1
|
Jarzab M, Skorko-Glonek J. There Are No Insurmountable Barriers: Passage of the Helicobacter pylori VacA Toxin from Bacterial Cytoplasm to Eukaryotic Cell Organelle. MEMBRANES 2023; 14:11. [PMID: 38248700 PMCID: PMC10821523 DOI: 10.3390/membranes14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
The Gram-negative bacterium Helicobacter pylori is a very successful pathogen, one of the most commonly identified causes of bacterial infections in humans worldwide. H. pylori produces several virulence factors that contribute to its persistence in the hostile host habitat and to its pathogenicity. The most extensively studied are cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA). VacA is present in almost all H. pylori strains. As a secreted multifunctional toxin, it assists bacterial colonization, survival, and proliferation during long-lasting infections. To exert its effect on gastric epithelium and other cell types, VacA undergoes several modifications and crosses multiple membrane barriers. Once inside the gastric epithelial cell, VacA disrupts many cellular-signaling pathways and processes, leading mainly to changes in the efflux of various ions, the depolarization of membrane potential, and perturbations in endocytic trafficking and mitochondrial function. The most notable effect of VacA is the formation of vacuole-like structures, which may lead to apoptosis. This review focuses on the processes involved in VacA secretion, processing, and entry into host cells, with a particular emphasis on the interaction of the mature toxin with host membranes and the formation of transmembrane pores.
Collapse
Affiliation(s)
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| |
Collapse
|
2
|
Sharndama HC, Mba IE. Helicobacter pylori: an up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol 2022; 53:33-50. [PMID: 34988937 PMCID: PMC8731681 DOI: 10.1007/s42770-021-00675-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is an organism associated with ulcer disease and gastric cancer. The latter is one of the most prevalent malignancies and currently the fourth major cause of cancer-related deaths globally. The pathogen infects about 50% of the world population, and currently, no treatment ensures its total elimination. There has been an increase in our understanding of the pathophysiology and pathogenesis mechanisms of H. pylori over the years. H. pylori can induce several genetic alterations, express numerous virulence factors, and trigger diverse adaptive mechanisms during its adherence and colonization. For successful colonization and infection establishment, several effector proteins/toxins are released by the organism. Evidence is also available reporting spiral to coccoid transition as a unique tactic H. pylori uses to survive in the host's gastrointestinal tract (GIT). Thus, the virulence and pathogenicity of H. pylori are under the control of complex interplay between the virulence factors, host, and environmental factors. Expounding the role of the various virulence factors in H. pylori pathogenesis and clinical outcomes is crucial for vaccine development and in providing and developing a more effective therapeutic intervention. Here we critically reflect on H. pylori infection and delineate what is currently known about the virulence and pathogenesis mechanisms of H. pylori.
Collapse
Affiliation(s)
| | - Ifeanyi Elibe Mba
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria.
| |
Collapse
|
3
|
Functional Properties of Helicobacter pylori VacA Toxin m1 and m2 Variants. Infect Immun 2020; 88:IAI.00032-20. [PMID: 32284370 DOI: 10.1128/iai.00032-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori colonizes the gastric mucosa and secretes a pore-forming toxin (VacA). Two main types of VacA, m1 and m2, can be distinguished by phylogenetic analysis. Type m1 forms of VacA have been extensively studied, but there has been relatively little study of m2 forms. In this study, we generated H. pylori strains producing chimeric proteins in which VacA m1 segments of a parental strain were replaced by corresponding m2 sequences. In comparison to the parental m1 VacA protein, a chimeric protein (designated m2/m1) containing m2 sequences in the N-terminal portion of the m region was less potent in causing vacuolation of HeLa cells, AGS gastric cells, and AZ-521 duodenal cells and had reduced capacity to cause membrane depolarization or death of AZ-521 cells. Consistent with the observed differences in activity, the chimeric m2/m1 VacA protein bound to cells at reduced levels compared to the binding levels of the parental m1 protein. The presence of two strain-specific insertions or deletions within or adjacent to the m region did not influence toxin activity. Experiments with human gastric organoids grown as monolayers indicated that m1 and m2/m1 forms of VacA had similar cell-vacuolating activities. Interestingly, both forms of VacA bound preferentially to the basolateral surface of organoid monolayers and caused increased cell vacuolation when interacting with the basolateral surface compared to the apical surface. These data provide insights into functional correlates of sequence variation in the VacA midregion (m region).
Collapse
|
4
|
Su M, Erwin AL, Campbell AM, Pyburn TM, Salay LE, Hanks JL, Lacy DB, Akey DL, Cover TL, Ohi MD. Cryo-EM Analysis Reveals Structural Basis of Helicobacter pylori VacA Toxin Oligomerization. J Mol Biol 2019; 431:1956-1965. [PMID: 30954575 PMCID: PMC6625667 DOI: 10.1016/j.jmb.2019.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori colonizes the human stomach and contributes to the development of gastric cancer and peptic ulcer disease. H. pylori secretes a pore-forming toxin called vacuolating cytotoxin A (VacA), which contains two domains (p33 and p55) and assembles into oligomeric structures. Using single-particle cryo-electron microscopy, we have determined low-resolution structures of a VacA dodecamer and heptamer, as well as a 3.8-Å structure of the VacA hexamer. These analyses show that VacA p88 consists predominantly of a right-handed beta-helix that extends from the p55 domain into the p33 domain. We map the regions of p33 and p55 involved in hexamer assembly, model how interactions between protomers support heptamer formation, and identify surfaces of VacA that likely contact membrane. This work provides structural insights into the process of VacA oligomerization and identifies regions of VacA protomers that are predicted to contact the host cell surface during channel formation.
Collapse
Affiliation(s)
- Min Su
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda L Erwin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anne M Campbell
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Tasia M Pyburn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - Lauren E Salay
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Jessica L Hanks
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - D Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - David L Akey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timothy L Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
McClain MS, Beckett AC, Cover TL. Helicobacter pylori Vacuolating Toxin and Gastric Cancer. Toxins (Basel) 2017; 9:toxins9100316. [PMID: 29023421 PMCID: PMC5666363 DOI: 10.3390/toxins9100316] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori VacA is a channel-forming toxin unrelated to other known bacterial toxins. Most H. pylori strains contain a vacA gene, but there is marked variation among strains in VacA toxin activity. This variation is attributable to strain-specific variations in VacA amino acid sequences, as well as variations in the levels of VacA transcription and secretion. In this review, we discuss epidemiologic studies showing an association between specific vacA allelic types and gastric cancer, as well as studies that have used animal models to investigate VacA activities relevant to gastric cancer. We also discuss the mechanisms by which VacA-induced cellular alterations may contribute to the pathogenesis of gastric cancer.
Collapse
Affiliation(s)
- Mark S McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Amber C Beckett
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Timothy L Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
6
|
Fahimi F, Tohidkia MR, Fouladi M, Aghabeygi R, Samadi N, Omidi Y. Pleiotropic cytotoxicity of VacA toxin in host cells and its impact on immunotherapy. ACTA ACUST UNITED AC 2017; 7:59-71. [PMID: 28546954 PMCID: PMC5439391 DOI: 10.15171/bi.2017.08] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/17/2022]
Abstract
![]()
Introduction: In the recent decades, a number of studies have highlighted the importance of Helicobacter pylori in the initiation and development of peptic ulcer and gastric cancer. Some potential virulence factors (e.g., urease, CagA, VacA, BabA) are exploited by this microorganism, facilitating its persistence through evading human defense mechanisms. Among these toxins and enzymes, vacuolating toxin A (VacA) is of a great importance in the pathogenesis of H. pylori. VacA toxin shows different pattern of cytotoxicity through binding to different cell surface receptors in various cells.
Methods: To highlight attempts in treatment for H. pylori infection, here, we discussed the VacA potential as a candidate for development of vaccine and targeted immunotherapy. Furthermore, we reviewed the related literature to provide key insights on association of the genetic variants of VacA with the toxicity of the toxin in cells.
Results: A number of investigations on the receptor(s) binding of VacA toxin confirmed the pleiotropic nature of VacA that uses a unique mechanism for internalization through some membrane components such as lipid rafts and glycophosphatidylinositol (GPI)-anchored proteins (GPI-AP). Considering the high potency of VacA toxin in the clinical presentations in infection and assisting persistence and colonization of H. pylori, it is considered as one of the pivotal components in production vaccines and monoclonal antibodies (mAbs).
Conclusion: It is possible to generate mAbs with a considerable potential to convert into secretory immunoglobulins that could penetrate into the niche of H. pylori and inhibit its normal functionalities. Further, conjugation of H. pylori targeting Ab fragments with the toxic agents or drug delivery systems (DDSs) offers new generation of H. pylori treatments.
Collapse
Affiliation(s)
- Farnaz Fahimi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Fouladi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Aghabeygi
- School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Samadi
- School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Yahiro K, Hirayama T, Moss J, Noda M. New Insights into VacA Intoxication Mediated through Its Cell Surface Receptors. Toxins (Basel) 2016; 8:toxins8050152. [PMID: 27187473 PMCID: PMC4885067 DOI: 10.3390/toxins8050152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori (H. pylori), a major cause of gastroduodenal diseases, produces VacA, a vacuolating cytotoxin associated with gastric inflammation and ulceration. The C-terminal domain of VacA plays a crucial role in receptor recognition on target cells. We have previously identified three proteins (i.e., RPTPα, RPTPβ, and LRP1) that serve as VacA receptors. These receptors contribute to the internalization of VacA into epithelial cells, activate signal transduction pathways, and contribute to cell death and gastric ulceration. In addition, other factors (e.g., CD18, sphingomyelin) have also been identified as cell-surface, VacA-binding proteins. Since we believe that, following interactions with its host cell receptors, VacA participates in events leading to disease, a better understanding of the cellular function of VacA receptors may provide valuable information regarding the mechanisms underlying the pleiotropic actions of VacA and the pathogenesis of H. pylori-mediated disease. In this review, we focus on VacA receptors and their role in events leading to cell damage.
Collapse
Affiliation(s)
- Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Toshiya Hirayama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, NHLBI, NIH, Building 10, Room 6D03, MSC 1590, Bethesda, MD 20892-1590, USA.
| | - Masatoshi Noda
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
8
|
Cover TL, Holland RL, Blanke SR. Helicobacter pylori Vacuolating Toxin. HELICOBACTER PYLORI RESEARCH 2016:113-141. [DOI: 10.1007/978-4-431-55936-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
9
|
González-Rivera C, Algood HMS, Radin JN, McClain MS, Cover TL. The intermediate region of Helicobacter pylori VacA is a determinant of toxin potency in a Jurkat T cell assay. Infect Immun 2012; 80:2578-88. [PMID: 22585965 PMCID: PMC3434591 DOI: 10.1128/iai.00052-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/04/2012] [Indexed: 02/08/2023] Open
Abstract
Colonization of the human stomach with Helicobacter pylori is a risk factor for peptic ulceration, noncardia gastric adenocarcinoma, and gastric lymphoma. The secreted VacA toxin is an important H. pylori virulence factor that causes multiple alterations in gastric epithelial cells and T cells. Several families of vacA alleles have been described, and H. pylori strains containing certain vacA types (s1, i1, and m1) are associated with an increased risk of gastric disease, compared to strains containing other vacA types (s2, i2, and m2). Thus far, there has been relatively little study of the role of the VacA intermediate region (i-region) in toxin activity. In this study, we compared the ability of i1 and i2 forms of VacA to cause functional alterations in Jurkat cells. To do this, we manipulated the chromosomal vacA gene in two H. pylori strains to introduce alterations in the region encoding the VacA i-region. We did not detect any differences in the capacity of i1 and i2 forms of VacA to cause vacuolation of RK13 cells. In comparison to i1 forms of VacA, i2 forms of VacA had a diminished capacity to inhibit the activation of nuclear factor of activated T cells (NFAT) and suppress interleukin-2 (IL-2) production. Correspondingly, i2 forms of VacA bound to Jurkat cells less avidly than did i1 forms of VacA. These results indicate that the VacA i-region is an important determinant of VacA effects on human T cell function.
Collapse
Affiliation(s)
| | - Holly M. Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jana N. Radin
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Palframan SL, Kwok T, Gabriel K. Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis. Front Cell Infect Microbiol 2012; 2:92. [PMID: 22919683 PMCID: PMC3417644 DOI: 10.3389/fcimb.2012.00092] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022] Open
Abstract
More than 50% of the world's population is infected with Helicobacter pylori (H. pylori). Chronic infection with this Gram-negative pathogen is associated with the development of peptic ulcers and is linked to an increased risk of gastric cancer. H. pylori secretes many proteinaceous factors that are important for initial colonization and subsequent persistence in the host stomach. One of the major protein toxins secreted by H. pylori is the Vacuolating cytotoxin A (VacA). After secretion from the bacteria via a type V autotransport secretion system, the 88 kDa VacA toxin (comprised of the p33 and p55 subunits) binds to host cells and is internalized, causing severe “vacuolation” characterized by the accumulation of large vesicles that possess hallmarks of both late endosomes and early lysosomes. The development of “vacuoles” has been attributed to the formation of VacA anion-selective channels in membranes. Apart from its vacuolating effects, it has recently become clear that VacA also directly affects mitochondrial function. Earlier studies suggested that the p33 subunit, but not the p55 subunit of VacA, could enter mitochondria to modulate organelle function. This raised the possibility that a mechanism separate from pore formation may be responsible for the effects of VacA on mitochondria, as crystallography studies and structural modeling predict that both subunits are required for a physiologically stable pore. It has also been suggested that the mitochondrial effects observed are due to indirect effects on pro-apoptotic proteins and direct effects on mitochondrial morphology-related processes. Other studies have shown that both the p55 and p33 subunits can indeed be efficiently imported into mammalian-derived mitochondria raising the possibility that they could re-assemble to form a pore. Our review summarizes and consolidates the recent advances in VacA toxin research, with focus on the outstanding controversies in the field and the key remaining questions that need to be addressed.
Collapse
Affiliation(s)
- Samuel L Palframan
- Host Pathogens Molecular Biology Group, Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC, Australia
| | | | | |
Collapse
|
11
|
Kim IJ, Blanke SR. Remodeling the host environment: modulation of the gastric epithelium by the Helicobacter pylori vacuolating toxin (VacA). Front Cell Infect Microbiol 2012; 2:37. [PMID: 22919629 PMCID: PMC3417592 DOI: 10.3389/fcimb.2012.00037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/05/2012] [Indexed: 12/13/2022] Open
Abstract
Virulence mechanisms underlying Helicobacter pylori persistence and disease remain poorly understood, in part, because the factors underlying disease risk are multifactorial and complex. Among the bacterial factors that contribute to the cumulative pathophysiology associated with H. pylori infections, the vacuolating cytotoxin (VacA) is one of the most important. Analogous to a number of H. pylori genes, the vacA gene exhibits allelic mosaicism, and human epidemiological studies have revealed that several families of toxin alleles are predictive of more severe disease. Animal model studies suggest that VacA may contribute to pathogenesis in several ways. VacA functions as an intracellular-acting protein exotoxin. However, VacA does not fit the current prototype of AB intracellular-acting bacterial toxins, which elaborate modulatory effects through the action of an enzymatic domain translocated inside host cells. Rather, VacA may represent an alternative prototype for AB intracellular acting toxins that modulate cellular homeostasis by forming ion-conducting intracellular membrane channels. Although VacA seems to form channels in several different membranes, one of the most important target sites is the mitochondrial inner membrane. VacA apparently take advantage of an unusual intracellular trafficking pathway to mitochondria, where the toxin is imported and depolarizes the inner membrane to disrupt mitochondrial dynamics and cellular energy homeostasis as a mechanism for engaging the apoptotic machinery within host cells. VacA remodeling of the gastric environment appears to be fine-tuned through the action of the Type IV effector protein CagA which, in part, limits the cytotoxic effects of VacA in cells colonized by H. pylori.
Collapse
Affiliation(s)
- Ik-Jung Kim
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana IL, USA
| | | |
Collapse
|
12
|
Calore F, Genisset C, Casellato A, Rossato M, Codolo G, Esposti MD, Scorrano L, de Bernard M. Endosome-mitochondria juxtaposition during apoptosis induced by H. pylori VacA. Cell Death Differ 2010; 17:1707-16. [PMID: 20431599 PMCID: PMC3048310 DOI: 10.1038/cdd.2010.42] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The vacuolating cytotoxin (VacA) is an important virulence factor of Helicobacter pylori with pleiotropic effects on mammalian cells, including the ability to trigger mitochondria-dependent apoptosis. However, the mechanism by which VacA exerts its apoptotic function is unclear. Using a genetic approach, in this study we show that killing by VacA requires the proapoptotic Bcl-2 family members BAX and BAK at the mitochondrial level, but not adequate endoplasmic reticulum Ca²(+) levels, similarly controlled by BAX and BAK. A combination of subcellular fractionation and imaging shows that wild-type VacA, but not mutants in its channel-forming region, induces the accumulation of BAX on endosomes and endosome-mitochondria juxtaposition that precedes the retrieval of active BAX on mitochondria. It is noteworthy that in Bax- and Bak-deficient cells, VacA is unable to cause endosome-mitochondria juxtaposition and is not retrieved in mitochondria. Thus, VacA causes BAX/BAK-dependent juxtaposition of endosomes and mitochondria early in the process of cell death, revealing a new function for these proapoptotic proteins in the regulation of relative position of organelles.
Collapse
Affiliation(s)
- F Calore
- Venetian Institute of Molecular Medicine, V. Orus 2, Padova 35129, Italy
- Department of Biomedical Sciences, University of Padova, V.G. Colombo 3, Padova 35121, Italy
| | - C Genisset
- Department of Biomedical Sciences, University of Padova, V.G. Colombo 3, Padova 35121, Italy
| | - A Casellato
- Venetian Institute of Molecular Medicine, V. Orus 2, Padova 35129, Italy
| | - M Rossato
- Division of General Pathology, Department of Pathology, University of Verona, Strada Le Grazie 8, Verona 37134, Italy
| | - G Codolo
- Venetian Institute of Molecular Medicine, V. Orus 2, Padova 35129, Italy
| | - MD Esposti
- Faculty of Life Sciences, University of Manchester, Oxford Road M13, Manchester 9PT, UK
| | - L Scorrano
- Venetian Institute of Molecular Medicine, V. Orus 2, Padova 35129, Italy
- Dulbecco-Telethon Institute, Via Orus 2, Padova 35129, Italy
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, 1 Rue M. Servet, Genève 1211, Switzerland
| | - M de Bernard
- Venetian Institute of Molecular Medicine, V. Orus 2, Padova 35129, Italy
- Department of Biology, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy
| |
Collapse
|
13
|
Sicinschi LA, Correa P, Peek RM, Camargo MC, Delgado A, Piazuelo MB, Romero-Gallo J, Bravo LE, Schneider BG. Helicobacter pylori genotyping and sequencing using paraffin-embedded biopsies from residents of colombian areas with contrasting gastric cancer risks. Helicobacter 2008; 13:135-45. [PMID: 18321303 PMCID: PMC2977907 DOI: 10.1111/j.1523-5378.2008.00554.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND cagA-positive and vacA s1 and m1 genotypes of Helicobacter pylori are associated with an elevated risk of gastric cancer (GC). We determined these genotypes using paraffin-embedded gastric biopsy specimens harvested from infected individuals and compared genotype distributions in two Colombian populations residing in geographic regions with a high and low incidence of GC. METHODS DNA from paraffin-embedded gastric biopsies from 107 adults was amplified using primers specific for cagA, for the cag'empty site', for the s and m alleles of vacA, and for H. pylori 16S rRNA. RESULTS H. pylori infection was detected by molecular assays in 97 (90.7%) biopsies. Complete genotyping of cagA and vacA was achieved in 94 (96.9%) cases. The presence of cagA was detected in 78 of 97 cases (80.4%); when considered separately, cagA and vacA s regions were not significantly associated with a particular geographic area. The vacA m1 allele and s1m1 genotypes were more common in the area of high risk for GC (p = .037 and p = .044, respectively), while the vacA m2 allele and s2m2 genotypes were more prevalent in the low-risk area. The prevalence of the combination of cagA-positive, vacA s1m1 genotypes was 84.3% and 60.5% for high and low risk areas, respectively (p = .011). CONCLUSIONS H. pylori cagA and vacA genotyping from paraffin-embedded gastric biopsies permitted reliable typability and discrimination. The more virulent cagA-positive s1m1 strains, as well as vacA m1 genotype, were more prevalent in high risk than in low risk areas, which may contribute to the difference in GC risk between those two regions.
Collapse
Affiliation(s)
- Liviu A Sicinschi
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sewald X, Fischer W, Haas R. Sticky socks: Helicobacter pylori VacA takes shape. Trends Microbiol 2008; 16:89-92. [PMID: 18280164 DOI: 10.1016/j.tim.2008.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Revised: 12/14/2007] [Accepted: 01/17/2008] [Indexed: 12/20/2022]
Abstract
Several receptors have been described for the Helicobacter pylori vacuolating toxin VacA, which exerts different effects on epithelial cells and on immune cells. The crystal structure of the putative receptor-binding domain of VacA (p55) has now been solved. It consists of a parallel beta-helix with a C-terminal globular domain. A comparison between allelic variants of p55 and docking of the p55 domain into the quaternary structure, as shown by electron microscopy, revealed structural features that might be important for elucidating the molecular details of receptor interaction and channel formation.
Collapse
Affiliation(s)
- Xaver Sewald
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University, Pettenkoferstrasse 9a, D-80336 Munich, Germany
| | | | | |
Collapse
|
15
|
Gangwer KA, Mushrush DJ, Stauff DL, Spiller B, McClain MS, Cover TL, Lacy DB. Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain. Proc Natl Acad Sci U S A 2007; 104:16293-8. [PMID: 17911250 PMCID: PMC2042200 DOI: 10.1073/pnas.0707447104] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori VacA, a pore-forming toxin secreted by an autotransporter pathway, causes multiple alterations in human cells, contributes to the pathogenesis of peptic ulcer disease and gastric cancer, and is a candidate antigen for inclusion in an H. pylori vaccine. Here, we present a 2.4-A crystal structure of the VacA p55 domain, which has an important role in mediating VacA binding to host cells. The structure is predominantly a right-handed parallel beta-helix, a feature that is characteristic of autotransporter passenger domains but unique among known bacterial protein toxins. Notable features of VacA p55 include disruptions in beta-sheet contacts that result in five beta-helix subdomains and a C-terminal domain that contains a disulfide bond. Analysis of VacA protein sequences from unrelated H. pylori strains, including m1 and m2 forms of VacA, allows us to identify structural features of the VacA surface that may be important for interactions with host receptors. Docking of the p55 structure into a 19-A cryo-EM map of a VacA dodecamer allows us to propose a model for how VacA monomers assemble into oligomeric structures capable of membrane channel formation.
Collapse
Affiliation(s)
- Kelly A. Gangwer
- Departments of *Microbiology and Immunology
- Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Darren J. Mushrush
- Biochemistry
- Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | | | - Ben Spiller
- Departments of *Microbiology and Immunology
- Pharmacology, and
- Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | | | - Timothy L. Cover
- Departments of *Microbiology and Immunology
- Medicine and
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212
| | - D. Borden Lacy
- Departments of *Microbiology and Immunology
- Biochemistry
- Center for Structural Biology, Vanderbilt University Medical Center, Nashville, TN 37232; and
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Rhead JL, Letley DP, Mohammadi M, Hussein N, Mohagheghi MA, Eshagh Hosseini M, Atherton JC. A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology 2007; 133:926-36. [PMID: 17854597 DOI: 10.1053/j.gastro.2007.06.056] [Citation(s) in RCA: 312] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 06/11/2007] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Helicobacter pylori is the main cause of peptic ulceration and gastric adenocarcinoma. The vacuolating cytotoxin gene, vacA, is a major determinant of virulence. Two naturally polymorphic sites in vacA, the signal region and midregion, are well-characterized determinants of toxicity and markers of pathogenesis. The aim of this study was to characterize a new vacA polymorphic site, the intermediate (i) region. METHODS The vacA i-region was identified and characterized by constructing isogenic vacA exchange mutants and determining their vacuolating activity on HeLa, AGS, and RK13 cell lines. The vacA i-region types of H pylori isolates from patients undergoing routine endoscopy were determined by nucleotide sequencing and allele-specific polymerase chain reaction. RESULTS Two i-region types were identified, i1 and i2, and both were common among 42 Western clinical isolates. Interestingly, only naturally occurring s1/m2 strains varied in i-type; s1/m1 and s2/m2 strains were exclusively i1 and i2, respectively. Vacuolation assays showed that i-type determined vacuolating activity among these s1/m2 strains, and exchange mutagenesis confirmed that the i-region itself was directly responsible. Using a simple i-region polymerase chain reaction-based typing system, it was shown for 73 Iranian patients that i1-type strains were strongly associated with gastric adenocarcinoma (P < 10(-3)). Finally, logistic regression analysis showed this association to be independent of, and larger than, associations of vacA s- or m-type or cag status with gastric adenocarcinoma. CONCLUSIONS Together these data show that the vacA i-region is an important determinant of H pylori toxicity and the best independent marker of VacA-associated pathogenicity.
Collapse
Affiliation(s)
- Joanne L Rhead
- Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, Nottingham, England
| | | | | | | | | | | | | |
Collapse
|
17
|
Genisset C, Puhar A, Calore F, de Bernard M, Dell'Antone P, Montecucco C. The concerted action of the Helicobacter pylori cytotoxin VacA and of the v-ATPase proton pump induces swelling of isolated endosomes. Cell Microbiol 2007; 9:1481-90. [PMID: 17253977 DOI: 10.1111/j.1462-5822.2006.00886.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vacuolating cytotoxin (VacA) is a major virulence factor of Helicobacter pylori, the bacterium associated to gastroduodenal ulcers and stomach cancers. VacA induces formation of cellular vacuoles that originate from late endosomal compartments. VacA forms an anion-selective channel and its activity has been suggested to increase the osmotic pressure in the lumen of these acidic compartments, driving their swelling to vacuoles. Here, we have tested this proposal on isolated endosomes that allow one to manipulate at will the medium. We have found that VacA enhances the v-ATPase proton pump activity and the acidification of isolated endosomes in a Cl- dependent manner. Other counter-anions such as pyruvate, Br-, I- and SCN- can be transported by VacA with stimulation of the v-ATPase. The VacA action on isolated endosomes is associated with their increase in size. Single amino acid substituted VacA with no channel-forming and vacuolating activity is unable to induce swelling of endosomes. These data provide a direct evidence that the transmembrane VacA channel mediates an influx of anions into endosomes that stimulates the electrogenic v-ATPase proton pump, leading to their osmotic swelling and transformation into vacuoles.
Collapse
Affiliation(s)
- Christophe Genisset
- Dipartimento di Scienze Biomediche Sperimentali, Università di Padova, Padova, Italy
| | | | | | | | | | | |
Collapse
|