1
|
Chu X, Yang Q. Regulatory Mechanisms and Physiological Impacts of Quorum Sensing in Gram-Negative Bacteria. Infect Drug Resist 2024; 17:5395-5410. [PMID: 39654694 PMCID: PMC11626961 DOI: 10.2147/idr.s485388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
The Quorum sensing (QS) system is a widely existing communication mechanism, which regulates bacterial community behaviors and the expression of specific genes. The most common pathogenic bacteria in clinical infections are gram-negative bacteria, and QS plays an important regulatory role in the production of virulence factors and development of antibiotic resistance. This article reviews the QS systems of gram-negative bacteria and provides an overview of how they regulate their physiological functions.
Collapse
Affiliation(s)
- Xiaobing Chu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control, Peking Union Medical College, Ministry of Education, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Lopez Marin MA, Strejcek M, Uhlik O. Joining the bacterial conversation: increasing the cultivation efficiency of soil bacteria with acyl-homoserine lactones and cAMP. Microbiol Spectr 2023; 11:e0186023. [PMID: 37787516 PMCID: PMC10715134 DOI: 10.1128/spectrum.01860-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/17/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Microorganisms are a repository of interesting metabolites and functions. Therefore, accessing them is an important exercise for advancing not only basic questions about their physiology but also to advance technological applications. In this sense, increasing the culturability of environmental microorganisms remains an important endeavor for modern microbiology. Because microorganisms do not live in isolation in their environments, molecules can be added to the cultivation strategies to "inform them" that they are present in growth-permissive environmental conditions. Signaling molecules such as acyl-homoserine lactones and 3',5'-cyclic adenosine monophosphate belong to the plethora of molecules used by bacteria to communicate with each other in a phenomenon called quorum sensing. Therefore, including quorum sensing molecules can be an incentive for microorganisms, specifically soil bacteria, to increase their numbers on solid media.
Collapse
Affiliation(s)
- Marco A. Lopez Marin
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Prague, Czech Republic
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Prague, Czechia
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| |
Collapse
|
3
|
Yin L, Wang Y, Xiang S, Xu K, Wang B, Jia AQ. Tyramine, one quorum sensing inhibitor, reduces pathogenicity and restores tetracycline susceptibility in Burkholderia cenocepacia. Biochem Pharmacol 2023; 218:115906. [PMID: 37951366 DOI: 10.1016/j.bcp.2023.115906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Burkholderia cenocepacia is an opportunistic respiratory pathogen of particular relevance to patients with cystic fibrosis (CF), primarily regulating its biological functions and virulence factors through two quorum sensing (QS) systems (CepI/R and CciI/R). The highly persistent incidence of multidrug resistant Burkholderia cenocepacia poses a global threat to public health. In this study, we investigated the effects of tyramine, one biogenic amine, on the QS systems of Burkholderia cenocepacia. Genetic and biochemical analyses revealed that tyramine inhibited the production of N-hexanoyl-homoserine (AHL) signaling molecules (C8-HSL and C6-HSL) by blocking the CepI/R and CciI/R systems. As a result, the inhibition of QS systems leads to reduced production of various virulence factors, such as biofilm formation, extracellular polysaccharides, lipase, and swarming motility. Notably, as a potential quorum sensing inhibitor, tyramine exhibits low toxicity in vivo in Galleria mellonella larvae and is well characterized by Lipinski's five rules. It also shows high gastrointestinal absorption and the ability to cross the blood-brain barrier according to SwissADME database and ProTox-II server. Additionally, tyramine was found to enhance the efficacy of tetracycline in reducing the infectivity of Burkholderia cenocepacia in Galleria mellonella larvae infection model. Therefore, tyramine could be a promising candidate for combination therapy with traditional antimicrobials to improve their effectiveness against Burkholderia cenocepacia.
Collapse
Affiliation(s)
- Lujun Yin
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yingjie Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Shiliang Xiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Kaizhong Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
4
|
Metabolomic profiling of Burkholderia cenocepacia in synthetic cystic fibrosis sputum medium reveals nutrient environment-specific production of virulence factors. Sci Rep 2021; 11:21419. [PMID: 34725378 PMCID: PMC8560942 DOI: 10.1038/s41598-021-00421-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Infections by Burkholderia cenocepacia lead to life-threatening disease in immunocompromised individuals, including those living with cystic fibrosis (CF). While genetic variation in various B. cenocepacia strains has been reported, it remains unclear how the chemical environment of CF lung influences the production of small molecule virulence factors by these strains. Here we compare metabolomes of three clinical B. cenocepacia strains in synthetic CF sputum medium (SCFM2) and in a routine laboratory medium (LB), in the presence and absence of the antibiotic trimethoprim. Using a mass spectrometry-based untargeted metabolomics approach, we identify several compound classes which are differentially produced in SCFM2 compared to LB media, including siderophores, antimicrobials, quorum sensing signals, and various lipids. Furthermore, we describe that specific metabolites are induced in the presence of the antibiotic trimethoprim only in SCFM2 when compared to LB. Herein, C13-acyl-homoserine lactone, a quorum sensing signal previously not known to be produced by B. cenocepacia as well as pyochelin-type siderophores were exclusively detected during growth in SCFM2 in the presence of trimethoprim. The comparative metabolomics approach described in this study provides insight into environment-dependent production of secondary metabolites by B. cenocepacia strains and suggests future work which could identify personalized strain-specific regulatory mechanisms involved in production of secondary metabolites. Investigations into whether antibiotics with different mechanisms of action induce similar metabolic alterations will inform development of combination treatments aimed at effective clearance of Burkholderia spp. pathogens.
Collapse
|
5
|
Hayes AJ, Lewis JM, Davies MR, Scott NE. Burkholderia PglL enzymes are Serine preferring oligosaccharyltransferases which target conserved proteins across the Burkholderia genus. Commun Biol 2021; 4:1045. [PMID: 34493791 PMCID: PMC8423747 DOI: 10.1038/s42003-021-02588-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Glycosylation is increasingly recognised as a common protein modification within bacterial proteomes. While great strides have been made in identifying species that contain glycosylation systems, our understanding of the proteins and sites targeted by these systems is far more limited. Within this work we explore the conservation of glycoproteins and glycosylation sites across the pan-Burkholderia glycoproteome. Using a multi-protease glycoproteomic approach, we generate high-confidence glycoproteomes in two widely utilized B. cenocepacia strains, K56-2 and H111. This resource reveals glycosylation occurs exclusively at Serine residues and that glycoproteins/glycosylation sites are highly conserved across B. cenocepacia isolates. This preference for glycosylation at Serine residues is observed across at least 9 Burkholderia glycoproteomes, supporting that Serine is the dominant residue targeted by PglL-mediated glycosylation across the Burkholderia genus. Combined, this work demonstrates that PglL enzymes of the Burkholderia genus are Serine-preferring oligosaccharyltransferases that target conserved and shared protein substrates. Hayes et al provide a glycosylation site focused analysis of the glycoproteome of two widely utilized B. cenocepacia strains, K56-2 and H111. This team demonstrates that within these glycoproteomes Serine is the sole residue targeted for protein glycosylation and that glycoproteins/glycosylation sites are highly conserved across B. cenocepacia isolates.
Collapse
Affiliation(s)
- Andrew J Hayes
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jessica M Lewis
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
6
|
Herpell JB, Vanwijnsberghe S, Peeters C, Schindler F, Fragner L, Bejtović M, Weckwerth W, Vandamme P. Paraburkholderia dioscoreae sp. nov., a novel plant associated growth promotor. Int J Syst Evol Microbiol 2021; 71:004969. [PMID: 34542391 PMCID: PMC8549267 DOI: 10.1099/ijsem.0.004969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
A novel bacterium, designated strain Msb3T, was recently isolated from leaves of the yam family plant Dioscorea bulbifera (Dioscoreaceae). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that this strain belonged to the genus Paraburkholderia with Paraburkholderia xenovorans as nearest validly named neighbour taxon (99.3 % sequence similarity towards the P. xenovorans type strain). Earlier genome sequence analysis revealed a genome of 8.35 Mb in size with a G+C content of 62.5 mol%, which was distributed over two chromosomes and three plasmids. Here, we confirm that strain Msb3T represents a novel Paraburkholderia species. In silico DNA-DNA hybridization and average nucleotide identity (OrthoANIu) analyses towards P. xenovorans LB400T yielded 58.4 % dDDH and 94.5 % orthoANIu. Phenotypic and metabolic characterization revealed growth at 15 °C on tryptic soy agar, growth in the presence of 1 % NaCl and the lack of assimilation of phenylacetic acid as distinctive features. Together, these data demonstrate that strain Msb3T represents a novel species of the genus Paraburkholderia, for which we propose the name Paraburkholderia dioscoreae sp. nov. The type strain is Msb3T (=LMG 31881T, DSM 111632T, CECT 30342T).
Collapse
Affiliation(s)
- Johannes B. Herpell
- Molecular Systems Biology Division (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Sarah Vanwijnsberghe
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Florian Schindler
- Molecular Systems Biology Division (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Lena Fragner
- Molecular Systems Biology Division (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Mersad Bejtović
- Molecular Systems Biology Division (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology Division (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Ganesh PS, Vishnupriya S, Vadivelu J, Mariappan V, Vellasamy KM, Shankar EM. Intracellular survival and innate immune evasion of Burkholderia cepacia: Improved understanding of quorum sensing-controlled virulence factors, biofilm, and inhibitors. Microbiol Immunol 2020; 64:87-98. [PMID: 31769530 DOI: 10.1111/1348-0421.12762] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/25/2022]
Abstract
Burkholderia cepacia complex (Bcc) are opportunistic pathogens implicated with nosocomial infections, and high rates of morbidity and mortality, especially in individuals with cystic fibrosis (CF). B. cepacia are naturally resistant to different classes of antibiotics, and can subvert the host innate immune responses by producing quorum sensing (QS) controlled virulence factors and biofilms. It still remains a conundrum as to how exactly the bacterium survives the intracellular environment within the host cells of CF patients and immunocompromised individuals although the bacterium can invade human lung epithelial cells, neutrophils, and murine macrophages. The mechanisms associated with intracellular survival in the airway epithelial cells and the role of QS and virulence factors in B. cepacia infections in cystic fibrosis remain largely unclear. The current review focuses on understanding the role of QS-controlled virulence factors and biofilms, and provides additional impetus to understanding the potentials of QS-inhibitory strategies against B. cepacia.
Collapse
Affiliation(s)
- Pitchaipillai Sankar Ganesh
- Division of Infection Biology & Medical Microbiology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Sivakumar Vishnupriya
- Division of Infection Biology & Medical Microbiology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kumutha M Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Esaki M Shankar
- Division of Infection Biology & Medical Microbiology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
8
|
Phenylacetyl Coenzyme A, Not Phenylacetic Acid, Attenuates CepIR-Regulated Virulence in Burkholderia cenocepacia. Appl Environ Microbiol 2019; 85:AEM.01594-19. [PMID: 31585996 DOI: 10.1128/aem.01594-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
During phenylalanine catabolism, phenylacetic acid (PAA) is converted to phenylacetyl coenzyme A (PAA-CoA) by a ligase, PaaK, and then PAA-CoA is epoxidized by a multicomponent monooxygenase, PaaABCDE, before further degradation through the tricarboxylic acid (TCA) cycle. In the opportunistic pathogen Burkholderia cenocepacia, loss of paaABCDE attenuates virulence factor expression, which is under the control of the LuxIR-like quorum sensing (QS) system, CepIR. To further investigate the link between CepIR-regulated virulence and PAA catabolism, we created knockout mutants of the first step of the pathway (PAA-CoA synthesis by PaaK) and characterized them in comparison to a paaABCDE mutant using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and virulence assays. We found that while loss of PaaABCDE decreased virulence, deletion of the paaK genes resulted in a more virulent phenotype than that of the wild-type strain. Deletion of either paaK or paaABCDE led to higher levels of released PAA but no differences in levels of internal accumulation compared to the wild-type level. While we found no evidence of direct cepIR downregulation by PAA-CoA or PAA, a low-virulence cepR mutant reverted to a virulent phenotype upon removal of the paaK genes. On the other hand, removal of paaABCDE in the cepR mutant did not impact its attenuated phenotype. Together, our results suggest an indirect role for PAA-CoA in suppressing B. cenocepacia CepIR-activated virulence.IMPORTANCE The opportunistic pathogen Burkholderia cenocepacia uses a chemical signal process called quorum sensing (QS) to produce virulence factors. In B. cenocepacia, QS relies on the presence of the transcriptional regulator CepR which, upon binding QS signal molecules, activates virulence. In this work, we found that even in the absence of CepR, B. cenocepacia can elicit a pathogenic response if phenylacetyl-CoA, an intermediate of the phenylacetic acid degradation pathway, is not produced. Instead, accumulation of phenylacetyl-CoA appears to attenuate pathogenicity. Therefore, we have discovered that it is possible to trigger virulence in the absence of CepR, challenging the classical view of activation of virulence by this QS mechanism. Our work provides new insight into the relationship between metabolism and virulence in opportunistic bacteria. We propose that in the event that QS signaling molecules cannot accumulate to trigger a pathogenic response, a metabolic signal can still activate virulence in B. cenocepacia.
Collapse
|
9
|
Oppy CC, Jebeli L, Kuba M, Oates CV, Strugnell R, Edgington-Mitchell LE, Valvano MA, Hartland EL, Newton HJ, Scott NE. Loss of O-Linked Protein Glycosylation in Burkholderia cenocepacia Impairs Biofilm Formation and Siderophore Activity and Alters Transcriptional Regulators. mSphere 2019; 4:e00660-19. [PMID: 31722994 PMCID: PMC6854043 DOI: 10.1128/msphere.00660-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
O-linked protein glycosylation is a conserved feature of the Burkholderia genus. The addition of the trisaccharide β-Gal-(1,3)-α-GalNAc-(1,3)-β-GalNAc to membrane exported proteins in Burkholderia cenocepacia is required for bacterial fitness and resistance to environmental stress. However, the underlying causes of the defects observed in the absence of glycosylation are unclear. Using proteomics, luciferase reporter assays, and DNA cross-linking, we demonstrate the loss of glycosylation leads to changes in transcriptional regulation of multiple proteins, including the repression of the master quorum CepR/I. These proteomic and transcriptional alterations lead to the abolition of biofilm formation and defects in siderophore activity. Surprisingly, the abundance of most of the known glycosylated proteins did not significantly change in the glycosylation-defective mutants, except for BCAL1086 and BCAL2974, which were found in reduced amounts, suggesting they could be degraded. However, the loss of these two proteins was not responsible for driving the proteomic alterations, biofilm formation, or siderophore activity. Together, our results show that loss of glycosylation in B. cenocepacia results in a global cell reprogramming via alteration of the transcriptional regulatory systems, which cannot be explained by the abundance changes in known B. cenocepacia glycoproteins.IMPORTANCE Protein glycosylation is increasingly recognized as a common posttranslational protein modification in bacterial species. Despite this commonality, our understanding of the role of most glycosylation systems in bacterial physiology and pathogenesis is incomplete. In this work, we investigated the effect of the disruption of O-linked glycosylation in the opportunistic pathogen Burkholderia cenocepacia using a combination of proteomic, molecular, and phenotypic assays. We find that in contrast to recent findings on the N-linked glycosylation systems of Campylobacter jejuni, O-linked glycosylation does not appear to play a role in proteome stabilization of most glycoproteins. Our results reveal that loss of glycosylation in B. cenocepacia strains leads to global proteome and transcriptional changes, including the repression of the quorum-sensing regulator cepR (BCAM1868) gene. These alterations lead to dramatic phenotypic changes in glycosylation-null strains, which are paralleled by both global proteomic and transcriptional alterations, which do not appear to directly result from the loss of glycosylation per se. This research unravels the pleiotropic effects of O-linked glycosylation in B. cenocepacia, demonstrating that its loss does not simply affect the stability of the glycoproteome, but also interferes with transcription and the broader proteome.
Collapse
Affiliation(s)
- Cameron C Oppy
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Miku Kuba
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Clare V Oates
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Richard Strugnell
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Laura E Edgington-Mitchell
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, Bluestone Center for Clinical Research, New York, New York, USA
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
10
|
Abstract
Shewanella baltica was the dominant culturable nitrate-reducing bacterium in the eutrophic and strongly stratified Baltic Sea in the 1980s, where it primarily inhabited the oxic-anoxic transition zone. The genomic structures of 46 of these isolates were investigated through comparative genomic hybridization (CGH), which revealed a gradient of genomic similarity, ranging from 65% to as high as 99%. The core genome of the S. baltica species was enriched in anaerobic respiration-associated genes. Auxiliary genes, most of which locate within a few genomic islands (GIs), were nonuniformly distributed among the isolates. Specifically, hypothetical and mobile genetic element (MGE)-associated genes dominated intraclade gene content differences, whereas gain/loss of functional genes drove gene content differences among less related strains. Among the major S. baltica clades, gene signatures related to specific redox-driven and spatial niches within the water column were identified. For instance, genes involved in anaerobic respiration of sulfur compounds may provide key adaptive advantages for clade A strains in anoxic waters where sulfur-containing electron acceptors are present. Genes involved in cell motility, in particular, a secondary flagellar biosynthesis system, may be associated with the free-living lifestyle by clade E strains. Collectively, this study revealed characteristics of genome variations present in the water column and active speciation of S. baltica strains, driven by niche partitioning and horizontal gene transfer (HGT).IMPORTANCE Speciation in nature is a fundamental process driving the formation of the vast microbial diversity on Earth. In the central Baltic Sea, the long-term stratification of water led to formation of a large-scale vertical redoxcline that provided a gradient of environmental niches with respect to the availability of electron acceptors and donors. The region was home to Shewanella baltica populations, which composed the dominant culturable nitrate-reducing bacteria, particularly in the oxic-anoxic transition zone. Using the collection of S. baltica isolates as a model system, genomic variations showed contrasting gene-sharing patterns within versus among S. baltica clades and revealed genomic signatures of S. baltica clades related to redox niche specialization as well as particle association. This study provides important insights into genomic mechanisms underlying bacterial speciation within this unique natural redoxcline.
Collapse
|
11
|
Chua KO, See-Too WS, Ee R, Lim YL, Yin WF, Chan KG. In silico Analysis Reveals Distribution of Quorum Sensing Genes and Consistent Presence of LuxR Solos in the Pandoraea Species. Front Microbiol 2019; 10:1758. [PMID: 31447806 PMCID: PMC6691176 DOI: 10.3389/fmicb.2019.01758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/16/2019] [Indexed: 01/11/2023] Open
Abstract
The most common quorum sensing (QS) system in Gram-negative bacteria consists of signaling molecules called N-acyl-homoserine lactones (AHLs), which are synthesized by an enzyme AHL synthase (LuxI) and detected by a transcriptional regulator (LuxR) that are usually located in close proximity. However, many recent studies have also evidenced the presence of LuxR solos that are LuxR-related proteins in Proteobacteria that are devoid of a cognate LuxI AHL synthase. Pandoraea species are opportunistic pathogens frequently isolated from sputum specimens of cystic fibrosis (CF) patients. We have previously shown that P. pnomenusa strains possess QS activity. In this study, we examined the presence of QS activity in all type strains of Pandoraea species and acquired their complete genome sequences for holistic bioinformatics analyses of QS-related genes. Only four out of nine type strains (P. pnomenusa, P. sputorum, P. oxalativorans, and P. vervacti) showed QS activity, and C8-HSL was the only AHL detected. A total of 10 canonical luxIs with adjacent luxRs were predicted by bioinformatics from the complete genomes of aforementioned species and publicly available Pandoraea genomes. No orphan luxI was identified in any of the genomes. However, genes for two LuxR solos (LuxR2 and LuxR3 solos) were identified in all Pandoraea genomes (except two draft genomes with one LuxR solo gene), and P. thiooxydans was the only species that harbored no QS-related activity and genes. Except the canonical LuxR genes, LuxIs and LuxR solos of Pandoraea species were distantly related to the other well-characterized QS genes based on phylogenetic clustering. LuxR2 and LuxR3 solos might represent two novel evolutionary branches of LuxR system as they were found exclusively only in the genus. As a few luxR solos were located in close proximity with prophage sequence regions in the genomes, we thus postulated that these luxR solos could be transmitted into genus Pandoraea by transduction process mediated by bacteriophage. The bioinformatics approach developed in this study forms the basis for further characterization of closely related species. Overall, our findings improve the current understanding of QS in Pandoraea species, which is a potential pharmacological target in battling Pandoraea infections in CF patients.
Collapse
Affiliation(s)
- Kah-Ooi Chua
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Wah-Seng See-Too
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Robson Ee
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yan-Lue Lim
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Quorum Sensing as Antivirulence Target in Cystic Fibrosis Pathogens. Int J Mol Sci 2019; 20:ijms20081838. [PMID: 31013936 PMCID: PMC6515091 DOI: 10.3390/ijms20081838] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder which leads to the secretion of a viscous mucus layer on the respiratory epithelium that facilitates colonization by various bacterial pathogens. The problem of drug resistance has been reported for all the species able to colonize the lung of CF patients, so alternative treatments are urgently needed. In this context, a valid approach is to investigate new natural and synthetic molecules for their ability to counteract alternative pathways, such as virulence regulating quorum sensing (QS). In this review we describe the pathogens most commonly associated with CF lung infections: Staphylococcus aureus, Pseudomonas aeruginosa, species of the Burkholderia cepacia complex and the emerging pathogens Stenotrophomonas maltophilia, Haemophilus influenzae and non-tuberculous Mycobacteria. For each bacterium, the QS system(s) and the molecules targeting the different components of this pathway are described. The amount of investigations published in the last five years clearly indicate the interest and the expectations on antivirulence therapy as an alternative to classical antibiotics.
Collapse
|
13
|
Gomes MC, Tasrini Y, Subramoni S, Agnoli K, Feliciano JR, Eberl L, Sokol P, O’Callaghan D, Vergunst AC. The afc antifungal activity cluster, which is under tight regulatory control of ShvR, is essential for transition from intracellular persistence of Burkholderia cenocepacia to acute pro-inflammatory infection. PLoS Pathog 2018; 14:e1007473. [PMID: 30513124 PMCID: PMC6301696 DOI: 10.1371/journal.ppat.1007473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/20/2018] [Accepted: 11/19/2018] [Indexed: 01/22/2023] Open
Abstract
The opportunistic pathogen Burkholderia cenocepacia is particularly life-threatening for cystic fibrosis (CF) patients. Chronic lung infections with these bacteria can rapidly develop into fatal pulmonary necrosis and septicaemia. We have recently shown that macrophages are a critical site for replication of B. cenocepacia K56-2 and the induction of fatal pro-inflammatory responses using a zebrafish infection model. Here, we show that ShvR, a LysR-type transcriptional regulator that is important for biofilm formation, rough colony morphotype and inflammation in a rat lung infection model, is also required for the induction of fatal pro-inflammatory responses in zebrafish larvae. ShvR was not essential, however, for bacterial survival and replication in macrophages. Temporal, rhamnose-induced restoration of shvR expression in the shvR mutant during intramacrophage stages unequivocally demonstrated a key role for ShvR in transition from intracellular persistence to acute fatal pro-inflammatory disease. ShvR has been previously shown to tightly control the expression of the adjacent afc gene cluster, which specifies the synthesis of a lipopeptide with antifungal activity. Mutation of afcE, encoding an acyl-CoA dehydrogenase, has been shown to give similar phenotypes as the shvR mutant. We found that, like shvR, afcE is also critical for the switch from intracellular persistence to fatal infection in zebrafish. The closely related B. cenocepacia H111 has been shown to be less virulent than K56-2 in several infection models, including Galleria mellonella and rats. Interestingly, constitutive expression of shvR in H111 increased virulence in zebrafish larvae to almost K56-2 levels in a manner that absolutely required afc. These data confirm a critical role for afc in acute virulence caused by B. cenocepacia that depends on strain-specific regulatory control by ShvR. We propose that ShvR and AFC are important virulence factors of the more virulent Bcc species, either through pro-inflammatory effects of the lipopeptide AFC, or through AFC-dependent membrane properties.
Collapse
Affiliation(s)
| | - Yara Tasrini
- VBMI, INSERM, Université de Montpellier, Nîmes, France
| | - Sujatha Subramoni
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Kirsty Agnoli
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | | | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Pamela Sokol
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Canada
| | | | | |
Collapse
|
14
|
Environmental Adaptability and Quorum Sensing: Iron Uptake Regulation during Biofilm Formation by Paracoccus denitrificans. Appl Environ Microbiol 2018; 84:AEM.00865-18. [PMID: 29776923 DOI: 10.1128/aem.00865-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/07/2018] [Indexed: 11/20/2022] Open
Abstract
Paracoccus denitrificans is a valuable model organism due to its versatile respiration capability and bioenergetic flexibility, both of which are critical to its survival in different environments. Quorum sensing (QS) plays a crucial role in the regulation of many cell functions; however, whether QS systems play a role in P. denitrificans is unknown. In this study, we demonstrated that iron uptake systems in P. denitrificans were directly regulated by a newly identified QS system. Genes coding for TonB-dependent systems, which transport chelated iron, were transcribed at higher levels in the QS-defective mutants. In contrast, genes coding for the Fbp system, which is TonB independent and transports unchelated ferric iron, were downregulated in the mutants. In brief, QS in P. denitrificans triggers a switch in iron uptake from TonB-dependent to TonB-independent transport during biofilm formation as higher concentrations of iron accumulate in the exopolysaccharide (EPS). Switching from TonB-dependent iron uptake systems to TonB-independent systems not only prevents cells from absorbing excess iron but also conserves energy. Our data suggest that iron uptake strategies are directly regulated by QS in Paracoccus denitrificans to support their survival in available ecological niches.IMPORTANCE As iron is an important trace metal for most organisms, its absorption is highly regulated. Fur has been reported as a prevalent regulator of iron acquisition. In addition, there is a relationship between QS and iron acquisition in pathogenic microbes. However, there have been few studies on the iron uptake strategies of nonpathogenic bacteria. In this study, we demonstrated that iron uptake systems in Paracoccus denitrificans PD1222 were regulated by a newly identified PdeR/PdeI QS system during biofilm formation, and we put forward a hypothesis that QS-dependent iron uptake systems benefit the stability of biofilms. This report elaborates the correlation among QS, iron uptake, and biofilm formation and thus contributes to an understanding of the ecological behavior of environmental bacteria.
Collapse
|
15
|
Identification of AHL- and BDSF-Controlled Proteins in Burkholderia cenocepacia by Proteomics. Methods Mol Biol 2018; 1673:193-202. [PMID: 29130174 DOI: 10.1007/978-1-4939-7309-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We used comparative proteome analysis to determine the target genes of the two quorum sensing (QS) circuits in the opportunistic pathogen Burkholderia cenocepacia: the N-acyl homoserine lactone (AHL)-based CepIR system and the BDSF (B urkholderia diffusible signal factor, cis-2-dodecenoic acid)-based RpfFR system. In this book chapter, we focus on the description of the practical procedure we currently use in the laboratory to perform a sensitive GeLC-MS/MS shotgun proteomics experiment; we also briefly describe the downstream bioinformatic data analysis.
Collapse
|
16
|
Kimbrough JH, Stabb EV. Comparative analysis reveals regulatory motifs at the ainS/ainR pheromone-signaling locus of Vibrio fischeri. Sci Rep 2017; 7:11734. [PMID: 28916743 PMCID: PMC5601948 DOI: 10.1038/s41598-017-11967-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/01/2017] [Indexed: 11/22/2022] Open
Abstract
Vibrio fischeri uses the AinS/AinR pheromone-signaling system to control bioluminescence and other symbiotic colonization factors. The Ain system is thought to initiate cell-cell signaling at moderate cell densities and to prime the LuxI/LuxR signaling system. Here we compared and analyzed the ain locus from two V. fischeri strains and a Vibrio salmonicida strain to explore ain regulation. The ainS and ainR genes were predicted to constitute an operon, which we corroborated using RT-PCR. Comparisons between strains revealed a stark area of conservation across the ainS-ainR junction, including a large inverted repeat in ainR. We found that this inverted repeat in cis can affect accumulation of the AinS-generated pheromone N-octanoyl homoserine lactone, which may account for the previously unexplained low-signal phenotype of a ∆ainR mutant, although the mechanism behind this regulation remains elusive. We also extended the previous observation of a possible “lux box” LuxR binding site upstream of ainS by showing the conservation of this site as well as a second putative lux box. Using a plasmid-based reporter we found that LuxR can mediate repression of ainS, providing a negative feedback mechanism in the Ain/Lux signaling cascade. Our results provide new insights into the regulation, expression, and evolution of ainSR.
Collapse
Affiliation(s)
- John H Kimbrough
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
17
|
Zúñiga A, Donoso RA, Ruiz D, Ruz GA, González B. Quorum-Sensing Systems in the Plant Growth-Promoting Bacterium Paraburkholderia phytofirmans PsJN Exhibit Cross-Regulation and Are Involved in Biofilm Formation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:557-565. [PMID: 28548604 DOI: 10.1094/mpmi-01-17-0008-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quorum-sensing systems play important roles in host colonization and host establishment of Burkholderiales species. Beneficial Paraburkholderia species share a conserved quorum-sensing (QS) system, designated BraI/R, that controls different phenotypes. In this context, the plant growth-promoting bacterium Paraburkholderia phytofirmans PsJN possesses two different homoserine lactone QS systems BpI.1/R.1 and BpI.2/R.2 (BraI/R-like QS system). The BpI.1/R.1 QS system was previously reported to be important to colonize and produce beneficial effects in Arabidopsis thaliana plants. Here, we analyzed the temporal variations of the QS gene transcript levels in the wild-type strain colonizing plant roots. The gene expression patterns showed relevant differences in both QS systems compared with the wild-type strain in the unplanted control treatment. The gene expression data were used to reconstruct a regulatory network model of QS systems in P. phytofirmans PsJN, using a Boolean network model. Also, we examined the phenotypic traits and transcript levels of genes involved in QS systems, using P. phytofirmans mutants in homoserine lactone synthases genes. We observed that the BpI.1/R.1 QS system regulates biofilm formation production in strain PsJN and this phenotype was associated with the lower expression of a specific extracytoplasmic function sigma factor ecf26.1 gene (implicated in biofilm formation) in the bpI.1 mutant strain.
Collapse
Affiliation(s)
- Ana Zúñiga
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Millennium Nucleus Center for Plant Systems and Synthetic Biology, and Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Raúl A Donoso
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Millennium Nucleus Center for Plant Systems and Synthetic Biology, and Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Daniela Ruiz
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Millennium Nucleus Center for Plant Systems and Synthetic Biology, and Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Gonzalo A Ruz
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Millennium Nucleus Center for Plant Systems and Synthetic Biology, and Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Bernardo González
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Millennium Nucleus Center for Plant Systems and Synthetic Biology, and Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| |
Collapse
|
18
|
Chapalain A, Groleau MC, Le Guillouzer S, Miomandre A, Vial L, Milot S, Déziel E. Interplay between 4-Hydroxy-3-Methyl-2-Alkylquinoline and N-Acyl-Homoserine Lactone Signaling in a Burkholderia cepacia Complex Clinical Strain. Front Microbiol 2017; 8:1021. [PMID: 28676791 PMCID: PMC5476693 DOI: 10.3389/fmicb.2017.01021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
Species from the Burkholderia cepacia complex (Bcc) share a canonical LuxI/LuxR quorum sensing (QS) regulation system named CepI/CepR, which mainly relies on the acyl-homoserine lactone (AHL), octanoyl-homoserine lactone (C8-HSL) as signaling molecule. Burkholderia ambifaria is one of the least virulent Bcc species, more often isolated from rhizospheres where it exerts a plant growth-promoting activity. However, clinical strains of B. ambifaria display distinct features, such as phase variation and higher virulence properties. Notably, we previously reported that under laboratory conditions, only clinical strains of the B. ambifaria species produced 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs) via expression of the hmqABCDEFG operon. HMAQs are the methylated counterparts of the 4-hydroxy-2-alkylquinolines (HAQs) produced by the opportunistic human pathogen Pseudomonas aeruginosa, in which they globally contribute to the bacterial virulence and survival. We have found that unlike P. aeruginosa's HAQs, HMAQs do not induce their own production. However, they indirectly regulate the expression of the hmqABCDEFG operon. In B. ambifaria, a strong link between CepI/CepR-based QS and HMAQs is proposed, as we have previously reported an increased production of C8-HSL in HMAQ-negative mutants. Here, we report the identification of all AHLs produced by the clinical B. ambifaria strain HSJ1, namely C6-HSL, C8-HSL, C10-HSL, 3OHC8-HSL, 3OHC10-HSL, and 3OHC12-HSL. Production of significant levels of hydroxylated AHLs prompted the identification of a second complete LuxI/LuxR-type QS system relying on 3OHC10-HSL and 3OHC12-HSL, that we have named CepI2/CepR2. The connection between these two QS systems and the hmqABCDEFG operon, responsible for HMAQs biosynthesis, was investigated. The CepI/CepR system strongly induced the operon, while the second system appears moderately involved. On the other hand, a HMAQ-negative mutant overproduces AHLs from both QS systems. Even if HMAQs are not classical QS signals, their effect on AHL-based QS system still gives them a part to play in the QS circuitry in B. ambifaria and thus, on regulation of various phenotypes.
Collapse
Affiliation(s)
- Annelise Chapalain
- CIRI, Centre International de Recherche en Infectiologie, Equipe Pathogénèse des Légionelles, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université LyonLyon, France
| | | | | | - Aurélie Miomandre
- CNRS, INRA, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | - Ludovic Vial
- CNRS, INRA, UMR 5557, Ecologie Microbienne, Université Lyon 1Villeurbanne, France
| | | | - Eric Déziel
- INRS-Institut Armand-Frappier, LavalQC, Canada
| |
Collapse
|
19
|
Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review. Genes (Basel) 2017; 8:genes8010043. [PMID: 28106859 PMCID: PMC5295037 DOI: 10.3390/genes8010043] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) bacteria emerged as opportunistic pathogens in cystic fibrosis and immunocompromised patients. Their eradication is very difficult due to the high level of intrinsic resistance to clinically relevant antibiotics. Bcc bacteria have large and complex genomes, composed of two to four replicons, with variable numbers of insertion sequences. The complexity of Bcc genomes confers a high genomic plasticity to these bacteria, allowing their adaptation and survival to diverse habitats, including the human host. In this work, we review results from recent studies using omics approaches to elucidate in vivo adaptive strategies and virulence gene regulation expression of Bcc bacteria when infecting the human host or subject to conditions mimicking the stressful environment of the cystic fibrosis lung.
Collapse
|
20
|
Shastri S, Spiewak HL, Sofoluwe A, Eidsvaag VA, Asghar AH, Pereira T, Bull EH, Butt AT, Thomas MS. An efficient system for the generation of marked genetic mutants in members of the genus Burkholderia. Plasmid 2016; 89:49-56. [PMID: 27825973 PMCID: PMC5312678 DOI: 10.1016/j.plasmid.2016.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/24/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022]
Abstract
To elucidate the function of a gene in bacteria it is vital that targeted gene inactivation (allelic replacement) can be achieved. Allelic replacement is often carried out by disruption of the gene of interest by insertion of an antibiotic-resistance marker followed by subsequent transfer of the mutant allele to the genome of the host organism in place of the wild-type gene. However, due to their intrinsic resistance to many antibiotics only selected antibiotic-resistance markers can be used in members of the genus Burkholderia, including the Burkholderia cepacia complex (Bcc). Here we describe the construction of improved antibiotic-resistance cassettes that specify resistance to kanamycin, chloramphenicol or trimethoprim effectively in the Bcc and related species. These were then used in combination with and/or to construct a series enhanced suicide vectors, pSHAFT2, pSHAFT3 and pSHAFT-GFP to facilitate effective allelic replacement in the Bcc. Validation of these improved suicide vectors was demonstrated by the genetic inactivation of selected genes in the Bcc species Burkholderia cenocepacia and B. lata, and in the non-Bcc species, B. thailandensis. We have constructed antibiotic-resistance cassettes and suicide vectors for use in Burkholderia and related species. These vectors facilitate construction of mutants by gene disruption with antibiotic-resistance markers. We have validated the utility of the vectors for marked genetic inactivation in members of the genus Burkholderia.
Collapse
Affiliation(s)
- Sravanthi Shastri
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Helena L Spiewak
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Aderonke Sofoluwe
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Vigdis A Eidsvaag
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Atif H Asghar
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Tyrone Pereira
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Edward H Bull
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Aaron T Butt
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Mark S Thomas
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK,.
| |
Collapse
|
21
|
Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Appl Microbiol Biotechnol 2016; 100:5215-29. [PMID: 27115756 DOI: 10.1007/s00253-016-7520-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 02/02/2023]
Abstract
Burkholderia is an incredibly diverse and versatile Gram-negative genus, within which over 80 species have been formally named and multiple other genotypic groups likely represent new species. Phylogenetic analysis based on the 16S rRNA gene sequence and core genome ribosomal multilocus sequence typing analysis indicates the presence of at least three major clades within the genus. Biotechnologically, Burkholderia are well-known for their bioremediation and biopesticidal properties. Within this review, we explore the ability of Burkholderia to synthesise a wide range of antimicrobial compounds ranging from historically characterised antifungals to recently described antibacterial antibiotics with activity against multiresistant clinical pathogens. The production of multiple Burkholderia antibiotics is controlled by quorum sensing and examples of quorum sensing pathways found across the genus are discussed. The capacity for antibiotic biosynthesis and secondary metabolism encoded within Burkholderia genomes is also evaluated. Overall, Burkholderia demonstrate significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites.
Collapse
|
22
|
Pradenas GA, Ross BN, Torres AG. Burkholderia cepacia Complex Vaccines: Where Do We Go from here? Vaccines (Basel) 2016; 4:vaccines4020010. [PMID: 27092530 PMCID: PMC4931627 DOI: 10.3390/vaccines4020010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/15/2023] Open
Abstract
Burkholderia comprises a wide variety of environmental Gram-negative bacteria. Burkholderia cepacia complex (Bcc) includes several Burkholderia species that pose a health hazard as they are able to cause respiratory infections in patients with chronic granulomatous disease and cystic fibrosis. Due to the intrinsic resistance to a wide array of antibiotics and naturally occurring immune evasion strategies, treatment of Bcc infections often proves to be unsuccessful. To date, limited work related to vaccine development has been performed for Bcc pathogens. In this review, we have gathered key aspects of Bcc research that have been reported in recent years related to vaccine efforts, virulence, immune responses, and animal models, and use this information to inform the research community of areas of opportunity toward development of a viable Bcc vaccine.
Collapse
Affiliation(s)
- Gonzalo A Pradenas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Brittany N Ross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
23
|
Veselova MA, Romanova YM, Lipasova VA, Koksharova OA, Zaitseva YV, Chernukha MU, Gintsburg AL, Khmel IA. The effect of mutation in the clpX gene on the synthesis of N-acyl-homoserine lactones and other properties of Burkholderia cenocepacia 370. Microbiol Res 2016; 186-187:90-8. [PMID: 27242147 DOI: 10.1016/j.micres.2016.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 10/22/2022]
Abstract
In order to study the regulation of N-acyl-homoserine lactones synthesis (AHLs, the signal molecules of Quorum Sensing regulation) in Burkholderia cenocepacia strain 370 we obtained mutants with increased AHL production. One of the mutants, named BC-B6, was obtained by TnMod-RKm(r) plasposon mutagenesis. The plasposon insertion was located within the clpX gene encoding the ATPase subunit ClpX of the ClpXP protease. The mutation reduced bacterial virulence in mice intranasal infection. The results of proteomic analysis demonstrated that the expression of at least 19 proteins differed not less than 2-fold between the parental and mutant strains. 18 of the proteins were upregulated in the mutant, and one protein was downregulated. The proteins included those that involved in protein synthesis and modification, in energy production, in general metabolism, in transport and regulation. To check the effect of the clpX mutation on the AHL synthesis, a mutant with inactivated clpX gene (BC-clpX:Km(r)) was constructed by gene replacement method. This mutant also exhibited increased AHLs production. A swarming motility of both mutants was reduced compared to the original strain. Thus, the obtained results show that the clpX gene was involved in the regulation of AHL production and a number of cellular processes in B. cenocepacia 370.
Collapse
Affiliation(s)
- M A Veselova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| | - Yu M Romanova
- The Gamaleya Scientific Research Centre of Epidemiology and Microbiology, Gamaleya Str. 18, Moscow 123098, Russia
| | - V A Lipasova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| | - O A Koksharova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia; M.V. Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1-40, Moscow 119991, Russia
| | - Yu V Zaitseva
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| | - M U Chernukha
- The Gamaleya Scientific Research Centre of Epidemiology and Microbiology, Gamaleya Str. 18, Moscow 123098, Russia
| | - A L Gintsburg
- The Gamaleya Scientific Research Centre of Epidemiology and Microbiology, Gamaleya Str. 18, Moscow 123098, Russia
| | - I A Khmel
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia.
| |
Collapse
|
24
|
Plyuta VA, Lipasova VA, Koksharova OA, Veselova MA, Kuznetsov AE, Khmel IA. The effect of introduction of the Heterologous gene encoding the N-acyl-homoserine lactonase (aiiA) on the properties of Burkholderia cenocepacia 370. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415080062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
How KY, Hong KW, Chan KG. Whole genome sequencing enables the characterization of BurI, a LuxI homologue of Burkholderia cepacia strain GG4. PeerJ 2015; 3:e1117. [PMID: 26290785 PMCID: PMC4540015 DOI: 10.7717/peerj.1117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/30/2015] [Indexed: 01/24/2023] Open
Abstract
Quorum sensing is a mechanism for regulating proteobacterial gene expression in response to changes in cell population. In proteobacteria, N-acyl homoserine lactone (AHL) appears to be the most widely used signalling molecules in mediating, among others, the production of extracellular virulence factors for survival. In this work, the genome of B. cepacia strain GG4, a plasmid-free strain capable of AHL synthesis was explored. In silico analysis of the 6.6 Mb complete genome revealed the presence of a LuxI homologue which correspond to Type I quorum sensing. Here, we report the molecular cloning and characterization of this LuxI homologue, designated as BurI. This 609 bp gene was cloned and overexpressed in Escherichia coli BL21(DE3). The purified protein was approximately 25 kDa and is highly similar to several autoinducer proteins of the LuxI family among Burkholderia species. To verify the AHL synthesis activity of this protein, high resolution liquid chromatography-mass spectrometry analysis revealed the production of 3-oxo-hexanoylhomoserine lactone, N-octanoylhomoserine lactone and 3-hydroxy-octanoylhomoserine lactone from induced E. coli BL21 harboring the recombinant BurI. Our data show, for the first time, the cloning and characterization of the LuxI homologue from B. cepacia strain GG4 and confirmation of its AHL synthesis activity.
Collapse
Affiliation(s)
- Kah Yan How
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Kar Wai Hong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
26
|
Pribytkova T, Lightly TJ, Kumar B, Bernier SP, Sorensen JL, Surette MG, Cardona ST. The attenuated virulence of aBurkholderia cenocepacia paaABCDEmutant is due to inhibition of quorum sensing by release of phenylacetic acid. Mol Microbiol 2014; 94:522-36. [DOI: 10.1111/mmi.12771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Tanya Pribytkova
- Department of Microbiology; University of Manitoba; Winnipeg Manitoba Canada
| | - Tasia Joy Lightly
- Department of Microbiology; University of Manitoba; Winnipeg Manitoba Canada
| | - Brijesh Kumar
- Department of Microbiology; University of Manitoba; Winnipeg Manitoba Canada
| | - Steve P. Bernier
- Department of Medicine; Farncombe Family Digestive Health Research Institute; McMaster University; Hamilton Ontario Canada
| | - John L. Sorensen
- Department of Chemistry; University of Manitoba; Winnipeg Manitoba Canada
| | - Michael G. Surette
- Department of Medicine; Farncombe Family Digestive Health Research Institute; McMaster University; Hamilton Ontario Canada
- Department of Biochemistry and Biological Sciences; McMaster University; Hamilton Ontario Canada
| | - Silvia T. Cardona
- Department of Microbiology; University of Manitoba; Winnipeg Manitoba Canada
- Department of Medical Microbiology & Infectious Disease; University of Manitoba; Winnipeg Manitoba Canada
| |
Collapse
|
27
|
Michalska K, Chhor G, Clancy S, Jedrzejczak R, Babnigg G, Winans SC, Joachimiak A. RsaM: a transcriptional regulator of Burkholderia spp. with novel fold. FEBS J 2014; 281:4293-306. [PMID: 24916958 DOI: 10.1111/febs.12868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED Burkholderia cepacia complex is a set of closely related bacterial species that are notorious pathogens of cystic fibrosis patients, responsible for life-threatening lung infections. Expression of several virulence factors of Burkholderia cepacia complex is controlled by a mechanism known as quorum sensing (QS). QS is a means of bacterial communication used to coordinate gene expression in a cell-density-dependent manner. The system involves the production of diffusible signaling molecules (N-acyl-l-homoserine lactones, AHLs), that bind to cognate transcriptional regulators and influence their ability to regulate gene expression. One such system that is highly conserved in Burkholderia cepacia complex consists of CepI and CepR. CepI is AHL synthase, whereas CepR is an AHL-dependent transcription factor. In most members of the Burkholderia cepacia complex group, the cepI and cepR genes are divergently transcribed and separated by additional genes. One of them, bcam1869, encodes the BcRsaM protein, which was recently postulated to modulate the abundance or activity of CepI or CepR. Here, we show the crystal structure of BcRsaM from B. cenocepacia J2315. It is a single-domain protein with unique topology and presents a novel fold. The protein is a dimer in the crystal and in solution. This regulator has no known DNA-binding motifs and direct binding of BcRsaM to the cepI promoter could not be detected in in vitro assays. Therefore, we propose that the modulatory action of RsaM might result from interactions with other components of the QS machinery rather than from direct association with the DNA promoter. DATABASE The atomic coordinates and structure factors have been deposited in the Protein Data Bank under entry 4O2H. STRUCTURED DIGITAL ABSTRACT BcRsaM and BcRsaM bind by x-ray crystallography (View interaction) BcRsaM and BcRsaM bind by molecular sieving (View interaction).
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, Argonne National Laboratory, IL, USA; Structural Biology Center, Biosciences Division, Argonne National Laboratory, IL, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ Microbiol 2014; 16:1961-81. [PMID: 24592823 DOI: 10.1111/1462-2920.12448] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/12/2014] [Accepted: 02/28/2014] [Indexed: 01/28/2023]
Abstract
In the present review, we describe and compare the molecular mechanisms that are involved in the regulation of biofilm formation by Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas aeruginosa and Burkholderia cenocepacia. Our current knowledge suggests that biofilm formation is regulated by cyclic diguanosine-5'-monophosphate (c-di-GMP), small RNAs (sRNA) and quorum sensing (QS) in all these bacterial species. The systems that employ c-di-GMP as a second messenger regulate the production of exopolysaccharides and surface proteins which function as extracellular matrix components in the biofilms formed by the bacteria. The systems that make use of sRNAs appear to regulate the production of exopolysaccharide biofilm matrix material in all these species. In the pseudomonads, QS regulates the production of extracellular DNA, lectins and biosurfactants which all play a role in biofilm formation. In B.cenocepacia QS regulates the expression of a large surface protein, lectins and extracellular DNA that all function as biofilm matrix components. Although the three regulatory systems all regulate the production of factors used for biofilm formation, the molecular mechanisms involved in transducing the signals into expression of the biofilm matrix components differ between the species. Under the conditions tested, exopolysaccharides appears to be the most important biofilm matrix components for P.aeruginosa, whereas large surface proteins appear to be the most important biofilm matrix components for P.putida, P.fluorescens, and B.cenocepacia.
Collapse
Affiliation(s)
- Mustafa Fazli
- Department of International Health, Immunology, and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
29
|
Suppiger A, Schmid N, Aguilar C, Pessi G, Eberl L. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex. Virulence 2014; 4:400-9. [PMID: 23799665 PMCID: PMC3714132 DOI: 10.4161/viru.25338] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) consists of 17 closely related species that are problematic opportunistic bacterial pathogens for cystic fibrosis patients and immunocompromised individuals. These bacteria are capable of utilizing two different chemical languages: N-acyl homoserine lactones (AHLs) and cis-2-unsaturated fatty acids. Here we summarize the current knowledge of the underlying molecular architectures of these communication systems, showing how they are interlinked and discussing how they regulate overlapping as well as specific sets of genes. A particular focus is laid on the role of these signaling systems in the formation of biofilms, which are believed to be highly important for chronic infections. We review genes that have been implicated in the sessile lifestyle of this group of bacteria. The new emerging role of the intracellular second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) as a downstream regulator of the fatty acid signaling cascade and as a key factor in biofilm formation is also discussed.
Collapse
Affiliation(s)
- Angela Suppiger
- Department of Microbiology, University of Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Khodai-Kalaki M, Aubert DF, Valvano MA. Characterization of the AtsR hybrid sensor kinase phosphorelay pathway and identification of its response regulator in Burkholderia cenocepacia. J Biol Chem 2013; 288:30473-30484. [PMID: 24014026 DOI: 10.1074/jbc.m113.489914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AtsR is a membrane-bound hybrid sensor kinase of Burkholderia cenocepacia that negatively regulates quorum sensing and virulence factors such as biofilm production, type 6-secretion, and protease secretion. Here we elucidate the mechanism of AtsR phosphorelay by site-directed mutagenesis of predicted histidine and aspartic acid phosphoacceptor residues. We demonstrate by in vitro phosphorylation that histidine 245 and aspartic acid 536 are conserved sites of phosphorylation in AtsR, and we also identify the cytosolic response regulator AtsT (BCAM0381) as a key component of the AtsR phosphorelay pathway. Monitoring the function of AtsR and its derivatives in vivo by measuring extracellular protease activity and swarming motility confirmed the in vitro phosphorylation results. Together we find that the AtsR receiver domain plays a fine-tuning role in determining the levels of phosphotransfer from its sensor kinase domain to the AtsT response regulator.
Collapse
Affiliation(s)
- Maryam Khodai-Kalaki
- From the Centre for Human Immunology, Department of Microbiology and Immunology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada and
| | - Daniel F Aubert
- From the Centre for Human Immunology, Department of Microbiology and Immunology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada and
| | - Miguel A Valvano
- From the Centre for Human Immunology, Department of Microbiology and Immunology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada and; the Centre for Infection and Immunity, Queen's University Belfast, BT9 5GZ Belfast, United Kingdom.
| |
Collapse
|
31
|
The organization of the quorum sensing luxI/R family genes in Burkholderia. Int J Mol Sci 2013; 14:13727-47. [PMID: 23820583 PMCID: PMC3742214 DOI: 10.3390/ijms140713727] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 12/12/2022] Open
Abstract
Members of the Burkholderia genus of Proteobacteria are capable of living freely in the environment and can also colonize human, animal and plant hosts. Certain members are considered to be clinically important from both medical and veterinary perspectives and furthermore may be important modulators of the rhizosphere. Quorum sensing via N-acyl homoserine lactone signals (AHL QS) is present in almost all Burkholderia species and is thought to play important roles in lifestyle changes such as colonization and niche invasion. Here we present a census of AHL QS genes retrieved from public databases and indicate that the local arrangement (topology) of QS genes, their location within chromosomes and their gene neighborhoods show characteristic patterns that differ between the known Burkholderia clades. In sequence phylogenies, AHL QS genes seem to cluster according to the local gene topology rather than according to the species, which suggests that the basic topology types were present prior to the appearance of current Burkholderia species. The data are available at http://net.icgeb.org/burkholderia/.
Collapse
|
32
|
Deng Y, Lim A, Wang J, Zhou T, Chen S, Lee J, Dong YH, Zhang LH. Cis-2-dodecenoic acid quorum sensing system modulates N-acyl homoserine lactone production through RpfR and cyclic di-GMP turnover in Burkholderia cenocepacia. BMC Microbiol 2013; 13:148. [PMID: 23815566 PMCID: PMC3703271 DOI: 10.1186/1471-2180-13-148] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/27/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Burkholderia cenocepacia employs both N-Acyl homoserine lactone (AHL) and cis-2-dodecenoic acid (BDSF) quorum sensing (QS) systems in regulation of bacterial virulence. It was shown recently that disruption of BDSF synthase RpfFBc caused a reduction of AHL signal production in B. cenocepacia. However, how BDSF system influences AHL system is still not clear. RESULTS We show here that BDSF system controls AHL system through a novel signaling mechanism. Null mutation of either the BDSF synthase, RpfFBc, or the BDSF receptor, RpfR, caused a substantial down-regulation of AHL signal production in B. cenocepacia strain H111. Genetic and biochemical analyses showed that BDSF system controls AHL signal production through the transcriptional regulation of the AHL synthase gene cepI by modulating the intracellular level of second messenger cyclic di-GMP (c-di-GMP). Furthermore, we show that BDSF and AHL systems have a cumulative role in the regulation of various biological functions, including swarming motility, biofilm formation and virulence factor production, and exogenous addition of either BDSF or AHL signal molecules could only partially rescue the changed phenotypes of the double deletion mutant defective in BDSF and AHL signal production. CONCLUSIONS These results, together with our previous findings, thus depict a molecular mechanism with which BDSF regulates AHL signal production and bacterial virulence through modulating the phosphodiesterase activity of its receptor RpfR to influence the intracellular level of c-di-GMP.
Collapse
Affiliation(s)
- Yinyue Deng
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos 138673, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Subramoni S, Sokol PA. Quorum sensing systems influence Burkholderia cenocepacia virulence. Future Microbiol 2013; 7:1373-87. [PMID: 23231487 DOI: 10.2217/fmb.12.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Burkholderia cepacia complex strains communicate using N-acyl homoserine lactones and BDSF-dependent quorum sensing (QS) systems. Burkholderia cenocepacia QS systems include CepIR, CciIR, CepR2 and BDSF. Analysis of CepR, CciIR, CepR2 and RpfF (BDSF synthase) QS regulons revealed that these QS systems both independently regulate and coregulate many target genes, often in an opposing manner. The role of QS and several QS-regulated genes in virulence has been determined using vertebrate, invertebrate and plant infection models. Virulence phenotypes are strain and model dependent, suggesting that different QS-regulated genes are important depending on the strain and type of infection. QS inhibitors in combination with antibiotics can reduce biofilm formation and virulence in infection models.
Collapse
Affiliation(s)
- Sujatha Subramoni
- Department of Microbiology, Immunology & Infectious Diseases, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
34
|
Udine C, Brackman G, Bazzini S, Buroni S, Van Acker H, Pasca MR, Riccardi G, Coenye T. Phenotypic and genotypic characterisation of Burkholderia cenocepacia J2315 mutants affected in homoserine lactone and diffusible signal factor-based quorum sensing systems suggests interplay between both types of systems. PLoS One 2013; 8:e55112. [PMID: 23383071 PMCID: PMC3557247 DOI: 10.1371/journal.pone.0055112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/19/2012] [Indexed: 01/30/2023] Open
Abstract
Many putative virulence factors of Burkholderia cenocepacia are controlled by various quorum sensing (QS) circuits. These QS systems either use N-acyl homoserine lactones (AHL) or cis-2-dodecenoic acid ("Burkholderia diffusible signal factor", BDSF) as signalling molecules. Previous work suggested that there is little cross-talk between both types of systems. We constructed mutants in B. cenocepacia strain J2315, in which genes encoding CepI (BCAM1870), CciI (BCAM0239a) and the BDSF synthase (BCAM0581) were inactivated, and also constructed double (ΔcepIΔBCAM0581, ΔcciIΔBCAM0581 and ΔcepIΔcciI) mutants and a triple (ΔcepIΔcciIΔBCAM0581) mutant. Subsequently we investigated phenotypic properties (antibiotic susceptibility, biofilm formation, production of AHL and BDSF, protease activity and virulence in Caenorhabditis elegans) and measured gene expression in these mutants, and this in the presence and absence of added BDSF, AHL or both. The triple mutant was significantly more affected in biofilm formation, antimicrobial susceptibility, virulence in C. elegans, and protease production than either the single or double mutants. The ΔBCAM0581 mutant and the ΔcepIΔBCAM0581 and ΔcciIΔBCAM0581 double mutants produced significantly less AHL compared to the WT strain and the ΔcepI and ΔcciI single mutant, respectively. The expression of cepI and cciI in ΔBCAM0581, was approximately 3-fold and 7-fold (p<0.05) lower than in the WT, respectively. The observed differences in AHL production, expression of cepI and cciI and QS-controlled phenotypes in the ΔBCAM0581 mutant could (at least partially) be restored by addition of BDSF. Our data suggest that, in B. cenocepacia J2315, AHL and BDSF-based QS systems co-regulate the same set of genes, regulate different sets of genes that are involved in the same phenotypes and/or that the BDSF system controls the AHL-based QS system. As the expression of the gene encoding the C6-HSL synthase CciI (and to a lesser extent the C8-HSL synthase CepI) is partially controlled by BDSF, it seems likely that the BDSF QS systems controls AHL production through this system.
Collapse
Affiliation(s)
- Claudia Udine
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Gilles Brackman
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Silvia Bazzini
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Silvia Buroni
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Heleen Van Acker
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Maria Rosalia Pasca
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Giovanna Riccardi
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
35
|
Ramsay JP, Major AS, Komarovsky VM, Sullivan JT, Dy RL, Hynes MF, Salmond GPC, Ronson CW. A widely conserved molecular switch controls quorum sensing and symbiosis island transfer inMesorhizobium lotithrough expression of a novel antiactivator. Mol Microbiol 2012; 87:1-13. [DOI: 10.1111/mmi.12079] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua P. Ramsay
- Department of Microbiology and Immunology; University of Otago; PO Box 56; Dunedin; New Zealand
| | - Anthony S. Major
- Department of Microbiology and Immunology; University of Otago; PO Box 56; Dunedin; New Zealand
| | - Victor M. Komarovsky
- Department of Microbiology and Immunology; University of Otago; PO Box 56; Dunedin; New Zealand
| | - John T. Sullivan
- Department of Microbiology and Immunology; University of Otago; PO Box 56; Dunedin; New Zealand
| | - Ron L. Dy
- Department of Microbiology and Immunology; University of Otago; PO Box 56; Dunedin; New Zealand
| | - Michael F. Hynes
- Department of Biological Sciences; University of Calgary; Calgary; Canada; T2N 1N4
| | | | - Clive W. Ronson
- Department of Microbiology and Immunology; University of Otago; PO Box 56; Dunedin; New Zealand
| |
Collapse
|
36
|
Ryan GT, Wei Y, Winans SC. A LuxR-type repressor of Burkholderia cenocepacia inhibits transcription via antiactivation and is inactivated by its cognate acylhomoserine lactone. Mol Microbiol 2012; 87:94-111. [PMID: 23136852 DOI: 10.1111/mmi.12085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2012] [Indexed: 11/30/2022]
Abstract
Burkholderia cenocepacia is an opportunistic human pathogen that encodes two LuxI-type acylhomoserine lactone (AHL) synthases and three LuxR-type AHL receptors. Of these, cepI and cepR form a cognate synthase/receptor pair, as do cciI and cciR, while cepR2 lacks a genetically linked AHL synthase gene. Another group showed that a cepR2 mutant overexpressed a cluster of linked genes that appear to direct the production of a secondary metabolite. We found that these same genes were upregulated by octanoylhomoserine lactone (OHL), which is synthesized by CepI. These data suggest that several cepR2-linked promoters are repressed by CepR2 and that CepR2 is antagonized by OHL. Fusions of two divergent promoters to lacZ were used to confirm these hypotheses, and promoter resections and DNase I footprinting assays revealed a single CepR2 binding site between the two promoters. This binding site lies well upstream of both promoters, suggesting an unusual mode of repression. Adjacent to the cepR2 gene is a gene that we designate cepS, which encodes an AraC-type transcription factor. CepS is essential for expression of both promoters, regardless of the CepR2 status or OHL concentration. CepS therefore acts downstream of CepR2, and CepR2 appears to function as a CepS antiactivator.
Collapse
Affiliation(s)
- Gina T Ryan
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
37
|
Lee RJ, Xiong G, Kofonow JM, Chen B, Lysenko A, Jiang P, Abraham V, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Beauchamp GK, Doulias PT, Ischiropoulos H, Kreindler JL, Reed DR, Cohen NA. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J Clin Invest 2012; 122:4145-59. [PMID: 23041624 PMCID: PMC3484455 DOI: 10.1172/jci64240] [Citation(s) in RCA: 424] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/02/2012] [Indexed: 12/13/2022] Open
Abstract
Innate and adaptive defense mechanisms protect the respiratory system from attack by microbes. Here, we present evidence that the bitter taste receptor T2R38 regulates the mucosal innate defense of the human upper airway. Utilizing immunofluorescent and live cell imaging techniques in polarized primary human sinonasal cells, we demonstrate that T2R38 is expressed in human upper respiratory epithelium and is activated in response to acyl-homoserine lactone quorum-sensing molecules secreted by Pseudomonas aeruginosa and other gram-negative bacteria. Receptor activation regulates calcium-dependent NO production, resulting in stimulation of mucociliary clearance and direct antibacterial effects. Moreover, common polymorphisms of the TAS2R38 gene were linked to significant differences in the ability of upper respiratory cells to clear and kill bacteria. Lastly, TAS2R38 genotype correlated with human sinonasal gram-negative bacterial infection. These data suggest that T2R38 is an upper airway sentinel in innate defense and that genetic variation contributes to individual differences in susceptibility to respiratory infection.
Collapse
Affiliation(s)
- Robert J. Lee
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Guoxiang Xiong
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Jennifer M. Kofonow
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Bei Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Anna Lysenko
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Peihua Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Valsamma Abraham
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Laurel Doghramji
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Nithin D. Adappa
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - James N. Palmer
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - David W. Kennedy
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Gary K. Beauchamp
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Paschalis-Thomas Doulias
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Harry Ischiropoulos
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - James L. Kreindler
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Danielle R. Reed
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| | - Noam A. Cohen
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neurology, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania, USA.
Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Philadelphia Veterans Affairs Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Aubert DF, O'Grady EP, Hamad MA, Sokol PA, Valvano MA. The Burkholderia cenocepacia sensor kinase hybrid AtsR is a global regulator modulating quorum-sensing signalling. Environ Microbiol 2012; 15:372-85. [PMID: 22830644 DOI: 10.1111/j.1462-2920.2012.02828.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Burkholderia cenocepacia is commonly found in the environment and also as an important opportunistic pathogen infecting patients with cystic fibrosis. Successful infection by this bacterium requires coordinated expression of virulence factors, which is achieved through different quorum sensing (QS) regulatory systems. Biofilm formation and Type 6 secretion system (T6SS) expression in B. cenocepacia K56-2 are positively regulated by QS and negatively regulated by the sensor kinase hybrid AtsR. This study reveals that in addition to affecting biofilm and T6SS activity, the deletion of atsR in B. cenocepacia leads to overproduction of other QS-regulated virulence determinants including proteases and swarming motility. Expression of the QS genes, cepIR and cciIR, was upregulated in the ΔatsR mutant and resulted in early and increased N-acylhomoserine lactone (AHL) production, suggesting that AtsR plays a role in controlling the timing and fine-tuning of virulence gene expression by modulating QS signalling. Furthermore, a ΔatsRΔcepIΔcciI mutant could partially upregulate the same virulence determinants indicating that AtsR also modulates the expression of virulence genes by a second mechanism, independently of any AHL production. Together, our results strongly suggest that AtsR is a global virulence regulator in B. cenocepacia.
Collapse
Affiliation(s)
- Daniel F Aubert
- Centre for Human Immunology, Department of Microbiology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
39
|
O'Grady EP, Viteri DF, Sokol PA. A unique regulator contributes to quorum sensing and virulence in Burkholderia cenocepacia. PLoS One 2012; 7:e37611. [PMID: 22624054 PMCID: PMC3356288 DOI: 10.1371/journal.pone.0037611] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/23/2012] [Indexed: 01/08/2023] Open
Abstract
Burkholderia cenocepacia causes chronic and life-threatening respiratory infections in immunocompromized people. The B. cenocepacia N-acyl-homoserine lactone (AHL)-dependent quorum sensing system relies on the production of AHLs by the synthases CepI and CciI while CepR, CciR and CepR2 control expression of many genes important for pathogenesis. Downstream from, and co-transcribed with cepI, lies BCAM1871 encoding a hypothetical protein that was uncharacterized prior to this study. Orthologs of B. cenocepacia BCAM1871 are uniquely found in Burkholderia spp and are conserved in their genomic locations in pathogenic Burkholderia. We observed significant effects on AHL activity upon mutation or overexpression of BCAM1871, although these effects were more subtle than those observed for CepI indicating BCAM1871 acts as an enhancer of AHL activity. Transcription of cepI, cepR and cciIR was significantly reduced in the BCAM1871 mutant. Swimming and swarming motilities as well as transcription of fliC, encoding flagellin, were significantly reduced in the BCAM1871 mutant. Protease activity and transcription of zmpA and zmpB, encoding extracellular zinc metalloproteases, were undetectable in the BCAM1871 mutant indicating a more significant effect of mutating BCAM1871 than cepI. Exogenous addition of OHL restored cepI, cepR and fliC transcription but had no effect on motility, protease activity or zmpA or zmpB transcription suggesting AHL-independent effects. The BCAM1871 mutant exhibited significantly reduced virulence in rat chronic respiratory and nematode infection models. Gene expression and phenotypic assays as well as vertebrate and invertebrate infection models showed that BCAM1871 significantly contributes to pathogenesis in B. cenocepacia.
Collapse
Affiliation(s)
| | | | - Pamela A. Sokol
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
40
|
Veselova MA, Lipasova VA, Zaitseva YV, Koksharova OA, Chernukha MY, Romanova YM, Khmel’ IA. Mutants of Burkholderia cenocepacia with a change in synthesis of N-acyl-homoserine lactones—Signal molecules of quorum sensing regulation. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412050213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Tolman JS, Valvano MA. Global changes in gene expression by the opportunistic pathogen Burkholderia cenocepacia in response to internalization by murine macrophages. BMC Genomics 2012; 13:63. [PMID: 22321740 PMCID: PMC3296584 DOI: 10.1186/1471-2164-13-63] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/09/2012] [Indexed: 12/18/2022] Open
Abstract
Background Burkholderia cenocepacia is an opportunistic pathogen causing life-threatening infections in patients with cystic fibrosis. The bacterium survives within macrophages by interfering with endocytic trafficking and delaying the maturation of the B. cenocepacia-containing phagosome. We hypothesize that B. cenocepacia undergoes changes in gene expression after internalization by macrophages, inducing genes involved in intracellular survival and host adaptation. Results We examined gene expression by intracellular B. cenocepacia using selective capture of transcribed sequences (SCOTS) combined with microarray analysis. We identified 767 genes with significantly different levels of expression by intracellular bacteria, of which 330 showed increased expression and 437 showed decreased expression. Affected genes represented all aspects of cellular life including information storage and processing, cellular processes and signaling, and metabolism. In general, intracellular gene expression demonstrated a pattern of environmental sensing, bacterial response, and metabolic adaptation to the phagosomal environment. Deletion of various SCOTS-identified genes affected bacterial entry into macrophages and intracellular replication. We also show that intracellular B. cenocepacia is cytotoxic towards the macrophage host, and capable of spread to neighboring cells, a role dependent on SCOTS-identified genes. In particular, genes involved in bacterial motility, cobalamin biosynthesis, the type VI secretion system, and membrane modification contributed greatly to macrophage entry and subsequent intracellular behavior of B. cenocepacia. Conclusions B. cenocepacia enters macrophages, adapts to the phagosomal environment, replicates within a modified phagosome, and exhibits cytotoxicity towards the host cells. The analysis of the transcriptomic response of intracellular B. cenocepacia reveals that metabolic adaptation to a new niche plays a major role in the survival of B. cenocepacia in macrophages. This adaptive response does not require the expression of any specific virulence-associated factor, which is consistent with the opportunistic nature of this microorganism. Further investigation into the remaining SCOTS-identified genes will provide a more complete picture of the adaptive response of B. cenocepacia to the host cell environment.
Collapse
Affiliation(s)
- Jennifer S Tolman
- Infectious Diseases Research Group, Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | |
Collapse
|
42
|
Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V. Common features of environmental and potentially beneficial plant-associated Burkholderia. MICROBIAL ECOLOGY 2012; 63:249-266. [PMID: 21850446 DOI: 10.1007/s00248-011-9929-1] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/01/2011] [Indexed: 05/31/2023]
Abstract
The genus Burkholderia comprises more than 60 species isolated from a wide range of niches. Although they have been shown to be diverse and ubiquitously distributed, most studies have thus far focused on the pathogenic species due to their clinical importance. However, the increasing number of recently described Burkholderia species associated with plants or with the environment has highlighted the division of the genus into two main clusters, as suggested by phylogenetical analyses. The first cluster includes human, animal, and plant pathogens, such as Burkholderia glumae, Burkholderia pseudomallei, and Burkholderia mallei, as well as the 17 defined species of the Burkholderia cepacia complex, while the other, more recently established cluster comprises more than 30 non-pathogenic species, which in most cases have been found to be associated with plants, and thus might be considered to be potentially beneficial. Several species from the latter group share characteristics that are of use when associating with plants, such as a quorum sensing system, the presence of nitrogen fixation and/or nodulation genes, and the ability to degrade aromatic compounds. This review examines the commonalities in this growing subgroup of Burkholderia species and discusses their prospective biotechnological applications.
Collapse
Affiliation(s)
- Zulma Rocío Suárez-Moreno
- Bacteriology Group, International Centre for Genetic Engineering & Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Genomic expression analysis reveals strategies of Burkholderia cenocepacia to adapt to cystic fibrosis patients' airways and antimicrobial therapy. PLoS One 2011; 6:e28831. [PMID: 22216120 PMCID: PMC3244429 DOI: 10.1371/journal.pone.0028831] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/15/2011] [Indexed: 12/20/2022] Open
Abstract
Pulmonary colonization of cystic fibrosis (CF) patients with Burkholderia cenocepacia or other bacteria of the Burkholderia cepacia complex (Bcc) is associated with worse prognosis and increased risk of death. During colonization, the bacteria may evolve under the stressing selection pressures exerted in the CF lung, in particular, those resulting from challenges of the host immune defenses, antimicrobial therapy, nutrient availability and oxygen limitation. Understanding the adaptive mechanisms that promote successful colonization and long-term survival of B. cenocepacia in the CF lung is essential for an improved therapeutic outcome of chronic infections. To get mechanistic insights into these adaptive strategies a transcriptomic analysis, based on DNA microarrays, was explored in this study. The genomic expression levels in two clonal variants isolated during long-term colonization of a CF patient who died from the cepacia syndrome were compared. One of the isolates examined, IST439, is the first B. cenocepacia isolate retrieved from the patient and the other isolate, IST4113, was obtained three years later and is more resistant to different classes of antimicrobials. Approximately 1000 genes were found to be differently expressed in the two clonal variants reflecting a marked reprogramming of genomic expression. The up-regulated genes in IST4113 include those involved in translation, iron uptake (in particular, in ornibactin biosynthesis), efflux of drugs and in adhesion to epithelial lung tissue and to mucin. Alterations related with adaptation to the nutritional environment of the CF lung and to an oxygen-limited environment are also suggested to be a key feature of transcriptional reprogramming occurring during long-term colonization, antibiotic therapy and the progression of the disease.
Collapse
|
44
|
Tahrioui A, Quesada E, Llamas I. The hanR/hanI quorum-sensing system of Halomonas anticariensis, a moderately halophilic bacterium. Microbiology (Reading) 2011; 157:3378-3387. [DOI: 10.1099/mic.0.052167-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quorum sensing is a cell density-dependent gene expression mechanism found in many Gram-negative bacteria which involves the production of signal molecules such as N-acylhomoserine lactones (AHLs). One significant group of micro-organisms in which quorum sensing has not been previously studied, however, are the moderate halophiles. We describe here the results of our studies of the quorum-sensing system in Halomonas anticariensis FP35T, which is composed of luxR/luxI homologues: hanR (the putative transcriptional regulator gene) and hanI (the autoinducer synthase gene). To understand how the hanR/hanI system is organized and regulated we conducted RT-PCR and quantitative real-time PCR assays. Transcriptional analysis indicated that the hanR and hanI genes are on the same transcript and that their transcription is growth phase-dependent. HanI seems to be the only autoinducer synthase responsible for the synthesis of AHLs by the bacterium, since the inactivation of hanI resulted in the complete loss of its AHLs. We also found that the hanI gene appears to be transcribed from its own promoter and that its expression does not depend upon HanR. This finding was supported by the fact that the FP35hanR mutant showed AHL-producing activity and hanI expression similar to that of the wild-type strain, the latter being measured by RT-PCR. Moreover, hanR is expressed from its own promoter and appears to be independent of the AHL signalling molecules produced by HanI.
Collapse
Affiliation(s)
- Ali Tahrioui
- Microbial Exopolysaccharide Research Group, Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, 18071 Granada, Spain
| | - Emilia Quesada
- Microbial Exopolysaccharide Research Group, Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, 18071 Granada, Spain
| | - Inmaculada Llamas
- Microbial Exopolysaccharide Research Group, Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, 18071 Granada, Spain
| |
Collapse
|
45
|
Abstract
Many bacteria use 'quorum sensing' (QS) as a mechanism to regulate gene induction in a population-dependent manner. In its simplest sense this involves the accumulation of a signaling metabolite during growth; the binding of this metabolite to a regulator or multiple regulators activates induction or repression of gene expression. However QS regulation is seldom this simple, because other inputs are usually involved. In this review we have focussed on how those other inputs influence QS regulation and as implied by the title, this often occurs by environmental or physiological effects regulating the expression or activity of the QS regulators. The rationale of this review is to briefly introduce the main QS signals used in Gram-negative bacteria and then introduce one of the earliest understood mechanisms of regulation of the regulator, namely the plant-mediated control of expression of the TraR QS regulator in Agrobacterium tumefaciens. We then describe how in several species, multiple QS regulatory systems can act as integrated hierarchical regulatory networks and usually this involves the regulation of QS regulators. Such networks can be influenced by many different physiological and environmental inputs and we describe diverse examples of these. In the final section, we describe different examples of how eukaryotes can influence QS regulation in Gram-negative bacteria.
Collapse
Affiliation(s)
- Marijke Frederix
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
46
|
Fang K, Zhao H, Sun C, Lam CMC, Chang S, Zhang K, Panda G, Godinho M, Martins dos Santos VAP, Wang J. Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction. BMC SYSTEMS BIOLOGY 2011; 5:83. [PMID: 21609491 PMCID: PMC3123600 DOI: 10.1186/1752-0509-5-83] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/25/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Burkholderia cenocepacia is a threatening nosocomial epidemic pathogen in patients with cystic fibrosis (CF) or a compromised immune system. Its high level of antibiotic resistance is an increasing concern in treatments against its infection. Strain B. cenocepacia J2315 is the most infectious isolate from CF patients. There is a strong demand to reconstruct a genome-scale metabolic network of B. cenocepacia J2315 to systematically analyze its metabolic capabilities and its virulence traits, and to search for potential clinical therapy targets. RESULTS We reconstructed the genome-scale metabolic network of B. cenocepacia J2315. An iterative reconstruction process led to the establishment of a robust model, iKF1028, which accounts for 1,028 genes, 859 internal reactions, and 834 metabolites. The model iKF1028 captures important metabolic capabilities of B. cenocepacia J2315 with a particular focus on the biosyntheses of key metabolic virulence factors to assist in understanding the mechanism of disease infection and identifying potential drug targets. The model was tested through BIOLOG assays. Based on the model, the genome annotation of B. cenocepacia J2315 was refined and 24 genes were properly re-annotated. Gene and enzyme essentiality were analyzed to provide further insights into the genome function and architecture. A total of 45 essential enzymes were identified as potential therapeutic targets. CONCLUSIONS As the first genome-scale metabolic network of B. cenocepacia J2315, iKF1028 allows a systematic study of the metabolic properties of B. cenocepacia and its key metabolic virulence factors affecting the CF community. The model can be used as a discovery tool to design novel drugs against diseases caused by this notorious pathogen.
Collapse
Affiliation(s)
- Kechi Fang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Eberl L, Riedel K. Mining quorum sensing regulated proteins - Role of bacterial cell-to-cell communication in global gene regulation as assessed by proteomics. Proteomics 2011; 11:3070-85. [PMID: 21548094 DOI: 10.1002/pmic.201000814] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/20/2011] [Accepted: 02/17/2011] [Indexed: 12/31/2022]
Affiliation(s)
- Leo Eberl
- Department of Microbiology, Institute of Plant Biology, University of Zürich, Zurich, Switzerland
| | | |
Collapse
|
48
|
Enacyloxins Are Products of an Unusual Hybrid Modular Polyketide Synthase Encoded by a Cryptic Burkholderia ambifaria Genomic Island. ACTA ACUST UNITED AC 2011; 18:665-77. [DOI: 10.1016/j.chembiol.2011.01.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/24/2011] [Accepted: 01/26/2011] [Indexed: 11/22/2022]
|
49
|
Drevinek P, Mahenthiralingam E. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 2011; 16:821-30. [PMID: 20880411 DOI: 10.1111/j.1469-0691.2010.03237.x] [Citation(s) in RCA: 309] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Burkholderia cepacia complex (Bcc) bacteria have gained notoriety as pathogens in cystic fibrosis (CF) because they are difficult to identify and treat, and also have the ability to spread between CF individuals. Of the 17 formally named species within the complex, Burkholderia multivorans and Burkholderia cenocepacia dominate in CF. Multilocus sequence typing has proven to be a very useful tool for tracing the global epidemiology of Bcc bacteria and has shown that B. cenocepacia strains with high transmissibility, such as the ET-12 strain (ST-28) and the Czech strain (ST-32), have spread epidemically within CF populations in Canada and Europe. The majority of research on the molecular pathogenesis of Bcc bacteria has focused on the B. cenocepacia ET-12 epidemic lineage, with gene mutation, genome sequence analysis and, most recently, global gene expression studies shedding considerable light on the virulence and antimicrobial resistance of this pathogen. These studies demonstrate that the ability of B. cenocepacia to acquire foreign DNA (genomic islands, insertion sequences and other mobile elements), regulate gene expression via quorum sensing, compete for iron during infection, and mediate antimicrobial resistance and inflammation via its membrane and surface polysaccharides are key features that underpin the virulence of different strains. With the wealth of molecular knowledge acquired in the last decade on B. cenocepacia strains, we are now in a much better position to develop strategies for the treatment of pathogenic colonization with Bcc and to answer key questions on pathogenesis concerning, for example, the factors that trigger the rapid clinical decline in CF patients.
Collapse
Affiliation(s)
- P Drevinek
- Paediatric Department, 2nd Medical School, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
50
|
McCarthy Y, Yang L, Twomey KB, Sass A, Tolker-Nielsen T, Mahenthiralingam E, Dow JM, Ryan RP. A sensor kinase recognizing the cell-cell signal BDSF (cis-2-dodecenoic acid) regulates virulence in Burkholderia cenocepacia. Mol Microbiol 2011; 77:1220-36. [PMID: 20624216 DOI: 10.1111/j.1365-2958.2010.07285.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Burkholderia cenocepacia is an opportunistic human pathogen that uses cis-2-dodecenoic acid (BDSF) as a quorum-sensing signal to control expression of virulence factors. BDSF is a signal molecule of the diffusible signal factor (DSF) family that was first described in the plant pathogen Xanthomonas campestris. The mechanism of perception of this signal and the range of functions regulated in B. cenocepacia are, however, unknown. A screen for transposon mutants unable to respond to exogenous signal identified BCAM0227 as a potential BDSF sensor. BCAM0227 is a histidine sensor kinase with an input domain unrelated to that of RpfC, the DSF sensor found in xanthomonads. Transcriptome profiling established the scope of the BDSF regulon and demonstrated that the sensor controls expression of a subset of these genes. A chimeric sensor kinase in which the input domain of BCAM0227 replaced the input domain of RpfC was active in BDSF signal perception when expressed in X. campestris. Mutation of BCAM0227 gave rise to reduced cytotoxicity to Chinese hamster ovary cells and reduced virulence to Wax moth larvae and in the agar-bead mouse model of pulmonary infection. The findings identify BCAM0227 as a novel BDSF sensor and a potential target for interference in virulence-related signalling in B. cenocepacia.
Collapse
Affiliation(s)
- Yvonne McCarthy
- BIOMERIT Research Centre, Department of Microbiology, Biosciences Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|