1
|
Lebrun-Corbin M, Cheung BH, Hullahalli K, Dailey KG, Bailey K, Waldor MK, Wunderink RG, Bachta KER, Hauser AR. Pseudomonas aeruginosa population dynamics in a vancomycin-induced murine model of gastrointestinal carriage. mBio 2025; 16:e0313624. [PMID: 40207916 PMCID: PMC12077156 DOI: 10.1128/mbio.03136-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Pseudomonas aeruginosa is a common nosocomial pathogen and a major cause of morbidity and mortality in hospitalized patients. Multiple reports highlight that P. aeruginosa gastrointestinal colonization may precede systemic infections by this pathogen. Gaining a deeper insight into the dynamics of P. aeruginosa gastrointestinal carriage is an essential step in managing gastrointestinal colonization and could contribute to preventing bacterial transmission and progression to systemic infection. Here, we present a clinically relevant mouse model relying on parenteral vancomycin pretreatment and a single orogastric gavage of a controlled dose of P. aeruginosa. Robust carriage was observed with multiple clinical isolates, and carriage persisted for up to 60 days. Histological and microbiological examination of mice indicated that this model indeed represented carriage and not infection. We then used a barcoded P. aeruginosa library along with the sequence tag-based analysis of microbial populations (STAMPR) analytic pipeline to quantify bacterial population dynamics and bottlenecks during the establishment of the gastrointestinal carriage. Analysis indicated that most of the P. aeruginosa population was rapidly eliminated in the stomach, but the few bacteria that moved to the small intestine and the cecum expanded rapidly. Hence, the stomach constitutes a significant barrier against gastrointestinal carriage of P. aeruginosa, which may have clinical implications for hospitalized patients. IMPORTANCE While Pseudomonas aeruginosa is rarely part of the normal human microbiome, carriage of the bacterium is quite frequent in hospitalized patients and residents of long-term care facilities. P. aeruginosa carriage is a precursor to infection. Options for treating infections caused by difficult-to-treat P. aeruginosa strains are dwindling, underscoring the urgency to better understand and impede pre-infection stages, such as colonization. Here, we use vancomycin-treated mice to model antibiotic-treated patients who become colonized with P. aeruginosa in their gastrointestinal tracts. We identify the stomach as a major barrier to the establishment of gastrointestinal carriage. These findings suggest that efforts to prevent gastrointestinal colonization should focus not only on judicious use of antibiotics but also on investigation into how the stomach eliminates orally ingested P. aeruginosa.
Collapse
Affiliation(s)
- Marine Lebrun-Corbin
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bettina H. Cheung
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Karthik Hullahalli
- Division of Infectious Disease, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine G. Dailey
- Division of Infectious Disease, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Keith Bailey
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Matthew K. Waldor
- Division of Infectious Disease, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Richard G. Wunderink
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kelly E. R. Bachta
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alan R. Hauser
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Almuhawish MA, Kotb E, Alkhaldi E, Ahmed AA. Production and Antibacterial Activity of Atypical Siderophore from Pseudomonas sp. QCS59 Recovered from Harpachene schimperi. Pharmaceuticals (Basel) 2024; 17:1126. [PMID: 39338291 PMCID: PMC11434927 DOI: 10.3390/ph17091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Among sixty-eight pseudomonads, isolate QCS59 from the rhizosphere of H. schimperi was selected based on its siderophore level. Production was optimal in Kings B supplemented with 2% peptone and 0.5% fructose at pH 6.5 and 25 °C for 72 h. Additionally, the threshold potential of iron was found at a concentration of 10 µM. After purification, the acidified siderophore presented a maximum absorption peak of 360 nm, while the neutral form presented a maximum of 414 nm, confirming its pyoverdine (PVD) nature. Furthermore, a major peak appeared at a retention time (RT) of 27.5 min during RP-HPLC, confirming its homogeneity. Interestingly, it demonstrated effective antibacterial activity, especially against Escherichia coli ATCC 8739, with a minimum inhibitory concentration (MIC) of 6.3 µg/mL and a minimum bactericidal concentration (MBC) of 12.5 µg/mL. At ½ the MIC value, it inhibited 82.1% of well-established biofilms of Salmonella enterica. There was an increase in malondialdehyde (MDA) and antioxidative enzymes, especially catalase (CAT) in the treated bacteria because of the peroxidation of membrane lipids and oxidative stress, respectively. SEM proved cellular lysis and surface malformation in most of the treated bacteria. This study concludes that QCS59 siderophore is a promising antibacterial candidate for treating wastewater bacteria and skin pathogens.
Collapse
Affiliation(s)
- Mashael A. Almuhawish
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Essam Kotb
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Eida Alkhaldi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Asmaa A. Ahmed
- Department of Statistics, Faculty of Commerce, Al-Azhar University, Cairo P.O. Box 11751, Egypt;
| |
Collapse
|
3
|
Lebrun-Corbin M, Cheung BH, Hullahalli K, Dailey K, Bailey K, Waldor MK, Wunderink RG, Bachta KER, Hauser AR. Pseudomonas aeruginosa population dynamics in a vancomycin-induced murine model of gastrointestinal carriage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608679. [PMID: 39229171 PMCID: PMC11370369 DOI: 10.1101/2024.08.19.608679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Pseudomonas aeruginosa is a common nosocomial pathogen and a major cause of morbidity and mortality in hospitalized patients. Multiple reports highlight that P. aeruginosa gastrointestinal colonization may precede systemic infections by this pathogen. Gaining a deeper insight into the dynamics of P. aeruginosa gastrointestinal carriage is an essential step in managing gastrointestinal colonization and could contribute to preventing bacterial transmission and progression to systemic infection. Here, we present a clinically relevant mouse model relying on parenteral vancomycin pretreatment and a single orogastric gavage of a controlled dose of P. aeruginosa. Robust carriage was observed with multiple clinical isolates, and carriage persisted for up to 60 days. Histological and microbiological examination of mice indicated that this model indeed represented carriage and not infection. We then used a barcoded P. aeruginosa library along with the sequence tag-based analysis of microbial populations (STAMPR) analytic pipeline to quantify bacterial population dynamics and bottlenecks during the establishment of the gastrointestinal carriage. Analysis indicated that most of the P. aeruginosa population was rapidly eliminated in the stomach, but the few bacteria that moved to the small intestine and the caecum expanded significantly. Hence, the stomach constitutes a significant barrier against gastrointestinal carriage of P. aeruginosa, which may have clinical implications for hospitalized patients.
Collapse
Affiliation(s)
- Marine Lebrun-Corbin
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bettina H Cheung
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karthik Hullahalli
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Katherine Dailey
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | | | - Matthew K Waldor
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Richard G Wunderink
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, IL, USA
| | - Kelly E R Bachta
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alan R Hauser
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
4
|
Kotb E, Al-Abdalall AH, Ababutain I, AlAhmady NF, Aldossary S, Alkhaldi E, Alghamdi AI, Alzahrani HAS, Almuhawish MA, Alshammary MN, Ahmed AA. Anticandidal Activity of a Siderophore from Marine Endophyte Pseudomonas aeruginosa Mgrv7. Antibiotics (Basel) 2024; 13:347. [PMID: 38667023 PMCID: PMC11047651 DOI: 10.3390/antibiotics13040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
An endophytic symbiont P. aeruginosa-producing anticandidal siderophore was recovered from mangrove leaves for the first time. Production was optimal in a succinate medium supplemented with 0.4% citric acid and 15 µM iron at pH 7 and 35 °C after 60 h of fermentation. UV spectra of the acidic preparation after purification with Amberlite XAD-4 resin gave a peak at 400 nm, while the neutralized form gave a peak at 360 nm. A prominent peak with RP-HPLC was obtained at RT 18.95 min, confirming its homogeneity. It was pH stable at 5.0-9.5 and thermally stable at elevated temperatures, which encourages the possibility of its application in extreme environments. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) against Candida spp. Were in the range of 128 µg/mL and lower. It enhanced the intracellular iron accumulation with 3.2-4.2-fold (as judged by atomic absorption spectrometry) with a subsequent increase in the intracellular antioxidative enzymes SOD and CAT. Furthermore, the malondialdehyde (MDA) concentration due to cellular lipid peroxidation increased to 3.8-fold and 7.3-fold in C. albicans and C. tropicalis, respectively. The scanning electron microscope (SEM) confirmed cellular damage in the form of roughness, malformation, and production of defensive exopolysaccharides and/or proteins after exposure to siderophore. In conclusion, this anticandidal siderophore may be a promising biocontrol, nonpolluting agent against waterborne pathogens and pathogens of the skin. It indirectly kills Candida spp. by ferroptosis and mediation of hyperaccumulation of iron rather than directly attacking the cell targets, which triggers the activation of antioxidative enzymes.
Collapse
Affiliation(s)
- Essam Kotb
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Amira H. Al-Abdalall
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ibtisam Ababutain
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Nada F. AlAhmady
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sahar Aldossary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Eida Alkhaldi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Azzah I. Alghamdi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hind A. S. Alzahrani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
| | - Mashael A. Almuhawish
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Moudhi N. Alshammary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
| | - Asmaa A. Ahmed
- Department of Statistics, Faculty of Commerce, Al-Azhar University, Cairo P.O. Box 11751, Egypt
| |
Collapse
|
5
|
Cheng M, Chen R, Liao L. T2SS-peptidase XcpA associated with LasR evolutional phenotypic variations provides a fitness advantage to Pseudomonas aeruginosa PAO1. Front Microbiol 2023; 14:1256785. [PMID: 37954251 PMCID: PMC10637944 DOI: 10.3389/fmicb.2023.1256785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa possesses hierarchical quorum sensing (QS) systems. The intricate QS network of P. aeruginosa synchronizes a suite of virulence factors, contributing to the mortality and morbidity linked to the pathogenicity of this bacterium. Previous studies have revealed that variations in the lasR gene are frequently observed in chronic isolates of cystic fibrosis (CF). Specifically, LasRQ45stop was identified as a common variant among CF, lasR mutants during statistical analysis of the clinical lasR mutants in the database. In this study, we introduced LasRQ45stop into the chromosome of P. aeruginosa PAO1 through allelic replacement. The social traits of PAO1 LasRQ45stop were found to be equivalent to those of PAO1 LasR-null isolates. By co-evolving with the wild-type in caseinate broth, elastase-phenotypic-variability variants were derived from the LasRQ45stop subpopulation. Upon further examination of four LasRQ45stop sublines, we determined that the variation of T2SS-peptidase xcpA and mexT genes plays a pivotal role in the divergence of various phenotypes, including public goods elastase secretion and other pathogenicity traits. Furthermore, XcpA mutants demonstrated a fitness advantage compared to parent strains during co-evolution. Numerous phenotypic variations were associated with subline-specific genetic alterations. Collectively, these findings suggest that even within the same parental subline, there is ongoing microevolution of individual mutational trajectory diversity during adaptation.
Collapse
Affiliation(s)
- Mengmeng Cheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ruiyi Chen
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Lisheng Liao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Tanniche I, Behkam B. Engineered live bacteria as disease detection and diagnosis tools. J Biol Eng 2023; 17:65. [PMID: 37875910 PMCID: PMC10598922 DOI: 10.1186/s13036-023-00379-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
Sensitive and minimally invasive medical diagnostics are essential to the early detection of diseases, monitoring their progression and response to treatment. Engineered bacteria as live sensors are being developed as a new class of biosensors for sensitive, robust, noninvasive, and in situ detection of disease onset at low cost. Akin to microrobotic systems, a combination of simple genetic rules, basic logic gates, and complex synthetic bioengineering principles are used to program bacterial vectors as living machines for detecting biomarkers of diseases, some of which cannot be detected with other sensing technologies. Bacterial whole-cell biosensors (BWCBs) can have wide-ranging functions from detection only, to detection and recording, to closed-loop detection-regulated treatment. In this review article, we first summarize the unique benefits of bacteria as living sensors. We then describe the different bacteria-based diagnosis approaches and provide examples of diagnosing various diseases and disorders. We also discuss the use of bacteria as imaging vectors for disease detection and image-guided surgery. We conclude by highlighting current challenges and opportunities for further exploration toward clinical translation of these bacteria-based systems.
Collapse
Affiliation(s)
- Imen Tanniche
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- School of Biomedical Engineered and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
- Center for Engineered Health, Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
7
|
Grandy S, Scur M, Dolan K, Nickerson R, Cheng Z. Using model systems to unravel host-Pseudomonas aeruginosa interactions. Environ Microbiol 2023; 25:1765-1784. [PMID: 37290773 DOI: 10.1111/1462-2920.16440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Using model systems in infection biology has led to the discoveries of many pathogen-encoded virulence factors and critical host immune factors to fight pathogenic infections. Studies of the remarkable Pseudomonas aeruginosa bacterium that infects and causes disease in hosts as divergent as humans and plants afford unique opportunities to shed new light on virulence strategies and host defence mechanisms. One of the rationales for using model systems as a discovery tool to characterise bacterial factors driving human infection outcomes is that many P. aeruginosa virulence factors are required for pathogenesis in diverse different hosts. On the other side, many host signalling components, such as the evolutionarily conserved mitogen-activated protein kinases, are involved in immune signalling in a diverse range of hosts. Some model organisms that have less complex immune systems also allow dissection of the direct impacts of innate immunity on host defence without the interference of adaptive immunity. In this review, we start with discussing the occurrence of P. aeruginosa in the environment and the ability of this bacterium to cause disease in various hosts as a natural opportunistic pathogen. We then summarise the use of some model systems to study host defence and P. aeruginosa virulence.
Collapse
Affiliation(s)
- Shannen Grandy
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kathleen Dolan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rhea Nickerson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
8
|
Elmassry MM, Colmer-Hamood JA, Kopel J, San Francisco MJ, Hamood AN. Anti- Pseudomonas aeruginosa Vaccines and Therapies: An Assessment of Clinical Trials. Microorganisms 2023; 11:916. [PMID: 37110338 PMCID: PMC10144840 DOI: 10.3390/microorganisms11040916] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes high morbidity and mortality in cystic fibrosis (CF) and immunocompromised patients, including patients with ventilator-associated pneumonia (VAP), severely burned patients, and patients with surgical wounds. Due to the intrinsic and extrinsic antibiotic resistance mechanisms, the ability to produce several cell-associated and extracellular virulence factors, and the capacity to adapt to several environmental conditions, eradicating P. aeruginosa within infected patients is difficult. Pseudomonas aeruginosa is one of the six multi-drug-resistant pathogens (ESKAPE) considered by the World Health Organization (WHO) as an entire group for which the development of novel antibiotics is urgently needed. In the United States (US) and within the last several years, P. aeruginosa caused 27% of deaths and approximately USD 767 million annually in health-care costs. Several P. aeruginosa therapies, including new antimicrobial agents, derivatives of existing antibiotics, novel antimicrobial agents such as bacteriophages and their chelators, potential vaccines targeting specific virulence factors, and immunotherapies have been developed. Within the last 2-3 decades, the efficacy of these different treatments was tested in clinical and preclinical trials. Despite these trials, no P. aeruginosa treatment is currently approved or available. In this review, we examined several of these clinicals, specifically those designed to combat P. aeruginosa infections in CF patients, patients with P. aeruginosa VAP, and P. aeruginosa-infected burn patients.
Collapse
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jane A. Colmer-Hamood
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jonathan Kopel
- Department of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Michael J. San Francisco
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Honors College, Texas Tech University, Lubbock, TX 79409, USA
| | - Abdul N. Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
9
|
Zhou J, Krishnan N, Guo Z, Ventura CJ, Holay M, Zhang Q, Wei X, Gao W, Fang RH, Zhang L. Nanotoxoid vaccination protects against opportunistic bacterial infections arising from immunodeficiency. SCIENCE ADVANCES 2022; 8:eabq5492. [PMID: 36083909 PMCID: PMC9462688 DOI: 10.1126/sciadv.abq5492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The rise in nosocomial infections caused by multidrug-resistant pathogens is a major public health concern. Patients taking immunosuppressants or chemotherapeutics are naturally more susceptible to infections. Thus, strategies for protecting immunodeficient individuals from infections are of great importance. Here, we investigate the effectiveness of a biomimetic nanotoxoid vaccine in defending animals with immunodeficiency against Pseudomonas aeruginosa. The nanotoxoids use a macrophage membrane coating to sequester and safely present bacterial virulence factors that would otherwise be too toxic to administer. Vaccination with the nanoformulation results in rapid and long-lasting immunity, protecting against lethal infections despite severe immunodeficiency. The nanovaccine can be administered through multiple routes and is effective in both pneumonia and septicemia models of infection. Mechanistically, protection is mediated by neutrophils and pathogen-specific antibodies. Overall, nanotoxoid vaccination is an attractive strategy to protect vulnerable patients and could help to mitigate the threat posed by antibiotic-resistant superbugs.
Collapse
|
10
|
Cai L, Chen Q, Yao Z, Sun Q, Wu L, Ni Y. Glucocorticoid receptors involved in melatonin inhibiting cell apoptosis and NLRP3 inflammasome activation caused by bacterial toxin pyocyanin in colon. Free Radic Biol Med 2021; 162:478-489. [PMID: 33189867 DOI: 10.1016/j.freeradbiomed.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
The immunoinhibitory effect of glucocorticoid and immunoenhancing attributes of melatonin (MEL) are well known, however, the involvement of glucocorticoid receptor (GR) in melatonin modulation of bacterial toxins caused-inflammation has not been studied in colon. Pyocyanin (PCN), a toxin released by Pseudomonas aeruginosa, can destroy cells through generating superoxide products and inflammatory response. Here we report that PCN treatment elevated the generation of reactive oxygen species (ROS), which further lead to mitochondrial swelling and caspase cascades activation both in vivo and in vitro. However, MEL treatment alleviated the oxidative stress caused by PCN on cells through scavenging ROS and restoring the expression of antioxidant enzyme so that to effectively alleviate the apoptosis. Large amounts of ROS can activate the NLRP3 signaling pathway, so MEL inhibited PCN induced NLRP3 inflammasome activation and inflammatory cytokines (IL-1β, IL-8, and TNF-α) secretion. In order to further investigate the molecular mechanism, goblet cells were exposed to MEL and PCN in the presence of luzindole and RU486, inhibitors of MEL receptors and GR respectively. It was found that PCN significantly inhibited the expression level of GR, and MEL effectively alleviated the inhibition phenomenon. Moreover, we found that MEL mainly upregulated the expression of GR to achieve its anti-inflammatory and anti-apoptotic functions rather than through its own receptor (MT2) in colon goblet cells. Therefore, MEL can reverse the inhibitory effects of PCN on GR/p-GR expression to present its anti-oxidative and anti-apoptotic function.
Collapse
Affiliation(s)
- Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Qu Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Zhihao Yao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Qinwei Sun
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Lei Wu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
11
|
Blackwood CB, Sen-Kilic E, Boehm DT, Hall JM, Varney ME, Wong TY, Bradford SD, Bevere JR, Witt WT, Damron FH, Barbier M. Innate and Adaptive Immune Responses against Bordetella pertussis and Pseudomonas aeruginosa in a Murine Model of Mucosal Vaccination against Respiratory Infection. Vaccines (Basel) 2020; 8:vaccines8040647. [PMID: 33153066 PMCID: PMC7712645 DOI: 10.3390/vaccines8040647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
Whole cell vaccines are frequently the first generation of vaccines tested for pathogens and can inform the design of subsequent acellular or subunit vaccines. For respiratory pathogens, administration of vaccines at the mucosal surface can facilitate the generation of a localized mucosal immune response. Here, we examined the innate and vaccine-induced immune responses to infection by two respiratory pathogens: Bordetella pertussis and Pseudomonas aeruginosa. In a model of intranasal administration of whole cell vaccines (WCVs) with the adjuvant curdlan, we examined local and systemic immune responses following infection. These studies showed that intranasal vaccination with a WCV led to a reduction of the bacterial burden in the airways of animals infected with the respective pathogen. However, there were unique changes in the cytokines produced, cells recruited, and inflammation at the site of infection. Both mucosal vaccinations induced antibodies that bind the target pathogen, but linear regression and principal component analysis revealed that protection from these pathogens is not solely related to antibody titer. Protection from P. aeruginosa correlated to a reduction in lung weight, blood lymphocytes and neutrophils, and the cytokines IL-6, TNF-α, KC/GRO, and IL-10, and promotion of serum IgG antibodies and the cytokine IFN-γ in the lung. Protection from B. pertussis infection correlated strongly with increased anti-B-pertussis serum IgG antibodies. These findings reveal valuable correlates of protection for mucosal vaccination that can be used for further development of both B. pertussis and P. aeruginosa vaccines.
Collapse
|
12
|
Maslova E, Shi Y, Sjöberg F, Azevedo HS, Wareham DW, McCarthy RR. An Invertebrate Burn Wound Model That Recapitulates the Hallmarks of Burn Trauma and Infection Seen in Mammalian Models. Front Microbiol 2020; 11:998. [PMID: 32582051 PMCID: PMC7283582 DOI: 10.3389/fmicb.2020.00998] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
The primary reason for skin graft failure and the mortality of burn wound patients, particularly those in burn intensive care centers, is bacterial infection. Several animal models exist to study burn wound pathogens. The most commonly used model is the mouse, which can be used to study virulence determinants and pathogenicity of a wide range of clinically relevant burn wound pathogens. However, animal models of burn wound pathogenicity are governed by strict ethical guidelines and hindered by high levels of animal suffering and the high level of training that is required to achieve consistent reproducible results. In this study, we describe for the first time an invertebrate model of burn trauma and concomitant wound infection. We demonstrate that this model recapitulates many of the hallmarks of burn trauma and wound infection seen in mammalian models and in human patients. We outline how this model can be used to discriminate between high and low pathogenicity strains of two of the most common burn wound colonizers Pseudomonas aeruginosa and Staphylococcus aureus, and multi-drug resistant Acinetobacter baumannii. This model is less ethically challenging than traditional vertebrate burn wound models and has the capacity to enable experiments such as high throughput screening of both anti-infective compounds and genetic mutant libraries.
Collapse
Affiliation(s)
- Evgenia Maslova
- Division of Biosciences, Centre for Inflammation Research and Translational Medicine, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Yejiao Shi
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, London, United Kingdom
| | - Folke Sjöberg
- The Burn Centre, Department of Hand and Plastic Surgery, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Helena S Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, London, United Kingdom
| | - David W Wareham
- Antimicrobial Research Group, Blizard Institute, Queen Mary, University of London, London, United Kingdom
| | - Ronan R McCarthy
- Division of Biosciences, Centre for Inflammation Research and Translational Medicine, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
13
|
Bachta KER, Allen JP, Cheung BH, Chiu CH, Hauser AR. Systemic infection facilitates transmission of Pseudomonas aeruginosa in mice. Nat Commun 2020; 11:543. [PMID: 31992714 PMCID: PMC6987207 DOI: 10.1038/s41467-020-14363-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023] Open
Abstract
Health care-associated infections such as Pseudomonas aeruginosa bacteremia pose a major clinical risk for hospitalized patients. However, these systemic infections are presumed to be a "dead-end" for P. aeruginosa and to have no impact on transmission. Here, we use a mouse infection model to show that P. aeruginosa can spread from the bloodstream to the gallbladder, where it replicates to extremely high numbers. Bacteria in the gallbladder can then seed the intestines and feces, leading to transmission to uninfected cage-mate mice. Our work shows that the gallbladder is crucial for spread of P. aeruginosa from the bloodstream to the feces during bacteremia, a process that promotes transmission in this experimental system. Further research is needed to test to what extent these findings are relevant to infections in patients.
Collapse
Affiliation(s)
- Kelly E R Bachta
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Jonathan P Allen
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Bettina H Cheung
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
14
|
Metabolic output defines Escherichia coli as a health-promoting microbe against intestinal Pseudomonas aeruginosa. Sci Rep 2019; 9:14463. [PMID: 31595010 PMCID: PMC6783455 DOI: 10.1038/s41598-019-51058-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota acts as a barrier against intestinal pathogens, but species-specific protection of the host from infection remains relatively unexplored. Although lactobacilli and bifidobacteria produce beneficial lactic and short-chain fatty acids in the mammalian gut, the significance of intestinal Escherichia coli producing these acids is debatable. Taking a Koch’s postulates approach in reverse, we define Escherichia coli as health-promoting for naturally colonizing the gut of healthy mice and protecting them against intestinal colonization and concomitant mortality by Pseudomonas aeruginosa. Reintroduction of faecal bacteria and E. coli in antibiotic-treated mice establishes a high titre of E. coli in the host intestine and increases defence against P. aeruginosa colonization and mortality. Strikingly, high sugar concentration favours E. coli fermentation to lactic and acetic acid and inhibits P. aeruginosa growth and virulence in aerobic cultures and in a model of aerobic metabolism in flies, while dietary vegetable fats - not carbohydrates or proteins - favour E. coli fermentation and protect the host in the anaerobic mouse gut. Thus E. coli metabolic output is an important indicator of resistance to infection. Our work may also suggest that the lack of antimicrobial bacterial metabolites in mammalian lungs and wounds allows P. aeruginosa to be a formidable microbe at these sites.
Collapse
|
15
|
Application of Lactobacillus gasseri 63 AM supernatant to Pseudomonas aeruginosa-infected wounds prevents sepsis in murine models of thermal injury and dorsal excision. J Med Microbiol 2019; 68:1560-1572. [DOI: 10.1099/jmm.0.001066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
16
|
Elkhawaga AA, Khalifa MM, El-Badawy O, Hassan MA, El-Said WA. Rapid and highly sensitive detection of pyocyanin biomarker in different Pseudomonas aeruginosa infections using gold nanoparticles modified sensor. PLoS One 2019; 14:e0216438. [PMID: 31361746 PMCID: PMC6667159 DOI: 10.1371/journal.pone.0216438] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
Successful antibiotic treatment of infections relies on accurate and rapid identification of the infectious agents. Pseudomonas aeruginosa is implicated in a wide range of human infections that mostly become complicated and life threating, especially in immunocompromised and critically ill patients. Conventional microbiological methods take more than three days to obtain accurate results. Pyocyanin is a distinctive electroactive biomarker for Pseudomonas aeruginosa. Here, we have prepared polyaniline/gold nanoparticles decorated ITO electrode and tested it to establish a rapid, diagnostic and highly sensitive pyocyanin sensor in a culture of Pseudomonas aeruginosa clinical isolates with high selectivity for traces of pyocyanin when measured in the existence of different interferences like vitamin C, uric acid, and glucose. The scanning electron microscopy and cyclic voltammetry techniques were used to characterize the morphology and electrical conductivity of the constructed electrode. The determined linear range for pyocyanin detection was from 238 μM to 1.9 μM with a detection limit of 500 nM. Compared to the screen-printed electrode used before, the constructed electrode showed a 4-fold enhanced performance. Furthermore, PANI/Au NPs/ITO modified electrodes have demonstrated the ability to detect pyocyanin directly in Pseudomonas aeruginosa culture without any potential interference with other species.
Collapse
Affiliation(s)
- Amal A Elkhawaga
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa M Khalifa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Omnia El-Badawy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mona A Hassan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Waleed A El-Said
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
17
|
Fitting Pieces into the Puzzle of Pseudomonas aeruginosa Type III Secretion System Gene Expression. J Bacteriol 2019; 201:JB.00209-19. [PMID: 31010903 DOI: 10.1128/jb.00209-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type III secretion systems (T3SS) are widely distributed in Gram-negative microorganisms and critical for host-pathogen and host-symbiont interactions with plants and animals. Central features of the T3SS are a highly conserved set of secretion and translocation genes and contact dependence wherein host-pathogen interactions trigger effector protein delivery and serve as an inducing signal for T3SS gene expression. In addition to these conserved features, there are pathogen-specific properties that include a unique repertoire of effector genes and mechanisms to control T3SS gene expression. The Pseudomonas aeruginosa T3SS serves as a model system to understand transcriptional and posttranscriptional mechanisms involved in the control of T3SS gene expression. The central regulatory feature is a partner-switching system that controls the DNA-binding activity of ExsA, the primary regulator of T3SS gene expression. Superimposed upon the partner-switching mechanism are cyclic AMP and cyclic di-GMP signaling systems, two-component systems, global regulators, and RNA-binding proteins that have positive and negative effects on ExsA transcription and/or synthesis. In the present review, we discuss advances in our understanding of how these regulatory systems orchestrate the activation of T3SS gene expression in the context of acute infections and repression of the T3SS as P. aeruginosa adapts to and colonizes the cystic fibrosis airways.
Collapse
|
18
|
Mishra AA, Koh AY. Adaptation of Candida albicans during gastrointestinal tract colonization. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:165-172. [PMID: 30560045 DOI: 10.1007/s40588-018-0096-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of Review Colonization of the gastrointestinal (GI) tract with Candida albicans (CA), the most common human fungal pathogen, is the first step towards the development of invasive infection. Yet the fungal virulence factors and host factors that modulate CA GI colonization are still poorly understood. In this review, we will review emerging evidence of the importance of select CA genetic determinants and CA's interaction with the host that contribute to its successful adaptation as a pathobiont in the human GI tract. Recent Findings Recent data reveal the importance of 1) CA genetic determinants; 2) host factors; and 3) environmental factors in modulating CA GI colonization in humans. Summary As evidence continues to grow supporting the notion that the GI tract and its resident microbiota are an integral part of the host immune system, it will be critical for studies to interrogate the interaction of CA with the host (including both the host innate and adaptive immune system as well as the endogenous gut microbiota) in order to dissect the mechanisms of CA pathogenesis and thus lay the foundation for novel therapeutic approaches to prevent and/or treat invasive fungal infections.
Collapse
Affiliation(s)
- Animesh A Mishra
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew Y Koh
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
19
|
Garcia M, Morello E, Garnier J, Barrault C, Garnier M, Burucoa C, Lecron JC, Si-Tahar M, Bernard FX, Bodet C. Pseudomonas aeruginosa flagellum is critical for invasion, cutaneous persistence and induction of inflammatory response of skin epidermis. Virulence 2018; 9:1163-1175. [PMID: 30070169 PMCID: PMC6086312 DOI: 10.1080/21505594.2018.1480830] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/21/2018] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen involved in skin and lung diseases, possesses numerous virulence factors, including type 2 and 3 secretion systems (T2SS and T3SS) and its flagellum, whose functions remain poorly known during cutaneous infection. Using isogenic mutants deleted from genes encoding each or all of these three virulence factors, we investigated their role in induction of inflammatory response and in tissue invasiveness in human primary keratinocytes and reconstructed epidermis. Our results showed that flagellum, but not T2SS and T3SS, is involved in induction of a large panel of cytokine, chemokine, and antimicrobial peptide (AMP) mRNA in the infected keratinocytes. Chemokine secretion and AMP tissular production were also dependent on the presence of the bacterial flagellum. This pro-inflammatory effect was significantly reduced in keratinocytes infected in presence of anti-toll-like receptor 5 (TLR5) neutralizing antibody. Bacterial invasion of human epidermis and persistence in a mouse model of sub-cutaneous infection were dependent on the P. aeruginosa flagellum. We demonstrated that flagellum constitutes the main virulence factor of P. aeruginosa involved not only in early induction of the epidermis inflammatory response but also in bacterial invasion and cutaneous persistence. P. aeruginosa is mainly sensed by TLR5 during the early innate immune response of human primary keratinocytes.
Collapse
Affiliation(s)
- Magali Garcia
-
Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers
, Poitiers, France
-
Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers
, Poitiers, France
| | - Eric Morello
-
Centre d'Etude des Pathologies Respiratoires, INSERM UMR 1100, Université de Tours
, Tours, France
| | | | | | - Martine Garnier
-
Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers
, Poitiers, France
| | - Christophe Burucoa
-
Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers
, Poitiers, France
-
Laboratoire de Bactériologie et Hygiène, CHU de Poitiers
, Poitiers, France
| | - Jean-Claude Lecron
-
Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers
, Poitiers, France
-
Laboratoire d’Immunologie et Inflammation, CHU de Poitiers
, Poitiers, France
| | - Mustapha Si-Tahar
-
Centre d'Etude des Pathologies Respiratoires, INSERM UMR 1100, Université de Tours
, Tours, France
| | | | - Charles Bodet
-
Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers
, Poitiers, France
| |
Collapse
|
20
|
Impact of Type III Secretion Effectors and of Phenoxyacetamide Inhibitors of Type III Secretion on Abscess Formation in a Mouse Model of Pseudomonas aeruginosa Infection. Antimicrob Agents Chemother 2017; 61:AAC.01202-17. [PMID: 28807906 DOI: 10.1128/aac.01202-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/04/2017] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of intra-abdominal infections, wound infections, and community-acquired folliculitis, each of which may involve macro- or microabscess formation. The rising incidence of multidrug resistance among P. aeruginosa isolates has increased both the economic burden and the morbidity and mortality associated with P. aeruginosa disease and necessitates a search for novel therapeutics. Previous work from our group detailed novel phenoxyacetamide inhibitors that block type III secretion and injection into host cells in vitro In this study, we used a mouse model of P. aeruginosa abscess formation to test the in vivo efficacy of these compounds against the P. aeruginosa type III secretion system (T3SS). Bacteria used the T3SS to intoxicate infiltrating neutrophils to establish abscesses. Despite this antagonism, sufficient numbers of functioning neutrophils remained for proper containment of the abscesses, as neutrophil depletion resulted in an increased abscess size, the formation of dermonecrotic lesions on the skin, and the dissemination of P. aeruginosa to internal organs. Consistent with the specificity of the T3SS-neutrophil interaction, P. aeruginosa bacteria lacking a functional T3SS were fully capable of causing abscesses in a neutropenic host. Phenoxyacetamide inhibitors attenuated abscess formation and aided in the immune clearance of the bacteria. Finally, a P. aeruginosa strain resistant to the phenoxyacetamide compound was fully capable of causing abscess formation even in the presence of the T3SS inhibitors. Together, our results further define the role of type III secretion in murine abscess formation and demonstrate the in vivo efficacy of phenoxyacetamide inhibitors in P. aeruginosa infection.
Collapse
|
21
|
Yaseen MM, Abuharfeil NM, Yaseen MM, Shabsoug BM. The role of polymorphonuclear neutrophils during HIV-1 infection. Arch Virol 2017; 163:1-21. [PMID: 28980078 DOI: 10.1007/s00705-017-3569-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 12/23/2022]
Abstract
It is well-recognized that human immunodeficiency virus type-1 (HIV-1) mainly targets CD4+ T cells and macrophages. Nonetheless, during the past three decades, a huge number of studies have reported that HIV-1 can directly or indirectly target other cellular components of the immune system including CD8+ T cells, B cells, dendritic cells, natural killer cells, and polymorphonuclear neutrophils (PMNs), among others. PMNs are the most abundant leukocytes in the human circulation, and are known to play principal roles in the elimination of invading pathogens, regulating different immune responses, healing of injured tissues, and maintaining mucosal homeostasis. Until recently, little was known about the impact of HIV-1 infection on PMNs as well as the impact of PMNs on HIV-1 disease progression. This is because early studies focused on neutropenia and recurrent microbial infections, particularly, during advanced disease. However, recent studies have extended the investigation area to cover new aspects of the interactions between HIV-1 and PMNs. This review aims to summarize these advances and address the impact of HIV-1 infection on PMNs as well as the impact of PMNs on HIV-1 disease progression to better understand the pathophysiology of HIV-1 infection.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Medical Laboratory Sciences, College of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Applied Biological Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad Mahmoud Yaseen
- Public Health, College of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Barakat Mohammad Shabsoug
- Chemical Sciences, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
22
|
Koh AY. The microbiome in hematopoietic stem cell transplant recipients and cancer patients: Opportunities for clinical advances that reduce infection. PLoS Pathog 2017; 13:e1006342. [PMID: 28662165 PMCID: PMC5491267 DOI: 10.1371/journal.ppat.1006342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Andrew Y. Koh
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Coron N, Pavlickova S, Godefroy A, Pailhoriès H, Kempf M, Cassisa V, Marsollier L, Marion E, Joly-Guillou ML, Eveillard M. Mouse model of colonization of the digestive tract with Acinetobacter baumannii and subsequent pneumonia. Future Microbiol 2017; 12:707-719. [PMID: 28540732 DOI: 10.2217/fmb-2016-0203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Implementing a mouse model of Acinetobacter baumannii (AB) digestive colonization and studying the propensity of an intestinal reservoir of AB to be at the origin of pneumonia. MATERIALS & METHODS After a disruption of the digestive flora by piperacillin-tazobactam, two multidrug-resistant AB strains were intranasally inoculated to two cohorts of ten mice daily. For each strain, five mice were rendered transiently neutropenic. RESULTS & CONCLUSION One strain persisted several weeks in the digestive tract, even after stopping piperacillin-tazobactam injections, leading to the hypothesis that some AB strains can authentically colonize the gut. Most of the immunocompromised mice experienced clinical signs and positive lung cultures, which were associated with positive spleen cultures, an argument in favor of bacterial translocation.
Collapse
Affiliation(s)
- Noémie Coron
- Center for Research in Cancerology & Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'Angers, Angers, France.,Equipe Atip-Avenir, Center for Research in Cancerology & Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'Angers, Angers, France
| | - Silvie Pavlickova
- Center for Research in Cancerology & Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'Angers, Angers, France.,Equipe Atip-Avenir, Center for Research in Cancerology & Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'Angers, Angers, France
| | - Angélique Godefroy
- Laboratoire de bactériologie, IRIS, CHU, 4 rue Larrey, 49933 Angers cedex, France
| | - Hélène Pailhoriès
- Center for Research in Cancerology & Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'Angers, Angers, France.,Equipe Atip-Avenir, Center for Research in Cancerology & Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'Angers, Angers, France.,Laboratoire de bactériologie, IRIS, CHU, 4 rue Larrey, 49933 Angers cedex, France
| | - Marie Kempf
- Center for Research in Cancerology & Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'Angers, Angers, France.,Equipe Atip-Avenir, Center for Research in Cancerology & Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'Angers, Angers, France.,Laboratoire de bactériologie, IRIS, CHU, 4 rue Larrey, 49933 Angers cedex, France
| | - Viviane Cassisa
- Laboratoire de bactériologie, IRIS, CHU, 4 rue Larrey, 49933 Angers cedex, France
| | - Laurent Marsollier
- Center for Research in Cancerology & Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'Angers, Angers, France.,Equipe Atip-Avenir, Center for Research in Cancerology & Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'Angers, Angers, France
| | - Estelle Marion
- Center for Research in Cancerology & Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'Angers, Angers, France.,Equipe Atip-Avenir, Center for Research in Cancerology & Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'Angers, Angers, France
| | - Marie-Laure Joly-Guillou
- Center for Research in Cancerology & Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'Angers, Angers, France.,Equipe Atip-Avenir, Center for Research in Cancerology & Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'Angers, Angers, France.,Laboratoire de bactériologie, IRIS, CHU, 4 rue Larrey, 49933 Angers cedex, France
| | - Matthieu Eveillard
- Center for Research in Cancerology & Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'Angers, Angers, France.,Equipe Atip-Avenir, Center for Research in Cancerology & Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'Angers, Angers, France.,Laboratoire de bactériologie, IRIS, CHU, 4 rue Larrey, 49933 Angers cedex, France
| |
Collapse
|
24
|
Hwang IY, Koh E, Wong A, March JC, Bentley WE, Lee YS, Chang MW. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun 2017; 8:15028. [PMID: 28398304 PMCID: PMC5394271 DOI: 10.1038/ncomms15028] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/22/2017] [Indexed: 12/16/2022] Open
Abstract
Bacteria can be genetically engineered to kill specific pathogens or inhibit their virulence. We previously developed a synthetic genetic system that allows a laboratory strain of Escherichia coli to sense and kill Pseudomonas aeruginosa in vitro. Here, we generate a modified version of the system, including a gene encoding an anti-biofilm enzyme, and use the probiotic strain Escherichia coli Nissle 1917 as host. The engineered probiotic shows in vivo prophylactic and therapeutic activity against P. aeruginosa during gut infection in two animal models (Caenorhabditis elegans and mice). These findings support the further development of engineered microorganisms with potential prophylactic and therapeutic activities against gut infections. Bacteria can be engineered to kill specific pathogens. Here, the authors modify and optimize a synthetic genetic system in a probiotic strain of Escherichia coli, and show that the engineered probiotic can sense and kill the pathogen Pseudomonas aeruginosa in two animal models of gut infection.
Collapse
Affiliation(s)
- In Young Hwang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Elvin Koh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Adison Wong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - John C March
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Yung Seng Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore S 119074, Singapore
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
25
|
Tang Y, Ali Z, Zou J, Jin G, Zhu J, Yang J, Dai J. Detection methods for Pseudomonas aeruginosa: history and future perspective. RSC Adv 2017. [DOI: 10.1039/c7ra09064a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The current review summarized and analyzed the development of detection techniques forPseudomonas aeruginosaover the past 50 years.
Collapse
Affiliation(s)
- Yongjun Tang
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Zeeshan Ali
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Jun Zou
- School of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan 411104
- China
| | - Gang Jin
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Junchen Zhu
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Jian Yang
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Jianguo Dai
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| |
Collapse
|
26
|
Kamei A, Gao G, Neale G, Loh LN, Vogel P, Thomas PG, Tuomanen EI, Murray PJ. Exogenous remodeling of lung resident macrophages protects against infectious consequences of bone marrow-suppressive chemotherapy. Proc Natl Acad Sci U S A 2016; 113:E6153-E6161. [PMID: 27671632 PMCID: PMC5068317 DOI: 10.1073/pnas.1607787113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Infection is the single greatest threat to survival during cancer chemotherapy because of depletion of bone marrow-derived immune cells. Phagocytes, especially neutrophils, are key effectors in immunity to extracellular pathogens, which has limited the development of new approaches to protect patients with cancer and chemotherapy-induced neutropenia. Using a model of vaccine-induced protection against lethal Pseudomonas aeruginosa pneumonia in the setting of chemotherapy-induced neutropenia, we found a population of resident lung macrophages in the immunized lung that mediated protection in the absence of neutrophils, bone marrow-derived monocytes, or antibodies. These vaccine-induced macrophages (ViMs) expanded after immunization, locally proliferated, and were closely related to alveolar macrophages (AMs) by surface phenotype and gene expression profiles. By contrast to AMs, numbers of ViMs were stable through chemotherapy, showed enhanced phagocytic activity, and prolonged survival of neutropenic mice from lethal P. aeruginosa pneumonia upon intratracheal adoptive transfer. Thus, induction of ViMs by tissue macrophage remodeling may become a framework for new strategies to activate immune-mediated reserves against infection in immunocompromised hosts.
Collapse
Affiliation(s)
- Akinobu Kamei
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105; Department of Pediatrics, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Geli Gao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Lip Nam Loh
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Elaine I Tuomanen
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Peter J Murray
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105; Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
27
|
Roux D, Danilchanka O, Guillard T, Cattoir V, Aschard H, Fu Y, Angoulvant F, Messika J, Ricard JD, Mekalanos JJ, Lory S, Pier GB, Skurnik D. Fitness cost of antibiotic susceptibility during bacterial infection. Sci Transl Med 2016. [PMID: 26203082 DOI: 10.1126/scitranslmed.aab1621] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advances in high-throughput DNA sequencing allow for a comprehensive analysis of bacterial genes that contribute to virulence in a specific infectious setting. Such information can yield new insights that affect decisions on how to best manage major public health issues such as the threat posed by increasing antimicrobial drug resistance. Much of the focus has been on the consequences of the selective advantage conferred on drug-resistant strains during antibiotic therapy. It is thought that the genetic and phenotypic changes that confer resistance also result in concomitant reductions in in vivo fitness, virulence, and transmission. However, experimental validation of this accepted paradigm is modest. Using a saturated transposon library of Pseudomonas aeruginosa, we identified genes across many functional categories and operons that contributed to maximal in vivo fitness during lung infections in animal models. Genes that bestowed both intrinsic and acquired antibiotic resistance provided a positive in vivo fitness advantage to P. aeruginosa during infection. We confirmed these findings in the pathogenic bacteria Acinetobacter baumannii and Vibrio cholerae using murine and rabbit infection models, respectively. Our results show that efforts to confront the worldwide increase in antibiotic resistance might be exacerbated by fitness advantages that enhance virulence in drug-resistant microbes.
Collapse
Affiliation(s)
- Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. INSERM, IAME, UMR 1137, F-75018 Paris, France. Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France
| | - Olga Danilchanka
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Guillard
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. EA 4687, Faculté de Médecine, Université de Reims Champagne-Ardenne, 51092 Reims, France
| | - Vincent Cattoir
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. EA 4655, Faculté de Médecine, Université de Caen Basse-Normandie, 14033 Caen, France
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Yang Fu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Francois Angoulvant
- Hôpitaux de Paris (AP-HP), Pédiatrique Emergency Département, Hôpital Necker-Enfants Malades and Université Paris Descartes, 75015 Paris, France
| | | | | | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen Lory
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Lopez-Medina E, Koh AY. The complexities of bacterial-fungal interactions in the mammalian gastrointestinal tract. MICROBIAL CELL 2016; 3:191-195. [PMID: 28357354 PMCID: PMC5349146 DOI: 10.15698/mic2016.05.497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Eduardo Lopez-Medina
- Department of Pediatrics, Universidad del Valle and Centro de Estudios en Infectología Pediátrica, Cali, Colombia
| | - Andrew Y Koh
- Departments of Pediatrics and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
29
|
Type Six Secretion System of Bordetella bronchiseptica and Adaptive Immune Components Limit Intracellular Survival During Infection. PLoS One 2015; 10:e0140743. [PMID: 26485303 PMCID: PMC4618060 DOI: 10.1371/journal.pone.0140743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/30/2015] [Indexed: 11/19/2022] Open
Abstract
The Type Six Secretion System (T6SS) is required for Bordetella bronchiseptica cytotoxicity, cytokine modulation, infection, and persistence. However, one-third of recently sequenced Bordetella bronchiseptica strains of the predominantly human-associated Complex IV have lost their T6SS through gene deletion or degradation. Since most human B. bronchiseptica infections occur in immunocompromised patients, we determine here whether loss of Type Six Secretion is beneficial to B. bronchiseptica during infection of immunocompromised mice. Infection of mice lacking adaptive immunity (Rag1-/- mice) with a T6SS-deficient mutant results in a hypervirulent phenotype that is characterized by high numbers of intracellular bacteria in systemic organs. In contrast, wild-type B. bronchiseptica kill their eukaryotic cellular hosts via a T6SS-dependent mechanism that prevents survival in systemic organs. High numbers of intracellular bacteria recovered from immunodeficient mice but only low numbers from wild-type mice demonstrates that B. bronchiseptica survival in an intracellular niche is limited by B and T cell responses. Understanding the nature of intracellular survival during infection, and its effects on the generation and function of the host immune response, are important to contain and control the spread of Bordetella-caused disease.
Collapse
|
30
|
Lopez-Medina E, Fan D, Coughlin LA, Ho EX, Lamont IL, Reimmann C, Hooper LV, Koh AY. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis. PLoS Pathog 2015; 11:e1005129. [PMID: 26313907 PMCID: PMC4552174 DOI: 10.1371/journal.ppat.1005129] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/04/2015] [Indexed: 01/09/2023] Open
Abstract
Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa’s ability to colonize the GI tract but does decrease P. aeruginosa’s cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease. Pseudomonas aeruginosa and Candida albicans are two medically important human pathogens that often co-infect or co-colonize the same human niches, such as the gut. In a normal healthy host, P. aeruginosa and C. albicans can colonize the gut without any significant pathologic sequelae. But in immunocompromised hosts, both pathogens can escape the gut and cause life-threatening disseminated infections. Yet the mechanisms and pathogenic consequences of interactions between these two pathogens within a living mammalian host are not well understood. Here, we use a mouse model of P. aeruginosa and C. albicans gut co-infection to better understand the mechanisms by which C. albicans inhibits P. aeruginosa infection. C. albicans inhibits the expression of P. aeruginosa genes that are vital for iron acquisition. Accordingly, deleting these iron acquisition genes in P. aeruginosa prevents infection. Understanding how microbes interact and antagonize each other may help us identify new potential therapeutic targets for preventing or treating infections.
Collapse
Affiliation(s)
- Eduardo Lopez-Medina
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Di Fan
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Laura A. Coughlin
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Evi X. Ho
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Cornelia Reimmann
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Lora V. Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Andrew Y. Koh
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Hayashi N, Nishizawa H, Kitao S, Deguchi S, Nakamura T, Fujimoto A, Shikata M, Gotoh N. Pseudomonas aeruginosa injects type III effector ExoS into epithelial cells through the function of type IV pili. FEBS Lett 2015; 589:890-6. [PMID: 25747138 DOI: 10.1016/j.febslet.2015.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/02/2015] [Accepted: 02/25/2015] [Indexed: 12/29/2022]
Abstract
Translocation of Pseudomonas aeruginosa through epithelial tissues can cause sepsis. Here, we examined whether P. aeruginosa penetrates epithelial cell layers using type IV pili (TFP). Deletion of TFP (pilA) did not affect association with Caco-2 cells, although it decreased penetration through, and disruption of, Caco-2 cell monolayers. We found that TFP are necessary for injection of the type III effector ExoS, which impairs defense against P. aeruginosa penetration, into host cells. Deletion of pilA attenuated oral infection in silkworms. We conclude that P. aeruginosa injects ExoS into cells through the function of TFP, enabling penetration of epithelial barriers.
Collapse
Affiliation(s)
- Naoki Hayashi
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Hideyuki Nishizawa
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Seiya Kitao
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Sakurako Deguchi
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Takano Nakamura
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Akiyo Fujimoto
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Mototsugu Shikata
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Naomasa Gotoh
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
32
|
Junkins RD, Carrigan SO, Wu Z, Stadnyk AW, Cowley E, Issekutz T, Berman J, Lin TJ. Mast Cells Protect against Pseudomonas aeruginosa–Induced Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2310-21. [DOI: 10.1016/j.ajpath.2014.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/07/2014] [Accepted: 05/12/2014] [Indexed: 01/09/2023]
|
33
|
Chuang CH, Wang YH, Chang HJ, Chen HL, Huang YC, Lin TY, Ozer EA, Allen JP, Hauser AR, Chiu CH. Shanghai fever: a distinct Pseudomonas aeruginosa enteric disease. Gut 2014; 63:736-43. [PMID: 23943780 PMCID: PMC3995289 DOI: 10.1136/gutjnl-2013-304786] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Shanghai fever, a community-acquired enteric illness associated with sepsis caused by Pseudomonas aeruginosa, was first described in 1918. The understanding of Shanghai fever is incomplete. OBJECTIVE To delineate the clinical features and to examine the host and microbial factors associated with Shanghai fever. METHODS We prospectively enrolled 27 consecutive previously healthy children with community-acquired P aeruginosa enteritis and sepsis between July 2003 and June 2012. An immunological investigation, including measurement of serum immunoglobulin levels and lymphocyte subpopulations, was performed. The clonal relationship of bacterial isolates was determined by multilocus sequence typing (MLST) and the virulence of isolates was measured using cellular and animal models. RESULTS The median age of the patients was 7 months; 24 (89%) were aged <1 year. The most common clinical manifestations were fever (100%), diarrhoea (96%) and shock (81%). Leucopenia, thrombocytopenia, high C-reactive protein levels, coagulopathy and hypoalbuminaemia were the key laboratory findings. Necrotising enteritis with or without bowel perforation, ecthyma gangrenosum and seizures were main complications. The death rate was 15%. No common primary immune deficiency was identified. MLST genotypes indicated that isolates from Shanghai fever were non-clonal, but they shared similar phenotypes which were invariably cytotoxic, invasive and adhesive in cellular experiments and caused prolonged gut colonisation and more death than respiratory and laboratory control strains in mice. CONCLUSIONS Shanghai fever is a sporadic community-acquired disease of previously healthy infants that manifests as sepsis associated with P aeruginosa enteric disease. Both host and microbial factors play a role in pathogenesis.
Collapse
Affiliation(s)
- Chih-Hsien Chuang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Hsin Wang
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsin-Ju Chang
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsiu-Ling Chen
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yhu-Chering Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tzou-Yien Lin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jonathan P Allen
- Department of Microbiology and Immunology, Northwestern University, Chicago, Illinois, USA
| | - Alan R Hauser
- Department of Microbiology and Immunology, Northwestern University, Chicago, Illinois, USA
| | - Cheng-Hsun Chiu
- Molecular Infectious Diseases Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
34
|
Villano JS, Rong F, Cooper TK. Bacterial infections in Myd88-deficient mice. Comp Med 2014; 64:110-114. [PMID: 24674585 PMCID: PMC3997288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/04/2013] [Accepted: 10/13/2013] [Indexed: 06/03/2023]
Abstract
Three breeding colonies of Myd88(-/-) mice had a history of significant morbidity and mortality. Although strain-specific poor reproductive performance might explain neonatal death and dystocia, mice were found dead or required euthanasia because of moribundity, distended abdomen, head tilt, and seizures. Histopathology results included bacteremia, placentitis, metritis, peritonitis with abscess formation, and suppurative meningoencephalitis. Intralesional gram-negative coccobacilli were present, often in extremely high number. Cultures of samples of the cardiac blood of a mouse and from water-bottle sipper tubes provided to some affected mice grew Pseudomonas aeruginosa. In addition, affected tissues from 2 mice and feces from a third tested PCR-positive for P. aeruginosa. Although the mice had received autoclaved reverse-osmosis-purified drinking water, we suspect that the mice were inoculated with P. aeruginosa through contaminated sipper tubes. Because of the deficiency in most of the Toll-like receptor signaling pathways, these Myd88(-/-) mice were unlikely to have developed competitive innate and adaptive immune responses, resulting in bacterial infections. These clinical cases underscore the importance of understanding how genotype, phenotype and environment affect animal health. Sound husbandry and experimental practices are needed to prevent the exposure of immuno-deficient mice to pathogens.
Collapse
Affiliation(s)
- Jason S Villano
- Animal Resources Center, University of Texas Medical Branch, Galveston, Texas, USA; Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Fang Rong
- Departmen of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Timothy K Cooper
- Department of Comparative Medicine, Penn State Hershey Medical Center, College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
35
|
Enhanced in vivo fitness of carbapenem-resistant oprD mutants of Pseudomonas aeruginosa revealed through high-throughput sequencing. Proc Natl Acad Sci U S A 2013; 110:20747-52. [PMID: 24248354 DOI: 10.1073/pnas.1221552110] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An important question regarding the biologic implications of antibiotic-resistant microbes is how resistance impacts the organism's overall fitness and virulence. Currently it is generally thought that antibiotic resistance carries a fitness cost and reduces virulence. For the human pathogen Pseudomonas aeruginosa, treatment with carbapenem antibiotics is a mainstay of therapy that can lead to the emergence of resistance, often through the loss of the carbapenem entry channel OprD. Transposon insertion-site sequencing was used to analyze the fitness of 300,000 mutants of P. aeruginosa strain PA14 in a mouse model for gut colonization and systemic dissemination after induction of neutropenia. Transposon insertions in the oprD gene led not only to carbapenem resistance but also to a dramatic increase in mucosal colonization and dissemination to the spleen. These findings were confirmed in vivo with different oprD mutants of PA14 as well as with related pairs of carbapenem-susceptible and -resistant clinical isolates. Compared with OprD(+) strains, those lacking OprD were more resistant to killing by acidic pH or normal human serum and had increased cytotoxicity against murine macrophages. RNA-sequencing analysis revealed that an oprD mutant showed dramatic changes in the transcription of genes that may contribute to the various phenotypic changes observed. The association between carbapenem resistance and enhanced survival of P. aeruginosa in infected murine hosts suggests that either drug resistance or host colonization can cause the emergence of more pathogenic, drug-resistant P. aeruginosa clones in a single genetic event.
Collapse
|
36
|
Bioengineered 2′-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr Res 2013; 33:831-8. [DOI: 10.1016/j.nutres.2013.07.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/06/2013] [Accepted: 07/08/2013] [Indexed: 11/23/2022]
|
37
|
Murine models of Candida gastrointestinal colonization and dissemination. EUKARYOTIC CELL 2013; 12:1416-22. [PMID: 24036344 DOI: 10.1128/ec.00196-13] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ninety-five percent of infectious agents enter through exposed mucosal surfaces, such as the respiratory and gastrointestinal (GI) tracts. The human GI tract is colonized with trillions of commensal microbes, including numerous Candida spp. Some commensal microbes in the GI tract can cause serious human infections under specific circumstances, typically involving changes in the gut environment and/or host immune conditions. Therefore, utilizing animal models of fungal GI colonization and dissemination can lead to significant insights into the complex pathophysiology of transformation from a commensal organism to a pathogen and host-pathogen interactions. This paper will review the methodologic approaches used for modeling GI colonization versus dissemination, the insights learned from these models, and finally, possible future directions using these animal modeling systems.
Collapse
|
38
|
Skurnik D, Roux D, Aschard H, Cattoir V, Yoder-Himes D, Lory S, Pier GB. A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries. PLoS Pathog 2013; 9:e1003582. [PMID: 24039572 PMCID: PMC3764216 DOI: 10.1371/journal.ppat.1003582] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/12/2013] [Indexed: 01/22/2023] Open
Abstract
High-throughput sequencing of transposon (Tn) libraries created within entire genomes identifies and quantifies the contribution of individual genes and operons to the fitness of organisms in different environments. We used insertion-sequencing (INSeq) to analyze the contribution to fitness of all non-essential genes in the chromosome of Pseudomonas aeruginosa strain PA14 based on a library of ∼300,000 individual Tn insertions. In vitro growth in LB provided a baseline for comparison with the survival of the Tn insertion strains following 6 days of colonization of the murine gastrointestinal tract as well as a comparison with Tn-inserts subsequently able to systemically disseminate to the spleen following induction of neutropenia. Sequencing was performed following DNA extraction from the recovered bacteria, digestion with the MmeI restriction enzyme that hydrolyzes DNA 16 bp away from the end of the Tn insert, and fractionation into oligonucleotides of 1,200-1,500 bp that were prepared for high-throughput sequencing. Changes in frequency of Tn inserts into the P. aeruginosa genome were used to quantify in vivo fitness resulting from loss of a gene. 636 genes had <10 sequencing reads in LB, thus defined as unable to grow in this medium. During in vivo infection there were major losses of strains with Tn inserts in almost all known virulence factors, as well as respiration, energy utilization, ion pumps, nutritional genes and prophages. Many new candidates for virulence factors were also identified. There were consistent changes in the recovery of Tn inserts in genes within most operons and Tn insertions into some genes enhanced in vivo fitness. Strikingly, 90% of the non-essential genes were required for in vivo survival following systemic dissemination during neutropenia. These experiments resulted in the identification of the P. aeruginosa strain PA14 genes necessary for optimal survival in the mucosal and systemic environments of a mammalian host.
Collapse
Affiliation(s)
- David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Vincent Cattoir
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Deborah Yoder-Himes
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen Lory
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gerald B. Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
39
|
Bucior I, Abbott J, Song Y, Matthay MA, Engel JN. Sugar administration is an effective adjunctive therapy in the treatment of Pseudomonas aeruginosa pneumonia. Am J Physiol Lung Cell Mol Physiol 2013; 305:L352-63. [PMID: 23792737 DOI: 10.1152/ajplung.00387.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment of acute and chronic pulmonary infections caused by opportunistic pathogen Pseudomonas aeruginosa is limited by the increasing frequency of multidrug bacterial resistance. Here, we describe a novel adjunctive therapy in which administration of a mix of simple sugars-mannose, fucose, and galactose-inhibits bacterial attachment, limits lung damage, and potentiates conventional antibiotic therapy. The sugar mixture inhibits adhesion of nonmucoid and mucoid P. aeruginosa strains to bronchial epithelial cells in vitro. In a murine model of acute pneumonia, treatment with the sugar mixture alone diminishes lung damage, bacterial dissemination to the subpleural alveoli, and neutrophil- and IL-8-driven inflammatory responses. Remarkably, the sugars act synergistically with anti-Pseudomonas antibiotics, including β-lactams and quinolones, to further reduce bacterial lung colonization and damage. To probe the mechanism, we examined the effects of sugars in the presence or absence of antibiotics during growth in liquid culture and in an ex vivo infection model utilizing freshly dissected mouse tracheas and lungs. We demonstrate that the sugar mixture induces rapid but reversible formation of bacterial clusters that exhibited enhanced susceptibility to antibiotics compared with individual bacteria. Our findings reveal that sugar inhalation, an inexpensive and safe therapeutic, could be used in combination with conventional antibiotic therapy to more effectively treat P. aeruginosa lung infections.
Collapse
Affiliation(s)
- Iwona Bucior
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
40
|
Junkins RD, MacNeil AJ, Wu Z, McCormick C, Lin TJ. Regulator of Calcineurin 1 Suppresses Inflammation during Respiratory Tract Infections. THE JOURNAL OF IMMUNOLOGY 2013; 190:5178-86. [DOI: 10.4049/jimmunol.1203196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Kamei A, Wu W, Traficante DC, Koh AY, Van Rooijen N, Pier GB, Priebe GP. Collaboration between macrophages and vaccine-induced CD4+ T cells confers protection against lethal Pseudomonas aeruginosa pneumonia during neutropenia. J Infect Dis 2012; 207:39-49. [PMID: 23100569 DOI: 10.1093/infdis/jis657] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The usefulness of vaccine-based strategies to prevent lethal bacterial infection in a host with neutropenia is not well-defined. Here, we show in a neutropenic mouse model that immunity induced by mucosal vaccination with a live-attenuated Pseudomonas aeruginosa vaccine is protective against lethal P. aeruginosa pneumonia caused by both vaccine-homologous and vaccine-heterologous strains, whereas passive immunization confers only vaccine-homologous protection. Cells in the macrophage lineage served as crucial innate cellular effectors in the neutropenic host after active immunization. Vaccine efficacy was CD4(+) T-cell dependent and associated with accumulation of macrophage-lineage cells in the alveolar space after infection, as well as with enhanced P. aeruginosa clearance from the lung. Adaptive CD4(+) T cells produced granulocyte-macrophage colony-stimulating factor (GM-CSF) on restimulation in vitro, and local GM-CSF was critical for vaccine efficacy. Thus, collaboration between the innate and adaptive effectors induced by mucosal vaccination can overcome neutropenia and confer protection against lethal bacterial infection in the profoundly neutropenic host.
Collapse
Affiliation(s)
- Akinobu Kamei
- Channing Laboratory, Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Evaluation of the trimeric autotransporter Ata as a vaccine candidate against Acinetobacter baumannii infections. Infect Immun 2012; 80:3381-8. [PMID: 22825448 DOI: 10.1128/iai.06096-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Acinetobacter baumannii is a multidrug-resistant (MDR) nosocomial pathogen for which immunotherapeutic alternatives are needed. We previously identified a surface autotransporter of A. baumannii, Ata, that bound to various extracellular matrix/basal membrane proteins and was required for full virulence, biofilm formation, and the adhesion of A. baumannii to collagen type IV. We show here that Ata binding to collagen type IV was inhibited by antibodies to Ata. In addition, in the presence of complement and polymorphonuclear cells (PMNs), antibodies to Ata were highly opsonic against A. baumannii ATCC 17978 and showed low to moderate killing activity against four heterologous A. baumannii strains, whereas in the absence of PMNs, antibody to Ata efficiently promoted complement-dependent bactericidal killing of all of the tested A. baumannii isolates. Using a pneumonia model of infection in both immunocompetent and immunocompromised mice, we found that, compared to normal rabbit sera, antisera to Ata significantly reduced the levels of A. baumannii ATCC 17978 and two MDR strains in the lungs of infected mice. The ability of Ata to engender anti-adhesive, bactericidal, opsonophagocytic, and protective antibodies validates its potential use as an antigenic target against MDR A. baumannii infections.
Collapse
|
43
|
X-linked hyper IgM syndrome: a novel sequence variant associated with an atypical mild phenotype. J Pediatr Hematol Oncol 2012; 34:e212-4. [PMID: 22322937 DOI: 10.1097/mph.0b013e318241fa1b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
X-linked hyper IgM syndrome is associated with abnormalities in the gene encoding CD40 ligand (CD40LG). A typical phenotype evolves during infancy in affected males. This phenotype includes neutropenia, dysgammaglobulinemia, bacterial sinopulmonary infections, and opportunistic infections. In the absence of the typical phenotypic features, clinicians must maintain a high level of suspicion for X-linked hyper IgM syndrome. We describe a unique hemizygous CD40LG mutation which was discovered in a 12-year-old boy with chronic severe neutropenia, a normal IgG level, and absence of sinopulmonary or opportunistic infections. The clinical implications of this mutation and associated atypical phenotype are discussed.
Collapse
|
44
|
Lopez-Medina E, Neubauer MM, Pier GB, Koh AY. RNA isolation of Pseudomonas aeruginosa colonizing the murine gastrointestinal tract. J Vis Exp 2011:3293. [PMID: 21989513 PMCID: PMC3230207 DOI: 10.3791/3293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Pseudomonas aeruginosa (PA) infections result in significant morbidity and mortality in hosts with compromised immune systems, such as patients with leukemia, severe burn wounds, or organ transplants. In patients at high-risk for developing PA bloodstream infections, the gastrointestinal (GI) tract is the main reservoir for colonization, but the mechanisms by which PA transitions from an asymptomatic colonizing microbe to an invasive, and often deadly, pathogen are unclear. Previously, we performed in vivo transcription profiling experiments by recovering PA mRNA from bacterial cells residing in the cecums of colonized mice in order to identify changes in bacterial gene expression during alterations to the host's immune status. As with any transcription profiling experiment, the rate-limiting step is in the isolation of sufficient amounts of high quality mRNA. Given the abundance of enzymes, debris, food residues, and particulate matter in the GI tract, the challenge of RNA isolation is daunting. Here, we present a method for reliable and reproducible isolation of bacterial RNA recovered from the murine GI tract. This method utilizes a well-established murine model of PA GI colonization and neutropenia-induced dissemination. Once GI colonization with PA is confirmed, mice are euthanized and cecal contents are recovered and flash frozen. RNA is then extracted using a combination of mechanical disruption, boiling, phenol/chloroform extractions, DNase treatment, and affinity chromatography. Quantity and purity are confirmed by spectrophotometry (Nanodrop Technologies) and bioanalyzer (Agilent Technologies) (Fig 1). This method of GI microbial RNA isolation can easily be adapted to other bacteria and fungi as well.
Collapse
|
45
|
Faber J, van Limpt K, Kegler D, Luiking Y, Garssen J, van Helvoort A, Vos AP, Knol J. Bacterial translocation is reduced by a specific nutritional combination in mice with chemotherapy-induced neutropenia. J Nutr 2011; 141:1292-8. [PMID: 21562235 DOI: 10.3945/jn.110.136986] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Immune function is compromised in many cancer patients, leading to an increased risk of (infectious) complications. Chemotherapy-induced neutropenia is a common cause of treatment-induced immune suppression. In the present study, the effect of a specific nutritional combination (SNC) on bacterial translocation was studied in a model of chemotherapy-induced neutropenia in C3H/HeN mice colonized with Pseudomonas aeruginosa PAO-1. Dietary intervention started after stable colonization with P. aeruginosa to compare the SNC containing high protein, l-leucine, fish oil, and specific oligosaccharides to an isoenergetic control diet. After 3 wk, the mice were treated with cyclophosphamide to induce neutropenia. This rendered the mice susceptible to Pseudomonas translocation, which was quantified 5 d later. Intervention with the SNC resulted in a reduced incidence and intensity of bacterial translocation to the liver (P < 0.05) and a similar trend in the lungs (P ≤ 0.057). In addition, the SNC reduced the fecal pH (P < 0.05) and decreased P. aeruginosa counts in fecal samples (P < 0.05). Moreover, plasma concentrations of proinflammatory cytokines were correlated with the reduced bacterial translocation to the liver (ρ > 0.78; P < 0.001). In conclusion, dietary intervention with the SNC significantly reduced the incidence and severity of P. aeruginosa translocation in a mouse model of chemotherapy-induced immune suppression. Several mechanisms might have played a role, including the modulation of the intestinal microbiota, an improved gut barrier function, immune function, and a reduced inflammatory state. These results suggest an opportunity to develop new applications in cancer patients, with the aim to reduce infectious and other complications.
Collapse
Affiliation(s)
- Joyce Faber
- Nutricia Advanced Medical Nutrition, Danone Research, Centre for Specialised Nutrition, Wageningen, The Netherlands 6704 PH.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Mucosal vaccination with a multivalent, live-attenuated vaccine induces multifactorial immunity against Pseudomonas aeruginosa acute lung infection. Infect Immun 2010; 79:1289-99. [PMID: 21149583 DOI: 10.1128/iai.01139-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many animal studies investigating adaptive immune effectors important for protection against Pseudomonas aeruginosa have implicated opsonic antibody to the antigenically variable lipopolysaccharide (LPS) O antigens as a primary effector. However, active and passive vaccination of humans against these antigens has not shown clinical efficacy. We hypothesized that optimal immunity would require inducing multiple immune effectors targeting multiple bacterial antigens. Therefore, we evaluated a multivalent live-attenuated mucosal vaccination strategy in a murine model of acute P. aeruginosa pneumonia to assess the contributions to protective efficacy of various bacterial antigens and host immune effectors. Vaccines combining 3 or 4 attenuated strains having different LPS serogroups were associated with the highest protective efficacy compared to vaccines with fewer components. Levels of opsonophagocytic antibodies, which were directed not only to the LPS O antigens but also to the LPS core and surface proteins, correlated with protective immunity. The multivalent live-attenuated vaccines overcame prior problems involving immunologic interference in the development of O-antigen-specific antibody responses when closely related O antigens were combined in multivalent vaccines. Antibodies to the LPS core were associated with in vitro killing and in vivo protection against strains with O antigens not expressed by the vaccine strains, whereas antibodies to the LPS core and surface proteins augmented the contribution of O-antigen-specific antibodies elicited by vaccine strains containing a homologous O antigen. Local CD4 T cells in the lung also contributed to vaccine-based protection when opsonophagocytic antibodies to the challenge strain were absent. Thus, multivalent live-attenuated vaccines elicit multifactorial protective immunity to P. aeruginosa lung infections.
Collapse
|
47
|
Koh AY, Mikkelsen PJ, Smith RS, Coggshall KT, Kamei A, Givskov M, Lory S, Pier GB. Utility of in vivo transcription profiling for identifying Pseudomonas aeruginosa genes needed for gastrointestinal colonization and dissemination. PLoS One 2010; 5:e15131. [PMID: 21170272 PMCID: PMC3000825 DOI: 10.1371/journal.pone.0015131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/25/2010] [Indexed: 12/01/2022] Open
Abstract
Microarray analysis of Pseudomonas aeruginosa mRNA transcripts expressed in vivo during animal infection has not been previously used to investigate potential virulence factors needed in this setting. We compared mRNA expression in bacterial cells recovered from the gastrointestinal (GI) tracts of P. aeruginosa-colonized mice to that of P. aeruginosa in the drinking water used to colonize the mice. Genes associated with biofilm formation and type III secretion (T3SS) had markedly increased expression in the GI tract. A non-redundant transposon library in P. aeruginosa strain PA14 was used to test mutants in genes identified as having increased transcription during in vivo colonization. All of the Tn-library mutants in biofilm-associated genes had an attenuated ability to form biofilms in vitro, but there were no significant differences in GI colonization and dissemination between these mutants and WT P. aeruginosa PA14. To evaluate T3SS factors, we tested GI colonization and neutropenia-induced dissemination of both deletional (PAO1 and PAK) and insertional (PA14) mutants in four genes in the P. aeruginosa T3SS, exoS or exoU, exoT, and popB. There were no significant differences in GI colonization among these mutant strains and their WT counterparts, whereas rates of survival following dissemination were significantly decreased in mice infected by the T3SS mutant strains. However, there was a variable, strain-dependent effect on overall survival between parental and T3SS mutants. Thus, increased transcription of genes during in vivo murine GI colonization is not predictive of an essential role for the gene product in either colonization or overall survival following induction of neutropenia.
Collapse
Affiliation(s)
- Andrew Y Koh
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
MyD88-dependent signaling protects against anthrax lethal toxin-induced impairment of intestinal barrier function. Infect Immun 2010; 79:118-24. [PMID: 20974827 DOI: 10.1128/iai.00963-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
MyD88-deficient mice were previously shown to have increased susceptibility to Bacillus anthracis infection relative to wild-type animals. To determine the mechanism by which MyD88 protects against B. anthracis infection, knockout mice were challenged with nonencapsulated, toxigenic B. anthracis or with anthrax toxins. MyD88-deficient mice had increased susceptibility to B. anthracis and anthrax lethal toxin but not to edema toxin. Lethal toxin alone induced marked multifocal intestinal ulcers in the knockout animals, compromising the intestinal epithelial barrier. The resulting enteric bacterial leakage in the knockout animals led to peritonitis and septicemia. Focal ulcers and erosion were also found in MyD88-heterozygous control mice but with far lower incidence and severity. B. anthracis infection also induced a similar enteric bacterial septicemia in MyD88-deficient mice but not in heterozygous controls. We show that lethal toxin and B. anthracis challenge induce bacteremia as a result of intestinal damage in MyD88-deficient mice. These results suggest that loss of the intestinal epithelial barrier and enteric bacterial septicemia may contribute to sensitizing MyD88-deficient mice to B. anthracis and that MyD88 plays a protective role against lethal toxin-induced impairment of intestinal barrier.
Collapse
|
49
|
Yoshino Y, Kitazawa T, Kamimura M, Tatsuno K, Ota Y, Yotsuyanagi H. Pseudomonas putida bacteremia in adult patients: five case reports and a review of the literature. J Infect Chemother 2010; 17:278-82. [PMID: 20809240 DOI: 10.1007/s10156-010-0114-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
Pseudomonas putida belongs to the fluorescent group of Pseudomonas species, a group of opportunistic pathogens that primarily cause nosocomial infections. However, few cases of P. putida bacteremia in adult patients have been reported. We report five cases of P. putida bacteremia in adult patients and review 23 previously reported cases. Our five patients consisted of three cases of catheter-related bloodstream infection (CRBSI), one case of indwelling biliary drainage tube-related cholangitis, and one case of cholecystitis. Many of the 23 previously reported cases also included CRBSI. Of the clinical backgrounds, in all 28 reported cases including ours, 24 (85.7%) were immunocompromised. Of the clinical management, in CRBSI, devices were removed in almost all cases (92.9%). Antibiotic susceptibility data of our five cases and another previous case showed that patients with bacteremia had a high susceptibility of P. putida to anti-pseudomonal β-lactams. The prognosis for bacteremia with P. putida was good, as 26 (92.9%) of the total 28 cases were cured.
Collapse
Affiliation(s)
- Yusuke Yoshino
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Despite the expression of a myriad of virulence factors, healthy individuals are generally able to resist infections with Pseudomonas aeruginosa. Polymorphonuclear leukocyte-dependent killing is the major mechanism responsible for resistance; dysregulation of host defense mechanisms in addition to expression of specific bacterial factors can result in life-threatening infections with this bacterium.
Collapse
Affiliation(s)
- Joanna B Goldberg
- Department of Microbiology, University of Virginia Health SystemBox 800734, Charlottesville, VA 22908-0734USA
| |
Collapse
|