1
|
Hamlin JAP, Kozak-Muiznieks NA, Mercante JW, Rishishwar L, Norris ET, Gaines AB, Ishaq MK, Winchell JM, Willby MJ. Expanded geographic distribution for two Legionella pneumophila sequence types of clinical concern. mSphere 2024; 9:e0075623. [PMID: 39465969 PMCID: PMC11580456 DOI: 10.1128/msphere.00756-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/19/2024] [Indexed: 10/29/2024] Open
Abstract
Legionella pneumophila serogroup 1 sequence types (ST) 213 and 222, a single-locus variant of ST213, were first detected in the early 1990s in the Midwest United States (U.S.) and the late 1990s in the Northeast U.S. and Canada. Since 1992, these STs have increasingly been implicated in community-acquired sporadic and outbreak-associated Legionnaires' disease (LD) cases. We were interested in understanding the change in LD frequency due to these STs and identifying genetic features that differentiate these STs from one another. For the geographic area examined here (Mountain West to Northeast) and over the study period (1992-2020), ST213/222-associated LD cases identified by the Centers for Disease Control and Prevention increased by 0.15 cases per year, with ST213/222-associated LD cases concentrated in four states: Michigan (26%), New York (18%), Minnesota (16%), and Ohio (10%). Additionally, between 2002 and 2021, ST222 caused at least five LD outbreaks in the U.S.; no known outbreaks due to ST213 occurred in the U.S. during this time. We compared the genomes of 230 ST213/222 isolates and found that the mean of the average nucleotide identity (ANI) within each ST was high (99.92% for ST222 and 99.92% for ST213), with a minimum between ST ANI of 99.50% and a maximum of 99.87%, indicating low genetic diversity within and between these STs. While genomic features were identified (e.g., plasmids and CRISPR-Cas systems), no association explained the increasing geographic distribution and prevalence of ST213 and ST222. Yet, we provide evidence of the expanded geographical distribution of ST213 and ST222 in the U.S.IMPORTANCESince the 1990s, cases of Legionnaires' disease (LD) attributed to a pair of closely related Legionella pneumophila variants, ST213 and ST222, have increased in the U.S. Furthermore, between 2002 and 2021, ST222 caused at least five outbreaks of LD in the U.S., while ST213 has not been linked to any U.S. outbreak. We wanted to understand how the rate of LD cases attributed to these variants has changed over time and compare the genetic features of the two variants. Between 1992 and 2020, we determined an increase of 0.15 LD cases ascribed to ST213/222 per year in the geographic region studied. Our research shows that these STs are spreading within the U.S., yet most of the cases occurred in four states: Michigan, New York, Minnesota, and Ohio. Additionally, we found little genetic diversity within and between these STs nor could specific genetic features explain their geographic spread.
Collapse
Affiliation(s)
- Jennafer A. P. Hamlin
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Jeffrey W. Mercante
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Anna B. Gaines
- Applied Bioinformatics Laboratory, Atlanta, Georgia, USA
| | - Maliha K. Ishaq
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonas M. Winchell
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Melisa J. Willby
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Penner TV, Lorente Cobo N, Patel DT, Patel DH, Savchenko A, Brassinga AKC, Prehna G. Structural characterization of the Sel1-like repeat protein LceB from Legionella pneumophila. Protein Sci 2024; 33:e4889. [PMID: 38160319 PMCID: PMC10868440 DOI: 10.1002/pro.4889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Legionella are freshwater Gram-negative bacteria that in their normal environment infect protozoa. However, this adaptation also allows Legionella to infect human alveolar macrophages and cause pneumonia. Central to Legionella pathogenesis are more than 330 secreted effectors, of which there are nine core effectors that are conserved in all pathogenic species. Despite their importance, the biochemical function of several core effectors remains unclear. To address this, we have taken a structural approach to characterize the core effector of unknown function LceB, or Lpg1356, from Legionella pneumophila. Here, we solve an X-ray crystal structure of LceB using an AlphaFold model for molecular replacement. The experimental structure shows that LceB adopts a Sel1-like repeat (SLR) fold as predicted. However, the crystal structure captured multiple conformations of LceB, all of which differed from the AlphaFold model. A comparison of the predicted model and the experimental models suggests that LceB is highly flexible in solution. Additionally, the molecular analysis of LceB using its close structural homologs reveals sequence and structural motifs of known biochemical function. Specifically, LceB harbors a repeated KAAEQG motif that both stabilizes the SLR fold and is known to participate in protein-protein interactions with eukaryotic host proteins. We also observe that LceB forms several higher-order oligomers in solution. Overall, our results have revealed that LceB has conformational flexibility, self-associates, and contains a molecular surface for binding a target host-cell protein. Additionally, our data provides structural insights into the SLR family of proteins that remain poorly studied.
Collapse
Affiliation(s)
- Tiffany V Penner
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Neil Lorente Cobo
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Deepak T Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Dhruvin H Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Yang JL, Li D, Zhan XY. Concept about the Virulence Factor of Legionella. Microorganisms 2022; 11:microorganisms11010074. [PMID: 36677366 PMCID: PMC9867486 DOI: 10.3390/microorganisms11010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Pathogenic species of Legionella can infect human alveolar macrophages through Legionella-containing aerosols to cause a disease called Legionellosis, which has two forms: a flu-like Pontiac fever and severe pneumonia named Legionnaires' disease (LD). Legionella is an opportunistic pathogen that frequently presents in aquatic environments as a biofilm or protozoa parasite. Long-term interaction and extensive co-evolution with various genera of amoebae render Legionellae pathogenic to infect humans and also generate virulence differentiation and heterogeneity. Conventionally, the proteins involved in initiating replication processes and human macrophage infections have been regarded as virulence factors and linked to pathogenicity. However, because some of the virulence factors are associated with the infection of protozoa and macrophages, it would be more accurate to classify them as survival factors rather than virulence factors. Given that the molecular basis of virulence variations among non-pathogenic, pathogenic, and highly pathogenic Legionella has not yet been elaborated from the perspective of virulence factors, a comprehensive explanation of how Legionella infects its natural hosts, protozoans, and accidental hosts, humans is essential to show a novel concept regarding the virulence factor of Legionella. In this review, we overviewed the pathogenic development of Legionella from protozoa, the function of conventional virulence factors in the infections of protozoa and macrophages, the host's innate immune system, and factors involved in regulating the host immune response, before discussing a probably new definition for the virulence factors of Legionella.
Collapse
|
4
|
Ge Z, Yuan P, Chen L, Chen J, Shen D, She Z, Lu Y. New Global Insights on the Regulation of the Biphasic Life Cycle and Virulence Via ClpP-Dependent Proteolysis in Legionella pneumophila. Mol Cell Proteomics 2022; 21:100233. [PMID: 35427813 PMCID: PMC9112007 DOI: 10.1016/j.mcpro.2022.100233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/17/2022] [Accepted: 04/07/2022] [Indexed: 01/11/2023] Open
Abstract
Legionella pneumophila, an environmental bacterium that parasitizes protozoa, causes Legionnaires’ disease in humans that is characterized by severe pneumonia. This bacterium adopts a distinct biphasic life cycle consisting of a nonvirulent replicative phase and a virulent transmissive phase in response to different environmental conditions. Hence, the timely and fine-tuned expression of growth and virulence factors in a life cycle–dependent manner is crucial for survival and replication. Here, we report that the completion of the biphasic life cycle and bacterial pathogenesis is greatly dependent on the protein homeostasis regulated by caseinolytic protease P (ClpP)-dependent proteolysis. We characterized the ClpP-dependent dynamic profiles of the regulatory and substrate proteins during the biphasic life cycle of L. pneumophila using proteomic approaches and discovered that ClpP-dependent proteolysis specifically and conditionally degraded the substrate proteins, thereby directly playing a regulatory role or indirectly controlling cellular events via the regulatory proteins. We further observed that ClpP-dependent proteolysis is required to monitor the abundance of fatty acid biosynthesis–related protein Lpg0102/Lpg0361/Lpg0362 and SpoT for the normal regulation of L. pneumophila differentiation. We also found that the control of the biphasic life cycle and bacterial virulence is independent. Furthermore, the ClpP-dependent proteolysis of Dot/Icm (defect in organelle trafficking/intracellular multiplication) type IVB secretion system and effector proteins at a specific phase of the life cycle is essential for bacterial pathogenesis. Therefore, our findings provide novel insights on ClpP-dependent proteolysis, which spans a broad physiological spectrum involving key metabolic pathways that regulate the transition of the biphasic life cycle and bacterial virulence of L. pneumophila, facilitating adaptation to aquatic and intracellular niches. ClpP is the major determinant of biphasic life cycle–dependent protein turnover. ClpP-dependent proteolysis monitors SpoT abundance for cellular differentiation. ClpP-dependent regulation of life cycle and bacterial virulence is independent. ClpP-dependent proteolysis of T4BSS and effector proteins is vital for virulence.
Collapse
Affiliation(s)
- Zhenhuang Ge
- School of Chemistry, Sun Yat-sen University, Guangzhou, China; School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China
| | - Peibo Yuan
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lingming Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junyi Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China
| | - Dong Shen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Swart AL, Hilbi H. Phosphoinositides and the Fate of Legionella in Phagocytes. Front Immunol 2020; 11:25. [PMID: 32117224 PMCID: PMC7025538 DOI: 10.3389/fimmu.2020.00025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/08/2020] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila is the causative agent of a severe pneumonia called Legionnaires' disease. The environmental bacterium replicates in free-living amoebae as well as in lung macrophages in a distinct compartment, the Legionella-containing vacuole (LCV). The LCV communicates with a number of cellular vesicle trafficking pathways and is formed by a plethora of secreted bacterial effector proteins, which target host cell proteins and lipids. Phosphoinositide (PI) lipids are pivotal determinants of organelle identity, membrane dynamics and vesicle trafficking. Accordingly, eukaryotic cells tightly regulate the production, turnover, interconversion, and localization of PI lipids. L. pneumophila modulates the PI pattern in infected cells for its own benefit by (i) recruiting PI-decorated vesicles, (ii) producing effectors acting as PI interactors, phosphatases, kinases or phospholipases, and (iii) subverting host PI metabolizing enzymes. The PI conversion from PtdIns(3)P to PtdIns(4)P represents a decisive step during LCV maturation. In this review, we summarize recent progress on elucidating the strategies, by which L. pneumophila subverts host PI lipids to promote LCV formation and intracellular replication.
Collapse
Affiliation(s)
- A Leoni Swart
- Faculty of Medicine, Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Hubert Hilbi
- Faculty of Medicine, Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
6
|
Voth KA, Chung IYW, van Straaten K, Li L, Boniecki MT, Cygler M. The structure of Legionella effector protein LpnE provides insights into its interaction with Oculocerebrorenal syndrome of Lowe (OCRL) protein. FEBS J 2018; 286:710-725. [PMID: 30479037 DOI: 10.1111/febs.14710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/18/2018] [Accepted: 11/23/2018] [Indexed: 12/17/2022]
Abstract
Legionella pneumophila is a freshwater bacterium that replicates in predatory amoeba and alveolar macrophage. The ability of L. pneumophila to thrive in eukaryotic host cells is conferred by the Legionella containing vacuole (LCV). Formation and intracellular trafficking of the LCV are governed by an arsenal of effector proteins, many of which are secreted by the Icm/Dot Type 4 Secretion System. One such effector, known as LpnE (L. pneumophila Entry), has been implicated in facilitating bacterial entry into host cells, LCV trafficking, and substrate translocation. LpnE belongs to a subfamily of tetratricopeptide repeat proteins known as Sel1-like repeats (SLRs). All eight of the predicted SLRs in LpnE are required to promote host cell invasion. Herein, we report that LpnE(1-375) localizes to cis-Golgi in HEK293 cells via its signal peptide (aa 1-22). We further verify the interaction of LpnE(73-375) and LpnE(22-375) with Oculocerebrorenal syndrome of Lowe protein (OCRL) residues 10-208, restricting the known interacting residues for both proteins. To further characterize the SLR region of LpnE, we solved the crystal structure of LpnE(73-375) to 1.75Å resolution. This construct comprises all SLRs, which are arranged in a superhelical fold. The α-helices forming the inner concave surface of the LpnE superhelix suggest a potential protein-protein interaction interface. DATABASE: Coordinates and structure factors were deposited in the Protein Data Bank with the accession number 6DEH.
Collapse
Affiliation(s)
- Kevin A Voth
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | - Ivy Yeuk Wah Chung
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | - Karin van Straaten
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | - Lei Li
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | - Michal T Boniecki
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
7
|
Prevalence and Virulence Factor Profiles of Legionella pneumophila Isolated from the Cases of Respiratory Tract Infections. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Kress-Bennett JM, Hiller NL, Eutsey RA, Powell E, Longwell MJ, Hillman T, Blackwell T, Byers B, Mell JC, Post JC, Hu FZ, Ehrlich GD, Janto BA. Identification and Characterization of msf, a Novel Virulence Factor in Haemophilus influenzae. PLoS One 2016; 11:e0149891. [PMID: 26977929 PMCID: PMC4792463 DOI: 10.1371/journal.pone.0149891] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 02/05/2016] [Indexed: 12/11/2022] Open
Abstract
Haemophilus influenzae is an opportunistic pathogen. The emergence of virulent, non-typeable strains (NTHi) emphasizes the importance of developing new interventional targets. We screened the NTHi supragenome for genes encoding surface-exposed proteins suggestive of immune evasion, identifying a large family containing Sel1-like repeats (SLRs). Clustering identified ten SLR-containing gene subfamilies, each with various numbers of SLRs per gene. Individual strains also had varying numbers of SLR-containing genes from one or more of the subfamilies. Statistical genetic analyses of gene possession among 210 NTHi strains typed as either disease or carriage found a significant association between possession of the SlrVA subfamily (which we have termed, macrophage survival factor, msf) and the disease isolates. The PittII strain contains four chromosomally contiguous msf genes. Deleting all four of these genes (msfA1-4) (KO) resulted in a highly significant decrease in phagocytosis and survival in macrophages; which was fully complemented by a single copy of the msfA1 gene. Using the chinchilla model of otitis media and invasive disease, the KO strain displayed a significant decrease in fitness compared to the WT in co-infections; and in single infections, the KO lost its ability to invade the brain. The singly complemented strain showed only a partial ability to compete with the WT suggesting gene dosage is important in vivo. The transcriptional profiles of the KO and WT in planktonic growth were compared using the NTHi supragenome array, which revealed highly significant changes in the expression of operons involved in virulence and anaerobiosis. These findings demonstrate that the msfA1-4 genes are virulence factors for phagocytosis, persistence, and trafficking to non-mucosal sites.
Collapse
Affiliation(s)
- Jennifer M. Kress-Bennett
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - N. Luisa Hiller
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Rory A. Eutsey
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Evan Powell
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Mark J. Longwell
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Todd Hillman
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Tenisha Blackwell
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Barbara Byers
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Joshua C. Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - J. Christopher Post
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Otolaryngology, Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania, United States of America
| | - Fen Z. Hu
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Otolaryngology, Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania, United States of America
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Otolaryngology, Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania, United States of America
| | - Benjamin A. Janto
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
9
|
Lawrence A, Eglezos S, Huston W. Environmental Legionella spp. collected in urban test sites of South East Queensland, Australia, are virulent to human macrophages in vitro. Res Microbiol 2015; 167:149-53. [PMID: 26598034 DOI: 10.1016/j.resmic.2015.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/27/2022]
Abstract
Legionellae are frequent contaminants of potable water supplies, resulting in sporadic infections and occasional outbreaks. Isolates of Legionella were collected from urban test sites within South East Queensland and evaluated for their virulence potential in vitro. Two strains (from the species Legionella londiniensis and Legionella quinlivanii) were demonstrated to have the ability to infect human macrophages, while a strain from the species Legionella anisa did not maintain an infection over the same time course. This suggests that the spectrum of urban environmentally associated Legionella with potential to cause human disease might be greater than currently considered.
Collapse
Affiliation(s)
- Amba Lawrence
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia.
| | | | - Wilhelmina Huston
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia.
| |
Collapse
|
10
|
Aurass P, Gerlach T, Becher D, Voigt B, Karste S, Bernhardt J, Riedel K, Hecker M, Flieger A. Life Stage-specific Proteomes of Legionella pneumophila Reveal a Highly Differential Abundance of Virulence-associated Dot/Icm effectors. Mol Cell Proteomics 2015; 15:177-200. [PMID: 26545400 DOI: 10.1074/mcp.m115.053579] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 12/28/2022] Open
Abstract
Major differences in the transcriptional program underlying the phenotypic switch between exponential and post-exponential growth of Legionella pneumophila were formerly described characterizing important alterations in infection capacity. Additionally, a third state is known where the bacteria transform in a viable but nonculturable state under stress, such as starvation. We here describe phase-related proteomic changes in exponential phase (E), postexponential phase (PE) bacteria, and unculturable microcosms (UNC) containing viable but nonculturable state cells, and identify phase-specific proteins. We present data on different bacterial subproteomes of E and PE, such as soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins. In total, 1368 different proteins were identified, 922 were quantified and 397 showed differential abundance in E/PE. The quantified subproteomes of soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins; 841, 55, and 77 proteins, respectively, were visualized in Voronoi treemaps. 95 proteins were quantified exclusively in E, such as cell division proteins MreC, FtsN, FtsA, and ZipA; 33 exclusively in PE, such as motility-related proteins of flagellum biogenesis FlgE, FlgK, and FliA; and 9 exclusively in unculturable microcosms soluble whole cell proteins, such as hypothetical, as well as transport/binding-, and metabolism-related proteins. A high frequency of differentially abundant or phase-exclusive proteins was observed among the 91 quantified effectors of the major virulence-associated protein secretion system Dot/Icm (> 60%). 24 were E-exclusive, such as LepA/B, YlfA, MavG, Lpg2271, and 13 were PE-exclusive, such as RalF, VipD, Lem10. The growth phase-related specific abundance of a subset of Dot/Icm virulence effectors was confirmed by means of Western blotting. We therefore conclude that many effectors are predominantly abundant at either E or PE which suggests their phase specific function. The distinct temporal or spatial presence of such proteins might have important implications for functional assignments in the future or for use as life-stage specific markers for pathogen analysis.
Collapse
Affiliation(s)
- Philipp Aurass
- From the ‡Robert Koch-Institut, Wernigerode Branch, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany
| | - Thomas Gerlach
- From the ‡Robert Koch-Institut, Wernigerode Branch, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany
| | - Dörte Becher
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Birgit Voigt
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Susanne Karste
- From the ‡Robert Koch-Institut, Wernigerode Branch, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany
| | - Jörg Bernhardt
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Katharina Riedel
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Michael Hecker
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Antje Flieger
- From the ‡Robert Koch-Institut, Wernigerode Branch, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany;
| |
Collapse
|
11
|
King NP, Newton P, Schuelein R, Brown DL, Petru M, Zarsky V, Dolezal P, Luo L, Bugarcic A, Stanley AC, Murray RZ, Collins BM, Teasdale RD, Hartland EL, Stow JL. Soluble NSF attachment protein receptor molecular mimicry by a Legionella pneumophila Dot/Icm effector. Cell Microbiol 2015; 17:767-84. [PMID: 25488819 DOI: 10.1111/cmi.12405] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/10/2014] [Accepted: 12/02/2014] [Indexed: 01/17/2023]
Abstract
Upon infection, Legionella pneumophila uses the Dot/Icm type IV secretion system to translocate effector proteins from the Legionella-containing vacuole (LCV) into the host cell cytoplasm. The effectors target a wide array of host cellular processes that aid LCV biogenesis, including the manipulation of membrane trafficking. In this study, we used a hidden Markov model screen to identify two novel, non-eukaryotic soluble NSF attachment protein receptor (SNARE) homologs: the bacterial Legionella SNARE effector A (LseA) and viral SNARE homolog A proteins. We characterized LseA as a Dot/Icm effector of L. pneumophila, which has close homology to the Qc-SNARE subfamily. The lseA gene was present in multiple sequenced L. pneumophila strains including Corby and was well distributed among L. pneumophila clinical and environmental isolates. Employing a variety of biochemical, cell biological and microbiological techniques, we found that farnesylated LseA localized to membranes associated with the Golgi complex in mammalian cells and LseA interacted with a subset of Qa-, Qb- and R-SNAREs in host cells. Our results suggested that LseA acts as a SNARE protein and has the potential to regulate or mediate membrane fusion events in Golgi-associated pathways.
Collapse
Affiliation(s)
- Nathan P King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld., Australia
| | - Patrice Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Vic., Australia
| | - Ralf Schuelein
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Vic., Australia
| | - Darren L Brown
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld., Australia
| | - Marketa Petru
- Department of Parasitology, Charles University in Prague, Czech Republic
| | - Vojtech Zarsky
- Department of Parasitology, Charles University in Prague, Czech Republic
| | - Pavel Dolezal
- Department of Parasitology, Charles University in Prague, Czech Republic
| | - Lin Luo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld., Australia
| | - Andrea Bugarcic
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld., Australia
| | - Amanda C Stanley
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld., Australia
| | - Rachael Z Murray
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld., Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld., Australia
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld., Australia
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Vic., Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld., Australia
| |
Collapse
|
12
|
Prashar A, Terebiznik MR. Legionella pneumophila: homeward bound away from the phagosome. Curr Opin Microbiol 2014; 23:86-93. [PMID: 25461578 DOI: 10.1016/j.mib.2014.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/18/2022]
Abstract
The intracellular pathogen Legionella pneumophila (Lp) survives and replicates inside a specialized vacuolar compartment that evades canonical phagosomal maturation. Through the action of a large number of effectors translocated into the host cytosol via the Dot/Icm type IV secretion system, Lp subverts host cell pathways to convert its nascent phagosome into an ER-derived compartment, the Legionella containing vacuole (LCV), which serves as bacterial replication niche.
Collapse
Affiliation(s)
- Akriti Prashar
- Biological Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4; Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Mauricio R Terebiznik
- Biological Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4; Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5.
| |
Collapse
|
13
|
Multiple ecto-nucleoside triphosphate diphosphohydrolases facilitate intracellular replication of Legionella pneumophila. Biochem J 2014; 462:279-89. [PMID: 24957128 DOI: 10.1042/bj20130923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Legionella pneumophila is an opportunistic pathogen that replicates within alveolar macrophages resulting in the onset of severe atypical pneumonia. Previously we have identified Lpg1905, a eukaryotic-type ecto-NTPDase (nucleoside triphosphate diphosphohydrolase) from L. pneumophila that was required for optimal intracellular replication and virulence in a mouse lung infection model. In the present study, we characterized the activity of a second eukaryotic-type NTPDase, Lpg0971, from L. pneumophila. We observed that recombinant Lpg0971 hydrolysed only ATP and exhibited divalent cation preference for manganese (II) ions. Similar to lpg1905, an lpg0971 mutant carrying the plasmid pMIP was attenuated in a mouse lung infection model and impaired for replication in human macrophages and amoebae. Increased trafficking of the LCV (Legionella-containing vacuole) to a LAMP-1 (lysosome-associated membrane protein-1)-positive compartment was observed for both the lpg1905 and lpg0971 mutants carrying pMIP. Complementation with either lpg1905 or lpg0971 restored intracellular replication, suggesting that a minimum level of ATPase activity was required for this function. A double lpg1905/0971 mutant was not more impaired for intracellular replication than the single mutants and complementation of the double mutant with lpg0971, but not lpg1905, restored intracellular replication. This suggested that although the NTPDases have overlapping activities they have distinct functions. Unlike many eukaryotic-type proteins from L. pneumophila, neither Lpg1905 nor Lpg0971 were translocated into the host cell by the Dot/Icm (defective in organelle trafficking/intracellular multiplication) type IV secretion system. Overall our data suggest that the ability of L. pneumophila to replicate in eukaryotic cells relies in part on the ability of the pathogen to hydrolyse ATP within an intracellular compartment.
Collapse
|
14
|
The Dot/Icm effector SdhA is necessary for virulence of Legionella pneumophila in Galleria mellonella and A/J mice. Infect Immun 2013; 81:2598-605. [PMID: 23649096 DOI: 10.1128/iai.00296-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is an intracellular bacterium that resides within amoebae and macrophages in a specialized compartment termed the Legionella-containing vacuole (LCV). As well as providing an intracellular niche for replication, the LCV helps to prevent the release of bacterial components into the cytoplasm. Recognition of these components as danger signals by the host activates immune responses leading to clearance of the bacterium. Here, we examined the role of two important virulence factors of L. pneumophila, the potent danger signal flagellin and the translocated Dot/Icm type IVB secretion system effector SdhA, which is crucial to maintain LCV integrity, in the Galleria mellonella infection model. We demonstrate that flagellin expression does not contribute to virulence, replication, or induction of clearance mechanisms. Conversely, SdhA expression is important for virulence. We found that in the absence of SdhA, the LCV in hemocytes showed signs of instability and leakage. Furthermore, in contrast to wild-type L. pneumophila, a ΔsdhA mutant caused a transient depletion of hemocytes and reduced mortality. Analysis of the ΔsdhA mutant in the A/J mouse model also showed a significant replication defect. Together, our data underline the crucial importance of SdhA in infection across different model organisms.
Collapse
|
15
|
Abstract
Type II secretion (T2S) is one of six systems that can occur in Gram-negative bacteria for the purpose of secreting proteins into the extracellular milieu and/or into host cells. This chapter will describe the T2S system of Legionella pneumophila. Topics to be covered include the genetic basis of T2S in L. pneumophila, the numbers (>25), types, and novelties of Legionella proteins that are secreted via T2S, and the many ways in which T2S and its substrates promote L. pneumophila physiology, ecology, and virulence. Within the aquatic environment, T2S plays a major role in L. pneumophila intracellular infection of multiple types of (Acanthamoeba, Hartmannella, and Naegleria) amoebae. Within the mammalian host, T2S promotes bacterial persistence in lungs, intracellular infection of both macrophages and epithelial cells, and a dampening of the host innate immune response. In this context, T2S may represent a potential target for both industrial and biomedical application.
Collapse
|
16
|
Haneburger I, Hilbi H. Phosphoinositide lipids and the Legionella pathogen vacuole. Curr Top Microbiol Immunol 2013; 376:155-73. [PMID: 23918172 DOI: 10.1007/82_2013_341] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Subversion of vesicle trafficking is vital for intracellular survival of Legionella pneumophila within host cells. L. pneumophila produces several type IV-translocated effector proteins that modify components of the phagosomal membrane, in particular the phosphoinositide (PI) lipids. Within eukaryotic cells PIs co-define subcellular compartments and membrane dynamics. The generation, half-life, and localization of PI lipids are not only tightly regulated by the host cell, but also targeted and modulated by a number of L. pneumophila effectors. These effectors either anchor to PIs, directly modify the lipids, or recruit PI-metabolizing enzymes to the LCV membrane. Together, PI-subverting L. pneumophila effectors act jointly to promote the formation of a replication-permissive niche inside the host.
Collapse
Affiliation(s)
- Ina Haneburger
- Medical Faculty, Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich Pettenkoferstrasse 9a, 80336, Munich, Germany
| | | |
Collapse
|
17
|
Xu L, Luo ZQ. Cell biology of infection by Legionella pneumophila. Microbes Infect 2012; 15:157-67. [PMID: 23159466 DOI: 10.1016/j.micinf.2012.11.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 01/09/2023]
Abstract
Professional phagocytes digest internalized microorganisms by actively delivering them into the phagolysosomal compartment. Intravacuolar bacterial pathogens have evolved a variety of effective strategies to bypass the default pathway of phagosomal maturation to create a niche permissive for their survival and propagation. Here we discuss recent progress in our understanding of the sophisticated mechanisms used by Legionella pneumophila to survive in phagocytes.
Collapse
Affiliation(s)
- Li Xu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, United States
| | | |
Collapse
|
18
|
Virulence phenotypes of Legionella pneumophila associated with noncoding RNA lpr0035. Infect Immun 2012; 80:4143-53. [PMID: 22966048 DOI: 10.1128/iai.00598-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Philadelphia-1 strain of Legionella pneumophila, the causative organism of Legionnaires' disease, contains a recently discovered noncoding RNA, lpr0035. lpr0035 straddles the 5' chromosomal junction of a 45-kbp mobile genetic element, pLP45, which can exist as an episome or integrated in the bacterial chromosome. A 121-bp deletion was introduced in strain JR32, a Philadelphia-1 derivative. The deletion inactivated lpr0035, removed the 49-bp direct repeat at the 5' junction of pLP45, and locked pLP45 in the chromosome. Intracellular multiplication of the deletion mutant was decreased by nearly 3 orders of magnitude in Acanthamoeba castellanii amoebae and nearly 2 orders of magnitude in J774 mouse macrophages. Entry of the deletion mutant into amoebae and macrophages was decreased by >70%. The level of entry in both hosts was restored to that in strain JR32 by plasmid copies of two open reading frames immediately downstream of the 5' junction and plasmid lpr0035 driven by its endogenous promoter. When induced from a tac promoter, plasmid lpr0035 completely reversed the intracellular multiplication defect in macrophages but was without effect in amoebae. These data are the first evidence of a role for noncoding RNA lpr0035, which has homologs in six other Legionella genomes, in entry of L. pneumophila into amoebae and macrophages and in host-specific intracellular multiplication. The data also demonstrate that deletion of a direct-repeat sequence restricts the mobility of pLP45 and is a means of studying the role of pLP45 mobility in Legionella virulence phenotypes.
Collapse
|
19
|
Canton J, Kima PE. Interactions of pathogen-containing compartments with the secretory pathway. Cell Microbiol 2012; 14:1676-86. [PMID: 22862745 DOI: 10.1111/cmi.12000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 02/03/2023]
Abstract
A subgroup of intracellular pathogens reside and replicate within membrane-bound compartments often termed pathogen-containing compartments (PCC). PCCs navigate around a wide range of host cell vesicles and organelles. In light of the perils of engaging with vesicles of the endocytic pathway, most PCCs modulate their interactions with endocytic vesicles while a few avoid those interactions. The secretory pathway constitutes another important grouping of vesicles and organelles in host cells. Although the negative consequences of engaging with the secretory pathway are not known, there is evidence that PCCs interact differentially with vesicles and organelles in this pathway as well. In this review, we consider three prokaryote pathogens and two protozoan parasites for which there is information on the interactions of their PCCs with the secretory pathway. Current understandings of the molecular interactions as well as the metabolic benefits that accompany those interactions are discussed. Not unexpectedly, our understanding of the extent of these interactions is variable. An underlying theme that is brought to the fore is that PCCs establish preferential interactions with distinct compartments of the secretory pathway.
Collapse
Affiliation(s)
- Johnathan Canton
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
20
|
Implication of proteins containing tetratricopeptide repeats in conditional virulence phenotypes of Legionella pneumophila. J Bacteriol 2012; 194:3579-88. [PMID: 22563053 DOI: 10.1128/jb.00399-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is a ubiquitous freshwater bacterium whose virulence phenotypes require a type IV secretion system (T4SS). L. pneumophila strain JR32 contains two virulence-associated T4SSs, the Dot/Icm and Lvh T4SSs. Defective entry and phagosome acidification phenotypes of dot/icm mutants are conditional and reversed by incubating broth-grown stationary-phase cultures in water (WS treatment) prior to infection, as a mimic of the aquatic environment of Legionella. Reversal of dot/icm virulence defects requires the Lvh T4SS and is associated with a >10-fold induction of LpnE, a tetratricopeptide repeat (TPR)-containing protein. In the current study, we demonstrated that defective entry and phagosome acidification phenotypes of mutants with changes in LpnE and EnhC, another TPR-containing protein, were similarly reversed by WS treatment. In contrast to dot/icm mutants for which the Lvh T4SS was required, reversal for the ΔlpnE or the ΔenhC mutant required that the other TPR-containing protein be present. The single and double ΔlpnE and ΔenhC mutants showed a hypersensitivity to sodium ion, a phenotype associated with dysfunction of the Dot/Icm T4SS. The ΔlpnE single and the ΔlpnE ΔenhC double mutant showed 3- to 9-fold increases in translocation of Dot/Icm T4SS substrates, LegS2/SplY and LepB. Taken together, these data identify TPR-containing proteins in a second mechanism by which the WS mimic of a Legionella environmental niche can reverse virulence defects of broth-grown cultures and implicate LpnE and EnhC directly or indirectly in translocation of Dot/Icm T4SS protein substrates.
Collapse
|
21
|
Dolezal P, Aili M, Tong J, Jiang JH, Marobbio CM, Lee SF, Schuelein R, Belluzzo S, Binova E, Mousnier A, Frankel G, Giannuzzi G, Palmieri F, Gabriel K, Naderer T, Hartland EL, Lithgow T. Legionella pneumophila secretes a mitochondrial carrier protein during infection. PLoS Pathog 2012; 8:e1002459. [PMID: 22241989 PMCID: PMC3252375 DOI: 10.1371/journal.ppat.1002459] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/09/2011] [Indexed: 12/25/2022] Open
Abstract
The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionellanucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms. Mitochondrial carrier proteins evolved during endosymbiosis to transport substrates across the mitochondrial inner membrane. As such the proteins are associated exclusively with eukaryotic organisms. Despite this, we identified putative mitochondrial carrier proteins in the genomes of different intracellular bacterial pathogens, including Legionella pneumophila, the causative agent of Legionnaire's disease. We named the mitochondrial carrier protein from L. pneumophila LncP and determined that the protein is translocated into host cells during infection by the bacterial Dot/Icm type IV secretion system. From there, LncP accesses the classical mitochondrial import pathway and is incorporated into the mitochondrial inner membrane as an integral membrane protein. Remarkably, LncP crosses five biological membranes to reach its final location. Biochemically, LncP is a unidirectional nucleotide transporter similar to Aac1 in yeast. Although not essential for intracellular replication, the high carriage rate of lncP among isolates of L. pneumophila suggests that the ability of the pathogen to manipulate mitochondrial ATP transport assists survival of the bacteria in an intracellular environment.
Collapse
Affiliation(s)
- Pavel Dolezal
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Margareta Aili
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Janette Tong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Jhih-Hang Jiang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Carlo M. Marobbio
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | - Sau fung Lee
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Ralf Schuelein
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Simon Belluzzo
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Eva Binova
- Department of Tropical Medicine, 1st Faculty of Medicine, Charles University in Prague and Faculty Hospital Bulovka, Prague, Czech Republic
| | - Aurelie Mousnier
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Giulia Giannuzzi
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | - Ferdinando Palmieri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | - Kipros Gabriel
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Elizabeth L. Hartland
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
- * E-mail: (ELH); (TL)
| | - Trevor Lithgow
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
- * E-mail: (ELH); (TL)
| |
Collapse
|
22
|
Renvoisé A, Merhej V, Georgiades K, Raoult D. Intracellular Rickettsiales: Insights into manipulators of eukaryotic cells. Trends Mol Med 2011; 17:573-83. [PMID: 21763202 DOI: 10.1016/j.molmed.2011.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/11/2011] [Accepted: 05/23/2011] [Indexed: 02/08/2023]
Abstract
The order Rickettsiales comprises obligate intracellular bacteria that are the ancestors of modern eukaryotes. These bacteria infect various vectors and hosts, with some species being pathogenic to man. Rickettsiales have small, degraded genomes and provide a paradigm for increased pathogenicity despite gene loss; significant levels of genetic exchange occur between bacteria that infect the same host and with the eukaryotic hosts themselves. Crosstalk between host and bacteria appears to be mediated by a Type IV secretion system and proteins containing eukaryotic-like repeat motifs. Rickettsiales also manipulate host reproduction and induce host resistance to viruses. Manipulation of its host by Rickettsiales has long been misunderstood because of technical difficulties, but recent advances in understanding bacterial-eukaryotes interactions have been made and are reviewed here.
Collapse
Affiliation(s)
- Aurélie Renvoisé
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes CNRS-IRD UMR6236-198, Université de la Méditerranée, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | | | | | | |
Collapse
|
23
|
Roschitzki B, Schauer S, Mittl PRE. Recognition of host proteins by Helicobacter cysteine-rich protein C. Curr Microbiol 2011; 63:239-49. [PMID: 21735226 DOI: 10.1007/s00284-011-9969-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/11/2011] [Indexed: 12/16/2022]
Abstract
Tetratricopeptide- and sel1-like repeat (SLR) proteins modulate various cellular activities, ranging from transcription regulation to cell-fate control. Helicobacter cysteine-rich proteins (Hcp) consist of several SLRs that are cross-linked by disulfide bridges and have been implicated in host/pathogen interactions. Using pull-down proteomics, several human proteins including Nek9, Hsp90, and Hsc71 have been identified as putative human interaction partners for HcpC. The interaction between the NimA-like protein kinase Nek9 and HcpC has been validated by ELISA and surface plasmon resonance. Recombinant Nek9 is recognized by HcpC with a dissociation constant in the lower micromolar range. This interaction is formed either directly between Nek9 and HcpC or via the formation of a complex with Hsc71. The HcpC homologue HcpA possesses no affinity for Nek9, suggesting that the reported interaction is rather specific for HcpC. These results are consistent with previous observations where Nek9 was targeted upon bacterial or viral invasion. However, further experiments will be required to show that the reported interactions also occur in vivo.
Collapse
Affiliation(s)
- Bernd Roschitzki
- Functional Genomics Center Zurich, UZH / ETH Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland.
| | | | | |
Collapse
|
24
|
Global cellular changes induced by Legionella pneumophila infection of bone marrow-derived macrophages. Immunobiology 2011; 216:1274-85. [PMID: 21794945 DOI: 10.1016/j.imbio.2011.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 06/23/2011] [Indexed: 12/23/2022]
Abstract
The nucleotide-binding oligomerization domain (Nod)-like receptor (NLR) family member Naip5 plays an essential role in restricting Legionella pneumophila growth inside primary macrophages. Upon interaction with bacterial flagellin, the intracellular receptor Naip5 forms a multi-protein complex, the inflammasome, which activation has a protective role against infection. The A/J mouse strain carries a Naip5 allele (Naip5(A/J)), which renders its macrophages susceptible to Legionella infection. However, Naip5(A/J) is still competent for inflammasome activation suggesting that an as yet unidentified signaling pathway located downstream of Naip5 and defective in Naip5(A/J) macrophages regulates macrophage defenses against Legionella. Therefore, transcriptional profiling experiments with macrophages from C57BL/6J mice (B6), and from congenic mice (BcA75) carrying the partial loss-of-function A/J-derived allele (Naip5(A/J)) on a B6 background, infected or not with wild-type L. pneumophila or flagellin-deficient mutant were carried out to identify genes regulated by flagellin and by Naip5. Both the Legionella infection per se and the presence of flagellin had very strong effects on transcriptional responses of macrophages, 4h following infection, including modulation of cellular pathways associated with inflammatory response and cell survival. On the other hand, the presence of wild type or partial loss of function allele (Naip5(A/J)) at Naip5 did not cause large effects on transcriptional responses of macrophages to infection. We also examined in L. pneumophila infected macrophages, the effect of Naip5 alleles on expression and phosphorylation of 524 phosphoproteins, kinases and phosphatases involved in cell proliferation, immune response, stress and apoptosis. Naip5 alleles had an effect on the TLR-Il1R signaling pathway, the cell cycle and the caveolin-mediated response to pathogen. The results of transcriptome and proteome analyses were organized into cellular pathways in macrophages that are modulated in response to Legionella infection.
Collapse
|
25
|
Hilbi H, Hoffmann C, Harrison CF. Legionella spp. outdoors: colonization, communication and persistence. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:286-296. [PMID: 23761274 DOI: 10.1111/j.1758-2229.2011.00247.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bacteria of the genus Legionella persist in a wide range of environmental habitats, including biofilms, protozoa and nematodes. Legionellaceae are 'accidental' human pathogens that upon inhalation cause a severe pneumonia termed 'Legionnaires' disease'. The interactions of L. pneumophila with eukaryotic hosts are governed by the Icm/Dot type IV secretion system (T4SS) and more than 150 'effector proteins', which subvert signal transduction pathways and promote the formation of the replication-permissive 'Legionella-containing vacuole'. The Icm/Dot T4SS is essential to infect free-living protozoa, such as the amoeba Dictyostelium discoideum, as well as the nematode Caenorhabditis elegans, or mammalian macrophages. To adapt to different niches, L. pneumophila not only responds to exogenous cues, but also to endogenous signals, such as the α-hydroxyketone compound LAI-1 (Legionella autoinducer-1). The long-term adaptation of Legionella spp. is based on extensive horizontal DNA transfer. In fact, Legionella spp. have acquired canonical 'genomic islands' of prokaryotic origin, but also a number of eukaryotic genes. Since many aspects of Legionella virulence against environmental predators and immune phagocytes are similar, an understanding of Legionella ecology provides valuable insights into the pathogenesis of legionellaceae for humans.
Collapse
Affiliation(s)
- Hubert Hilbi
- Max von Pettenkofer Institute, Ludwig-Maximilian University Munich, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | | | | |
Collapse
|
26
|
Hilbi H, Weber S, Finsel I. Anchors for effectors: subversion of phosphoinositide lipids by legionella. Front Microbiol 2011; 2:91. [PMID: 21833330 PMCID: PMC3153050 DOI: 10.3389/fmicb.2011.00091] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/14/2011] [Indexed: 11/20/2022] Open
Abstract
The facultative intracellular pathogen Legionella pneumophila replicates in free-living amoebae and macrophages within a distinct compartment, the “Legionella-containing vacuole” (LCV). LCV formation involves phosphoinositide (PI) glycerolipids, which are key factors controlling vesicle trafficking pathways and membrane dynamics of eukaryotic cells. To govern the interactions with host cells, L. pneumophila employs the Icm/Dot type IV secretion system and more than 250 translocated “effector proteins” that presumably subvert host signaling and vesicle trafficking pathways. Some of the effector proteins anchor through distinct PIs to the cytosolic face of LCVs and promote the interaction with host vesicles and organelles, catalyze guanine nucleotide exchange of small GTPases, or bind to PI-metabolizing enzymes, such as OCRL1. The PI 5-phosphatase OCRL1 and its Dictyostelium homologue Dd5P4 restrict intracellular growth of L. pneumophila. Moreover, OCRL1/Dd5P4, PI 3-kinases (PI3Ks), and PI4KIIIβ regulate LCV formation and localization of the effector protein SidC, which selectively decorates the LCV membrane. SidC and its 20-kDa “P4C” fragment are robust and specific probes for phosphatidylinositol-4-phosphate, and SidC can be targeted to purify intact LCVs by immuno-magnetic separation. Taken together, bacterial PI-binding effectors as well as host PIs and PI-modulating enzymes play a pivotal role for intracellular replication of L. pneumophila, and the PI-binding effectors are valuable tools for the analysis of eukaryotic PI lipids.
Collapse
Affiliation(s)
- Hubert Hilbi
- Max von Pettenkofer Institute, Ludwig-Maximilians University Munich, Germany
| | | | | |
Collapse
|
27
|
Legionella pneumophila type II secretion dampens the cytokine response of infected macrophages and epithelia. Infect Immun 2011; 79:1984-97. [PMID: 21383054 DOI: 10.1128/iai.01077-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The type II secretion (T2S) system of Legionella pneumophila is required for the ability of the bacterium to grow within the lungs of A/J mice. By utilizing mutants lacking T2S (lsp), we now document that T2S promotes the intracellular infection of both multiple types of macrophages and lung epithelia. Following infection of macrophages, lsp mutants (but not a complemented mutant) elicited significantly higher levels of interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), IL-10, IL-8, IL-1β, and MCP-1 within tissue culture supernatants. A similar result was obtained with infected lung epithelial cell lines and the lungs of infected A/J mice. Infection with a mutant specifically lacking the T2S-dependent ProA protease (but not a complemented proA mutant) resulted in partial elevation of cytokine levels. These data demonstrate that the T2S system of L. pneumophila dampens the cytokine/chemokine output of infected host cells. Upon quantitative reverse transcription (RT)-PCR analysis of infected host cells, an lspF mutant, but not the proA mutant, produced significantly higher levels of cytokine transcripts, implying that some T2S-dependent effectors dampen signal transduction and transcription but that others, such as ProA, act at a posttranscriptional step in cytokine expression. In summary, the impact of T2S on lung infection is a combination of at least three factors: the promotion of growth in macrophages, the facilitation of growth in epithelia, and the dampening of the chemokine and cytokine output from infected host cells. To our knowledge, these data are the first to identify a link between a T2S system and the modulation of immune factors following intracellular infection.
Collapse
|
28
|
Yong SFY, Tan SH, Wee J, Tee JJ, Sansom FM, Newton HJ, Hartland EL. Molecular Detection of Legionella: Moving on From mip. Front Microbiol 2010; 1:123. [PMID: 21687766 PMCID: PMC3109421 DOI: 10.3389/fmicb.2010.00123] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 10/21/2010] [Indexed: 11/23/2022] Open
Abstract
The detection of Legionella pneumophila in environmental and clinical samples is frequently performed by PCR amplification of the mip and/or 16S rRNA genes. Combined with DNA sequencing, these two genetic loci can be used to distinguish different species of Legionella and identify L. pneumophila. However, the recent Legionella genome sequences have opened up hundreds of possibilities for the development of new molecular targets for detection and diagnosis. Ongoing comparative genomics has the potential to fine tune the identification of Legionella species and serogroups by combining specific and general genetic targets. For example, the coincident detection of LPS biosynthesis genes and virulence genes may allow the differentiation of both pathogen and serogroup without the need for nucleotide sequencing. We tested this idea using data derived from a previous genomic subtractive hybridization we performed between L. pneumophila serogroup 1 and L. micdadei. Although not yet formally tested, these targets serve as an example of how comparative genomics has the potential to improve the scope and accuracy of Legionella molecular detection if embraced by laboratories undertaking Legionella surveillance.
Collapse
Affiliation(s)
- Stacey F Y Yong
- School of Science, Monash University Bandar Sunway, Selangor, Malaysia
| | | | | | | | | | | | | |
Collapse
|
29
|
Schroeder GN, Petty NK, Mousnier A, Harding CR, Vogrin AJ, Wee B, Fry NK, Harrison TG, Newton HJ, Thomson NR, Beatson SA, Dougan G, Hartland EL, Frankel G. Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins. J Bacteriol 2010; 192:6001-16. [PMID: 20833813 PMCID: PMC2976443 DOI: 10.1128/jb.00778-10] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/26/2010] [Indexed: 12/24/2022] Open
Abstract
Legionella pneumophila is a ubiquitous inhabitant of environmental water reservoirs. The bacteria infect a wide variety of protozoa and, after accidental inhalation, human alveolar macrophages, which can lead to severe pneumonia. The capability to thrive in phagocytic hosts is dependent on the Dot/Icm type IV secretion system (T4SS), which translocates multiple effector proteins into the host cell. In this study, we determined the draft genome sequence of L. pneumophila strain 130b (Wadsworth). We found that the 130b genome encodes a unique set of T4SSs, namely, the Dot/Icm T4SS, a Trb-1-like T4SS, and two Lvh T4SS gene clusters. Sequence analysis substantiated that a core set of 107 Dot/Icm T4SS effectors was conserved among the sequenced L. pneumophila strains Philadelphia-1, Lens, Paris, Corby, Alcoy, and 130b. We also identified new effector candidates and validated the translocation of 10 novel Dot/Icm T4SS effectors that are not present in L. pneumophila strain Philadelphia-1. We examined the prevalence of the new effector genes among 87 environmental and clinical L. pneumophila isolates. Five of the new effectors were identified in 34 to 62% of the isolates, while less than 15% of the strains tested positive for the other five genes. Collectively, our data show that the core set of conserved Dot/Icm T4SS effector proteins is supplemented by a variable repertoire of accessory effectors that may partly account for differences in the virulences and prevalences of particular L. pneumophila strains.
Collapse
Affiliation(s)
- Gunnar N. Schroeder
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom, Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia, Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, London, NW9 5EQ, United Kingdom, Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Nicola K. Petty
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom, Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia, Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, London, NW9 5EQ, United Kingdom, Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Aurélie Mousnier
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom, Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia, Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, London, NW9 5EQ, United Kingdom, Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Clare R. Harding
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom, Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia, Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, London, NW9 5EQ, United Kingdom, Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Adam J. Vogrin
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom, Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia, Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, London, NW9 5EQ, United Kingdom, Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Bryan Wee
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom, Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia, Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, London, NW9 5EQ, United Kingdom, Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Norman K. Fry
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom, Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia, Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, London, NW9 5EQ, United Kingdom, Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Timothy G. Harrison
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom, Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia, Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, London, NW9 5EQ, United Kingdom, Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Hayley J. Newton
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom, Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia, Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, London, NW9 5EQ, United Kingdom, Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Nicholas R. Thomson
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom, Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia, Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, London, NW9 5EQ, United Kingdom, Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Scott A. Beatson
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom, Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia, Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, London, NW9 5EQ, United Kingdom, Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Gordon Dougan
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom, Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia, Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, London, NW9 5EQ, United Kingdom, Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Elizabeth L. Hartland
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom, Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia, Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, London, NW9 5EQ, United Kingdom, Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom, Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia, Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, London, NW9 5EQ, United Kingdom, Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia, Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|
30
|
Lomma M, Dervins-Ravault D, Rolando M, Nora T, Newton HJ, Sansom FM, Sahr T, Gomez-Valero L, Jules M, Hartland EL, Buchrieser C. The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell Microbiol 2010; 12:1272-91. [DOI: 10.1111/j.1462-5822.2010.01467.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Merhej V, Raoult D. Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc 2010; 86:379-405. [DOI: 10.1111/j.1469-185x.2010.00151.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Abstract
The genus Legionella contains more than 50 species, of which at least 24 have been associated with human infection. The best-characterized member of the genus, Legionella pneumophila, is the major causative agent of Legionnaires' disease, a severe form of acute pneumonia. L. pneumophila is an intracellular pathogen, and as part of its pathogenesis, the bacteria avoid phagolysosome fusion and replicate within alveolar macrophages and epithelial cells in a vacuole that exhibits many characteristics of the endoplasmic reticulum (ER). The formation of the unusual L. pneumophila vacuole is a feature of its interaction with the host, yet the mechanisms by which the bacteria avoid classical endosome fusion and recruit markers of the ER are incompletely understood. Here we review the factors that contribute to the ability of L. pneumophila to infect and replicate in human cells and amoebae with an emphasis on proteins that are secreted by the bacteria into the Legionella vacuole and/or the host cell. Many of these factors undermine eukaryotic trafficking and signaling pathways by acting as functional and, in some cases, structural mimics of eukaryotic proteins. We discuss the consequences of this mimicry for the biology of the infected cell and also for immune responses to L. pneumophila infection.
Collapse
|
33
|
Ang DKY, Oates CVL, Schuelein R, Kelly M, Sansom FM, Bourges D, Boon L, Hertzog PJ, Hartland EL, van Driel IR. Cutting edge: pulmonary Legionella pneumophila is controlled by plasmacytoid dendritic cells but not type I IFN. THE JOURNAL OF IMMUNOLOGY 2010; 184:5429-33. [PMID: 20400697 DOI: 10.4049/jimmunol.1000128] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are well known as the major cell type that secretes type I IFN in response to viral infections. Their role in combating other classes of infectious organisms, including bacteria, and their mechanisms of action are poorly understood. We have found that pDCs play a significant role in the acute response to the intracellular bacterial pathogen Legionella pneumophila. pDCs were rapidly recruited to the lungs of L. pneumophila-infected mice, and depletion of pDCs resulted in increased bacterial load. The ability of pDCs to combat infection did not require type I IFN. This study points to an unappreciated role for pDCs in combating bacterial infections and indicates a novel mechanism of action for this cell type.
Collapse
Affiliation(s)
- Desmond K Y Ang
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Palusinska-Szysz M, Janczarek M, Kalitynski R, Dawidowicz AL, Russa R. Legionella bozemanae synthesizes phosphatidylcholine from exogenous choline. Microbiol Res 2010; 166:87-98. [PMID: 20338739 DOI: 10.1016/j.micres.2010.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/16/2010] [Accepted: 02/20/2010] [Indexed: 11/17/2022]
Abstract
The phospholipid class and fatty acid composition of Legionella bozemanae were determined using thin-layer chromatography, gas-liquid chromatography, and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Phosphatidylcholine, phosphatidylethanolamine, and diphosphatidylglycerol were the predominant phospholipids, while phosphatidyl-N-monomethylethanolamine, phosphatidylglycerol, and phosphatidyl-N,N-dimethylethanolamine were present at low concentrations. With the use of the LC/MS technique, PC16:0/15:0, PC17:/15:0, and PE16:1/15:0 were shown to be the dominant phospholipid constituents, which may be taxonomically significant. Two independent phosphatidylcholine synthesis pathways (the three-step methylation and the one-step CDP-choline pathway) were present and functional in L. bozemanae. In the genome of L. bozemanae, genes encoding two potential phosphatidylcholine forming enzymes, phospholipid N-methyl transferase (PmtA) and phosphatidylcholine synthase (Pcs), homologous to L. longbeachae, L. drancourtii, and L. pneumophila pmtA and pcs genes were identified. Genes pmtA and pcs from L. bozemanae were sequenced and analyzed on nucleotide and amino acid levels. Bacteria grown on an artificial medium with labelled choline synthesized phosphatidylcholine predominantly via the phosphatidylcholine synthase pathway, which indicates that L. bozemanae phosphatidylcholine, similarly as in other bacteria associated with eukaryotes, is an important determinant of host-microbe interactions.
Collapse
Affiliation(s)
- Marta Palusinska-Szysz
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, PL 20-033 Lublin, Poland.
| | | | | | | | | |
Collapse
|
35
|
Javed MA, Grant AJ, Bagnall MC, Maskell DJ, Newell DG, Manning G. Transposon mutagenesis in a hyper-invasive clinical isolate of Campylobacter jejuni reveals a number of genes with potential roles in invasion. MICROBIOLOGY-SGM 2009; 156:1134-1143. [PMID: 20035004 DOI: 10.1099/mic.0.033399-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transposon mutagenesis has been applied to a hyper-invasive clinical isolate of Campylobacter jejuni, 01/51. A random transposon mutant library was screened in an in vitro assay of invasion and 26 mutants with a significant reduction in invasion were identified. Given that the invasion potential of C. jejuni is relatively poor compared to other enteric pathogens, the use of a hyper-invasive strain was advantageous as it greatly facilitated the identification of mutants with reduced invasion. The location of the transposon insertion in 23 of these mutants has been determined; all but three of the insertions are in genes also present in the genome-sequenced strain NCTC 11168. Eight of the mutants contain transposon insertions in one region of the genome (approximately 14 kb), which when compared with the genome of NCTC 11168 overlaps with one of the previously reported plasticity regions and is likely to be involved in genomic variation between strains. Further characterization of one of the mutants within this region has identified a gene that might be involved in adhesion to host cells.
Collapse
Affiliation(s)
- Muhammad Afzal Javed
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Mary C Bagnall
- Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Diane G Newell
- Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Georgina Manning
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
36
|
Abstract
To protect themselves from predation by amoebae and protozoa in the natural environment, some bacteria evolved means of escaping killing. The same mechanisms allow survival in mammalian phagocytes, producing opportunistic human pathogens. The social amoeba Dictyostelium discoideum is a powerful system for analysis of conserved host-pathogen interactions. This report reviews recent insights gained for several bacterial pathogens using Dictyostelium as host.
Collapse
Affiliation(s)
- Margaret Clarke
- Program in Genetic Models of Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
37
|
The purified and recombinant Legionella pneumophila chaperonin alters mitochondrial trafficking and microfilament organization. Infect Immun 2009; 77:4724-39. [PMID: 19687203 DOI: 10.1128/iai.00150-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A portion of the total cellular pool of the Legionella pneumophila chaperonin, HtpB, is found on the bacterial cell surface, where it can mediate invasion of nonphagocytic cells. HtpB continues to be abundantly produced and released by internalized L. pneumophila and may thus have postinvasion functions. We used here two functional models (protein-coated beads and expression of recombinant proteins in CHO cells) to investigate the competence of HtpB in mimicking early intracellular trafficking events of L. pneumophila, including the recruitment of mitochondria, cytoskeletal alterations, the inhibition of phagosome-lysosome fusion, and association with the endoplasmic reticulum. Microscopy and flow cytometry studies indicated that HtpB-coated beads recruited mitochondria in CHO cells and U937-derived macrophages and induced transient changes in the organization of actin microfilaments in CHO cells. Ectopic expression of HtpB in the cytoplasm of transfected CHO cells also led to modifications in actin microfilaments similar to those produced by HtpB-coated beads but did not change the distribution of mitochondria. Association of phagosomes containing HtpB-coated beads with the endoplasmic reticulum was not consistently detected by either fluorescence or electron microscopy studies, and only a modest delay in the fusion of TrOv-labeled lysosomes with phagosomes containing HtpB-coated beads was observed. HtpB is the first Legionella protein and the first chaperonin shown to, by means of our functional models, induce mitochondrial recruitment and microfilament rearrangements, two postinternalization events that typify the early trafficking of virulent L. pneumophila.
Collapse
|
38
|
Nora T, Lomma M, Gomez-Valero L, Buchrieser C. Molecular mimicry: an important virulence strategy employed by Legionella pneumophila to subvert host functions. Future Microbiol 2009; 4:691-701. [DOI: 10.2217/fmb.09.47] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is 32 years since Legionella pneumophila was identified and recognized as a human pathogen, causing the severe form of pneumonia termed Legionnaires’ disease, or legionellosis. This bacterium is found in freshwater reservoirs where it replicates in aquatic protozoa and can invade man-made water distribution systems. Although the disease can be treated by antibiotherapy and prevented through surveillance and control measures, reported cases of Legionnaires’ disease continue to rise across Europe and outbreaks of major public health significance still occur. Genome sequencing and analyses led to a giant step forward by suggesting new ways by which this intracellular bacterium might subvert host functions. One particular feature revealed was the presence of many eukaryotic-like proteins, possibly mimicking host proteins to allow intracellular replication of Legionella. Here, we describe the identification and analysis of these proteins and report on recent advances detailing the mechanisms by which these proteins function. Finally, comparative and evolutionary genomic aspects regarding the eukaryotic-like proteins are presented. Collectively, these data have shed new light on the virulence strategies of L. pneumophila, a major aspect of which is molecular mimicry.
Collapse
Affiliation(s)
- Tamara Nora
- Institut Pasteur, Biologie des Bactéries Intracellulaires & CNRS URA 2171, 28 Rue du Dr Roux, 75724 Paris, France
| | - Mariella Lomma
- Institut Pasteur, Biologie des Bactéries Intracellulaires & CNRS URA 2171, 28 Rue du Dr Roux, 75724 Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires & CNRS URA 2171, 28 Rue du Dr Roux, 75724 Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires & CNRS URA 2171, 28 Rue du Dr Roux, 75724 Paris, France
| |
Collapse
|
39
|
Franco IS, Shuman HA, Charpentier X. The perplexing functions and surprising origins of Legionella pneumophila type IV secretion effectors. Cell Microbiol 2009; 11:1435-43. [PMID: 19563462 DOI: 10.1111/j.1462-5822.2009.01351.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Only a limited number of bacterial pathogens evade destruction by phagocytic cells such as macrophages. Legionella pneumophila is a Gram-negative gamma-proteobacterial species that can infect and replicate in alveolar macrophages, causing Legionnaires' disease, a severe pneumonia. L. pneumophila uses a complex secretion system to inject host cells with effector proteins capable of disrupting or altering the host cell processes. The L. pneumophila effectors target multiple processes but are essentially aimed at modifying the properties of the L. pneumophila phagosome by altering vesicular trafficking, gradually creating a specialized vacuole in which the bacteria replicate robustly. In nature, L. pneumophila is thought to parasitize free-living protists, which may have selected for traits that promote virulence of L. pneumophila in humans. Indeed, many effector genes encode proteins with eukaryotic domains and are likely to be of protozoan origin. Sustained horizontal gene transfer events within the protozoan niche may have allowed L. pneumophila to become a professional parasite of phagocytes, simultaneously giving rise to its ability to infect macrophages, cells that constitute the first line of cellular defence against bacterial infections.
Collapse
Affiliation(s)
- Irina S Franco
- Department of Microbiology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
40
|
Purification of Legiobactin and importance of this siderophore in lung infection by Legionella pneumophila. Infect Immun 2009; 77:2887-95. [PMID: 19398549 DOI: 10.1128/iai.00087-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When cultured in a low-iron medium, Legionella pneumophila secretes a siderophore (legiobactin) that is both reactive in the chrome azurol S (CAS) assay and capable of stimulating the growth of iron-starved legionellae. Using anion-exchange high-pressure liquid chromatography (HPLC), we purified legiobactin from culture supernatants of a virulent strain of L. pneumophila. In the process, we detected the ferrated form of legiobactin as well as other CAS-reactive substances. Purified legiobactin had a yellow-gold color and absorbed primarily from 220 nm and below. In accordance, nuclear magnetic resonance spectroscopy revealed that legiobactin lacks aromatic carbons, and among the 13 aliphatics present, there were 3 carbonyls. When examined by HPLC, supernatants from L. pneumophila mutants inactivated for lbtA and lbtB completely lacked legiobactin, indicating that the LbtA and LbtB proteins are absolutely required for siderophore activity. Independently derived lbtA mutants, but not a complemented derivative, displayed a reduced ability to infect the lungs of A/J mice after intratracheal inoculation, indicating that legiobactin is required for optimal intrapulmonary survival by L. pneumophila. This defect, however, was not evident when the lbtA mutant and its parental strain were coinoculated into the lung, indicating that legiobactin secreted by the wild type can promote growth of the mutant in trans. Legiobactin mutants grew normally in murine lung macrophages and alveolar epithelial cells, suggesting that legiobactin promotes something other than intracellular infection of resident lung cells. Overall, these data represent the first documentation of a role for siderophore expression in the virulence of L. pneumophila.
Collapse
|
41
|
Brombacher E, Urwyler S, Ragaz C, Weber SS, Kami K, Overduin M, Hilbi H. Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J Biol Chem 2009; 284:4846-56. [PMID: 19095644 PMCID: PMC2643517 DOI: 10.1074/jbc.m807505200] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/04/2008] [Indexed: 11/29/2022] Open
Abstract
The causative agent of Legionnaires disease, Legionella pneumophila, forms a replicative vacuole in phagocytes by means of the intracellular multiplication/defective organelle trafficking (Icm/Dot) type IV secretion system and translocated effector proteins, some of which subvert host GTP and phosphoinositide (PI) metabolism. The Icm/Dot substrate SidC anchors to the membrane of Legionella-containing vacuoles (LCVs) by specifically binding to phosphatidylinositol 4-phosphate (PtdIns(4)P). Using a nonbiased screen for novel L. pneumophila PI-binding proteins, we identified the Rab1 guanine nucleotide exchange factor (GEF) SidM/DrrA as the predominant PtdIns(4)P-binding protein. Purified SidM specifically and directly bound to PtdIns(4)P, whereas the SidM-interacting Icm/Dot substrate LidA preferentially bound PtdIns(3)P but also PtdIns(4)P, and the L. pneumophila Arf1 GEF RalF did not bind to any PIs. The PtdIns(4)P-binding domain of SidM was mapped to the 12-kDa C-terminal sequence, termed "P4M" (PtdIns4P binding of SidM/DrrA). The isolated P4M domain is largely helical and displayed higher PtdIns(4)P binding activity in the context of the alpha-helical, monomeric full-length protein. SidM constructs containing P4M were translocated by Icm/Dot-proficient L. pneumophila and localized to the LCV membrane, indicating that SidM anchors to PtdIns(4)P on LCVs via its P4M domain. An L. pneumophila DeltasidM mutant strain displayed significantly higher amounts of SidC on LCVs, suggesting that SidM and SidC compete for limiting amounts of PtdIns(4)P on the vacuole. Finally, RNA interference revealed that PtdIns(4)P on LCVs is specifically formed by host PtdIns 4-kinase IIIbeta. Thus, L. pneumophila exploits PtdIns(4)P produced by PtdIns 4-kinase IIIbeta to anchor the effectors SidC and SidM to LCVs.
Collapse
Affiliation(s)
- Eva Brombacher
- Institute of Microbiology, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
42
|
Weber SS, Ragaz C, Hilbi H. Pathogen trafficking pathways and host phosphoinositide metabolism. Mol Microbiol 2009; 71:1341-52. [PMID: 19208094 DOI: 10.1111/j.1365-2958.2009.06608.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphoinositide (PI) glycerolipids are key regulators of eukaryotic signal transduction, cytoskeleton architecture and membrane dynamics. The host cell PI metabolism is targeted by intracellular bacterial pathogens, which evolved intricate strategies to modulate uptake processes and vesicle trafficking pathways. Upon entering eukaryotic host cells, pathogenic bacteria replicate in distinct vacuoles or in the host cytoplasm. Vacuolar pathogens manipulate PI levels to mimic or modify membranes of subcellular compartments and thereby establish their replicative niche. Legionella pneumophila, Brucella abortus, Mycobacterium tuberculosis and Salmonella enterica translocate effector proteins into the host cell, some of which anchor to the vacuolar membrane via PIs or enzymatically turnover PIs. Cytoplasmic pathogens target PI metabolism at the plasma membrane, thus modulating their uptake and antiapoptotic signalling pathways. Employing this strategy, Shigella flexneri directly injects a PI-modifying effector protein, while Listeria monocytogenes exploits PI metabolism indirectly by binding to transmembrane receptors. Thus, regardless of the intracellular lifestyle of the pathogen, PI metabolism is critically involved in the interactions with host cells.
Collapse
Affiliation(s)
- Stefan S Weber
- Institute of Microbiology, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
43
|
|
44
|
Weber SS, Ragaz C, Hilbi H. The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell Microbiol 2008; 11:442-60. [PMID: 19021631 DOI: 10.1111/j.1462-5822.2008.01266.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, replicates within a specific vacuole in amoebae and macrophages. To form these 'Legionella-containing vacuoles' (LCVs), the bacteria employ the Icm/Dot type IV secretion system and effector proteins, some of which anchor to the LCV membrane via the host glycolipid phosphatidylinositol 4-phosphate [PtdIns(4)P]. Here we analysed the role of inositol polyphosphate 5-phosphatases (IP5Ps) during L. pneumophila infections. Bacterial replication and LCV formation occurred more efficiently in Dictyostelium discoideum amoebae lacking the IP5P Dd5P4, a homologue of human OCRL1 (Oculocerebrorenal syndrome of Lowe), implicated in retrograde endosome to Golgi trafficking. The phenotype was complemented by Dd5P4 but not the catalytically inactive 5-phosphatase. Ectopically expressed Dd5P4 or OCRL1 localized to LCVs in D. discoideum via an N-terminal domain previously not implicated in membrane targeting, and OCRL1 was also identified on LCVs in macrophages. Dd5P4 was catalytically active on LCVs and accumulated on LCVs harbouring wild-type but not DeltaicmT mutant L. pneumophila. The N-terminal domain of OCRL1 bound L. pneumophila LpnE, a Sel1-like repeat protein involved in LCV formation, which localizes to LCVs and selectively binds PtdIns(3)P. Our results indicate that OCRL1 restricts intracellular growth of L. pneumophila and binds to LCVs in association with LpnE.
Collapse
Affiliation(s)
- Stefan S Weber
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
45
|
Renesto P, Rovery C, Schrenzel J, Leroy Q, Huyghe A, Li W, Lepidi H, François P, Raoult D. Rickettsia conorii transcriptional response within inoculation eschar. PLoS One 2008; 3:e3681. [PMID: 18997861 PMCID: PMC2577010 DOI: 10.1371/journal.pone.0003681] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 10/20/2008] [Indexed: 02/07/2023] Open
Abstract
Background Rickettsia conorii, the causative agent of the Mediterranean spotted fever, is transmitted to humans by the bite of infected ticks Rhipicephalus sanguineus. The skin thus constitutes an important barrier for the entry and propagation of R. conorii. Given this, analysis of the survival strategies used by the bacterium within infected skin is critical for our understanding of rickettsiosis. Methodology/Principal Findings Here, we report the first genome-wide analysis of R. conorii gene expression from infected human skin biopsies. Our data showed that R. conorii exhibited a striking transcript signature that is remarkably conserved across patients, regardless of genotype. The expression profiles obtained using custom Agilent microarrays were validated by quantitative RT-PCR. Within eschars, the amount of detected R. conorii transcripts was of 55%, this value being of 74% for bacteria grown in Vero cells. In such infected host tissues, approximately 15% (n = 211) of the total predicted R. conorii ORFs appeared differentially expressed compared to bacteria grown in standard laboratory conditions. These genes are mostly down-regulated and encode proteins essential for bacterial replication. Some of the strategies displayed by rickettsiae to overcome the host defense barriers, thus avoiding killing, were also pointed out. The observed up-regulation of rickettsial genes associated with DNA repair is likely to correspond to a DNA-damaging agent enriched environment generated by the host cells to eradicate the pathogens. Survival of R. conorii within eschars also involves adaptation to osmotic stress, changes in cell surface proteins and up-regulation of some virulence factors. Interestingly, in contrast to down-regulated transcripts, we noticed that up-regulated ones rather exhibit a small nucleotide size, most of them being exclusive for the spotted fever group rickettsiae. Conclusion/Significance Because eschar is a site for rickettsial introduction, the pattern of rickettsial gene expression observed here may define how rickettsiae counteract the host defense.
Collapse
Affiliation(s)
- Patricia Renesto
- Unité des Rickettsies, IRD-CNRS UMR 6236, Faculté de Médecine, Marseille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Synergistic contribution of the Legionella pneumophila lqs genes to pathogen-host interactions. J Bacteriol 2008; 190:7532-47. [PMID: 18805977 DOI: 10.1128/jb.01002-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The causative agent of Legionnaires' disease, Legionella pneumophila, is a natural parasite of environmental protozoa and employs a biphasic life style to switch between a replicative and a transmissive (virulent) phase. L. pneumophila harbors the lqs (Legionella quorum sensing) cluster, which includes genes encoding the autoinducer synthase LqsA, the sensor kinase LqsS, the response regulator LqsR, and a homologue of HdeD, which is involved in acid resistance in Escherichia coli. LqsR promotes host-cell interactions as an element of the stationary-phase virulence regulatory network. Here, we characterize L. pneumophila mutant strains lacking all four genes of the lqs cluster or only the hdeD gene. While an hdeD mutant strain did not have overt physiological or virulence phenotypes, an lqs mutant showed an aberrant morphology in stationary growth phase and was defective for intracellular growth, efficient phagocytosis, and cytotoxicity against host cells. Cytotoxicity was restored upon reintroduction of the lqs genes into the chromosome of an lqs mutant strain. The deletion of the lqs cluster caused more-severe phenotypes than deletion of only lqsR, suggesting a synergistic effect of the other lqs genes. A transcriptome analysis indicated that in the stationary phase more than 380 genes were differentially regulated in the lqs mutant and wild-type L. pneumophila. Genes involved in protein production, metabolism, and bioenergetics were upregulated in the lqs mutant, whereas genes encoding virulence factors, such as effectors secreted by the Icm/Dot type IV secretion system, were downregulated. A proteome analysis revealed that a set of Icm/Dot substrates is not produced in the absence of the lqs gene cluster, which confirms the findings from DNA microarray assays and mirrors the virulence phenotype of the lqs mutant strain.
Collapse
|
47
|
de Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M, Pericone CD, Shuman HA. Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 2008; 4:e1000117. [PMID: 18670632 PMCID: PMC2475511 DOI: 10.1371/journal.ppat.1000117] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 07/07/2008] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, evades phago-lysosome fusion in mammalian and protozoan hosts to create a suitable niche for intracellular replication. To modulate vesicle trafficking pathways, L. pneumophila translocates effector proteins into eukaryotic cells through a Type IVB macro-molecular transport system called the Icm-Dot system. In this study, we employed a fluorescence-based translocation assay to show that 33 previously identified Legionella eukaryotic-like genes (leg) encode substrates of the Icm-Dot secretion system. To assess which of these proteins may contribute to the disruption of vesicle trafficking, we expressed each gene in yeast and looked for phenotypes related to vacuolar protein sorting. We found that LegC3-GFP and LegC7/YlfA-GFP caused the mis-secretion of CPY-Invertase, a fusion protein normally restricted to the yeast vacuole. We also found that LegC7/YlfA-GFP and its paralog LegC2/YlfB-GFP formed large structures around the yeast vacuole while LegC3-GFP localized to the plasma membrane and a fragmented vacuole. In mammalian cells, LegC2/YlfB-GFP and LegC7/YlfA-GFP were found within large structures that co-localized with anti-KDEL antibodies but excluded the lysosomal marker LAMP-1, similar to what is observed in Legionella-containing vacuoles. LegC3-GFP, in contrast, was observed as smaller structures which had no obvious co-localization with KDEL or LAMP-1. Finally, LegC3-GFP caused the accumulation of many endosome-like structures containing undigested material when expressed in the protozoan host Dictyostelium discoideum. Our results demonstrate that multiple Leg proteins are Icm/Dot-dependent substrates and that LegC3, LegC7/YlfA, and LegC2/YlfB may contribute to the intracellular trafficking of L. pneumophila by interfering with highly conserved pathways that modulate vesicle maturation.
Collapse
Affiliation(s)
- Karim Suwwan de Felipe
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - Robert T. Glover
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - Xavier Charpentier
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - O. Roger Anderson
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, United States of America
| | - Moraima Reyes
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - Christopher D. Pericone
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - Howard A. Shuman
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
48
|
Abstract
Key to the pathogenesis of intracellular pathogens is their ability to manipulate host cell processes, permitting the establishment of an intracellular replicative niche. In turn, the host cell deploys defence mechanisms that limit intracellular infection. The bacterial pathogen Legionella pneumophila, the aetiological agent of Legionnaire's Disease, has evolved virulence mechanisms that allow it to replicate within protozoa, its natural host. Many of these tactics also enable L. pneumophila's survival and replication inside macrophages within a membrane-bound compartment known as the Legionella-containing vacuole. One of the virulence factors indispensable for L. pneumophila's intracellular survival is a type IV secretion system, which translocates a large repertoire of bacterial effectors into the host cell. These effectors modulate multiple host cell processes and in particular, redirect trafficking of the L. pneumophila phagosome and mediate its conversion into an ER-derived organelle competent for intracellular bacterial replication. In this review, we discuss how L. pneumophila manipulates host cells, as well as host cell processes that either facilitate or impede its intracellular survival.
Collapse
Affiliation(s)
- Sunny Shin
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, Room 345, New Haven, CT 06536, USA.
| | | |
Collapse
|
49
|
Sansom FM, Riedmaier P, Newton HJ, Dunstone MA, Müller CE, Stephan H, Byres E, Beddoe T, Rossjohn J, Cowan PJ, d'Apice AJF, Robson SC, Hartland EL. Enzymatic properties of an ecto-nucleoside triphosphate diphosphohydrolase from Legionella pneumophila: substrate specificity and requirement for virulence. J Biol Chem 2008; 283:12909-18. [PMID: 18337253 PMCID: PMC2442346 DOI: 10.1074/jbc.m801006200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/07/2008] [Indexed: 12/20/2022] Open
Abstract
Legionella pneumophila is the predominant cause of Legionnaires disease, a severe and potentially fatal form of pneumonia. Recently, we identified an ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) from L. pneumophila, termed Lpg1905, which enhances intracellular replication of L. pneumophila in eukaryotic cells. Lpg1905 is the first prokaryotic member of the CD39/NTPDase1 family of enzymes, which are characterized by the presence of five apyrase conserved regions and the ability to hydrolyze nucleoside tri- and diphosphates. Here we examined the substrate specificity of Lpg1905 and showed that apart from ATP and ADP, the enzyme catalyzed the hydrolysis of GTP and GDP but had limited activity against CTP, CDP, UTP, and UDP. Based on amino acid residues conserved in the apyrase conserved regions of eukaryotic NTPDases, we generated five site-directed mutants, Lpg1905E159A, R122A, N168A, Q193A, and W384A. Although the mutations E159A, R122A, Q193A, and W384A abrogated activity completely, N168A resulted in decreased activity caused by reduced affinity for nucleotides. When introduced into the lpg1905 mutant strain of L. pneumophila, only N168A partially restored the ability of L. pneumophila to replicate in THP-1 macrophages. Following intratracheal inoculation of A/J mice, none of the Lpg1905 mutants was able to restore virulence to an lpg1905 mutant during lung infection, thereby demonstrating the importance of NTPDase activity to L. pneumophila infection. Overall, the kinetic studies undertaken here demonstrated important differences to mammalian NTPDases and different sensitivities to NTPDase inhibitors that may reflect underlying structural variations.
Collapse
Affiliation(s)
- Fiona M Sansom
- Department of Microbiology and Immunology and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Previously, we identified ladC in a cohort of genes that were present in Legionella pneumophila but absent in other Legionella species. Here we constructed a ladC mutant of L. pneumophila and assessed its ability to replicate in mammalian cell lines and Acanthamoeba castellanii. The ladC mutant was recovered in significantly lower numbers than wild-type L. pneumophila at early time points, which was reversed upon transcomplementation with ladC but not ladC(N430A/R434A), encoding a putative catalytically inactive derivative of the protein. In fact, complementation of ladC::Km with ladC(N430A/R434A) resulted in a severe replication defect within human and amoeba cell models of infection, which did not follow a typical dominant negative phenotype. Using differential immunofluorescence staining to distinguish adherent from intracellular bacteria, we found that the ladC mutant exhibited a 10-fold reduction in adherence to THP-1 macrophages but no difference in uptake by THP-1 cells. When tested in vivo in A/J mice, the competitive index of the ladC mutant dropped fivefold over 72 h, indicating a significant attenuation compared to wild-type L. pneumophila. Although localization of LadC to the bacterial inner membrane suggested that the protein may be involved in signaling pathways that regulate virulence gene expression, microarray analysis indicated that ladC does not influence the transcriptional profile of L. pneumophila in vitro or during A. castellanii infection. Although the mechanism by which LadC modulates the initial interaction between the bacterium and host cell remains unclear, we have established that LadC plays an important role in L. pneumophila infection.
Collapse
|