1
|
Delgado KN, Vicente CF, Hennelly CM, Aghakhanian F, Parr JB, Claffey KP, Radolf JD, Hawley KL, Caimano MJ. Development and utilization of Treponema pallidum expressing green fluorescent protein to study spirochete-host interactions and antibody-mediated clearance: expanding the toolbox for syphilis research. mBio 2025; 16:e0325324. [PMID: 39611839 PMCID: PMC11708019 DOI: 10.1128/mbio.03253-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Syphilis is a sexually transmitted infection caused by the highly invasive and immunoevasive spirochetal pathogen Treponema pallidum subsp. pallidum (TPA). Untreated syphilis can lead to infection of multiple organ systems, including the central nervous system. The alarming increase in syphilis cases globally underscores the importance of developing novel strategies to understand the complexities of syphilis pathogenesis. In this study, we took advantage of recent advances in in vitro cultivation and genetic manipulation of syphilis spirochetes to engineer a TPA strain that constitutively expresses green fluorescent protein (GFP). GFP+ TPA grew identically to the Nichols parent strain in vitro and exhibited wild-type infectivity in the rabbit model. We then used the GFP+ strain to visualize TPA interactions with host cells during co-cultivation in vitro, within infected rabbit testes, and following opsonophagocytosis by murine bone marrow-derived macrophages. The development of fluorescent strain also enabled us to develop a flow cytometric-based assay to assess antibody-mediated damage to the spirochete's fragile outer membrane (OM), demonstrating dose-dependent growth inhibition and OM disruption in vitro. Notably, we observed greater OM disruption of GFP+ TPA with sera from immune rabbits infected with the TPA Nichols strain compared to sera generated against the genetically distinct SS14 strain. These latter findings highlight the importance of OM protein-specific antibody responses for clearance of TPA during syphilitic infection. The availability of fluorescent TPA strains paves the way for future studies investigating spirochete-host interactions as well as functional characterization of antibodies-directed treponemal OM proteins, the presumptive targets for protective immunity. IMPORTANCE Syphilis, a sexually transmitted infection caused by Treponema pallidum (TPA), remains a pressing threat to global public health. TPA has a remarkable and still poorly understood ability to disseminate rapidly from the site of inoculation and establish persistent infection throughout the body. Recent advances in in vitro cultivation and genetic manipulation of syphilis spirochetes enabled the development of fluorescent TPA. In the study, we generated and characterized an infectious TPA strain that constitutively expresses green fluorescent protein and used this strain to visualize the interaction of TPA with host cells and functionally characterize antibodies directed against treponemal outer membrane proteins. Most notably, we assessed the ability of surface-bound antibodies to inhibit the growth of TPA in vitro and/or disrupt the spirochete's fragile outer membrane. Fluorescent TPA strains provide a powerful new tool for elucidating host-pathogen interactions that enable the syphilis spirochete to establish infection and persistent long-term within its obligate human host.
Collapse
Affiliation(s)
- Kristina N. Delgado
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Crystal F. Vicente
- Department of Pediatrics, University of Connecticut Health, Farmington, Connecticut, USA
| | - Christopher M. Hennelly
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Farhang Aghakhanian
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan B. Parr
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin P. Claffey
- Department of Cell Biology, University of Connecticut Health, Farmington, Connecticut, USA
| | - Justin D. Radolf
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Pediatrics, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Immunology, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health, Farmington, Connecticut, USA
- Connecticut Children's Research Institute, Connecticut Children's, Hartford, Connecticut, USA
| | - Kelly L. Hawley
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Pediatrics, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Immunology, University of Connecticut Health, Farmington, Connecticut, USA
- Connecticut Children's Research Institute, Connecticut Children's, Hartford, Connecticut, USA
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Pediatrics, University of Connecticut Health, Farmington, Connecticut, USA
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut, USA
- Connecticut Children's Research Institute, Connecticut Children's, Hartford, Connecticut, USA
| |
Collapse
|
2
|
Delgado KN, Vicente CF, Hennelly CM, Aghakhanian F, Parr JB, Claffey KP, Radolf JD, Hawley KL, Caimano MJ. Development and utilization of Treponema pallidum expressing green fluorescent protein to study spirochete-host interactions and antibody-mediated clearance: expanding the toolbox for syphilis research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619476. [PMID: 39484466 PMCID: PMC11526989 DOI: 10.1101/2024.10.21.619476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Syphilis is a sexually transmitted infection caused by the highly invasive and immunoevasive spirochetal pathogen Treponema pallidum subsp. pallidum (TPA). Untreated syphilis can lead to infection of multiple organ systems, including the central nervous system. The alarming increase in syphilis cases globally underscores the importance of developing novel strategies to understand the complexities of syphilis pathogenesis. In this study, we took advantage of recent advances in in vitro cultivation and genetic manipulation of syphilis spirochetes to engineer a TPA strain that constitutively expresses green fluorescent protein (GFP). GFP+ TPA grew identically to the Nichols parent strain in vitro and exhibited wild-type infectivity in the rabbit model. We then used the GFP+ strain to visualize TPA interactions with host cells during co-cultivation in vitro, within infected rabbit testes, and following opsonophagocytosis by murine bone marrow-derived macrophages. Development of fluorescent strain also enabled us to develop a flow cytometric-based assay to assess antibody-mediated damage to the spirochete's fragile outer membrane (OM), demonstrating dose-dependent growth inhibition and OM disruption in vitro. Notably, we observed greater OM disruption of GFP+ TPA with sera from immune rabbits infected with the TPA Nichols strain compared to sera generated against the genetically distinct SS14 strain. These latter findings highlight the importance of OM protein-specific antibody responses for clearance of TPA during syphilitic infection. The availability of fluorescent TPA strains paves the way for future studies investigating spirochete-host interactions as well as functional characterization of antibodies directed treponemal OM proteins, the presumptive targets for protective immunity.
Collapse
Affiliation(s)
- Kristina N. Delgado
- Department of Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Crystal F. Vicente
- Department of Pediatrics, University of Connecticut Health, Farmington, CT, USA
| | - Christopher M. Hennelly
- Institute for Global Health and Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Farhang Aghakhanian
- Institute for Global Health and Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan B. Parr
- Institute for Global Health and Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin P. Claffey
- Department of Cell Biology,University of Connecticut Health, Farmington, CT, USA
| | - Justin D. Radolf
- Department of Medicine, University of Connecticut Health, Farmington, CT, USA
- Department of Molecular Biology and Biophysics,University of Connecticut Health, Farmington, CT, USA
- Department of Immunology,University of Connecticut Health, Farmington, CT, USA
- Genetics and Genome Sciences, University of Connecticut Health, Farmington, CT, USA
- Connecticut Children’s Research Institute, Connecticut Children’s, Hartford, Connecticut, USA
| | - Kelly L. Hawley
- Department of Medicine, University of Connecticut Health, Farmington, CT, USA
- Department of Pediatrics, University of Connecticut Health, Farmington, CT, USA
- Department of Immunology,University of Connecticut Health, Farmington, CT, USA
- Connecticut Children’s Research Institute, Connecticut Children’s, Hartford, Connecticut, USA
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health, Farmington, CT, USA
- Department of Pediatrics, University of Connecticut Health, Farmington, CT, USA
- Department of Molecular Biology and Biophysics,University of Connecticut Health, Farmington, CT, USA
- Connecticut Children’s Research Institute, Connecticut Children’s, Hartford, Connecticut, USA
| |
Collapse
|
3
|
Liu D, Chen R, He Y, Wang YJ, Lin LR, Liu LL, Yang TC, Tong ML. Longitudinal Variations in the tprK Gene of Treponema pallidum in an Amoy Strain-Infected Rabbit Model. Microbiol Spectr 2023; 11:e0106723. [PMID: 37347187 PMCID: PMC10433980 DOI: 10.1128/spectrum.01067-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Heterogeneous tprK sequences have been hypothesized to be an important factor for persistent infection of Treponema pallidum subsp. pallidum (T. pallidum) in humans. Previous research has only explored tprK diversity using a rabbit model infected with almost clonal isolates, which is inconsistent with the fact that infected human isolates contain multiple heterogeneous tprK sequences. Here, we used the T. pallidum Amoy strain with heterogeneous tprK sequences to establish a rabbit infection model and explore longitudinal variations in the tprK gene under normal infection, immunosuppression treatment, and benzathine penicillin G (BPG) treatment using next-generation sequencing. The diversity of the tprK gene was high in all three groups but was highest in the control group and lowest in the BPG group. Interestingly, the overall diversity of tprK in all three groups decreased during infection, exhibiting a "more to less" trend, indicating that survival selection may be an important factor affecting tprK variation in the later infection stage. BPG treatment appeared to reduce the diversity of tprK but increased the frequency of predominant sequence changes, which might facilitate the escape of T. pallidum from the host immune clearance. Furthermore, the original predominant V region sequence did not disappear with disease progression but retained a relatively high proportion within the population, suggesting a new direction for tprK-related vaccine research. This study provides insights into longitudinal variations within the highly heterogeneous tprK gene sequences of T. pallidum and will contribute to further exploration of the pathogenesis of syphilis. IMPORTANCE The tprK variations are an important factor in persistent T. pallidum infection. A nearly clonal isolate has been used previously to investigate the mechanism of tprK gene variations; however, clinical T. pallidum isolates in infected humans exhibit multiple heterogeneous tprK sequences. Here, we use next-generation sequencing to explore longitudinal variations in the tprK gene under normal infection and immunosuppression and benzathine penicillin G treatment in a rabbit model infected with the Amoy strain with heterogeneous tprK sequences. The overall diversity of tprK in all three groups was high and decreased during infection, exhibiting a "more to less" trend. Benzathine penicillin G treatment reduced the diversity of tprK but increased the frequency of predominant sequence changes. Moreover, the original predominant V region sequence did not disappear as the disease progressed but remained at a relatively high proportion within the population. The research results give us a new understanding about tprK variation.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Rui Chen
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yun He
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yong-jing Wang
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Romeis E, Lieberman NAP, Molini B, Tantalo LC, Chung B, Phung Q, Avendaño C, Vorobieva A, Greninger AL, Giacani L. Treponema pallidum subsp. pallidum with an Artificially impaired TprK antigenic variation system is attenuated in the Rabbit model of syphilis. PLoS Pathog 2023; 19:e1011259. [PMID: 36940224 PMCID: PMC10063172 DOI: 10.1371/journal.ppat.1011259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/30/2023] [Accepted: 03/01/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND The TprK protein of the syphilis agent, Treponema pallidum subsp. pallidum (T. pallidum), undergoes antigenic variation in seven discrete variable (V) regions via non-reciprocal segmental gene conversion. These recombination events transfer information from a repertoire of 53 silent chromosomal donor cassettes (DCs) into the single tprK expression site to continually generate TprK variants. Several lines of research developed over the last two decades support the theory that this mechanism is central to T. pallidum's ability for immune avoidance and persistence in the host. Structural and modeling data, for example, identify TprK as an integral outer membrane porin with the V regions exposed on the pathogen's surface. Furthermore, infection-induced antibodies preferentially target the V regions rather than the predicted β-barrel scaffolding, and sequence variation abrogates the binding of antibodies elicited by antigenically different V regions. Here, we engineered a T. pallidum strain to impair its ability to vary TprK and assessed its virulence in the rabbit model of syphilis. PRINCIPAL FINDINGS A suicide vector was transformed into the wild-type (WT) SS14 T. pallidum isolate to eliminate 96% of its tprK DCs. The resulting SS14-DCKO strain exhibited an in vitro growth rate identical to the untransformed strain, supporting that the elimination of the DCs did not affect strain viability in absence of immune pressure. In rabbits injected intradermally with the SS14-DCKO strain, generation of new TprK sequences was impaired, and the animals developed attenuated lesions with a significantly reduced treponemal burden compared to control animals. During infection, clearance of V region variants originally in the inoculum mirrored the generation of antibodies to these variants, although no new variants were generated in the SS14-DCKO strain to overcome immune pressure. Naïve rabbits that received lymph node extracts from animals infected with the SS14-DCKO strain remained uninfected. CONCLUSION These data further support the critical role of TprK in T. pallidum virulence and persistence during infection.
Collapse
Affiliation(s)
- Emily Romeis
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Nicole A. P. Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Barbara Molini
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Lauren C. Tantalo
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Benjamin Chung
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Quynh Phung
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Carlos Avendaño
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Anastassia Vorobieva
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
5
|
Romeis E, Lieberman NAP, Molini B, Tantalo LC, Chung B, Phung Q, Avendaño C, Vorobieva A, Greninger AL, Giacani L. Treponema pallidum subsp. pallidum with an Artificially Impaired TprK Antigenic Variation System is Attenuated in the Rabbit Model of Syphilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524629. [PMID: 36711914 PMCID: PMC9882362 DOI: 10.1101/2023.01.18.524629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background The TprK protein of the syphilis agent, Treponema pallidum subsp. pallidum ( T. pallidum ), undergoes antigenic variation in seven discrete variable (V) regions via non-reciprocal segmental gene conversion. These recombination events transfer information from a repertoire of 53 silent chromosomal donor cassettes (DCs) into the single tprK expression site to continually generate TprK variants. Several lines of research developed over the last two decades support the theory that this mechanism is central to T. pallidum 's ability for immune avoidance and persistence in the host. Structural and modeling data, for example, identify TprK as an integral outer membrane porin with the V regions exposed on the pathogen's surface. Furthermore, infection-induced antibodies preferentially target the V regions rather than the predicted β-barrel scaffolding, and sequence variation abrogates the binding of antibodies elicited by antigenically different V regions. Here, we engineered a T. pallidum strain to impair its ability to vary TprK and assessed its virulence in the rabbit model of syphilis. Principal findings A suicide vector was transformed into the wild-type (WT) SS14 T. pallidum isolate to eliminate 96% of its tprK DCs. The resulting SS14-DC KO strain exhibited an in vitro growth rate identical to the untransformed strain, supporting that the elimination of the DCs did not affect strain viability in absence of immune pressure. In rabbits injected intradermally with the SS14-DC KO strain, generation of new TprK sequences was impaired, and the animals developed attenuated lesions with a significantly reduced treponemal burden compared to control animals. During infection, clearance of V region variants originally in the inoculum mirrored the generation of antibodies to these variants, although no new variants were generated in the SS14-DC KO strain to overcome immune pressure. Naïve rabbits that received lymph node extracts from animals infected with the SS14-DC KO strain remained uninfected. Conclusion These data further support the critical role of TprK in T. pallidum virulence and persistence during infection. Author Summary Syphilis is still endemic in low- and middle-income countries, and it has been resurgent in high-income nations, including the U.S., for years. In endemic areas, there is still significant morbidity and mortality associated with this disease, particularly when its causative agent, the spirochete Treponema pallidum subsp . pallidum ( T. pallidum ) infects the fetus during pregnancy. Improving our understanding of syphilis pathogenesis and T. pallidum biology could help investigators devise better control strategies for this serious infection. Now that tools to genetically manipulate this pathogen are available, we can engineer T. pallidum strains lacking specific genes or genomic regions known (or believed) to be associated with virulence. This approach can shed light on the role of the ablated genes or sequences in disease development using loss-of-function strains. Here, we derived a knockout (KO) T. pallidum mutant (SS14-DC KO ) impaired in its ability to undergo antigenic variation of TprK, a protein that has long been hypothesized to be central in evasion of the host immune response and pathogen persistence during infection. When compared to the WT isolate, which is still capable of antigenic variation, the SS14-DC KO strain is significantly attenuated in its ability to proliferate and to induce early disease manifestations in infected rabbits. Our results further support the importance of TprK antigenic variation in syphilis pathogenesis and pathogen persistence.
Collapse
|
6
|
Tang Y, Zhou Y, He B, Cao T, Zhou X, Ning L, Chen E, Li Y, Xie X, Peng B, Hu Y, Liu S. Investigation of the immune escape mechanism of Treponema pallidum. Infection 2022; 51:305-321. [PMID: 36260281 DOI: 10.1007/s15010-022-01939-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Syphilis is a chronic sexually transmitted disease caused by Treponema pallidum subspecies pallidum (T. pallidum), which is a public health problem that seriously affects human health worldwide. T. pallidum is characterized by early transmission and immune escape and is therefore termed an "invisible pathogen". METHODS This review systematically summarizes the host's innate and adaptive immune responses to T. pallidum infection as well as the escape mechanisms of T. pallidum. PURPOSE To lay the foundation for assessing the pathogenic mechanism and the systematic prevention and treatment of syphilis. CONCLUSION The immune escape mechanism of T. pallidum plays an important role in its survival. Exploring the occurrence and development of these mechanisms has laid the foundation for the development of syphilis vaccine.
Collapse
Affiliation(s)
- Yun Tang
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Yingjie Zhou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Bisha He
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Ting Cao
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Xiangping Zhou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Lichang Ning
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - En Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Xiaoping Xie
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Binfeng Peng
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Yibao Hu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China.
| |
Collapse
|
7
|
Characterization of Treponema denticola Major Surface Protein (Msp) by Deletion Analysis and Advanced Molecular Modeling. J Bacteriol 2022; 204:e0022822. [PMID: 35913147 PMCID: PMC9487533 DOI: 10.1128/jb.00228-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Treponema denticola, a keystone pathogen in periodontitis, is a model organism for studying Treponema physiology and host-microbe interactions. Its major surface protein Msp forms an oligomeric outer membrane complex that binds fibronectin, has cytotoxic pore-forming activity, and disrupts several intracellular processes in host cells. T. denticola msp is an ortholog of the Treponema pallidum tprA to -K gene family that includes tprK, whose remarkable in vivo hypervariability is proposed to contribute to T. pallidum immune evasion. We recently identified the primary Msp surface-exposed epitope and proposed a model of the Msp protein as a β-barrel protein similar to Gram-negative bacterial porins. Here, we report fine-scale Msp mutagenesis demonstrating that both the N and C termini as well as the centrally located Msp surface epitope are required for native Msp oligomer expression. Removal of as few as three C-terminal amino acids abrogated Msp detection on the T. denticola cell surface, and deletion of four residues resulted in complete loss of detectable Msp. Substitution of a FLAG tag for either residues 6 to 13 of mature Msp or an 8-residue portion of the central Msp surface epitope resulted in expression of full-length Msp but absence of the oligomer, suggesting roles for both domains in oligomer formation. Consistent with previously reported Msp N-glycosylation, proteinase K treatment of intact cells released a 25 kDa polypeptide containing the Msp surface epitope into culture supernatants. Molecular modeling of Msp using novel metagenome-derived multiple sequence alignment (MSA) algorithms supports the hypothesis that Msp is a large-diameter, trimeric outer membrane porin-like protein whose potential transport substrate remains to be identified. IMPORTANCE The Treponema denticola gene encoding its major surface protein (Msp) is an ortholog of the T. pallidum tprA to -K gene family that includes tprK, whose remarkable in vivo hypervariability is proposed to contribute to T. pallidum immune evasion. Using a combined strategy of fine-scale mutagenesis and advanced predictive molecular modeling, we characterized the Msp protein and present a high-confidence model of its structure as an oligomer embedded in the outer membrane. This work adds to knowledge of Msp-like proteins in oral treponemes and may contribute to understanding the evolutionary and potential functional relationships between T. denticola Msp and the orthologous T. pallidum Tpr proteins.
Collapse
|
8
|
Lin MJ, Haynes AM, Addetia A, Lieberman NAP, Phung Q, Xie H, Nguyen TV, Molini BJ, Lukehart SA, Giacani L, Greninger AL. Longitudinal TprK profiling of in vivo and in vitro-propagated Treponema pallidum subsp. pallidum reveals accumulation of antigenic variants in absence of immune pressure. PLoS Negl Trop Dis 2021; 15:e0009753. [PMID: 34492041 PMCID: PMC8480903 DOI: 10.1371/journal.pntd.0009753] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/29/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
Immune evasion by Treponema pallidum subspecies pallidum (T. pallidum) has been attributed to antigenic variation of its putative outer-membrane protein TprK. In TprK, amino acid diversity is confined to seven variable (V) regions, and generation of sequence diversity within the V regions occurs via a non-reciprocal segmental gene conversion mechanism where donor cassettes recombine into the tprK expression site. Although previous studies have shown the significant role of immune selection in driving accumulation of TprK variants, the contribution of baseline gene conversion activity to variant diversity is less clear. Here, combining longitudinal tprK deep sequencing of near clonal Chicago C from immunocompetent and immunosuppressed rabbits along with the newly developed in vitro cultivation system for T. pallidum, we directly characterized TprK alleles in the presence and absence of immune selection. Our data confirm significantly greater sequence diversity over time within the V6 region during syphilis infection in immunocompetent rabbits compared to immunosuppressed rabbits, consistent with previous studies on the role of TprK in evasion of the host immune response. Compared to strains grown in immunocompetent rabbits, strains passaged in vitro displayed low level changes in allele frequencies of TprK variable region sequences similar to that of strains passaged in immunosuppressed rabbits. Notably, we found significantly increased rates of V6 allele generation relative to other variable regions in in vitro cultivated T, pallidum strains, illustrating that the diversity within these hypervariable regions occurs in the complete absence of immune selection. Together, our results demonstrate antigenic variation in T. pallidum can be studied in vitro and occurs even in the complete absence of immune pressure, allowing the T. pallidum population to continuously evade the immune system of the infected host.
Collapse
Affiliation(s)
- Michelle J. Lin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Austin M. Haynes
- Pathobiology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Amin Addetia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Nicole A. P. Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Quynh Phung
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Tien V. Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Barbara J. Molini
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Sheila A. Lukehart
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
9
|
Majander K, Pfrengle S, Kocher A, Neukamm J, du Plessis L, Pla-Díaz M, Arora N, Akgül G, Salo K, Schats R, Inskip S, Oinonen M, Valk H, Malve M, Kriiska A, Onkamo P, González-Candelas F, Kühnert D, Krause J, Schuenemann VJ. Ancient Bacterial Genomes Reveal a High Diversity of Treponema pallidum Strains in Early Modern Europe. Curr Biol 2020; 30:3788-3803.e10. [PMID: 32795443 DOI: 10.1016/j.cub.2020.07.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/24/2020] [Accepted: 07/16/2020] [Indexed: 12/30/2022]
Abstract
Syphilis is a globally re-emerging disease, which has marked European history with a devastating epidemic at the end of the 15th century. Together with non-venereal treponemal diseases, like bejel and yaws, which are found today in subtropical and tropical regions, it currently poses a substantial health threat worldwide. The origins and spread of treponemal diseases remain unresolved, including syphilis' potential introduction into Europe from the Americas. Here, we present the first genetic data from archaeological human remains reflecting a high diversity of Treponema pallidum in early modern Europe. Our study demonstrates that a variety of strains related to both venereal syphilis and yaws-causing T. pallidum subspecies were already present in Northern Europe in the early modern period. We also discovered a previously unknown T. pallidum lineage recovered as a sister group to yaws- and bejel-causing lineages. These findings imply a more complex pattern of geographical distribution and etiology of early treponemal epidemics than previously understood.
Collapse
Affiliation(s)
- Kerttu Majander
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070 Tübingen, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany; Department of Biosciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland.
| | - Saskia Pfrengle
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070 Tübingen, Germany
| | - Arthur Kocher
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
| | - Judith Neukamm
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070 Tübingen, Germany; Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | | | - Marta Pla-Díaz
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Natasha Arora
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057 Zurich, Switzerland
| | - Gülfirde Akgül
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kati Salo
- Department of Biosciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland; Archaeology, Faculty of Arts, University of Helsinki, Unioninkatu 38F, 00014 Helsinki, Finland
| | - Rachel Schats
- Laboratory for Human Osteoarchaeology, Faculty of Archaeology, Leiden University, Einsteinweg 2, 2333CC Leiden, the Netherlands
| | - Sarah Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK
| | - Markku Oinonen
- Laboratory of Chronology, Finnish Museum of Natural History, University of Helsinki, Gustaf Hällströmin katu 2, 00560 Helsinki, Finland
| | - Heiki Valk
- Institute of History and Archaeology, University of Tartu, Jakobi 2, 51005 Tartu, Tartumaa, Estonia
| | - Martin Malve
- Institute of History and Archaeology, University of Tartu, Jakobi 2, 51005 Tartu, Tartumaa, Estonia
| | - Aivar Kriiska
- Institute of History and Archaeology, University of Tartu, Jakobi 2, 51005 Tartu, Tartumaa, Estonia
| | - Päivi Onkamo
- Department of Biosciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland; Department of Biology, University of Turku, Vesilinnantie 5, 20500 Turku, Finland
| | - Fernando González-Candelas
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio), Valencia, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
| | - Johannes Krause
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070 Tübingen, Germany; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany; Senckenberg Centre for Human Evolution and Palaeoenvironment (S-HEP), University of Tübingen, Tübingen, Germany.
| | - Verena J Schuenemann
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070 Tübingen, Germany; Senckenberg Centre for Human Evolution and Palaeoenvironment (S-HEP), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Addetia A, Tantalo LC, Lin MJ, Xie H, Huang ML, Marra CM, Greninger AL. Comparative genomics and full-length Tprk profiling of Treponema pallidum subsp. pallidum reinfection. PLoS Negl Trop Dis 2020; 14:e0007921. [PMID: 32251462 PMCID: PMC7162541 DOI: 10.1371/journal.pntd.0007921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/16/2020] [Accepted: 02/08/2020] [Indexed: 12/25/2022] Open
Abstract
Developing a vaccine against Treponema pallidum subspecies pallidum, the causative agent of syphilis, remains a public health priority. Syphilis vaccine design efforts have been complicated by lack of an in vitro T. pallidum culture system, prolific antigenic variation in outer membrane protein TprK, and lack of functional annotation for nearly half of the genes. Understanding the genetic basis of T. pallidum reinfection can provide insights into variation among strains that escape cross-protective immunity. Here, we present comparative genomic sequencing and deep, full-length tprK profiling of two T. pallidum isolates from blood from the same patient that were collected six years apart. Notably, this patient was diagnosed with syphilis four times, with two of these episodes meeting the definition of neurosyphilis, during this interval. Outside of the highly variable tprK gene, we identified 14 coding changes in 13 genes. Nine of these genes putatively localized to the periplasmic or outer membrane spaces, consistent with a potential role in serological immunoevasion. Using a newly developed full-length tprK deep sequencing protocol, we profiled the diversity of this gene that far outpaces the rest of the genome. Intriguingly, we found that the reinfecting isolate demonstrated less diversity across each tprK variable region compared to the isolate from the first infection. Notably, the two isolates did not share any full-length TprK sequences. Our results are consistent with an immunodominant-evasion model in which the diversity of TprK explains the ability of T. pallidum to successfully reinfect individuals, even when they have been infected with the organism multiple times.
Collapse
Affiliation(s)
- Amin Addetia
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Lauren C. Tantalo
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - Michelle J. Lin
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Christina M. Marra
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - Alexander L. Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
11
|
Pereira LE, Katz SS, Sun Y, Mills P, Taylor W, Atkins P, Thurlow CM, Chi KH, Danavall D, Cook N, Ahmed T, Debra A, Philip S, Cohen S, Workowski KA, Kersh E, Fakile Y, Chen CY, Pillay A. Successful isolation of Treponema pallidum strains from patients' cryopreserved ulcer exudate using the rabbit model. PLoS One 2020; 15:e0227769. [PMID: 31929602 PMCID: PMC6957173 DOI: 10.1371/journal.pone.0227769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Clinical isolates of Treponema pallidum subspecies pallidum (T. pallidum) would facilitate study of prevalent strains. We describe the first successful rabbit propagation of T. pallidum from cryopreserved ulcer specimens. Fresh ulcer exudates were collected and cryopreserved with consent from syphilis-diagnosed patients (N = 8). Each of eight age-matched adult male rabbits were later inoculated with a thawed specimen, with two rabbits receiving 1.3 ml intratesticularly (IT), and six receiving 0.6 ml intravenously (IV) and IT. Monitoring of serology, blood PCR and orchitis showed that T. pallidum grew in 2/8 rabbits that were inoculated IV and IT with either a penile primary lesion specimen (CDC-SF003) or a perianal secondary lesion specimen (CDC-SF007). Rabbit CDC-SF003 was seroreactive by T. pallidum Particle Agglutination (TP-PA) and Rapid Plasma Reagin (RPR) testing, PCR+, and showed orchitis by week 6. Euthanasia was performed in week 7, with treponemal growth in the testes confirmed and quantified by qPCR and darkfield microscopy (DF). Serial passage of the extract in a second age-matched rabbit also yielded treponemes. Similarly, rabbit CDC-SF007 showed negligible orchitis, but was seroreactive and PCR+ by week 4 and euthanized in week 6 to yield T. pallidum, which was further propagated by second passage. Using the 4-component molecular typing system for syphilis, 3 propagated strains (CDC-SF003, CDC-SF007, CDC-SF008) were typed as 14d9f, 14d9g, and 14d10c, respectively. All 3 isolates including strain CDC-SF011, which was not successfully propagated, had the A2058G mutation associated with azithromycin resistance. Our results show that immediate cryopreservation of syphilitic ulcer exudate can maintain T. pallidum viability for rabbit propagation.
Collapse
Affiliation(s)
- Lara E. Pereira
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail:
| | - Samantha S. Katz
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Yongcheng Sun
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Patrick Mills
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Willie Taylor
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Patricia Atkins
- Charles River Laboratories, Wilmington, MA, United States of America
| | - Charles M. Thurlow
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
| | - Kai-Hua Chi
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Damien Danavall
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Nicholas Cook
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
| | - Tamanna Ahmed
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
| | - Alyssa Debra
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
| | - Susan Philip
- San Francisco Department of Public Health, San Francisco, CA, United States of America
| | - Stephanie Cohen
- San Francisco Department of Public Health, San Francisco, CA, United States of America
| | - Kimberly A. Workowski
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- Emory University Department of Medicine, Atlanta, GA, United States of America
| | - Ellen Kersh
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Yetunde Fakile
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Cheng Y. Chen
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Allan Pillay
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
12
|
Fernandez MC, Giacani L. Molecular and Immunological Strategies Against Treponema pallidum Infections. Sex Transm Infect 2020. [DOI: 10.1007/978-3-030-02200-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
13
|
Abstract
The outer membrane (OM) of Treponema pallidum, the uncultivatable agent of venereal syphilis, has long been the subject of misconceptions and controversy. Decades ago, researchers postulated that T. pallidum's poor surface antigenicity is the basis for its ability to cause persistent infection, but they mistakenly attributed this enigmatic property to the presence of a protective outer coat of serum proteins and mucopolysaccharides. Subsequent studies revealed that the OM is the barrier to antibody binding, that it contains a paucity of integral membrane proteins, and that the preponderance of the spirochete's immunogenic lipoproteins is periplasmic. Since the advent of recombinant DNA technology, the fragility of the OM, its low protein content, and the lack of sequence relatedness between T. pallidum and Gram-negative outer membrane proteins (OMPs) have complicated efforts to characterize molecules residing at the host-pathogen interface. We have overcome these hurdles using the genomic sequence in concert with computational tools to identify proteins predicted to form β-barrels, the hallmark conformation of OMPs in double-membrane organisms and evolutionarily related eukaryotic organelles. We also have employed diverse methodologies to confirm that some candidate OMPs do, in fact, form amphiphilic β-barrels and are surface-exposed in T. pallidum. These studies have led to a structural homology model for BamA and established the bipartite topology of the T. pallidum repeat (Tpr) family of proteins. Recent bioinformatics has identified several structural orthologs for well-characterized Gram-negative OMPs, suggesting that the T. pallidum OMP repertoire is more Gram-negative-like than previously supposed. Lipoprotein adhesins and proteases on the spirochete surface also may contribute to disease pathogenesis and protective immunity.
Collapse
Affiliation(s)
- Justin D Radolf
- Departments of Medicine, Pediatrics, Molecular Biology and Biophysics, Genetics and Genomic Sciences, and Immunology, UConn Health, Farmington, CT 06030-3715, USA.
| | - Sanjiv Kumar
- Department of Medicine, UConn Health, Farmington, CT 06030-3715, USA
| |
Collapse
|
14
|
Liu D, Tong ML, Luo X, Liu LL, Lin LR, Zhang HL, Lin Y, Niu JJ, Yang TC. Profile of the tprK gene in primary syphilis patients based on next-generation sequencing. PLoS Negl Trop Dis 2019; 13:e0006855. [PMID: 30789907 PMCID: PMC6400401 DOI: 10.1371/journal.pntd.0006855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/05/2019] [Accepted: 12/07/2018] [Indexed: 12/04/2022] Open
Abstract
Background The highly variable tprK gene of Treponema pallidum has been acknowledged to be one of the mechanisms that causes persistent infection. Previous studies have mainly focused on the heterogeneity in tprK in propagated strains using a clone-based Sanger approach. Few studies have investigated tprK directly from clinical samples using deep sequencing. Methods/Principal findings We conducted a comprehensive analysis of 14 primary syphilis clinical isolates of T. pallidum via next-generation sequencing to gain better insight into the profile of tprK in primary syphilis patients. Our results showed that there was a mixture of distinct sequences within each V region of tprK. Except for the predominant sequence for each V region as previously reported using the clone-based Sanger approach, there were many minor variants of all strains that were mainly observed at a frequency of 1–5%. Interestingly, the identified distinct sequences within the regions were variable in length and differed by only 3 bp or multiples of 3 bp. In addition, amino acid sequence consistency within each V region was found among the 14 strains. Among the regions, the sequence IASDGGAIKH in V1 and the sequence DVGHKKENAANVNGTVGA in V4 showed a high stability of inter-strain redundancy. Conclusions The seven V regions of the tprK gene in primary syphilis infection demonstrated high diversity; they generally contained a high proportion sequence and numerous low-frequency minor variants, most of which are far below the detection limit of Sanger sequencing. The rampant variation in each V region was regulated by a strict gene conversion mechanism that maintained the length difference to 3 bp or multiples of 3 bp. The highly stable sequence of inter-strain redundancy may indicate that the sequences play a critical role in T. pallidum virulence. These highly stable peptides are also likely to be potential targets for vaccine development. Variations in tprK have been acknowledged to be the major contributors to persistent Treponema pallidum infections. Previous studies were based on the clone-based Sanger approach, and most of them were performed in propagated strains using rabbits, which could not reflect the actual heterogeneous characteristics of tprK in the context of human infection. In the present study, we employed next-generation sequencing (NGS) to explore the profile of tprK directly from 14 patients with primary syphilis. Our results showed a mixture of distinct sequences within each V region of tprK in these clinical samples. First, the length of identified distinct sequences within the region was variable, which differed by only 3 bp or multiples of 3 bp. Then, among the mixtures, a predominant sequence was usually observed for each V region, and the remaining minor variants were mainly observed at a frequency of 1–5%. In addition, there was a scenario of amino acid sequence consistency within the regions among the 14 primary syphilis strains. The identification of the profile of tprK in the context of human primary syphilis infection contributes to further exploration of the pathogenesis of syphilis.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Xi Luo
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Hui-Lin Zhang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jian-Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Zhongshan Hospital, Fujian Medical University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
15
|
Parveen N, Fernandez MC, Haynes AM, Zhang RL, Godornes BC, Centurion-Lara A, Giacani L. Non-pathogenic Borrelia burgdorferi expressing Treponema pallidum TprK and Tp0435 antigens as a novel approach to evaluate syphilis vaccine candidates. Vaccine 2019; 37:1807-1818. [PMID: 30797635 DOI: 10.1016/j.vaccine.2019.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Syphilis is resurgent in many developed countries and still prevalent in developing nations. Current and future control campaigns would benefit from the development of a vaccine, but although promising vaccine candidates were identified among the putative surface-exposed integral outer membrane proteins of the syphilis spirochete, immunization experiments in the rabbit model using recombinant antigens have failed to fully protect animals upon infectious challenge. We speculated that such recombinant immunogens, purified under denaturing conditions from Escherichia coli prior to immunization might not necessarily harbor their original structure, and hypothesized that enhanced protection would result from performing similar immunization/challenge experiments with native antigens. METHODS To test our hypothesis, we engineered non-infectious Borrelia burgdorferi strains to express the tp0897 (tprK) and tp0435 genes of Treponema pallidum subsp. pallidum and immunized two groups of rabbits by injecting recombinant strains intramuscularly with no adjuvant. TprK is a putative integral outer membrane protein of the syphilis agent, while tp0435 encodes the highly immunogenic T. pallidum 17-kDa lipoprotein, a periplasmic antigen that was also shown on the pathogen surface. Following development of a specific host immune response to these antigens as the result of immunization, animals were challenged by intradermal inoculation of T. pallidum. Cutaneous lesion development was monitored and treponemal burden within lesions were assessed by dark-field microscopy and RT-qPCR, in comparison to control rabbits. RESULTS Partial protection was observed in rabbits immunized with B. burgdorferi expressing TprK while immunity to Tp0435 was not protective. Analysis of the humoral response to TprK antigen suggested reactivity to conformational epitopes. CONCLUSIONS Immunization with native antigens might not be sufficient to obtain complete protection to infection. Nonetheless we showed that non-infectious B. burgdorferi can be an effective carrier to deliver and elicit a specific host response to T. pallidum antigens to assess the efficacy of syphilis vaccine candidates.
Collapse
Affiliation(s)
- Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, United States
| | - Mark C Fernandez
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, WA 98104, United States
| | - Austin M Haynes
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, WA 98104, United States
| | - Rui-Li Zhang
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, WA 98104, United States; Department of Dermatology, Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, 214002 Wuxi, China
| | - B Charmie Godornes
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, WA 98104, United States
| | | | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, WA 98104, United States; Department of Global Health, University of Washington, Seattle, WA 98104, United States.
| |
Collapse
|
16
|
Immunotopological Analysis of the Treponema denticola Major Surface Protein (Msp). J Bacteriol 2018; 201:JB.00528-18. [PMID: 30373754 DOI: 10.1128/jb.00528-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
Treponema denticola, one of several recognized periodontal pathogens, is a model organism for studying Treponema physiology and host-microbe interactions. Its major surface protein Msp (or MOSP) comprises an oligomeric outer membrane-associated complex that binds fibronectin, has cytotoxic pore-forming activity, and disrupts several intracellular responses. There are two hypotheses regarding native Msp structure and membrane topology. One hypothesis predicts that the entire Msp protein forms a β-barrel structure similar to that of well-studied outer membrane porins of Gram-negative bacteria. The second hypothesis predicts a bipartite Msp with distinct and separate periplasmic N-terminal and porin-like β-barrel C-terminal domains. The bipartite model, based on bioinformatic analysis of the orthologous Treponema pallidum Tpr proteins, is supported largely by studies of recombinant TprC and Msp polypeptides. The present study reports immunological studies in both T. denticola and Escherichia coli backgrounds to identify a prominent Msp surface epitope (residues 229 to 251 in ATCC 35405) in a domain that differs between strains with otherwise highly conserved Msps. These results were then used to evaluate a series of in silico structural models of representative T. denticola Msps. The data presented here are consistent with a model of Msp as a large-diameter β-barrel porin. This work adds to the knowledge regarding the diverse Msp-like proteins in oral treponemes and may contribute to an understanding of the evolutionary and potential functional relationships between Msps of oral Treponema and the orthologous group of Tpr proteins of T. pallidum. IMPORTANCE Treponema denticola is among a small subset of the oral microbiota contributing to severe periodontal disease. Due to its relative genetic tractability, T. denticola is a model organism for studying Treponema physiology and host-microbe interactions. T. denticola Msp is a highly expressed outer membrane-associated oligomeric protein that binds fibronectin, has cytotoxic pore-forming activity, and disrupts intracellular regulatory pathways. It shares homology with the orthologous group of T. pallidum Tpr proteins, one of which is implicated in T. pallidum in vivo antigenic variation. The outer membrane topologies of both Msp and the Tpr family proteins are unresolved, with conflicting reports on protein domain localization and function. In this study, we combined empirical immunological data derived both from diverse T. denticola strains and from recombinant Msp expression in E. coli with in silico predictive structural modeling of T. denticola Msp membrane topology, to move toward resolution of this important issue in Treponema biology.
Collapse
|
17
|
Strouhal M, Mikalová L, Haviernik J, Knauf S, Bruisten S, Noordhoek GT, Oppelt J, Čejková D, Šmajs D. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Indonesia: Modular structure of several treponemal genes. PLoS Negl Trop Dis 2018; 12:e0006867. [PMID: 30303967 PMCID: PMC6197692 DOI: 10.1371/journal.pntd.0006867] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/22/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Treponema pallidum subsp. pertenue (TPE) is the causative agent of yaws, a multistage disease endemic in tropical regions in Africa, Asia, Oceania, and South America. To date, seven TPE strains have been completely sequenced and analyzed including five TPE strains of human origin (CDC-2, CDC 2575, Gauthier, Ghana-051, and Samoa D) and two TPE strains isolated from the baboons (Fribourg-Blanc and LMNP-1). This study revealed the complete genome sequences of two TPE strains, Kampung Dalan K363 and Sei Geringging K403, isolated in 1990 from villages in the Pariaman region of Sumatra, Indonesia and compared these genome sequences with other known TPE genomes. METHODOLOGY/PRINCIPAL FINDINGS The genomes were determined using the pooled segment genome sequencing method combined with the Illumina sequencing platform resulting in an average coverage depth of 1,021x and 644x for the TPE Kampung Dalan K363 and TPE Sei Geringging K403 genomes, respectively. Both Indonesian TPE strains were genetically related to each other and were more distantly related to other, previously characterized TPE strains. The modular character of several genes, including TP0136 and TP0858 gene orthologs, was identified by analysis of the corresponding sequences. To systematically detect genes potentially having a modular genetic structure, we performed a whole genome analysis-of-occurrence of direct or inverted repeats of 17 or more nucleotides in length. Besides in tpr genes, a frequent presence of repeats was found in the genetic regions spanning TP0126-TP0136, TP0856-TP0858, and TP0896 genes. CONCLUSIONS/SIGNIFICANCE Comparisons of genome sequences of TPE Kampung Dalan K363 and Sei Geringging K403 with other TPE strains revealed a modular structure of several genomic loci including the TP0136, TP0856, and TP0858 genes. Diversification of TPE genomes appears to be facilitated by intra-strain genome recombination events.
Collapse
Affiliation(s)
- Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Haviernik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sascha Knauf
- Work Group Neglected Tropical Diseases, Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Sylvia Bruisten
- Public Health Laboratory, Department of Infectious Diseases GGD Amsterdam, WT Amsterdam, the Netherlands
| | - Gerda T. Noordhoek
- Izore, Centrum Infectieziekten Friesland, EN Leeuwarden, the Netherlands
| | - Jan Oppelt
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Darina Čejková
- Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
18
|
Lukehart SA. New Tools for Syphilis Research. mBio 2018; 9:e01417-18. [PMID: 30065094 PMCID: PMC6069119 DOI: 10.1128/mbio.01417-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Syphilis research has been severely limited by the necessity to propagate Treponema pallidumin vivo in rabbits. After decades of erroneous or irreproducible reports of cultivation of T. pallidum, the recent very convincing report of its successful long-term in vitro propagation opens numerous opportunities for development of genetic tools for studying pathogenesis and protein function, antigenic variation, and surface exposure of antigens. The possibility of more rapid isolation of new strains will expand our knowledge of this organism beyond the century-old Nichols strain.
Collapse
Affiliation(s)
- Sheila A Lukehart
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Šmajs D, Strouhal M, Knauf S. Genetics of human and animal uncultivable treponemal pathogens. INFECTION GENETICS AND EVOLUTION 2018; 61:92-107. [PMID: 29578082 DOI: 10.1016/j.meegid.2018.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
Abstract
Treponema pallidum is an uncultivable bacterium and the causative agent of syphilis (subsp. pallidum [TPA]), human yaws (subsp. pertenue [TPE]), and bejel (subsp. endemicum). Several species of nonhuman primates in Africa are infected by treponemes genetically undistinguishable from known human TPE strains. Besides Treponema pallidum, the equally uncultivable Treponema carateum causes pinta in humans. In lagomorphs, Treponema paraluisleporidarum ecovar Cuniculus and ecovar Lepus are the causative agents of rabbit and hare syphilis, respectively. All uncultivable pathogenic treponemes harbor a relatively small chromosome (1.1334-1.1405 Mbp) and show gene synteny with minimal genetic differences (>98% identity at the DNA level) between subspecies and species. While uncultivable pathogenic treponemes contain a highly conserved core genome, there are a number of highly variable and/or recombinant chromosomal loci. This is also reflected in the occurrence of intrastrain heterogeneity (genetic diversity within an infecting bacterial population). Molecular differences at several different chromosomal loci identified among TPA strains or isolates have been used for molecular typing and the epidemiological characterization of syphilis isolates. This review summarizes genome structure of uncultivable pathogenic treponemes including genetically variable regions.
Collapse
Affiliation(s)
- David Šmajs
- Department of Biology, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic.
| | - Michal Strouhal
- Department of Biology, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic.
| | - Sascha Knauf
- Work Group Neglected Tropical Diseases, Pathology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany,.
| |
Collapse
|
20
|
Abstract
Treponema pallidum subspecies pallidum (T. pallidum) causes syphilis via sexual exposure or via vertical transmission during pregnancy. T. pallidum is renowned for its invasiveness and immune-evasiveness; its clinical manifestations result from local inflammatory responses to replicating spirochaetes and often imitate those of other diseases. The spirochaete has a long latent period during which individuals have no signs or symptoms but can remain infectious. Despite the availability of simple diagnostic tests and the effectiveness of treatment with a single dose of long-acting penicillin, syphilis is re-emerging as a global public health problem, particularly among men who have sex with men (MSM) in high-income and middle-income countries. Syphilis also causes several hundred thousand stillbirths and neonatal deaths every year in developing nations. Although several low-income countries have achieved WHO targets for the elimination of congenital syphilis, an alarming increase in the prevalence of syphilis in HIV-infected MSM serves as a strong reminder of the tenacity of T. pallidum as a pathogen. Strong advocacy and community involvement are needed to ensure that syphilis is given a high priority on the global health agenda. More investment is needed in research on the interaction between HIV and syphilis in MSM as well as into improved diagnostics, a better test of cure, intensified public health measures and, ultimately, a vaccine.
Collapse
Affiliation(s)
- Rosanna W Peeling
- London School of Hygiene &Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - David Mabey
- London School of Hygiene &Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Mary L Kamb
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xiang-Sheng Chen
- National Center for STD Control, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Dermatology, Nanjing, China
| | - Justin D Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Adele S Benzaken
- Department of Surveillance, Prevention and Control of STI, HIV/AIDS and Viral Hepatitis, Ministry of Health, Brasília, Brazil
| |
Collapse
|
21
|
Kenyon C, Osbak KK, Crucitti T, Kestens L. The immunological response to syphilis differs by HIV status; a prospective observational cohort study. BMC Infect Dis 2017; 17:111. [PMID: 28143443 PMCID: PMC5286814 DOI: 10.1186/s12879-017-2201-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/11/2017] [Indexed: 12/18/2022] Open
Abstract
Background It is not known if there is a difference in the immune response to syphilis between HIV-infected and uninfected individuals. Methods We prospectively recruited all patients with a new diagnosis of syphilis and tested their plasma for IFNα, IFNγ, IL-1β, IL-12p40, IL-12p70, IP-10, MCP-1, MIP-1α, MIP-1β, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10 and IL-17A at baseline pre-treatment and 6 months following therapy. Results A total of 79 HIV-infected [44 primary/secondary syphilis (PSS) and 35 latent syphilis (LS)] and 12 HIV-uninfected (10 PSS and 2 LS) cases of syphilis and 30 HIV-infected controls were included in the study. At the baseline visit, compared to the control group, concentrations of IL-10 were significantly elevated in the HIV-infected and uninfected groups. The level of IL-10 was significantly higher in the HIV-infected compared to the HIV-uninfected PSS group (25.3 pg/mL (IQR, 4.56–41.76) vs 2.73 pg/mL (IQR, 1.55–9.02), P = 0.0192). In the HIV-infected PSS group (but not the HIV-infected LS or HIV-uninfected PSS groups) the IP-10, MIP-1b, IL-6 and IL-8 were raised compared to the controls. IL-10 levels decreased but did not return to control baseline values by 6 months in HIV infected PSS and LS and HIV uninfected PSS. Conclusion PSS and LS in HIV-infected individuals is characterized by an increase in inflammatory and anti-inflammatory cytokines such as IL-10. The increase of IL-10 is greater in HIV-infected than uninfected individuals. Further work is required to ascertain if this is part of an immunological profile that correlates with adverse outcomes such as serofast syphilis and neurosyphilis, in HIV-infected individuals. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2201-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chris Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium. .,Division of Infectious Diseases and HIV Medicine, University of Cape Town, Anzio Road, Observatory 7700, Cape Town, South Africa.
| | | | - Tania Crucitti
- HIV/STI Reference Laboratory, Institute of Tropical Medicine, Antwerp, Belgium
| | - Luc Kestens
- Immunology Unit, Institute of Tropical Medicine,, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
22
|
Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation. Nat Microbiol 2016; 2:16190. [PMID: 27748767 DOI: 10.1038/nmicrobiol.2016.190] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/31/2016] [Indexed: 11/08/2022]
Abstract
Insights into the genomic adaptive traits of Treponema pallidum, the causative bacterium of syphilis, have long been hampered due to the absence of in vitro culture models and the constraints associated with its propagation in rabbits. Here, we have bypassed the culture bottleneck by means of a targeted strategy never applied to uncultivable bacterial human pathogens to directly capture whole-genome T. pallidum data in the context of human infection. This strategy has unveiled a scenario of discreet T. pallidum interstrain single-nucleotide-polymorphism-based microevolution, contrasting with a rampant within-patient genetic heterogeneity mainly targeting multiple phase-variable loci and a major antigen-coding gene (tprK). TprK demonstrated remarkable variability and redundancy, intra- and interpatient, suggesting ongoing parallel adaptive diversification during human infection. Some bacterial functions (for example, flagella- and chemotaxis-associated) were systematically targeted by both inter- and intrastrain single nucleotide polymorphisms, as well as by ongoing within-patient phase variation events. Finally, patient-derived genomes possess mutations targeting a penicillin-binding protein coding gene (mrcA) that had never been reported, unveiling it as a candidate target to investigate the impact on the susceptibility to penicillin. Our findings decode the major genetic mechanisms by which T. pallidum promotes immune evasion and survival, and demonstrate the exceptional power of characterizing evolving pathogen subpopulations during human infection.
Collapse
|
23
|
Osbak KK, Houston S, Lithgow KV, Meehan CJ, Strouhal M, Šmajs D, Cameron CE, Van Ostade X, Kenyon CR, Van Raemdonck GA. Characterizing the Syphilis-Causing Treponema pallidum ssp. pallidum Proteome Using Complementary Mass Spectrometry. PLoS Negl Trop Dis 2016; 10:e0004988. [PMID: 27606673 PMCID: PMC5015957 DOI: 10.1371/journal.pntd.0004988] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/19/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The spirochete bacterium Treponema pallidum ssp. pallidum is the etiological agent of syphilis, a chronic multistage disease. Little is known about the global T. pallidum proteome, therefore mass spectrometry studies are needed to bring insights into pathogenicity and protein expression profiles during infection. METHODOLOGY/PRINCIPAL FINDINGS To better understand the T. pallidum proteome profile during infection, we studied T. pallidum ssp. pallidum DAL-1 strain bacteria isolated from rabbits using complementary mass spectrometry techniques, including multidimensional peptide separation and protein identification via matrix-assisted laser desorption ionization-time of flight (MALDI-TOF/TOF) and electrospray ionization (ESI-LTQ-Orbitrap) tandem mass spectrometry. A total of 6033 peptides were detected, corresponding to 557 unique T. pallidum proteins at a high level of confidence, representing 54% of the predicted proteome. A previous gel-based T. pallidum MS proteome study detected 58 of these proteins. One hundred fourteen of the detected proteins were previously annotated as hypothetical or uncharacterized proteins; this is the first account of 106 of these proteins at the protein level. Detected proteins were characterized according to their predicted biological function and localization; half were allocated into a wide range of functional categories. Proteins annotated as potential membrane proteins and proteins with unclear functional annotations were subjected to an additional bioinformatics pipeline analysis to facilitate further characterization. A total of 116 potential membrane proteins were identified, of which 16 have evidence supporting outer membrane localization. We found 8/12 proteins related to the paralogous tpr gene family: TprB, TprC/D, TprE, TprG, TprH, TprI and TprJ. Protein abundance was semi-quantified using label-free spectral counting methods. A low correlation (r = 0.26) was found between previous microarray signal data and protein abundance. CONCLUSIONS This is the most comprehensive description of the global T. pallidum proteome to date. These data provide valuable insights into in vivo T. pallidum protein expression, paving the way for improved understanding of the pathogenicity of this enigmatic organism.
Collapse
Affiliation(s)
- Kara K Osbak
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karen V Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Conor J Meehan
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Xaveer Van Ostade
- Laboratory for Protein Science, Proteomics and Epigenetic Signaling (PPES) and Centre for Proteomics (CFP), University of Antwerp, Wilrijk, Belgium
| | - Chris R Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Geert A Van Raemdonck
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory for Protein Science, Proteomics and Epigenetic Signaling (PPES) and Centre for Proteomics (CFP), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
24
|
Houston S, Taylor JS, Denchev Y, Hof R, Zuerner RL, Cameron CE. Conservation of the Host-Interacting Proteins Tp0750 and Pallilysin among Treponemes and Restriction of Proteolytic Capacity to Treponema pallidum. Infect Immun 2015; 83:4204-16. [PMID: 26283341 PMCID: PMC4598410 DOI: 10.1128/iai.00643-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022] Open
Abstract
The spirochete Treponema pallidum subsp. pallidum is the causative agent of syphilis, a chronic, sexually transmitted infection characterized by multiple symptomatic and asymptomatic stages. Although several other species in the genus are able to cause or contribute to disease, T. pallidum differs in that it is able to rapidly disseminate via the bloodstream to tissue sites distant from the site of initial infection. It is also the only Treponema species able to cross both the blood-brain and placental barriers. Previously, the T. pallidum proteins, Tp0750 and Tp0751 (also called pallilysin), were shown to degrade host proteins central to blood coagulation and basement membrane integrity, suggesting a role for these proteins in T. pallidum dissemination and tissue invasion. In the present study, we characterized Tp0750 and Tp0751 sequence variation in a diversity of pathogenic and nonpathogenic treponemes. We also determined the proteolytic potential of the orthologs from the less invasive species Treponema denticola and Treponema phagedenis. These analyses showed high levels of sequence similarity among Tp0750 orthologs from pathogenic species. For pallilysin, lower levels of sequence conservation were observed between this protein and orthologs from other treponemes, except for the ortholog from the highly invasive rabbit venereal syphilis-causing Treponema paraluiscuniculi. In vitro host component binding and degradation assays demonstrated that pallilysin and Tp0750 orthologs from the less invasive treponemes tested were not capable of binding or degrading host proteins. The results show that pallilysin and Tp0750 host protein binding and degradative capability is positively correlated with treponemal invasiveness.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John S Taylor
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Yavor Denchev
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Rebecca Hof
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Richard L Zuerner
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, USA Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Research, Uppsala, Sweden
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
25
|
Čejková D, Strouhal M, Norris SJ, Weinstock GM, Šmajs D. A Retrospective Study on Genetic Heterogeneity within Treponema Strains: Subpopulations Are Genetically Distinct in a Limited Number of Positions. PLoS Negl Trop Dis 2015; 9:e0004110. [PMID: 26436423 PMCID: PMC4593590 DOI: 10.1371/journal.pntd.0004110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/02/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pathogenic uncultivable treponemes comprise human and animal pathogens including agents of syphilis, yaws, bejel, pinta, and venereal spirochetosis in rabbits and hares. A set of 10 treponemal genome sequences including those of 4 Treponema pallidum ssp. pallidum (TPA) strains (Nichols, DAL-1, Mexico A, SS14), 4 T. p. ssp. pertenue (TPE) strains (CDC-2, Gauthier, Samoa D, Fribourg-Blanc), 1 T. p. ssp. endemicum (TEN) strain (Bosnia A) and one strain (Cuniculi A) of Treponema paraluisleporidarum ecovar Cuniculus (TPLC) were examined with respect to the presence of nucleotide intrastrain heterogeneous sites. METHODOLOGY/PRINCIPAL FINDINGS The number of identified intrastrain heterogeneous sites in individual genomes ranged between 0 and 7. Altogether, 23 intrastrain heterogeneous sites (in 17 genes) were found in 5 out of 10 investigated treponemal genomes including TPA strains Nichols (n = 5), DAL-1 (n = 4), and SS14 (n = 7), TPE strain Samoa D (n = 1), and TEN strain Bosnia A (n = 5). Although only one heterogeneous site was identified among 4 tested TPE strains, 16 such sites were identified among 4 TPA strains. Heterogeneous sites were mostly strain-specific and were identified in four tpr genes (tprC, GI, I, K), in genes involved in bacterial motility and chemotaxis (fliI, cheC-fliY), in genes involved in cell structure (murC), translation (prfA), general and DNA metabolism (putative SAM dependent methyltransferase, topA), and in seven hypothetical genes. CONCLUSIONS/SIGNIFICANCE Heterogeneous sites likely represent both the selection of adaptive changes during infection of the host as well as an ongoing diversifying evolutionary process.
Collapse
Affiliation(s)
- Darina Čejková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Steven J. Norris
- Pathology & Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - George M. Weinstock
- The Genome Institute, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
26
|
Abstract
Thiamine pyrophosphate (TPP), the biologically active form of thiamine (also known as vitamin B1), is an essential cofactor for several important enzymes involved in carbohydrate metabolism, and therefore, it is required for all living organisms. We recently found that a thiamine-binding protein (TDE_0143) is essential for the survival of Treponema denticola, an important bacterial pathogen that is associated with human periodontitis. In this report, we provide experimental evidence showing that TP_0144, a homolog of TDE_0143 from the syphilis spirochete Treponema pallidum, is a thiamine-binding protein that has biochemical features and functions that are similar to those of TDE_0143. First, structural modeling analysis reveal that both TDE_0143 and TP_0144 contain a conserved TPP-binding site and share similar structures to the thiamine-binding protein of Escherichia coli. Second, biochemical analysis shows that these two proteins bind to TPP with similar dissociation constant (Kd) values (TDE_0143, Kd of 36.50 nM; TP_0144, Kd of 32.62 nM). Finally, heterologous expression of TP_0144 in a ΔTDE_0143 strain, a previously constructed TDE_0143 mutant of T. denticola, fully restores its growth and TPP uptake when exogenous thiamine is limited. Collectively, these results indicate that TP_0144 is a thiamine-binding protein that is indispensable for T. pallidum to acquire exogenous thiamine, a key nutrient for bacterial survival. In addition, the studies shown in this report further underscore the feasibility of using T. denticola as a platform to study the biology and pathogenicity of T. pallidum and probably other uncultivable treponemal species as well.
Collapse
|
27
|
Reid TB, Molini BJ, Fernandez MC, Lukehart SA. Antigenic variation of TprK facilitates development of secondary syphilis. Infect Immun 2014; 82:4959-67. [PMID: 25225245 PMCID: PMC4249288 DOI: 10.1128/iai.02236-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022] Open
Abstract
Although primary syphilis lesions heal spontaneously, the infection is chronic, with subsequent clinical stages. Healing of the primary chancre occurs as antibodies against outer membrane antigens facilitate opsonophagocytosis of the bacteria by activated macrophages. TprK is an outer membrane protein that undergoes antigenic variation at 7 variable regions, and variants are selected by immune pressure. We hypothesized that individual TprK variants escape immune clearance and seed new disseminated lesions to cause secondary syphilis. As in human syphilis, infected rabbits may develop disseminated secondary skin lesions. This study explores the nature of secondary syphilis, specifically, the contribution of antigenic variation to the development of secondary lesions. Our data from the rabbit model show that the odds of secondary lesions containing predominately TprK variant treponemes is 3.3 times higher than the odds of finding TprK variants in disseminated primary lesions (odds ratio [OR] = 3.3 [95% confidence interval {CI}, 0.98 to 11.0]; P = 0.055) and that 96% of TprK variant secondary lesions are likely seeded by single treponemes. Analysis of antibody responses demonstrates significantly higher antibody titers to tprK variable region sequences found in the inoculum compared to reactivity to tprK variant sequences found in newly arising secondary lesions. This suggests that tprK variants escape the initial immune response raised against the V regions expressed in the inoculum. These data further support a role for TprK in immune evasion and suggest that the ability of TprK variants to persist despite a robust immune response is instrumental in the development of later stages of syphilis.
Collapse
Affiliation(s)
- Tara B Reid
- Interdisciplinary Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Barbara J Molini
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Mark C Fernandez
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sheila A Lukehart
- Interdisciplinary Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, Washington, USA Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
28
|
Nechvátal L, Pětrošová H, Grillová L, Pospíšilová P, Mikalová L, Strnadel R, Kuklová I, Kojanová M, Kreidlová M, Vaňousová D, Procházka P, Zákoucká H, Krchňáková A, Šmajs D. Syphilis-causing strains belong to separate SS14-like or Nichols-like groups as defined by multilocus analysis of 19 Treponema pallidum strains. Int J Med Microbiol 2014; 304:645-53. [DOI: 10.1016/j.ijmm.2014.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 11/24/2022] Open
|
29
|
Abstract
The agents of human treponematoses include four closely related members of the genus Treponema: three subspecies of Treponema pallidum plus Treponema carateum. T. pallidum subsp. pallidum causes venereal syphilis, while T. pallidum subsp. pertenue, T. pallidum subsp. endemicum, and T. carateum are the agents of the endemic treponematoses yaws, bejel (or endemic syphilis), and pinta, respectively. All human treponematoses share remarkable similarities in pathogenesis and clinical manifestations, consistent with the high genetic and antigenic relatedness of their etiological agents. Distinctive features have been identified in terms of age of acquisition, most common mode of transmission, and capacity for invasion of the central nervous system and fetus, although the accuracy of these purported differences is debated among investigators and no biological basis for these differences has been identified to date. In 2012, the World Health Organization (WHO) officially set a goal for yaws eradication by 2020. This challenging but potentially feasible endeavor is favored by the adoption of oral azithromycin for mass treatment and the currently focused distribution of yaws and endemic treponematoses and has revived global interest in these fascinating diseases and their causative agents.
Collapse
Affiliation(s)
- Lorenzo Giacani
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sheila A. Lukehart
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
30
|
Li K, Wang C, Lu H, Gu X, Guan Z, Zhou P. Regulatory T cells in peripheral blood and cerebrospinal fluid of syphilis patients with and without neurological involvement. PLoS Negl Trop Dis 2013; 7:e2528. [PMID: 24244772 PMCID: PMC3820703 DOI: 10.1371/journal.pntd.0002528] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 09/28/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Syphilis, a sexually transmitted disease caused by spirochetal bacterium Treponema pallidum, can progress to affect the central nervous system, causing neurosyphilis. Accumulating evidence suggest that regulatory T cells (Tregs) may play an important role in the pathogenesis of syphilis. However, little is known about Treg response in neurosyphilis. METHODOLOGY/PRINCIPAL FINDINGS We analyzed Treg frequencies and Transforming Growth Factor-β (TGF-β) levels in the blood and CSF of 431 syphilis patients without neurological involvement, 100 neurosyphilis patients and 100 healthy donors. Suppressive function of Tregs in peripheral blood was also assessed. Among syphilis patients without neurological involvement, we found that secondary and serofast patients had increased Treg percentages, suppressive function and TGF-β levels in peripheral blood compared to healthy donors. Serum Rapid Plasma Reagin (RPR) titers were positively correlated with Treg numbers in these patients. Compared to these syphilis patients without neurological involvement, neurosyphilis patients had higher Treg frequency in peripheral blood. In the central nervous system, neurosyphilis patients had higher numbers of leukocytes in CSF compared to syphilis patients without neurological involvement. CD4(+) T cells were the predominant cell type in the inflammatory infiltrates in CSF of neurosyphilis patients. Interestingly, among these neurosyphilis patients, a significant decrease in CSF CD4(+) CD25(high) Treg percentage and number was observed in symptomatic neurosyphilis patients compared to those of asymptomatic neurosyphilis patients, which may be associated with low CSF TGF-β levels. CONCLUSIONS Our findings suggest that Tregs might play an important role in both bacterial persistence and neurologic compromise in the pathogenesis of syphilis.
Collapse
Affiliation(s)
- Kang Li
- STD Institute, Shanghai Skin Disease Hospital, Shanghai, People's Republic of China
| | - Cuini Wang
- STD Institute, Shanghai Skin Disease Hospital, Shanghai, People's Republic of China
| | - Haikong Lu
- STD Institute, Shanghai Skin Disease Hospital, Shanghai, People's Republic of China
| | - Xin Gu
- STD Institute, Shanghai Skin Disease Hospital, Shanghai, People's Republic of China
| | - Zhifang Guan
- STD Institute, Shanghai Skin Disease Hospital, Shanghai, People's Republic of China
| | - Pingyu Zhou
- STD Institute, Shanghai Skin Disease Hospital, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Zobaníková M, Mikolka P, Čejková D, Pospíšilová P, Chen L, Strouhal M, Qin X, Weinstock GM, Šmajs D. Complete genome sequence of Treponema pallidum strain DAL-1. Stand Genomic Sci 2012; 7:12-21. [PMID: 23449808 PMCID: PMC3570794 DOI: 10.4056/sigs.2615838] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Treponema pallidum strain DAL-1 is a human uncultivable pathogen causing the sexually transmitted disease syphilis. Strain DAL-1 was isolated from the amniotic fluid of a pregnant woman in the secondary stage of syphilis. Here we describe the 1,139,971 bp long genome of T. pallidum strain DAL-1 which was sequenced using two independent sequencing methods (454 pyrosequencing and Illumina). In rabbits, strain DAL-1 replicated better than the T. pallidum strain Nichols. The comparison of the complete DAL-1 genome sequence with the Nichols sequence revealed a list of genetic differences that are potentially responsible for the increased rabbit virulence of the DAL-1 strain.
Collapse
Affiliation(s)
- Marie Zobaníková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavol Mikolka
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Darina Čejková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- The Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Petra Pospíšilová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Lei Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- The Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- The Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - George M. Weinstock
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- The Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
32
|
Giacani L, Brandt SL, Puray-Chavez M, Reid TB, Godornes C, Molini BJ, Benzler M, Hartig JS, Lukehart SA, Centurion-Lara A. Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J Bacteriol 2012; 194:4208-25. [PMID: 22661689 PMCID: PMC3416249 DOI: 10.1128/jb.00863-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/29/2012] [Indexed: 11/20/2022] Open
Abstract
Although the three Treponema pallidum subspecies (T. pallidum subsp. pallidum, T. pallidum subsp. pertenue, and T. pallidum subsp. endemicum), Treponema paraluiscuniculi, and the unclassified Fribourg-Blanc treponeme cause clinically distinct diseases, these pathogens are genetically and antigenically highly related and are able to cause persistent infection. Recent evidence suggests that the putative surface-exposed variable antigen TprK plays an important role in both treponemal immune evasion and persistence. tprK heterogeneity is generated by nonreciprocal gene conversion between the tprK expression site and donor sites. Although each of the above-mentioned species and subspecies has a functional tprK antigenic variation system, it is still unclear why the level of expression and the rate at which tprK diversifies during infection can differ significantly among isolates. To identify genomic differences that might affect the generation and expression of TprK variants among these pathogens, we performed comparative sequence analysis of the donor sites, as well as the tprK expression sites, among eight T. pallidum subsp. pallidum isolates (Nichols Gen, Nichols Sea, Chicago, Sea81-4, Dal-1, Street14, UW104, and UW126), three T. pallidum subsp. pertenue isolates (Gauthier, CDC2, and Samoa D), one T. pallidum subsp. endemicum isolate (Iraq B), the unclassified Fribourg-Blanc isolate, and the Cuniculi A strain of T. paraluiscuniculi. Synteny and sequence conservation, as well as deletions and insertions, were found in the regions harboring the donor sites. These data suggest that the tprK recombination system is harbored within dynamic genomic regions and that genomic differences might be an important key to explain discrepancies in generation and expression of tprK variants among these Treponema isolates.
Collapse
Affiliation(s)
- Lorenzo Giacani
- Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Giacani L, Chattopadhyay S, Centurion-Lara A, Jeffrey BM, Le HT, Molini BJ, Lukehart SA, Sokurenko EV, Rockey DD. Footprint of positive selection in Treponema pallidum subsp. pallidum genome sequences suggests adaptive microevolution of the syphilis pathogen. PLoS Negl Trop Dis 2012; 6:e1698. [PMID: 22720110 PMCID: PMC3373638 DOI: 10.1371/journal.pntd.0001698] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 05/02/2012] [Indexed: 11/19/2022] Open
Abstract
In the rabbit model of syphilis, infection phenotypes associated with the Nichols and Chicago strains of Treponema pallidum (T. pallidum), though similar, are not identical. Between these strains, significant differences are found in expression of, and antibody responses to some candidate virulence factors, suggesting the existence of functional genetic differences between isolates. The Chicago strain genome was therefore sequenced and compared to the Nichols genome, available since 1998. Initial comparative analysis suggested the presence of 44 single nucleotide polymorphisms (SNPs), 103 small (≤3 nucleotides) indels, and 1 large (1204 bp) insertion in the Chicago genome with respect to the Nichols genome. To confirm the above findings, Sanger sequencing was performed on most loci carrying differences using DNA from Chicago and the Nichols strain used in the original T. pallidum genome project. A majority of the previously identified differences were found to be due to errors in the published Nichols genome, while the accuracy of the Chicago genome was confirmed. However, 20 SNPs were confirmed between the two genomes, and 16 (80.0%) were found in coding regions, with all being of non-synonymous nature, strongly indicating action of positive selection. Sequencing of 16 genomic loci harboring SNPs in 12 additional T. pallidum strains, (SS14, Bal 3, Bal 7, Bal 9, Sea 81-3, Sea 81-8, Sea 86-1, Sea 87-1, Mexico A, UW231B, UW236B, and UW249C), was used to identify "Chicago-" or "Nichols -specific" differences. All but one of the 16 SNPs were "Nichols-specific", with Chicago having identical sequences at these positions to almost all of the additional strains examined. These mutations could reflect differential adaptation of the Nichols strain to the rabbit host or pathoadaptive mutations acquired during human infection. Our findings indicate that SNPs among T. pallidum strains emerge under positive selection and, therefore, are likely to be functional in nature.
Collapse
Affiliation(s)
- Lorenzo Giacani
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Smajs D, Norris SJ, Weinstock GM. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2012; 12:191-202. [PMID: 22198325 PMCID: PMC3786143 DOI: 10.1016/j.meegid.2011.12.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 02/08/2023]
Abstract
Pathogenic uncultivable treponemes, similar to syphilis-causing Treponema pallidum subspecies pallidum, include T. pallidum ssp. pertenue, T. pallidum ssp. endemicum and Treponema carateum, which cause yaws, bejel and pinta, respectively. Genetic analyses of these pathogens revealed striking similarity among these bacteria and also a high degree of similarity to the rabbit pathogen, Treponema paraluiscuniculi, a treponeme not infectious to humans. Genome comparisons between pallidum and non-pallidum treponemes revealed genes with potential involvement in human infectivity, whereas comparisons between pallidum and pertenue treponemes identified genes possibly involved in the high invasivity of syphilis treponemes. Genetic variability within syphilis strains is considered as the basis of syphilis molecular epidemiology with potential to detect more virulent strains, whereas genetic variability within a single strain is related to its ability to elude the immune system of the host. Genome analyses also shed light on treponemal evolution and on chromosomal targets for molecular diagnostics of treponemal infections.
Collapse
Affiliation(s)
- David Smajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic.
| | | | | |
Collapse
|
35
|
Ho EL, Lukehart SA. Syphilis: using modern approaches to understand an old disease. J Clin Invest 2011; 121:4584-92. [PMID: 22133883 DOI: 10.1172/jci57173] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Syphilis is a fascinating and perplexing infection, with protean clinical manifestations and both diagnostic and management ambiguities. Treponema pallidum subsp. pallidum, the agent of syphilis, is challenging to study in part because it cannot be cultured or genetically manipulated. Here, we review recent progress in the application of modern molecular techniques to understanding the biological basis of this multistage disease and to the development of new tools for diagnosis, for predicting efficacy of treatment with alternative antibiotics, and for studying the transmission of infection through population networks.
Collapse
Affiliation(s)
- Emily L Ho
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | | |
Collapse
|
36
|
Further evaluation of the characteristics of Treponema pallidum–specific IgM antibody in syphilis serofast reaction patients. Diagn Microbiol Infect Dis 2011; 71:201-7. [DOI: 10.1016/j.diagmicrobio.2011.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/20/2011] [Accepted: 07/20/2011] [Indexed: 11/16/2022]
|
37
|
Marra CM, Sahi SK, Tantalo LC, Godornes C, Reid T, Behets F, Rompalo A, Klausner JD, Yin YP, Mulcahy F, Golden MR, Centurion-Lara A, Lukehart SA. Enhanced molecular typing of treponema pallidum: geographical distribution of strain types and association with neurosyphilis. J Infect Dis 2010; 202:1380-8. [PMID: 20868271 PMCID: PMC3114648 DOI: 10.1086/656533] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Strain typing is a tool for determining the diversity and epidemiology of infections. METHODS Treponema pallidum DNA was isolated from 158 patients with syphilis from the United States, China, Ireland, and Madagascar and from 15 T. pallidum isolates. Six typing targets were assessed: (1) the number of 60‐bp repeats in the acidic repeat protein gene, (2) restriction fragment length polymorphism (RFLP) analysis of T. pallidum repeat (tpr) subfamily II genes, (3) RFLP analysis of the tprC gene, (4) determination of tprD allele in the tprD gene locus, (5) the presence of a 51‐bp insertion between tp0126 and tp0127, and (6) sequence analysis of an 84‐bp region of tp0548. The combination of targets 1 and 2 comprises the Centers for Disease Control and Prevention (CDC) T. pallidum subtyping method. RESULTS Adding sequence analysis of tp0548 to the CDC method yielded the most discriminating typing system. Twenty‐five strain types were identified and designated as "CDC subtype/tp0548 sequence type." Type 14d/f was found in samples from 5 of 6 locations. In Seattle, Washington, strain types changed from 1999 through 2008 (P < .001). Twenty‐one (50%) of 42 patients infected with type 14d/f had neurosyphilis compared with 10 (24%) of 41 patients infected with any of the other types combined (P = .02). CONCLUSION We describe an enhanced T. pallidum strain typing system that shows biological and clinical relevance.
Collapse
Affiliation(s)
- Christina M. Marra
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Sharon K. Sahi
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Lauren C. Tantalo
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Charmie Godornes
- Department of Medicine (Infectious Diseases), University of Washington School of Medicine, Seattle, WA, USA
| | - Tara Reid
- Department of Medicine (Infectious Diseases), University of Washington School of Medicine, Seattle, WA, USA
| | - Frieda Behets
- University of North Carolina Chapel Hill, Departments of Epidemiology, Gillings School of Global Public Health and Medicine, Chapel Hill, NC, USA
| | - Anne Rompalo
- Departments of Medicine (Infectious Diseases) and Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Yue-Ping Yin
- Department of Reference STD Laboratory, National Center for STD Control, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Dermatology, Nanjing, China
| | - Fiona Mulcahy
- Department of Genitourinary Medicine and Infectious Diseases, St James Hospital and Trinity College, Dublin, Ireland
| | - Matthew R. Golden
- Department of Medicine (Infectious Diseases), University of Washington School of Medicine, Seattle, WA, USA
- Public Health - Seattle & King County, WA, USA
| | - Arturo Centurion-Lara
- Department of Medicine (Infectious Diseases), University of Washington School of Medicine, Seattle, WA, USA
| | - Sheila A. Lukehart
- Department of Medicine (Infectious Diseases), University of Washington School of Medicine, Seattle, WA, USA
- Department of Global Health, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
38
|
Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun 2010; 78:5178-94. [PMID: 20876295 DOI: 10.1128/iai.00834-10] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Treponema pallidum reacts poorly with the antibodies present in rabbit and human syphilitic sera, a property attributed to the paucity of proteins in its outer membrane. To better understand the basis for the syphilis spirochete's "stealth pathogenicity," we used a dual-label, 3-step amplified assay in which treponemes encapsulated in gel microdroplets were probed with syphilitic sera in parallel with anti-FlaA antibodies. A small (approximately 5 to 10%) but reproducible fraction of intact treponemes bound IgG and/or IgM antibodies. Three lines of evidence supported the notion that the surface antigens were likely β-barrel-forming outer membrane proteins (OMPs): (i) surface labeling with anti-lipoidal (VDRL) antibodies was not observed, (ii) immunoblot analysis confirmed prior results showing that T. pallidum glycolipids are not immunoreactive, and (iii) labeling of intact organisms was not appreciably affected by proteinase K (PK) treatment. With this method, we also demonstrate that TprK (TP0897), an extensively studied candidate OMP, and TP0136, a lipoprotein recently reported to be surface exposed, are both periplasmic. Consistent with the immunolabeling studies, TprK was also found to lack amphiphilicity, a characteristic property of β-barrel-forming proteins. Using a consensus computational framework that combined subcellular localization and β-barrel structural prediction tools, we generated ranked groups of candidate rare OMPs, the predicted T. pallidum outer membrane proteome (OMPeome), which we postulate includes the surface-exposed molecules detected by our enhanced gel microdroplet assay. In addition to underscoring the syphilis spirochete's remarkably poor surface antigenicity, our findings help to explain the complex and shifting balance between pathogen and host defenses that characterizes syphilitic infection.
Collapse
|
39
|
Complete genome sequence and annotation of the Treponema pallidum subsp. pallidum Chicago strain. J Bacteriol 2010; 192:2645-6. [PMID: 20348263 DOI: 10.1128/jb.00159-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In syphilis research, the Nichols strain of Treponema pallidum, isolated in 1912, has been the most widely studied. Recently, important differences among T. pallidum strains emerged; therefore, we sequenced and annotated the Chicago strain genome to facilitate and encourage the use of this strain in studying the pathogenesis of syphilis.
Collapse
|
40
|
Giacani L, Molini BJ, Kim EY, Godornes BC, Leader BT, Tantalo LC, Centurion-Lara A, Lukehart SA. Antigenic variation in Treponema pallidum: TprK sequence diversity accumulates in response to immune pressure during experimental syphilis. THE JOURNAL OF IMMUNOLOGY 2010; 184:3822-9. [PMID: 20190145 DOI: 10.4049/jimmunol.0902788] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pathogens that cause chronic infections often employ antigenic variation to evade the immune response and persist in the host. In Treponema pallidum (T. pallidum), the causative agent of syphilis, the TprK Ag undergoes variation of seven V regions (V1-V7) by nonreciprocal recombination of silent donor cassettes with the tprK expression site. These V regions are the targets of the host humoral immune response during experimental infection. The present study addresses the causal role of the acquired immune response in the selection of TprK variants in two ways: 1) by investigating TprK variants arising in immunocompetent versus immunosuppressed hosts; and 2) by investigating the effect of prior specific immunization on selection of TprK variants during infection. V region diversity, particularly in V6, accumulates more rapidly in immunocompetent rabbits than in pharmacologically immunosuppressed rabbits (treated with weekly injections of methylprednisolone acetate). In a complementary experiment, rabbits preimmunized with V6 region synthetic peptides had more rapid accumulation of V6 variant treponemes than control rabbits. These studies demonstrate that the host immune response selects against specific TprK epitopes expressed on T. pallidum, resulting in immune selection of new TprK variants during infection, confirming a role for antigenic variation in syphilis.
Collapse
Affiliation(s)
- Lorenzo Giacani
- Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Palmer GH, Bankhead T, Lukehart SA. 'Nothing is permanent but change'- antigenic variation in persistent bacterial pathogens. Cell Microbiol 2009; 11:1697-705. [PMID: 19709057 DOI: 10.1111/j.1462-5822.2009.01366.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Pathogens persist in immunocompetent mammalian hosts using various strategies, including evasion of immune effectors by antigenic variation. Among highly antigenically variant bacteria, gene conversion is used to generate novel expressed variants from otherwise silent donor sequences. Recombination using oligonucleotide segments from multiple donors is a combinatorial mechanism that tremendously expands the variant repertoire, allowing thousands of variants to be generated from a relatively small donor pool. Three bacterial pathogens, each encoded by a small genome (< 1.2 Mb), illustrate this variant generating capacity and its role in persistent infection. Borrelia burgdorferi VlsE diversity is encoded and expressed on a linear plasmid required for persistence and recent experiments have demonstrated that VlsE recombination is necessary for persistence in the immunocompetent host. In contrast, both Treponema pallidum TprK and Anaplasma marginale Msp2 expression sites and donors are chromosomally encoded. Both T. pallidum and A. marginale generate antigenic variants in vivo in individual hosts and studies at the population level reveal marked strain diversity in the variant repertoire that may underlie pathogen strain structure and the capacity for re-infection and heterologous strain superinfection. Here, we review gene conversion in bacterial antigenic variation and discuss the short- and long-term selective pressures that shape the variant repertoire.
Collapse
Affiliation(s)
- Guy H Palmer
- Department of Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | |
Collapse
|
42
|
Heymans R, Kolader ME, van der Helm JJ, Coutinho RA, Bruisten SM. TprK gene regions are not suitable for epidemiological syphilis typing. Eur J Clin Microbiol Infect Dis 2009; 28:875-8. [PMID: 19229562 DOI: 10.1007/s10096-009-0717-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
Abstract
Given reports of increasing syphilis incidence in Western countries, we used molecular typing and epidemiological data to elucidate Treponema pallidum transmission networks. Samples and data were collected, dating from 2002 to 2005, from a well-defined population of patients with an ulcus and a diagnosis of infectious syphilis. Molecular typing using the tprK gene (V3-V5 region) was performed on 211 isolates from 205 Amsterdam STI clinic patients. We revealed 32 T. pallidum clusters and recognized ten large clusters, consisting predominantly of homosexual men (89%). Yet, no common patient characteristics were found to link the patients in these clusters. We therefore conclude that the highly variable tprK region (V3-V5) is not suitable for elucidating T. pallidum transmission networks in a high risk population.
Collapse
Affiliation(s)
- R Heymans
- GGD, Public Health Laboratory, Cluster of Infectious Diseases, Health Service of Amsterdam, Nieuwe Achtergracht 100, 1018 WT, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Infectious syphilis in high-income settings in the 21st century. THE LANCET. INFECTIOUS DISEASES 2008; 8:244-53. [PMID: 18353265 DOI: 10.1016/s1473-3099(08)70065-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In high-income countries after World War II, the widespread availability of effective antimicrobial therapy, combined with expanded screening, diagnosis, and treatment programmes, resulted in a substantial decline in the incidence of syphilis. However, by the turn of the 21st century, outbreaks of syphilis began to occur in different subpopulations, especially in communities of men who have sex with men. The reasons for these outbreaks include changing sexual and social norms, interactions with increasingly prevalent HIV infection, substance abuse, global travel and migration, and underinvestment in public-health services. Recently, it has been suggested that these outbreaks could be the result of an interaction of the pathogen with natural immunity, and that syphilis epidemics should be expected to intrinsically cycle. We discuss this hypothesis by examining long-term data sets of syphilis. Today, syphilis in western Europe and the USA is characterised by low-level endemicity with concentration among population subgroups with high rates of partner change, poor access to health services, social marginalisation, or low socioeconomic status.
Collapse
|
44
|
Matejková P, Strouhal M, Smajs D, Norris SJ, Palzkill T, Petrosino JF, Sodergren E, Norton JE, Singh J, Richmond TA, Molla MN, Albert TJ, Weinstock GM. Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol 2008; 8:76. [PMID: 18482458 PMCID: PMC2408589 DOI: 10.1186/1471-2180-8-76] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 05/15/2008] [Indexed: 11/26/2022] Open
Abstract
Background Syphilis spirochete Treponema pallidum ssp. pallidum remains the enigmatic pathogen, since no virulence factors have been identified and the pathogenesis of the disease is poorly understood. Increasing rates of new syphilis cases per year have been observed recently. Results The genome of the SS14 strain was sequenced to high accuracy by an oligonucleotide array strategy requiring hybridization to only three arrays (Comparative Genome Sequencing, CGS). Gaps in the resulting sequence were filled with targeted dideoxy-terminators (DDT) sequencing and the sequence was confirmed by whole genome fingerprinting (WGF). When compared to the Nichols strain, 327 single nucleotide substitutions (224 transitions, 103 transversions), 14 deletions, and 18 insertions were found. On the proteome level, the highest frequency of amino acid-altering substitution polymorphisms was in novel genes, while the lowest was in housekeeping genes, as expected by their evolutionary conservation. Evidence was also found for hypervariable regions and multiple regions showing intrastrain heterogeneity in the T. pallidum chromosome. Conclusion The observed genetic changes do not have influence on the ability of Treponema pallidum to cause syphilitic infection, since both SS14 and Nichols are virulent in rabbit. However, this is the first assessment of the degree of variation between the two syphilis pathogens and paves the way for phylogenetic studies of this fascinating organism.
Collapse
Affiliation(s)
- Petra Matejková
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Alkek N1619, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun 2008; 76:1848-57. [PMID: 18332212 DOI: 10.1128/iai.01424-07] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antigenicity, structural location, and function of the predicted lipoprotein TP0136 of Treponema pallidum subsp. pallidum were investigated based on previous screening studies indicating that anti-TP0136 antibodies are present in the sera of syphilis patients and experimentally infected rabbits. Recombinant TP0136 (rTP0136) protein was purified and shown to be strongly antigenic during human and experimental rabbit infection. The TP0136 protein was exposed on the surface of the bacterial outer membrane and bound to the host extracellular matrix glycoproteins fibronectin and laminin. In addition, the TP0136 open reading frame was shown to be highly polymorphic among T. pallidum subspecies and strains at the nucleotide and amino acid levels. Finally, the ability of rTP0136 protein to act as a protective antigen to subsequent challenge with infectious T. pallidum in the rabbit model of infection was assessed. Immunization with rTP0136 delayed ulceration but did not prevent infection or the formation of lesions. These results demonstrate that TP0136 is expressed on the outer membrane of the treponeme during infection and may be involved in attachment to host extracellular matrix components.
Collapse
|
46
|
Silencing the alarm: insights into the interaction between host and pathogen. Conference on Microbial Pathogenesis: Mechanisms of Infectious Disease. EMBO Rep 2007; 9:27-32. [PMID: 18084188 DOI: 10.1038/sj.embor.7401127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 10/22/2007] [Indexed: 11/08/2022] Open
|
47
|
Leader BT, Godornes C, VanVoorhis WC, Lukehart SA. CD4+ lymphocytes and gamma interferon predominate in local immune responses in early experimental syphilis. Infect Immun 2007; 75:3021-6. [PMID: 17403876 PMCID: PMC1932874 DOI: 10.1128/iai.01973-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The clearance of Treponema pallidum subsp. pallidum from early syphilis lesions involves infiltration of a large number of mononuclear cells and is characteristic of a cell-mediated immune response. In the present study, we sought to determine the relative abundance of different T-lymphocyte populations and Th1/Th2-associated cytokines present in testicular lesions following experimental infection with the Chicago strain of T. pallidum. Using flow cytometry, we examined the proportion of CD4(+) and CD8(+) T cells present throughout the progression and resolution of primary syphilis in the rabbit model. We related these findings to the results of real-time reverse transcription-PCR quantification of treponemal and cytokine mRNA levels. Treponemal mRNA levels reached peak values on day 18 postinfection, coincident with an initial peak in the level of T cells, which were primarily CD4(+) T cells. T-cell levels increased again during resolution of orchitis, and there was an increased proportion of CD8(+) T cells. The maximum gamma interferon (IFN-gamma) and interleukin-10 (IL-10) mRNA levels were observed on days 11 and 18, respectively, while only negligible amounts of IL-4 and IL-2 were detected throughout the infection. In addition to showing the temporal relationship between treponemal burden and T-cell responses during lesion progression, our results also demonstrate that the composition of the T-cell population changes during lesion resolution. The presence of the mRNA for IFN-gamma, but not IL-4, is consistent with cytokine expression in human syphilis and provides further support for the hypothesis that there is a Th1 predominance during the early immune response to T. pallidum.
Collapse
Affiliation(s)
- Brandon T Leader
- Department of Medicine, University of Washington, Harborview Medical Center, 325 Ninth Avenue, Seattle, WA 98104-2499, USA
| | | | | | | |
Collapse
|
48
|
LaFond RE, Molini BJ, Van Voorhis WC, Lukehart SA. Antigenic variation of TprK V regions abrogates specific antibody binding in syphilis. Infect Immun 2006; 74:6244-51. [PMID: 16923793 PMCID: PMC1695500 DOI: 10.1128/iai.00827-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tprK gene in the syphilis spirochete, Treponema pallidum subsp. pallidum, undergoes antigenic variation in seven variable (V) regions. tprK is highly variable within T. pallidum strains, and a method has been developed to derive clones of T. pallidum that express a single, unique tprK sequence. Rabbits were infected with three different T. pallidum clones or the parent strain from which the clones were derived, and their sera were examined by immunoassay for antibody reactivity against synthetic peptides representing the TprK V regions from each clone. The parent strain expresses many different V region sequences, and infection with this strain induced antibody responses against a wide variety of V regions. In rabbits infected with the Chicago C clone, antibodies developed against all of the V regions except V1, while antibodies developed against only V5, V6, and V7 in Chicago A-infected rabbits. During Chicago B infection, antibodies developed against all of the V regions except V1 and V3. Antibodies were highly specific for the V regions of the infecting clone, and cross-reactivity was rare. The demonstration that the V regions elicit a variant-specific antibody response supports the hypothesis that TprK variants may help organisms to avoid the developing immune response in infected individuals, contributing to the ability of T. pallidum to establish chronic infection.
Collapse
Affiliation(s)
- Rebecca E LaFond
- Department of Pathobiology, University of Washington, Box 359779, Harborview Medical Center, 325 Ninth Ave., Seattle, WA 98104, USA
| | | | | | | |
Collapse
|