, it is obscure whether and how Tregs mediate these effects in PBC. Herein we focused on the quantitative and functional characteristics of Tregs in PBC. The number and proportion of Tregs, and the production of interleukin (IL)-10 were all significantly less in the PBC patients than in the healthy controls (HCs). In addition, compared to the HCs, the costimulatory CD86 of the circulation and liver were significantly higher in the patients with PBC. CD86 expression on CD1c+ cells negatively correlated with the proportion of Tregs. There was also a positive correlation between mayo risk score and the ratio of CD86/Treg. In vitro experiments showed that inhibition of CD86 expression on CD1c+ cells by Tregs was significantly weakened in the PBC patients. Furthermore, the autoantibodies from the PBC patients could promote CD86 expression on CD1c+ cells and transforming growth factor-β production by human hepatic stellate cells. Overall, Tregs declined in inhibition on co-stimulation expression in the presence of autoantibodies, which could be associated to PBC-related bile duct injury and fibrosis. This indicated that maintenance of balance of co-stimulation and Tregs could be beneficial for PBC.
Collapse
Affiliation(s)
- Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xianliang Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyu Jia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guangying Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chong Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yingfeng Wei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Toshimitsu Uede
- Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhexiong Lian
- Liver Immunology Laboratory, Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Lemire P, Galbas T, Thibodeau J, Segura M. Natural Killer Cell Functions during the Innate Immune Response to Pathogenic Streptococci. Front Microbiol 2017; 8:1196. [PMID: 28706510 PMCID: PMC5489694 DOI: 10.3389/fmicb.2017.01196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/12/2017] [Indexed: 01/21/2023] Open
Abstract
Dendritic cells (DCs) and NK cells play a crucial role in the first phase of host defense against infections. Group B Streptococcus (GBS) and Streptococcus suis are encapsulated streptococci causing severe systemic inflammation, leading to septicemia and meningitis. Yet, the involvement of NK cells in the innate immune response to encapsulated bacterial infection is poorly characterized. Here, it was observed that these two streptococcal species rapidly induce the release of IFN-γ and that NK cells are the major cell type responsible for this production during the acute phase of the infection. Albeit S. suis capacity to activate NK cells was lower than that of GBS, these cells partially contribute to S. suis systemic infection; mainly through amplification of the inflammatory loop. In contrast, such a role was not observed during GBS systemic infection. IFN-γ release by NK cells required the presence of DCs, which in turn had a synergistic effect on DC cytokine production. These responses were mainly mediated by direct DC-NK cell contact and partially dependent on soluble factors. Though IL-12 and LFA-1 were shown to be critical in S. suis-mediated activation of the DC-NK cell crosstalk, different or redundant molecular pathways modulate DC-NK interactions during GBS infection. The bacterial capsular polysaccharides also differently modulated NK cell activation. Together, these results demonstrated a role of NK cells in the innate immune response against encapsulated streptococcal infections; yet the molecular pathways governing NK activation seem to differ upon the pathogen and should not be generalized when studying bacterial infections.
Collapse
Affiliation(s)
- Paul Lemire
- Laboratory of Immunology of the Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of MontrealSt-Hyacinthe, QC, Canada
| | - Tristan Galbas
- Laboratory of Molecular Immunology, Faculty of Medicine, University of MontrealMontreal, QC, Canada
| | - Jacques Thibodeau
- Laboratory of Molecular Immunology, Faculty of Medicine, University of MontrealMontreal, QC, Canada
| | - Mariela Segura
- Laboratory of Immunology of the Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of MontrealSt-Hyacinthe, QC, Canada
| |
Collapse
|
16
|
The Human Stomach in Health and Disease: Infection Strategies by Helicobacter pylori. Curr Top Microbiol Immunol 2017; 400:1-26. [PMID: 28124147 DOI: 10.1007/978-3-319-50520-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a bacterial pathogen which commonly colonizes the human gastric mucosa from early childhood and persists throughout life. In the vast majority of cases, the infection is asymptomatic. H. pylori is the leading cause of peptic ulcer disease and gastric cancer, however, and these outcomes occur in 10-15% of those infected. Gastric adenocarcinoma is the third most common cause of cancer-associated death, and peptic ulcer disease is a significant cause of morbidity. Disease risk is related to the interplay of numerous bacterial host and environmental factors, many of which influence chronic inflammation and damage to the gastric mucosa. This chapter summarizes what is known about health and disease in H. pylori infection, and highlights the need for additional research in this area.
Collapse
|
17
|
Kronsteiner B, Bassaganya-Riera J, Philipson C, Viladomiu M, Carbo A, Abedi V, Hontecillas R. Systems-wide analyses of mucosal immune responses to Helicobacter pylori at the interface between pathogenicity and symbiosis. Gut Microbes 2016; 7:3-21. [PMID: 26939848 PMCID: PMC4856448 DOI: 10.1080/19490976.2015.1116673] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori is the dominant member of the gastric microbiota in over half of the human population of which 5-15% develop gastritis or gastric malignancies. Immune responses to H. pylori are characterized by mixed T helper cell, cytotoxic T cell and NK cell responses. The presence of Tregs is essential for the control of gastritis and together with regulatory CX3CR1+ mononuclear phagocytes and immune-evasion strategies they enable life-long persistence of H. pylori. This H. pylori-induced regulatory environment might contribute to its cross-protective effect in inflammatory bowel disease and obesity. Here we review host-microbe interactions, the development of pro- and anti-inflammatory immune responses and how the latter contribute to H. pylori's role as beneficial member of the gut microbiota. Furthermore, we present the integration of existing and new data into a computational/mathematical model and its use for the investigation of immunological mechanisms underlying initiation, progression and outcomes of H. pylori infection.
Collapse
Affiliation(s)
- Barbara Kronsteiner
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | | | - Monica Viladomiu
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | | | - Vida Abedi
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| |
Collapse
|
18
|
White JR, Winter JA, Robinson K. Differential inflammatory response to Helicobacter pylori infection: etiology and clinical outcomes. J Inflamm Res 2015; 8:137-47. [PMID: 26316793 PMCID: PMC4540215 DOI: 10.2147/jir.s64888] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The bacterial pathogen Helicobacter pylori commonly colonizes the human gastric mucosa during early childhood and persists throughout life. The organism has evolved multiple mechanisms for evading clearance by the immune system and, despite inducing inflammation in the stomach, the majority of infections are asymptomatic. H. pylori is the leading cause of peptic ulcer disease and gastric cancer. However, disease outcomes are related to the pattern and severity of chronic inflammation in the gastric mucosa, which in turn is influenced by both bacterial and host factors. Despite over 2 decades of intensive research, there remains an incomplete understanding of the circumstances leading to disease development, due to the fascinating complexity of the host-pathogen interactions. There is accumulating data concerning the virulence factors associated with increased risk of disease, and the majority of these have pro-inflammatory activities. Despite this, only a small proportion of those infected with virulent strains develop disease. Several H. pylori virulence factors have multiple effects on different cell types, including the induction of pro- and anti-inflammatory, immune stimulatory, and immune modulatory responses. The expression of multiple virulence factors is also often linked, making it difficult to assess the meaning of their effects in isolation. Overall, H. pylori is thought to usually modulate inflammation and limit acute damage to the mucosa, enabling the bacteria to persist. If this delicate balance is disturbed, disease may then develop.
Collapse
Affiliation(s)
- Jonathan Richard White
- NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| | - Jody Anne Winter
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Karen Robinson
- NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| |
Collapse
|
19
|
Innate immunity components and cytokines in gastric mucosa in children with Helicobacter pylori infection. Mediators Inflamm 2015; 2015:176726. [PMID: 25948881 PMCID: PMC4407632 DOI: 10.1155/2015/176726] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/18/2014] [Indexed: 12/26/2022] Open
Abstract
PURPOSE. To investigate the expression of innate immunity components and cytokines in the gastric mucosa among H. pylori infected and uninfected children. Materials and Methods. Biopsies of the antral gastric mucosa from children with dyspeptic symptoms were evaluated. Gene expressions of innate immunity receptors and cytokines were measured by quantitative real-time PCR. The protein expression of selected molecules was tested by immunohistochemistry. RESULTS. H. pylori infection did not lead to a significant upregulation of MyD88, TLR2, TLR4, CD14, TREM1, and TREM2 mRNA expression but instead resulted in high mRNA expression of IL-6, IL-10, IFN-γ, TNF-α, and CD163. H. pylori cagA(+) infection was associated with higher IL-6 and IL-10 mRNA expression, as compared to cagA(-) strains. H. pylori infected children showed increased IFN-γ and TNF-α protein levels. IFN-γ mRNA expression correlated with both H. pylori density of colonization and lymphocytic infiltration in the gastric mucosa, whereas TNF-α protein expression correlated with bacterial density. CONCLUSION. H. pylori infection in children was characterized by (a) Th1 expression profile, (b) lack of mRNA overexpression of natural immunity receptors, and (c) strong anti-inflammatory activities in the gastric mucosa, possibly resulting from increased activity of anti-inflammatory M2 macrophages. This may explain the mildly inflammatory gastric inflammation often observed among H. pylori infected children.
Collapse
|
20
|
Mahfouz R, Hoteit R, El Hajj N, Shammaa D, Sharara AI. KIR genotype distribution among symptomatic patients with and without Helicobacter pylori infection: is there any role for the B haplotype? J Clin Pathol 2015; 68:40-43. [PMID: 25352645 DOI: 10.1136/jclinpath-2014-202638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
UNLABELLED Contact of peripheral blood lymphocytes with Helicobacter pylori was proved to induce non- major histocompatibility complex-restricted cytotoxicity and natural killer cells are thought to play an important role in the immunity against H. pylori. AIMS In this research, we investigated any possible association between killer immunoglobulin-like receptors (KIR) genotypes and H. pylori infection. METHODS KIR genotype was analysed in 101 Lebanese symptomatic patients (51 H. pylori positive and 50 H. pylori-negative) using the KIR Genotyping SSP kit. RESULTS Among the H. pylori-positive patients, the AA, AB and BB genotypical frequencies were, respectively, 43.14%, 41.18% and 15.68% with an A:B ratio of 1.76:1. The AA, AB and BB genotypes frequencies for H. pylori-negative individuals were 18%, 62% and 20%, respectively, with an A:B ratio of 0.96:1. No significant difference between patients and controls was detected. CONCLUSIONS We noticed a reduced distribution of A haplotype among the 'H. pylori-negative' patients as compared with the "H. pylori-positive" group. This is the first study in the international literature that targets the correlation between KIR genotypes and H. pylori.
Collapse
Affiliation(s)
- R Mahfouz
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - R Hoteit
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - N El Hajj
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - D Shammaa
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - A I Sharara
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
21
|
Khandouzi N, Shidfar F, Agah S, Hosseini AF, Dehnad A. Comparison of the Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on the Eradication of Helicobacter pylori Infection, Serum Inflammatory Factors and Total Antioxidant Capacity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2015; 14:149-57. [PMID: 25561921 PMCID: PMC4277628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Helicobacter pylori infection, the most common chronic bacterial infection in the world, and an important cause of gastrointestinal disorders, may be involved in the pathogenesis of some extra-gastrointestinal disturbances, as well as an increase in blood levels of certain inflammatory markers. Anti-bacterial activity against Helicobacter pylori and anti-inflammatory properties of omega-3 fatty acids have been studied in several research studies. The purpose of the present study was the comparison of the effects of Eicosapentaenoic Acid and Docosahexaenoic Acid supplementation on Helicobacter pylori eradication, serum levels of some inflammatory markers and total antioxidant capacity. In a randomized, double-blind, placebo-controlled clinical trial, 97 Helicobacter pylori positive patients (64 patients in the two intervention groups and 33 in the control group), received 2 grams daily of Eicosapentaenoic Acid, Docosahexaenoic Acid or Medium Chain Triglyceride oil as placebo, along with conventional tetra-drug Helicobacter pylori eradication regimen, for 12 weeks. Helicobacter pylori eradication test and measurement of concentration of interleukine-6, interleukine-8, high-sensitivity C-reactive protein and total antioxidant capacity were performed after the intervention. There was no significant difference in eradication rate of the infection, levels of interleukine-6 and total antioxidant capacity among the three groups, while the levels of interleukine-8 and high-sensitivity C-reactive protein were statistically different. Eicosapentaenoic Acid or Docosahexaenoic Acid supplementation had no significant differential impact on the eradication of Helicobacter pylori infection, and serum levels of interleukine-6 and total antioxidant capacity. However, it had a desirable effect on the levels of interleukine-8 and high-sensitivity C-reactive protein in Helicobacter pylori positive patients.
Collapse
Affiliation(s)
- Nafiseh Khandouzi
- Department of Nutrition and Biochemistry, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran. ,E-mail:
| | - Agha Fatemeh Hosseini
- Department of Math and Statistics, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Afsaneh Dehnad
- Department of Foreign Languages, School ofHealth Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Marwaha S, Schumacher MA, Zavros Y, Eghbalnia HR. Crosstalks between cytokines and Sonic Hedgehog in Helicobacter pylori infection: a mathematical model. PLoS One 2014; 9:e111338. [PMID: 25364910 PMCID: PMC4218723 DOI: 10.1371/journal.pone.0111338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/23/2014] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori infection of gastric tissue results in an immune response dominated by Th1 cytokines and has also been linked with dysregulation of Sonic Hedgehog (SHH) signaling pathway in gastric tissue. However, since interactions between the cytokines and SHH during H. pylori infection are not well understood, any mechanistic understanding achieved through interpretation of the statistical analysis of experimental results in the context of currently known circuit must be carefully scrutinized. Here, we use mathematical modeling aided by restraints of experimental data to evaluate the consistency between experimental results and temporal behavior of H. pylori activated cytokine circuit model. Statistical analysis of qPCR data from uninfected and H. pylori infected wild-type and parietal cell-specific SHH knockout (PC-SHHKO) mice for day 7 and 180 indicate significant changes that suggest role of SHH in cytokine regulation. The experimentally observed changes are further investigated using a mathematical model that examines dynamic crosstalks among pro-inflammatory (IL1β, IL-12, IFNγ, MIP-2) cytokines, anti-inflammatory (IL-10) cytokines and SHH during H. pylori infection. Response analysis of the resulting model demonstrates that circuitry, as currently known, is inadequate for explaining of the experimental observations; suggesting the need for additional specific regulatory interactions. A key advantage of a computational model is the ability to propose putative circuit models for in-silico experimentation. We use this approach to propose a parsimonious model that incorporates crosstalks between NFĸB, SHH, IL-1β and IL-10, resulting in a feedback loop capable of exhibiting cyclic behavior. Separately, we show that analysis of an independent time-series GEO microarray data for IL-1β, IFNγ and IL-10 in mock and H. pylori infected mice further supports the proposed hypothesis that these cytokines may follow a cyclic trend. Predictions from the in-silico model provide useful insights for generating new hypothesis and design of subsequent experimental studies.
Collapse
Affiliation(s)
- Shruti Marwaha
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Michael A. Schumacher
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Hamid R. Eghbalnia
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
23
|
Chmiela M, Miszczyk E, Rudnicka K. Structural modifications of Helicobacter pylori lipopolysaccharide: An idea for how to live in peace. World J Gastroenterol 2014; 20:9882-9897. [PMID: 25110419 PMCID: PMC4123370 DOI: 10.3748/wjg.v20.i29.9882] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/26/2013] [Accepted: 04/23/2014] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss the findings and concepts underlying the “persistence mechanisms” of Helicobacter pylori (H. pylori), a spiral-shaped, Gram-negative rod bacterium that was discovered as a gastric pathogen by Marshall and Warren in 1984. H. pylori colonizes the gastric mucosa of nearly half of the human population. Infections appear in early childhood and, if not treated, persist for life. The presence or absence of symptoms and their severity depend on multiple bacterial components, host susceptibility and environmental factors, which allow H. pylori to switch between pathogenicity and commensalism. Many studies have shown that H. pylori components may facilitate the colonization process and the immune response of the host during the course of H. pylori infection. These H. pylori-driven interactions might result from positive or negative modulation. Among the negative immunomodulators, a prominent position is occupied by a vacuolating toxin A (VacA) and cytotoxin-associated gene A (CagA) protein. However, in light of the recent studies that are presented in this review, it is necessary to enrich this panel with H. pylori lipopolysaccharide (LPS). Together with CagA and VacA, LPS suppresses the elimination of H. pylori bacteria from the gastric mucosa by interfering with the activity of innate and adaptive immune cells, diminishing the inflammatory response, and affecting the adaptive T lymphocyte response, thus facilitating the development of chronic infections. The complex strategy of H. pylori bacteria for survival in the gastric mucosa of the host involves both structural modifications of LPS lipid A to diminish its endotoxic properties and the expression and variation of Lewis determinants, arranged in O-specific chains of H. pylori LPS. By mimicking host components, this phenomenon leaves these bacteria “invisible” to immune cells. Together, these mechanisms allow H. pylori to survive and live for many years within their hosts.
Collapse
|
24
|
Booth JS, Toapanta FR, Salerno-Goncalves R, Patil S, Kader HA, Safta AM, Czinn SJ, Greenwald BD, Sztein MB. Characterization and functional properties of gastric tissue-resident memory T cells from children, adults, and the elderly. Front Immunol 2014; 5:294. [PMID: 24995010 PMCID: PMC4062881 DOI: 10.3389/fimmu.2014.00294] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/05/2014] [Indexed: 01/10/2023] Open
Abstract
T cells are the main orchestrators of protective immunity in the stomach; however, limited information on the presence and function of the gastric T subsets is available mainly due to the difficulty in recovering high numbers of viable cells from human gastric biopsies. To overcome this shortcoming we optimized a cell isolation method that yielded high numbers of viable lamina propria mononuclear cells (LPMC) from gastric biopsies. Classic memory T subsets were identified in gastric LPMC and compared to peripheral blood mononuclear cells (PBMC) obtained from children, adults, and the elderly using an optimized 14 color flow cytometry panel. A dominant effector memory T (TEM) phenotype was observed in gastric LPMC CD4+ and CD8+ T cells in all age groups. We then evaluated whether these cells represented a population of gastric tissue-resident memory T (TRM) cells by assessing expression of CD103 and CD69. The vast majority of gastric LPMC CD8+ T cells either co-expressed CD103/CD69 (>70%) or expressed CD103 alone (~20%). Gastric LPMC CD4+ T cells also either co-expressed CD103/CD69 (>35%) or expressed at least one of these markers. Thus, gastric LPMC CD8+ and CD4+ T cells had the characteristics of TRM cells. Gastric CD8+ and CD4+ TRM cells produced multiple cytokines (IFN-γ, IL-2, TNF-α, IL-17A, MIP-1β) and up-regulated CD107a upon stimulation. However, marked differences were observed in their cytokine and multi-cytokine profiles when compared to their PBMC TEM counterparts. Furthermore, gastric CD8+ TRM and CD4+ TRM cells demonstrated differences in the frequency, susceptibility to activation, and cytokine/multi-cytokine production profiles among the age groups. Most notably, children’s gastric TRM cells responded differently to stimuli than gastric TRM cells from adults or the elderly. In conclusion, we demonstrate the presence of gastric TRM, which exhibit diverse functional characteristics in children, adults, and the elderly.
Collapse
Affiliation(s)
- Jayaum S Booth
- Center for Vaccine Development, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Pediatrics, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Franklin R Toapanta
- Center for Vaccine Development, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Medicine, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Rosangela Salerno-Goncalves
- Center for Vaccine Development, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Pediatrics, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Seema Patil
- Department of Medicine, University of Maryland School of Medicine , Baltimore, MD , USA ; Division of Gastroenterology and Hepatology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Howard A Kader
- Department of Pediatrics, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Anca M Safta
- Department of Pediatrics, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Bruce D Greenwald
- Department of Medicine, University of Maryland School of Medicine , Baltimore, MD , USA ; Division of Gastroenterology and Hepatology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Marcelo B Sztein
- Center for Vaccine Development, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Pediatrics, University of Maryland School of Medicine , Baltimore, MD , USA ; Department of Medicine, University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|
25
|
Kronsteiner B, Bassaganya-Riera J, Philipson N, Hontecillas R. Novel insights on the role of CD8+ T cells and cytotoxic responses during Helicobacter pylori infection. Gut Microbes 2014; 5:357-62. [PMID: 24755940 PMCID: PMC4153774 DOI: 10.4161/gmic.28899] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori chronically persists in 50% of the human population and causes serious gastric and duodenal pathologies in 15% of infected people. Research on the immune response to the infection has mainly focused on the induction of CD4+ T cell responses. Human studies emphasize the potential clinical relevance of CD8+ cytotoxic T lymphocytes, however this cell type has barely been reported in studies employing mouse or gerbil models. Traditionally characterized as an extracellular bacterium, H. pylori has been identified inside epithelial and immune cells. Similarly to other intracellular bacteria, H. pylori infection of macrophages can alter autophagy and phagosome processing. A novel animal model of H. pylori infection demonstrates for the first time the induction of cytotoxic CD8+ T cell responses in pigs and localization of intracellular H. pylori within lymphoid aggregates. Here, we discuss novel mechanisms of host-H. pylori interactions that could lead to the induction of cytotoxic responses.
Collapse
|
26
|
The natural killer cell interferon-gamma response to bacteria is diminished in untreated HIV-1 infection and defects persist despite viral suppression. J Acquir Immune Defic Syndr 2014; 65:259-67. [PMID: 24091697 DOI: 10.1097/01.qai.0000435603.50598.2b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Natural killer (NK) cells are important in innate immune responses to bacterial and viral pathogens. HIV-1 infection is associated with opportunistic bacterial infections and with microbial translocation, but the nature of the NK cell response to bacteria during HIV-1 infection has not been studied extensively. The objective of this study was to compare NK cell responses to bacteria in HIV-1-infected versus that in uninfected individuals. METHODS Multicolor flow cytometry was used to evaluate the ability of blood NK cell subsets (CD56CD16, CD56CD16, and CD56CD16) from treated, virally suppressed, and untreated viremic subjects with chronic HIV-1 infection and uninfected controls, to secrete interferon gamma (IFN-γ) in response to the in vitro stimulation of peripheral blood mononuclear cells with heat-killed commensal Escherichia coli or pathogenic Salmonella typhimurium. RESULTS All 3 NK cell subsets produced IFN-γ in response to bacteria, but CD56CD16 NK cells were least responsive. Untreated HIV-1-infected donors had increased frequencies of CD56CD16 NK cells and lower overall frequencies of IFN-γ-producing NK cells responding to E. coli and S. typhimurium than did NK cells from uninfected donors. These NK cell defects were not fully restored in antiretroviral therapy-treated donors. Monocytes were necessary for NK cells to respond to bacteria, but the HIV-associated defect was intrinsic to NK cells because the addition of normal monocytes did not restore IFN-γ production in response to bacteria. CONCLUSIONS Functional defects and numeric alterations of NK cell subsets lead to decreased frequencies of bacteria-reactive, IFN-γ-producing NK cells in HIV-1-infected subjects, even those on antiretroviral therapy.
Collapse
|
27
|
Qi Y, Xiong X, Duan C, Jiao J, Gong W, Wen B. Recombinant protein YbgF induces protective immunity against Rickettsia heilongjiangensis infection in C3H/HeN mice. Vaccine 2013; 31:5643-50. [DOI: 10.1016/j.vaccine.2013.09.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/12/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
|
28
|
Helicobacter pylori infection in a pig model is dominated by Th1 and cytotoxic CD8+ T cell responses. Infect Immun 2013; 81:3803-13. [PMID: 23897614 DOI: 10.1128/iai.00660-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infection is the leading cause for peptic ulcer disease and gastric adenocarcinoma. Mucosal T cell responses play an important role in mediating H. pylori-related gastric immunopathology. While induced regulatory T (iTreg) cells are required for chronic colonization without disease, T helper 1 (Th1) effector responses are associated with lower bacterial loads at the expense of gastric pathology. Pigs were inoculated with either H. pylori strain SS1 or J99. Phenotypic and functional changes in peripheral blood mononuclear cell (PBMC) populations were monitored weekly, and mucosal immune responses and bacterial loads were assessed up to 2 months postinfection. Both H. pylori strains elicited a Th1 response characterized by increased percentages of CD4(+)Tbet(+) cells and elevated gamma interferon (IFN-γ) mRNA in PBMCs. A subset of CD8(+) T cells expressing Tbet and CD16 increased following infection. Moreover, a significant increase in perforin and granzyme mRNA expression was observed in PBMCs of infected pigs, indicating a predominant cytotoxic immune response. Infiltration of B cells, myeloid cells, T cells expressing Treg- and Th17-associated transcription factors, and cytotoxic T cells was found in the gastric lamina propria of both infected groups. Interestingly, based on bacterial reisolation data, strain SS1 showed greater capacity to colonize and/or persist in the gastric mucosa than did strain J99. This novel pig model of infection closely mimics human gastric pathology and presents a suitable avenue for studying effector and regulatory responses toward H. pylori described in humans.
Collapse
|
29
|
Rudnicka K, Matusiak A, Miszczyk E, Rudnicka W, Tenderenda M, Chmiela M. Immunophenotype of peripheral blood natural killer cells and IL-10 serum levels in relation to Helicobacter pylori status. APMIS 2013; 121:806-13. [PMID: 23758061 DOI: 10.1111/apm.12120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/08/2013] [Indexed: 12/25/2022]
Abstract
Recent findings suggest that NK (Natural Killer) cells may directly modulate the antimicrobial immune responses. In this study, we performed immunophenotypic analysis of peripheral blood NK cells with regard to CD56, CD16, Nkp46, and CD25 markers, as well as IL-10 levels quantification in the sera samples of asymptomatic, H. pylori (Hp)-infected or uninfected individuals, and combined these results with our previous findings on lymphocyte cytotoxic activity. Twenty healthy volunteers [10 Hp(-);10 Hp(+)] were included in the study. The percentages of classic lymphocytes (CD3(+) ) and NK cells (CD3(-) CD56(+) , CD3(-) Nkp46(+) , CD3(-) CD16(+) ) with or without CD25 receptor were evaluated by fluorochrome-conjugated monoclonal antibody staining and flow cytometry analysis. IL-10 quantification was performed by enzyme-linked immunosorbent assay-ELISA. Our study showed elevated levels of IL-10 and higher NK cell numbers of both CD3(-) CD56(+) CD25(+) and CD3(-) Nkp46(+) CD25(+) phenotypes, as well as CD3(+) CD25(+) classic lymphocytes in Hp(+) compared with Hp(-) individuals. No differences between Hp(-) and Hp(+) individuals were found either in total number of classic lymphocytes or NK cell subtypes. Our data suggest that in Hp(+) donors, there is a domination of lymphocytes and NK cells co-expressing CD25 marker, which might be influenced by the regulatory IL-10. This phenomenon may be a result of H. pylori adaptation to a changing environment in vivo leading to a chronic infection and lack of severe gastric pathologies.
Collapse
Affiliation(s)
- Karolina Rudnicka
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
30
|
Yang CA, Scheibenbogen C, Bauer S, Kleinle C, Wex T, Bornschein J, Malfertheiner P, Hellmig S, Schumann RR, Hamann L. A frequent Toll-like receptor 1 gene polymorphism affects NK- and T-cell IFN-γ production and is associated with Helicobacter pylori-induced gastric disease. Helicobacter 2013; 18:13-21. [PMID: 23067142 DOI: 10.1111/hel.12001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Helicobacter pylori infects approximately 50% of the world population. Among the infected individuals, only 10-20% develop peptic ulcers and <3% progress to gastric cancer (GC). Th1-predominant immune responses have been suggested to underlie H. pylori-induced gastric diseases. However, the reason for a strong inter-individual variation of susceptibility and course of the disease is currently far from being understood. It has been shown that H. pylori stimulates the host's Toll-like receptor (TLR) 2/1 complex. Furthermore, the single nucleotide polymorphism (SNP) I602S of TLR1 alters the inflammatory cytokine response of monocytes. Therefore, we hypothesized an association of this TLR1 SNP with H. pylori-mediated gastric pathologies. MATERIALS AND METHODS Subjects with different TLR1 genotypes were analyzed for their IFN-γ response of NK- and T-cells. We further genotyped 548 patients with gastric diseases for this SNP and compared patients with gastritis with those having ulcer, and patients with high-risk gastritis versus patients with GC. RESULTS Homozygous 602S allele carriers exhibited impaired in vitro IFN-γ responses to the TLR2/1 agonist Pam(3) CSK(4). The TLR1 I602S SNP is significantly associated with GC (p = .002) and gastric ulcer (p = .051). Odds ratios showed significantly reduced risk regarding GC and peptic ulcer for the homozygous mutated genotype. The odds ratios were 0.4 (95% CI, 0.22-0.72) and 0.588 (95% CI, 0.35-1.00), respectively. CONCLUSION In conclusion, our results suggest that the nonfunctional TLR1 602S/S genotype is associated with a reduced risk of H. pylori-induced gastric diseases, probably via diminished Th1 responses.
Collapse
Affiliation(s)
- Chin-An Yang
- Institute of Medical Immunology CVK, Charité-University Medical Center, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rudnicka K, Włodarczyk M, Moran AP, Rechciński T, Miszczyk E, Matusiak A, Szczęsna E, Walencka M, Rudnicka W, Chmiela M. Helicobacter pylori antigens as potential modulators of lymphocytes' cytotoxic activity. Microbiol Immunol 2012; 56:62-75. [PMID: 22040089 DOI: 10.1111/j.1348-0421.2011.00399.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori (H.p) colonizes human gastric mucosa and causes gastric and duodenal ulcer disease or gastric cancer. Various H.p compounds may modulate the host immune response in regards to tolerance of the infection or disease development. The aim of this study was to determine whether H.p lipopolysaccharide (LPS) and glycine acid extract antigens (GE) or E. coli LPS influence the cytotoxic activity of peripheral blood lymphocytes from H.p infected - H.p (+) or uninfected - H.p (-) individuals, in the presence or absence of exogenous interleukin (IL)12. Individual H.p status was defined by the urea breath test. Lymphocytes, stimulated or not with H.p, and control antigens, with or without IL-12, were used as effector cells and epithelial HeLa cells as targets. The cytotoxicity of lymphocytes was expressed as the percentage of dead target cells unable to reduce tetrazolium salt. The supernatants from HeLa/lymphocyte cultures were used for detection of the cellular cytotoxicity markers granzyme B and caspase 8. The natural cytotoxic activity of lymphocytes from H.p (+) was less than that of H.p (-) donors. This may have been due to fewer natural killer cells of CD3(-) CD56(+) Nkp46(+) phenotype in H.p (+) in comparison to H.p (-) subjects. H.p GE and standard E. coli LPS enhanced the cytotoxicity of lymphocytes towards target cells whereas H.p LPS downregulated this activity. The decrease in lymphocyte cytotoxicity in response to H.p LPS correlated with a lack of IL-2 and IL-12 production, inhibition of interferon-γ production, and low IL-10 secretion by mononuclear leukocytes. IL-12 significantly enhanced the natural as well as H.p LPS and H.p GE driven cytotoxic capacity of lymphocytes. In conclusion, H.p LPS may negatively modulate natural cytotoxic activity and cytokine secretion by immunocompetent cells and thus be involved in the maintenance of infection and development of gastric pathologies.
Collapse
Affiliation(s)
- Karolina Rudnicka
- Department of Immunology and Infectious Biology, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Role of natural killer and dendritic cell crosstalk in immunomodulation by commensal bacteria probiotics. J Biomed Biotechnol 2011; 2011:473097. [PMID: 21660136 PMCID: PMC3110311 DOI: 10.1155/2011/473097] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/01/2011] [Indexed: 02/07/2023] Open
Abstract
A cooperative dialogue between natural killer (NK) cells and dendritic cells (DCs) has been elucidated in the last years. They help each other to acquire their complete functions, both in the periphery and in the secondary lymphoid organs. Thus, NK cells' activation by dendritic cells allows the killing of transformed or infected cells in the periphery but may also be important for the generation of adaptive immunity. Indeed, it has been shown that NK cells may play a key role in polarizing a Th1 response upon interaction with DCs exposed to microbial products. This regulatory role of DC/NK cross-talk is of particular importance at mucosal surfaces such as the intestine, where the immune system exists in intimate association with commensal bacteria such as lactic acid bacteria (LAB). We here review NK/DC interactions in the presence of gut-derived commensal bacteria and their role in bacterial strain-dependent immunomodulatory effects. We particularly aim to highlight the ability of distinct species of commensal bacterial probiotics to differently affect the outcome of DC/NK cross-talk and consequently to differently influence the polarization of the adaptive immune response.
Collapse
|
33
|
Helmin-Basa A, Michalkiewicz J, Gackowska L, Kubiszewska I, Eljaszewicz A, Mierzwa G, Bala G, Czerwionka-Szaflarska M, Prokurat A, Marszalek A. Pediatric Helicobacter pylori infection and circulating T-lymphocyte activation and differentiation. Helicobacter 2011; 16:27-35. [PMID: 21241409 DOI: 10.1111/j.1523-5378.2010.00809.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND In this study, H. pylori-infected and noninfected children with gastritis were compared to a control group with respect to circulating CD4(+) and CD8(+) T lymphocytes expressing activation and differentiation markers. Additionally, the lymphocyte phenotypes of children with gastritis were correlated with the gastric inflammation scores. MATERIALS AND METHODS H. pylori infection status was assessed based on [¹³C]urea breath test, rapid urease test, and histology. Analysis of the lymphocyte surface molecule expression was carried out by triple-color flow cytometry. RESULTS The group of H. pylori-infected children showed an elevated proportion of peripheral B cells with CD19(low) , along with a twofold increase in the percentage of memory (CD45RO(+)) CD4(+) and CD8(+) T-cell subsets (p < .05). Moreover, a positive correlation between the age and the percentage of these subsets was seen (r = .38, p = .04 and r = .56, p < .01, respectively). Children with gastritis but without infection had a slightly increased percentage of CD8(+) T cells and CD56(+) NK cells, CD3(high) T cells and CD45RO(high) CD4(+) T-cell subsets (p < .05). Both H. pylori-infected and noninfected children with gastritis were characterized by an increased percentage of memory/effector CD4(+) T cells, the presence of NK cells with CD56(high), memory T-cell subset with CD4(high), and naive, memory, memory/effector, and effector T-cell subsets with CD8(high) (p < .05). Gastric inflammation scores correlated positively with the percentage of CD4(+) T lymphocytes in H. pylori-infected children (r = .42, p = .03). In noninfected children, gastric inflammation scores correlated positively with the percentage of B cells (r = .45, p = .04). CONCLUSION In H. pylori-negative children, gastritis was associated with an increased percentage of activated NK and T cells, and intermediate-differentiated peripheral blood CD4(+) T cells, which was more pronounced in H. pylori-positive children who also showed an increased B-cell response. However, increased inflammation was only associated with the elevation of CD4(+) T-cell percentage in H. pylori-positive children as well as B-cell percentage in H. pylori-negative children with gastritis.
Collapse
Affiliation(s)
- Anna Helmin-Basa
- Department of Immunology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lindgren Å, Yun CH, Sjöling Å, Berggren C, Sun JB, Jonsson E, Holmgren J, Svennerholm AM, Lundin SB. Impaired IFN-γ production after stimulation with bacterial components by natural killer cells from gastric cancer patients. Exp Cell Res 2011; 317:849-58. [PMID: 21255568 DOI: 10.1016/j.yexcr.2011.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 12/30/2010] [Accepted: 01/03/2011] [Indexed: 12/13/2022]
Abstract
Gastric adenocarcinoma is a major health problem world-wide, as this is the second most common cause of cancer death in the world. It has been estimated that infection by Helicobacter pylori cause at least half of the gastric cancers. Previously, we have demonstrated that H. pylori antigens directly activate NK cells to secrete IFN-γ. There is also a marked synergistic effect in NK cells stimulated with bacterial lysate and low levels of IL-12, a cytokine which is produced by macrophages and dendritic cells in the H. pylori-infected stomach. The present study was designed to investigate whether NK cells from gastric cancer patients display an altered ability to respond to components from H. pylori and other bacteria. The results show that NK cells from peripheral blood of gastric cancer patients have a severely suppressed ability to produce IFN-γ after stimulation with H. pylori lysate and the synthetic bacterial lipoprotein FSL-1. Furthermore, the synergistic effect of IL-12 and lysate is absent in gastric cancer patients, unless the concentration of IL-12 is increased 10-fold. We also demonstrate that there is a similar lack of IFN-γ production from NK cells isolated from the gastric mucosa of cancer patients. In addition, we propose that the observed suppression is due to tumour-derived TGF-β and that increased expression of the transcription factor GATA-3 may be responsible for the TGF-β induced suppression.
Collapse
Affiliation(s)
- Åsa Lindgren
- Institute of Biomedicine, Department of Microbiology and Immunology, and Mucosal Immunobiology and Vaccine Institute for Strategic Research, University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lymphomatoid gastropathy: a distinct clinicopathologic entity of self-limited pseudomalignant NK-cell proliferation. Blood 2010; 116:5631-7. [PMID: 20829373 DOI: 10.1182/blood-2010-06-290650] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diagnostic errors in distinguishing between malignant and reactive processes can cause serious clinical consequences. We report 10 cases of unrecognized self-limited natural killer-cell proliferation in the stomach, designated as lymphomatoid gastropathy (LyGa). This study included 5 men and 5 women (age, 46-75 years) without any gastric symptoms. Gastroscopy showed elevated lesion(s) (diameter, ∼ 1 cm). Histologically, medium-sized to large atypical cells diffusely infiltrated the lamina propria and, occasionally, the glandular epithelium. The cells were CD2(+/-), sCD3(-), cCD3(+), CD4(-), CD5(-), CD7(+), CD8(-), CD16(-), CD20(-), CD45(+), CD56(+), CD117(-), CD158a(-), CD161(-), T cell-restricted intracellular antigen-1(+), granzyme B(+), perforin(+), Epstein-Barr early RNA(-), T-cell receptor αβ(-), and T-cell receptor γδ(-). Analysis of the 16 specimens biopsied from 10 patients led to a diagnosis of lymphoma or suspected lymphoma in 11 specimens, gastritis for 1 specimen, adenocarcinoma for 1 specimen, and LyGa or suspected LyGa for 3 specimens. Most lesions underwent self-regression. Three cases relapsed, but none of the patients died. According to conventional histopathologic criteria, LyGa is probably diagnosed as lymphoma, especially as extranodal natural killer/T-cell lymphoma, nasal type. However, LyGa is recognized as a pseudomalignant process because of its clinical characteristics. The concept of LyGa should be well recognized.
Collapse
|
36
|
Szkaradkiewicz A, Karpiński TM, Drews M, Borejsza-Wysocki M, Majewski P, Andrzejewska E. Natural killer cell cytotoxicity and immunosuppressive cytokines (IL-10, TGF-beta1) in patients with gastric cancer. J Biomed Biotechnol 2010; 2010:901564. [PMID: 20445748 PMCID: PMC2860365 DOI: 10.1155/2010/901564] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 02/16/2010] [Indexed: 11/17/2022] Open
Abstract
Cytotoxic activity of NK cells was estimated as related to IL-10 and TGF-beta1 serum levels and Helicobacter pylori infection in gastric cancer patients. Moreover, we sought to determine whether human gastric adenocarcinoma cells in vitro release IL-10, TGF-beta1 or factor(s) affecting NK cytotoxicity. The studies were conducted on 42 patients with gastric cancer (14 with I-II stage-group 1; 28 with III-IV stage-group 2) and on 20 healthy volunteers. The cytotoxicity was tested on NK cells isolated from peripheral blood. IL-10 and TGF-beta1 levels were determined by ELISA. H. pylori was detected in cultures of gastric mucosa biopsies and in direct preparations. In 71.4% patients of group 1 NK cytotoxicity and IL-10 serum levels remained within a normal range while in 68% patients of group 2 a marked decrease was noted in cytotoxic function of NK cells, accompanied by increased levels of IL-10 in serum. In turn, in most patients of either group, independently of NK cytotoxicity and stage grouping in the patients, elevated serum levels of TGF-beta1 were detected. Presence of H. pylori infection manifested no relationship with NK cytotoxicity, IL-10, or the TGF-beta1 serum levels. In cultures of tumour cells presence of IL-10 and TGF-beta1 was demonstrated. Nevertheless, supernatants of the cultures did not change cytotoxic activity of NK cells. Development of gastric carcinoma is accompanied by markedly decreased cytotoxic function of NK cells and by elevated IL-10 and TGF-beta1 serum levels. Gastric carcinoma cells may release IL-10, the suppressive activity of which may in a secondary manner decrease NK cytotoxicity.
Collapse
Affiliation(s)
- Andrzej Szkaradkiewicz
- Department of Medical Microbiology, University of Medical Sciences in Poznań, Wieniawskiego 3 Street, 61-712 Poznań, Poland
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, University of Medical Sciences in Poznań, Wieniawskiego 3 Street, 61-712 Poznań, Poland
| | - Michał Drews
- Department of General, Gastroenterological and Endocrinological Surgery, University of Medical Sciences in Poznań, Przybyszewskiego 49 Street, 60-355 Poznań, Poland
| | - Maciej Borejsza-Wysocki
- Department of General, Gastroenterological and Endocrinological Surgery, University of Medical Sciences in Poznań, Przybyszewskiego 49 Street, 60-355 Poznań, Poland
| | - Przemysław Majewski
- Department of Clinical Pathomorphology, University of Medical Sciences in Poznań, Przybyszewskiego 49 Street, 60-355 Poznań, Poland
| | - Ewa Andrzejewska
- Department of Medical Microbiology, University of Medical Sciences in Poznań, Wieniawskiego 3 Street, 61-712 Poznań, Poland
| |
Collapse
|
37
|
Lindgren A, Pavlovic V, Flach CF, Sjöling A, Lundin S. Interferon-gamma secretion is induced in IL-12 stimulated human NK cells by recognition of Helicobacter pylori or TLR2 ligands. Innate Immun 2010; 17:191-203. [PMID: 20130107 DOI: 10.1177/1753425909357970] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori induce a chronic inflammation in the human gastric mucosa characterized by increased production of interferon-gamma (IFN-γ). The presence of natural killer (NK) cells in the human gastric mucosa and the ability of NK cells to produce IFN-γ suggest an important role of NK cells in the immune response directed towards H. pylori infection. Since NK cells previously have been shown to respond to bacterial components with IFN-γ production, we investigated the mechanisms for the recognition of H. pylori. We found that inhibition of MyD88 homodimerization resulted in decreased production of IFN-γ and that inhibition of the p38 MAPK decreased the production as well as the secretion of IFN-γ. Further studies indicated an involvement of Toll-like receptors (TLRs), in particular TLR2. Finally, we showed that the H. pylori specific membrane bound lipoprotein HpaA induced IFN-γ production from NK cells through recognition by TLR2. In conclusion, we suggest an involvement of TLR2 in the recognition of H. pylori by human NK cells and that HpaA is a TLR2 ligand important for recognition.
Collapse
Affiliation(s)
- Asa Lindgren
- Department of Microbiology and Immunology, Institute of Biomedicine, and Mucosal Immunobiology and Vaccine Center, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
38
|
Romero-Adrián TB, Leal-Montiel J, Monsalve-Castillo F, Mengual-Moreno E, McGregor EG, Perini L, Antúnez A. Helicobacter pylori: Bacterial Factors and the Role of Cytokines in the Immune Response. Curr Microbiol 2009; 60:143-55. [DOI: 10.1007/s00284-009-9518-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 09/25/2009] [Indexed: 12/26/2022]
|
39
|
Miller-Podraza H, Weikkolainen K, Larsson T, Linde P, Helin J, Natunen J, Karlsson KA. Helicobacter pylori binding to new glycans based on N-acetyllactosamine. Glycobiology 2008; 19:399-407. [PMID: 19106234 DOI: 10.1093/glycob/cwn150] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previously we reported binding of Helicobacter pylori to various nonacid and sialylated neolacto carbohydrate structures using a wide range of natural and chemically modified sequences. A novel nonsialylated neolacto-based binding epitope, GlcNAc beta 3Gal beta 4GlcNAc, and analogous structures carrying terminal GalNAc beta 3, GalNAc alpha 3, or Gal alpha 3 showed the binding activity (Miller-Podraza H, Lanne B, Angström J, Teneberg S, Abul-Milh M, Jovall P-A, Karlsson H, Karlsson K-A. 2005. Novel binding epitope for Helicobacter pylori found in neolacto carbohydrate chains. J Biol Chem. 280:19695-19703). The present work reports two other H. pylori-binding nonsialylated neolacto-based structures, GlcA beta 3Gal beta 4GlcNAc beta 3-R and Glc beta 3Gal beta 4GlcNAc beta 3-R, and two amide derivatives (N-methyl and N-ethyl) of GlcA beta 3Gal beta 4GlcNAc beta 3-R which were bound by H. pylori. The latter structures turned out to be more effective as H. pylori binders than the parent saccharide. New reducing-end variants of the neolacto epitope including species containing N-acetyllactosamine linked beta 6 to GlcNAc or Gal with similarity to branched polylactosamines and mucins were prepared and tested. The results extend our previous findings on binding specificities of H. pylori and show that this pathogen is able to interact with an array of N-acetyllactosamine/neolacto structures, which may be of importance for the in vivo interaction of the bacterium with human cells. The information gained in this work may also be of value for rational design of anti-H. pylori drugs.
Collapse
Affiliation(s)
- Halina Miller-Podraza
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Göteborg University, Box 440, SE 405 30 Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
40
|
O'Keeffe J, Gately CM, O'Donoghue Y, Zulquernain SA, Stevens FM, Moran AP. Natural killer cell receptor T-lymphocytes in normal and Helicobacter pylori-infected human gastric mucosa. Helicobacter 2008; 13:500-5. [PMID: 19166415 DOI: 10.1111/j.1523-5378.2008.00641.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Helicobacter pylori infection is associated with development of chronic inflammation and infiltration of immune cells into the gastric mucosa. As unconventional T-lymphocytes expressing natural killer cell receptors are considered to play central roles in the immune response against infection, a study investigating their frequencies in normal and H. pylori-infected gastric mucosa was undertaken. MATERIALS AND METHODS Flow cytometry was used to quantify T-cells expressing the natural killer cell markers CD161, CD56, and CD94 in freshly isolated lymphocytes from the epithelial and lamina propria layers of gastric mucosa. Thirteen H. pylori-positive and 24 H. pylori-negative individuals were studied. RESULTS CD94(+) T-cells were the most abundant (up to 40%) natural killer receptor-positive T-cell population in epithelial and lamina propria layers of H. pylori-negative gastric mucosa. CD161(+) T-cells accounted for about one-third of all T-cells in both compartments, but the lowest proportion were of CD56(+) T-cells. Compared with H. pylori-negative mucosa, in H. pylori-infected mucosa the numbers of CD161(+) T-cells were significantly greater (p = .04) in the epithelium, whereas the numbers of CD56(+) T-cells were lower (p = .01) in the lamina propria. A minor population (< 2%) of T-cells in both mucosal layers of H. pylori-negative subjects were natural killer T-cells, and whose proportions were not significantly different (p > .05) to those in H. pylori-infected individuals. CONCLUSIONS The predominance, heterogeneity, and distribution of natural killer cell receptor-positive T-cells at different locations within the gastric mucosa reflects a potential functional role during H. pylori infection and warrants further investigation.
Collapse
Affiliation(s)
- Joan O'Keeffe
- Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Ireland.
| | | | | | | | | | | |
Collapse
|
41
|
Athié-Morales V, O'Connor GM, Gardiner CM. Activation of human NK cells by the bacterial pathogen-associated molecular pattern muramyl dipeptide. THE JOURNAL OF IMMUNOLOGY 2008; 180:4082-9. [PMID: 18322218 DOI: 10.4049/jimmunol.180.6.4082] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Muramyl dipeptide (MDP) is a bacterial pathogen associated molecular pattern derived from both Gram-positive and -negative bacteria. It is a specific ligand for nuclear oligomerization domain 2, a pattern recognition receptor best characterized for its role in immunosurveillance in the gut. In this study, we demonstrate that human peripheral blood NK cells express nuclear oligomerization domain 2 and respond to MDP. NK cells naturally internalize MDP leading to direct cell activation, including signaling through NFkappaB: characterized by p50/p65 heterodimers at early stimulations times and sustained activation of p50 homodimers. Moreover, MDP synergizes with IFN-alpha and IL-12 to activate NK cells and stimulate IFN-gamma secretion, suggesting a role for accessory cells in induction of an optimal NK cell response. Although IL-12 costimulation leads to a greater IFN-gamma response by NK cells, higher levels of CD69 in response to MDP are induced in the presence of IFN-alpha, suggesting that different pathogen-induced cytokine profiles will affect downstream NK cell responses. In contrast, MDP alone or in combination with either IFN-alpha or IL-12 only poorly increases NK cell cytotoxicity. In summary, this report identifies MDP as a bacterial pathogen associated molecular pattern that activates human NK cells.
Collapse
|
42
|
Stassi G, Pavone B, Speranza A, Gazzara D, Gazzarra D, Costa GB, Iannello D, Arena A. In vitro treatment with killed Helicobacter pylori downregulates the production of RANTES by peripheral blood mononuclear cells. J Chemother 2008; 20:48-52. [PMID: 18343743 DOI: 10.1179/joc.2008.20.1.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The mechanisms by which Helicobacter pylori colonizes and persists within the gastric mucosa are poorly understood. The gastric immune response observed in vivo during H. pylori infection, is characterized by a polarization of Th1 cell type that seems to be responsible for gastric pathology. The purpose of this study was to test the direct effect of H. pylori cagA(+)/vacA(+ )(live and/or gentamicin-killed) on human peripheral blood mononuclear cells (PBMCs) in order to evaluate the production of regulated activation normal T cell expressed and secreted (RANTES) in vitro. We also evaluated the possible relationship between RANTES release and the presence of IL-12 and IFN-gamma in supernatants of the same cells. In the present study, we show for the first time that the low amount of RANTES in supernatants of PBMC incubated with killed H. pylori is linked, at least in part, to the inhibition of IL-12 and IFN-gamma release.
Collapse
Affiliation(s)
- G Stassi
- Department of Surgical Science, Policlinico Universitario, Messina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nyström-Asklin J, Adamsson J, Harandi AM. The adjuvant effect of CpG oligodeoxynucleotide linked to the non-toxic B subunit of cholera toxin for induction of immunity against H. pylori in mice. Scand J Immunol 2008; 67:431-40. [PMID: 18298617 DOI: 10.1111/j.1365-3083.2008.02085.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study was carried out to test the immunostimulatory and adjuvant effects of the non-toxic B subunit of cholera toxin (CTB), CpG oligodeoxynucleotide (ODN) and CpG ODN linked to CTB (CTB-CpG) for generation of immunity against H. pylori in mice. Herein, we showed that CTB-CpG induces more potent proinflammatory cytokine and chemokine responses in the cervical and the mesenteric lymph nodes (CLN and MLN, respectively) cells in vitro compared with those of CTB and CpG ODN. The adjuvant effects of these agents were examined following intranasal immunization of C57Bl/6 mice with H. pylori lysate in combination with CpG ODN, CTB or CTB-CpG. All three immunization regimes resulted in high H. pylori-specific IgG antibody responses; however, only the CTB-CpG and, to some extent, the CpG ODN immunized mice mounted a sustainable IgG2c antibody response. Importantly, mice immunized with H. pylori antigen and CTB-CpG or CpG ODN, but not CTB, developed strong H. pylori-specific proliferative and IFN-gamma responses in their MLN CD4+ T cells upon recall antigen stimulation in vitro. These mice also had significantly lower bacterial load compared with the control-infected mice. Furthermore, the CTB-CpG and the CpG ODN immunized mice developed increased specific IgA antibody responses in their gastrointestinal tracts following H. pylori challenge. These results imply that CTB-CpG and CpG ODN, but not CTB, could serve as nasal adjuvants for induction of a H. pylori-specific Th1 type immunity in MLN and also a specific mucosal IgA antibody response in the gastrointestinal tract upon H. pylori challenge.
Collapse
Affiliation(s)
- J Nyström-Asklin
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | | | | |
Collapse
|
44
|
Page KM, Chaudhary D, Goldman SJ, Kasaian MT. Natural killer cells from protein kinase C theta-/- mice stimulated with interleukin-12 are deficient in production of interferon-gamma. J Leukoc Biol 2008; 83:1267-76. [PMID: 18263766 DOI: 10.1189/jlb.1107745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Protein kinase C theta (PKCtheta) is expressed in NK cells, but its functional role has not been defined. Here, we demonstrate involvement of PKCtheta in IL-12-induced NK cell IFN-gamma production. NK cells from PKCtheta(-/-) mice produced less IFN-gamma in response to IL-12 than those from wild-type (WT) mice. IL-12-induced NK cell cytotoxicity was unaffected, and NK cells from PKCtheta(-/-) mice did not display reduced IFN-gamma production in response to IL-18, indicating a specific role for PKCtheta in IL-12-induced IFN-gamma production. Under the conditions tested, T cells did not produce IFN-gamma in response to IL-12 or affect the ability of NK cells to produce the cytokine. PKCtheta deficiency did not affect NK cell numbers, granularity, viability, or cytotoxic activity in response to polyinosinic:polycytydylic acid. NK cells from PKCtheta(-/-) mice exhibited normal expression of IL-12Rbeta1 and STAT4 proteins and normal induction of STAT4 phosphorylation in response to IL-12. Phosphorylation of threonine 538 within the catalytic domain of PKCtheta was detectable in NK cells from WT mice but was not enhanced by IL-12. Transcription of IFN-gamma increased similarly in NK cells from WT and PKCtheta(-/-) mice in response to IL-12, and there was no difference in IFN-gamma mRNA stability. Taken together, these findings indicate a role for PKCtheta in the post-transcriptional regulation of IL-12-induced IFN-gamma production.
Collapse
Affiliation(s)
- Karen M Page
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
45
|
O'Keeffe J, Moran AP. Conventional, regulatory, and unconventional T cells in the immunologic response to Helicobacter pylori. Helicobacter 2008; 13:1-19. [PMID: 18205661 DOI: 10.1111/j.1523-5378.2008.00559.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infection by the gastroduodenal pathogen Helicobacter pylori elicits a complex immunologic response in the mucosa involving neutrophils, plasma cells, eosinophils, and lymphocytes, of which T cells are the principal orchestrators of immunity. While so-called classical T cells (e.g. T-helper cells) that are activated by peptide fragments presented on antigen-presenting cells have received much attention in H. pylori infection, there exists a diverse array of other T cell populations that are potentially important for the outcome of the ensuing immune response, some of which have not been extensively studied in H. pylori infection. Pathogen-specific regulatory T cells that control and prevent the development of immunopathology associated with H. pylori infection have been investigated, but these cells can also benefit the bacterium in helping to prolong the chronicity of the infection by suppressing protective immune responses. An overlooked T cell population, the more recently described Th17 cells, may play a role in H. pylori-induced inflammation, due to triggering responses that ultimately lead to the recruitment of polymorphs, including neutrophils. The so-called innate or unconventional T cells, that include two conserved T cell subsets expressing invariant antigen-specific receptors, the CD1d-restricted natural killer T cells which are activated by glycolipids, and the mucosal-associated invariant T cells which play a role in defense against orally acquired pathogens in the intestinal mucosa, have only begun to receive attention. A greater knowledge of the range of T cell responses induced by H. pylori is required for a deeper understanding of the pathogenesis of this bacterium and its ability to perpetuate chronic infection, and could reveal new strategies for therapeutic exploitation.
Collapse
Affiliation(s)
- Joan O'Keeffe
- Department of Biochemistry, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
46
|
Newman KC, Riley EM. Whatever turns you on: accessory-cell-dependent activation of NK cells by pathogens. Nat Rev Immunol 2007; 7:279-91. [PMID: 17380157 DOI: 10.1038/nri2057] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells have a crucial role in combating infections and cancers and their surface receptors can directly recognize and respond to damaged, transformed or non-self cells. Whereas some virus-infected cells are recognized by this same route, NK-cell responses to many pathogens are triggered by a different mechanism. Activation of NK cells by these pathogens requires the presence of accessory cells such as monocytes, macrophages and dendritic cells. Recent studies have identified numerous pathogen-recognition receptors that enable accessory cells to recognize different pathogens and subsequently transmit signals--both soluble and contact-dependent--to NK cells, which respond by upregulating their cytotoxic potential and the production of inflammatory cytokines.
Collapse
Affiliation(s)
- Kirsty C Newman
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | |
Collapse
|
47
|
Spörri R, Joller N, Albers U, Hilbi H, Oxenius A. MyD88-dependent IFN-gamma production by NK cells is key for control of Legionella pneumophila infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 176:6162-71. [PMID: 16670325 DOI: 10.4049/jimmunol.176.10.6162] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Legionella pneumophila (Lpn) is a ubiquitous Gram-negative bacterium in aquatic systems and an opportunistic intracellular pathogen in immunocompromised humans causing a severe pneumonia known as Legionnaires' disease. Using a mouse model, we investigated molecular and cellular players in the innate immune response to infection with Lpn. We observed robust levels of inflammatory cytokines in the serum upon intranasal or i.v. infection with live, virulent Lpn, but not with inactivated or avirulent bacteria lacking the Icm/Dot type IV secretion system. Interestingly, Lpn-induced serum cytokines were readily detectable regardless of the capacity of Icm/Dot-proficient Lpn to replicate in host cells and the Lpn permissiveness of the host mice. We found NK cell-derived IFN-gamma to be the key cytokine in the resolution of Lpn infection, whereas type I IFNs did not appear to play a major role in our model. Accordingly, NK cell-depleted or IFN-II-R-deficient mice carried severely increased bacterial burdens or failed to control Lpn infection, respectively. Besides the dependence of inflammatory cytokine induction on Lpn virulence, we also demonstrate a strict requirement of MyD88 for this process, suggesting the involvement of TLRs in the recognition of Lpn. However, screening of several TLR-deficient hosts did not reveal a master TLR responsible for the sensing of an Lpn infection, but provided evidence for either redundancy of individual TLRs in Lpn recognition or TLR-independent induction of inflammatory responses.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Cells, Cultured
- Cytokines/biosynthesis
- Inflammation Mediators/metabolism
- Interferon-gamma/biosynthesis
- Interferon-gamma/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Legionella pneumophila/immunology
- Legionella pneumophila/pathogenicity
- Legionnaires' Disease/immunology
- Legionnaires' Disease/metabolism
- Legionnaires' Disease/pathology
- Mice
- Mice, Inbred A
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Differentiation Factor 88
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Toll-Like Receptors/physiology
- Virulence
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Roman Spörri
- ETH Zurich, Institute for Microbiology, 8093 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Immune thrombocytopaenic purpura (ITP) is an autoimmune bleeding disease that is rarely fatal. However, in many adults treatment is unsatisfactory, with as much morbidity from the immunosuppressive effects of treatment as from bleeding. Identifying the underlying disease process should help us to identify more targeted therapies and improve not only the treatment but also the quality of life of patients with this disorder.
Collapse
Affiliation(s)
- Nichola Cooper
- Department of Pediatrics, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
49
|
Boysen P, Klevar S, Olsen I, Storset AK. The protozoan Neospora caninum directly triggers bovine NK cells to produce gamma interferon and to kill infected fibroblasts. Infect Immun 2006; 74:953-60. [PMID: 16428740 PMCID: PMC1360307 DOI: 10.1128/iai.74.2.953-960.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cells are considered to be key players in the early innate responses to protozoan infections, primarily indirectly by producing gamma interferon (IFN-gamma) in response to cytokines, like interleukin 12 (IL-12). We demonstrate that live, as well as heat-inactivated, tachyzoites of Neospora caninum, a Toxoplasma-like protozoan, directly trigger production of IFN-gamma from purified, IL-2-activated bovine NK cells. This response occurred independently of IL-12 but was increased by the addition of the cytokine. A similar IFN-gamma response was measured in cocultures of NK cells and N. caninum-infected autologous fibroblasts. However, no NK cell-derived IFN-gamma response was detected when cells were cultured with soluble antigens from the organism, indicating that intact tachyzoites or nonsoluble components are necessary for NK cell triggering. Furthermore, N. caninum-infected autologous fibroblasts had increased susceptibility to NK cell cytotoxicity compared to uninfected fibroblasts. This cytotoxicity was largely mediated by a perforin-mediated mechanism. The activating receptor NKp46 was involved in cytotoxicity against fibroblasts but could not explain the increased cytotoxicity against infected targets. Interestingly, N. caninum tachyzoites were able to infect cultured NK cells, in which tachyzoites proliferated inside parasitophorous vacuoles. Together, these findings underscore the role of NK cells as primary responders during a protozoan infection, describe intracellular protozoan infection of NK cells in vitro for the first time, and represent the first functional study of purified bovine NK cells in response to infection.
Collapse
Affiliation(s)
- Preben Boysen
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O. Box 8146 Dep., N-0033 Oslo, Norway
| | | | | | | |
Collapse
|
50
|
Deml L, Aigner M, Decker J, Eckhardt A, Schütz C, Mittl PRE, Barabas S, Denk S, Knoll G, Lehn N, Schneider-Brachert W. Characterization of the Helicobacter pylori cysteine-rich protein A as a T-helper cell type 1 polarizing agent. Infect Immun 2005; 73:4732-42. [PMID: 16040986 PMCID: PMC1201243 DOI: 10.1128/iai.73.8.4732-4742.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Predominant T-helper 1 (Th1) responses with increased gamma interferon (IFN-gamma) levels have been proposed to play an important role in Helicobacter pylori-induced gastritis and peptic ulceration. However, bacterial factors contributing to the initiation of Th1 polarization of H. pylori-specific immune responses have not been characterized in detail thus far. We report here on the identification of Helicobacter cysteine-rich protein A (HcpA) as a novel proinflammatory and Th1-promoting protein. The capacity of HcpA to induce immune activation was studied in splenocyte cultures of naive H. pylori-negative mice. HcpA stimulated the release of high concentrations of the proinflammatory and Th1-promoting cytokines interleukin-6 (IL-6) and IFN-gamma, in addition to significant levels of IL-12, tumor necrosis factor alpha, and IL-10. The observed cytokine profile was comparable to that induced by lipopolysaccharide but differed in the kinetics and maximum levels of cytokine production. In addition, HcpA-induced cytokine release resembled that observed upon incubation with H. pylori except for IL-10, which was only moderately released upon HcpA stimulation. Both HcpA- and H. pylori-mediated IFN-gamma production was drastically reduced by a neutralizing antibody against IL-12 but not by an anti-IL-2 antibody. Thus, HcpA seems to represent a novel bacterial virulence factor triggering the release of a concerted set of cytokines to instruct the adaptive immune system for the initiation of proinflammatory and Th1-biased immunity.
Collapse
Affiliation(s)
- Ludwig Deml
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|