1
|
MacAlpine J, Lionakis MS. Host-microbe interaction paradigms in acute and recurrent vulvovaginal candidiasis. Cell Host Microbe 2024; 32:1654-1667. [PMID: 39389030 PMCID: PMC11469575 DOI: 10.1016/j.chom.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
Candida spp. are members of the human mucosal microbiota that can cause opportunistic diseases ranging from superficial infections to life-threatening invasive candidiasis. In humans, the most common infection caused by Candida spp. is vulvovaginal candidiasis (VVC), which affects >70% of women at least once in their lifetime. Of those women, ∼5%-10% develop recurrent VVC (RVVC). In this review, we summarize our current understanding of the host and fungal factors that contribute to susceptibility to VVC and RVVC. We synthesize key findings that support the notion that disease symptoms are driven by neutrophil-associated dysfunction and immunopathology and describe how antifungal immune mechanisms in the vagina are distinct from other mucosal barrier sites. Finally, we highlight key, unanswered research areas within the field that can help us better understand the immunopathogenesis of this infection and facilitate the development of novel preventive, therapeutic, and/or vaccination strategies to combat these common, poorly understood diseases.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Wang Z, Shao J. Fungal vaccines and adjuvants: a tool to reveal the interaction between host and fungi. Arch Microbiol 2024; 206:293. [PMID: 38850421 DOI: 10.1007/s00203-024-04010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024]
Abstract
Fungal infections are incurring high risks in a range from superficial mucosal discomforts (such as oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated life-threatening diseases (such as invasive pulmonary aspergillosis and cryptococcal meningitis) and becoming a global health problem in especially immunodeficient population. The major obstacle to conquer fungal harassment lies in the presence of increasing resistance to conventional antifungal agents used in newly clinically isolated strains. Although recombinant cytokines and mono-/poly-clonal antibodies are added into antifungal armamentarium, more effective antimycotic drugs are exceedingly demanded. It is comforting that the development of fungal vaccines and adjuvants opens up a window to brighten the prospective way in the diagnosis, prevention and treatment of fungal assaults. In this review, we focus on the progression of several major fungal vaccines devised for the control of Candida spp., Aspergillus spp., Cryptococcus spp., Coccidioides spp., Paracoccidioides spp., Blastomyces spp., Histoplasma spp., Pneumocystis spp. as well as the adjuvants adopted. We then expound the interaction between fungal vaccines/adjuvants and host innate (macrophages, dendritic cells, neutrophils), humoral (IgG, IgM and IgA) and cellular (Th1, Th2, Th17 and Tc17) immune responses which generally experience immune recognition of pattern recognition receptors, activation of immune cells, and clearance of invaded fungi. Furthermore, we anticipate an in-depth understanding of immunomodulatory properties of univalent and multivalent vaccines against diverse opportunistic fungi, providing helpful information in the design of novel fungal vaccines and adjuvants.
Collapse
Affiliation(s)
- Zixu Wang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Jing Shao
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
3
|
Puumala E, Fallah S, Robbins N, Cowen LE. Advancements and challenges in antifungal therapeutic development. Clin Microbiol Rev 2024; 37:e0014223. [PMID: 38294218 PMCID: PMC10938895 DOI: 10.1128/cmr.00142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.
Collapse
Affiliation(s)
- Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Kaur G, Chawla S, Kumar P, Singh R. Advancing Vaccine Strategies against Candida Infections: Exploring New Frontiers. Vaccines (Basel) 2023; 11:1658. [PMID: 38005990 PMCID: PMC10674196 DOI: 10.3390/vaccines11111658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Candida albicans, along with several non-albicans Candida species, comprise a prominent fungal pathogen in humans, leading to candidiasis in various organs. The global impact of candidiasis in terms of disease burden, suffering, and fatalities is alarmingly high, making it a pressing global healthcare concern. Current treatment options rely on antifungal drugs such as azoles, polyenes, and echinocandins but are delimited due to the emergence of drug-resistant strains and associated adverse effects. The current review highlights the striking absence of a licensed antifungal vaccine for human use and the urgent need to shift our focus toward developing an anti-Candida vaccine. A number of factors affect the development of vaccines against fungal infections, including the host, intraspecies and interspecies antigenic variations, and hence, a lack of commercial interest. In addition, individuals with a high risk of fungal infection tend to be immunocompromised, so they are less likely to respond to inactivated or subunit whole organisms. Therefore, it is pertinent to discover newer and novel alternative strategies to develop safe and effective vaccines against fungal infections. This review article provides an overview of current vaccination strategies (live attenuated, whole-cell killed, subunit, conjugate, and oral vaccine), including their preclinical and clinical data on efficacy and safety. We also discuss the mechanisms of immune protection against candidiasis, including the role of innate and adaptive immunity and potential biomarkers of protection. Challenges, solutions, and future directions in vaccine development, namely, exploring novel adjuvants, harnessing the trained immunity, and utilizing immunoinformatics approaches for vaccine design and development, are also discussed. This review concludes with a summary of key findings, their implications for clinical practice and public health, and a call to action for continued investment in candidiasis vaccine research.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Chandigarh College of Technology (CCT), Chandigarh Group of Colleges (CGC), Landran, Mohali 140307, India
| | - Sonam Chawla
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| | - Piyush Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| | - Ritu Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| |
Collapse
|
5
|
MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol 2023; 32:2565-2581. [PMID: 35231147 PMCID: PMC11032213 DOI: 10.1111/mec.16411] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Microbial communities of the human microbiota exhibit diverse effects on human health and disease. Microbial homeostasis is important for normal physiological functions and changes to the microbiota are associated with many human diseases including diabetes, cancer, and colitis. In addition, there are many microorganisms that are either commensal or acquired from environmental reservoirs that can cause diverse pathologies. Importantly, the balance between health and disease is intricately connected to how members of the microbiota interact and affect one another's growth and pathogenicity. However, the mechanisms that govern these interactions are only beginning to be understood. In this review, we outline bacterial-fungal interactions in the human body, including examining the mechanisms by which bacteria govern fungal growth and virulence, as well as how fungi regulate bacterial pathogenesis. We summarize advances in the understanding of chemical, physical, and protein-based interactions, and their role in exacerbating or impeding human disease. We focus on the three fungal species responsible for the majority of systemic fungal infections in humans: Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. We conclude by summarizing recent studies that have mined microbes for novel antimicrobials and antivirulence factors, highlighting the potential of the human microbiota as a rich resource for small molecule discovery.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
6
|
Rabaan AA, Alfaraj AH, Alshengeti A, Alawfi A, Alwarthan S, Alhajri M, Al-Najjar AH, Al Fares MA, Najim MA, Almuthree SA, AlShurbaji ST, Alofi FS, AlShehail BM, AlYuosof B, Alynbiawi A, Alzayer SA, Al Kaabi N, Abduljabbar WA, Bukhary ZA, Bueid AS. Antibodies to Combat Fungal Infections: Development Strategies and Progress. Microorganisms 2023; 11:microorganisms11030671. [PMID: 36985244 PMCID: PMC10051215 DOI: 10.3390/microorganisms11030671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
The finding that some mAbs are antifungal suggests that antibody immunity may play a key role in the defense of the host against mycotic infections. The discovery of antibodies that guard against fungi is a significant advancement because it gives rise to the possibility of developing vaccinations that trigger protective antibody immunity. These vaccines might work by inducing antibody opsonins that improve the function of non-specific (such as neutrophils, macrophages, and NK cells) and specific (such as lymphocyte) cell-mediated immunity and stop or aid in eradicating fungus infections. The ability of antibodies to defend against fungi has been demonstrated by using monoclonal antibody technology to reconsider the function of antibody immunity. The next step is to develop vaccines that induce protective antibody immunity and to comprehend the mechanisms through which antibodies mediate protective effects against fungus.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
- Correspondence:
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Amal H. Al-Najjar
- Drug & Poison Information Center, Pharmacy Department, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Mustafa A. Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Sultan T. AlShurbaji
- Outpatient Pharmacy, Dr. Sulaiman Alhabib Medical Group, Diplomatic Quarter, Riyadh 91877, Saudi Arabia
| | - Fadwa S. Alofi
- Department of Infectious Diseases, King Fahad Hospital, Madinah 42351, Saudi Arabia
| | - Bashayer M. AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Buthina AlYuosof
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Ahlam Alynbiawi
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Suha A. Alzayer
- Parasitology Laboratory Department, Qatif Comprehensive Inspection Center, Qatif 31911, Saudi Arabia
| | - Nawal Al Kaabi
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Zakiyah A. Bukhary
- Department of Internal Medicine, King Fahad General Hospital, Jeddah 23325, Saudi Arabia
| | - Ahmed S. Bueid
- Microbiology Laboratory, King Faisal General Hospital, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
7
|
Singh S, Barbarino A, Youssef EG, Coleman D, Gebremariam T, Ibrahim AS. Protective Efficacy of Anti-Hyr1p Monoclonal Antibody against Systemic Candidiasis Due to Multi-Drug-Resistant Candida auris. J Fungi (Basel) 2023; 9:103. [PMID: 36675924 PMCID: PMC9860579 DOI: 10.3390/jof9010103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Candida auris is a multi-drug-resistant fungal pathogen that can survive outside the host and can easily spread and colonize the healthcare environment, medical devices, and human skin. C. auris causes serious life-threatening infections (up to 60% mortality) in immunosuppressed patients staying in such contaminated healthcare facilities. Some isolates of C. auris are resistant to virtually all clinically available antifungal drugs. Therefore, alternative therapeutic approaches are urgently needed. Using in silico protein modeling and analysis, we identified a highly immunogenic and surface-exposed epitope that is conserved between C. albicans hyphal-regulated protein (Cal-Hyr1p) and Hyr1p/Iff-like proteins in C. auris (Cau-HILp). We generated monoclonal antibodies (MAb) against this Cal-Hyr1p epitope, which recognized several clinical isolates of C. auris representing all four clades. An anti-Hyr1p MAb prevented biofilm formation and enhanced opsonophagocytic killing of C. auris by macrophages. When tested for in vivo efficacy, anti-Hyr1p MAb protected 55% of mice against lethal systemic C. auris infection and showed significantly less fungal burden. Our study is highly clinically relevant and provides an effective alternative therapeutic option to treat infections due to MDR C. auris.
Collapse
Affiliation(s)
- Shakti Singh
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ashley Barbarino
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
| | - Eman G. Youssef
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
| | - Declan Coleman
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
- Biology Department, Pomona College, Pomona, CA 91711, USA
| | - Teclegiorgis Gebremariam
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Sahu SR, Bose S, Singh M, Kumari P, Dutta A, Utkalaja BG, Patel SK, Acharya N. Vaccines against candidiasis: Status, challenges and emerging opportunity. Front Cell Infect Microbiol 2022; 12:1002406. [PMID: 36061876 PMCID: PMC9433539 DOI: 10.3389/fcimb.2022.1002406] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Candidiasis is a mycosis caused by opportunistic Candida species. The occurrence of fungal infections has considerably increased in the last few years primarily due to an increase in the number of immune-suppressed individuals. Alarming bloodstream infections due to Candida sp. are associated with a higher rate of morbidity and mortality, and are emerged as major healthcare concerns worldwide. Currently, chemotherapy is the sole available option for combating fungal diseases. Moreover, the emergence of resistance to these limited available anti-fungal drugs has further accentuated the concern and highlighted the need for early detection of fungal infections, identification of novel antifungal drug targets, and development of effective therapeutics and prophylactics. Thus, there is an increasing interest in developing safe and potent immune-based therapeutics to tackle fungal diseases. In this context, vaccine design and its development have a priority. Nonetheless, despite significant advances in immune and vaccine biology over time, a viable commercialized vaccine remains awaited against fungal infections. In this minireview, we enumerate various concerted efforts made till date towards the development of anti-Candida vaccines, an option with pan-fugal vaccine, vaccines in the clinical trial, challenges, and future opportunities.
Collapse
Affiliation(s)
- Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Swagata Bose
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Manish Singh
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Abinash Dutta
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- *Correspondence: Narottam Acharya, ;
| |
Collapse
|
9
|
Kumari A, Tripathi AH, Gautam P, Gahtori R, Pande A, Singh Y, Madan T, Upadhyay SK. Adhesins in the virulence of opportunistic fungal pathogens of human. Mycology 2021; 12:296-324. [PMID: 34900383 PMCID: PMC8654403 DOI: 10.1080/21501203.2021.1934176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Aspergillosis, candidiasis, and cryptococcosis are the most common cause of mycoses-related disease and death among immune-compromised patients. Adhesins are cell-surface exposed proteins or glycoproteins of pathogens that bind to the extracellular matrix (ECM) constituents or mucosal epithelial surfaces of the host cells. The forces of interaction between fungal adhesins and host tissues are accompanied by ligand binding, hydrophobic interactions and protein-protein aggregation. Adherence is the primary and critical step involved in the pathogenesis; however, there is limited information on fungal adhesins compared to that on the bacterial adhesins. Except a few studies based on screening of proteome for adhesin identification, majority are based on characterization of individual adhesins. Recently, based on their characteristic signatures, many putative novel fungal adhesins have been predicted using bioinformatics algorithms. Some of these novel adhesin candidates have been validated by in-vitro studies; though, most of them are yet to be characterised experimentally. Morphotype specific adhesin expression as well as tissue tropism are the crucial determinants for a successful adhesion process. This review presents a comprehensive overview of various studies on fungal adhesins and discusses the targetability of the adhesins and adherence phenomenon, for combating the fungal infection in a preventive or therapeutic mode.
Collapse
Affiliation(s)
- Amrita Kumari
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Ankita H Tripathi
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Poonam Gautam
- ICMR-National Institute of Pathology, New Delhi, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Amit Pande
- Directorate of Coldwater Fisheries Research (DCFR), Nainital, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, New Delhi, India
| | - Taruna Madan
- ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| |
Collapse
|
10
|
Ibe C, Oladele RO, Alamir O. Our pursuit for effective antifungal agents targeting fungal cell wall components, where are we? Int J Antimicrob Agents 2021; 59:106477. [PMID: 34798234 DOI: 10.1016/j.ijantimicag.2021.106477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 01/09/2023]
Abstract
Invasive mycotic infections account for an unacceptably high mortality rates in humans. These infections are initiated by the fungal cell wall which mediates host-fungi interactions. The cell wall is fused to the physiology of fungi, and it is involved in essential functions in the entire cell functionality. Components of the cell wall are synthesised and modified in the cell wall space by the activities of cell wall proteins through a range of signalling pathways that have only been described in many fungi, therefore making them suitable drug targets. The echinocandins class of cell wall-active drugs block cell wall β-1,3-glucan biosynthesis through inhibiting the catalytic subunit of the synthetic protein complex. Resistance to echinocandins can be through the acquisition of single nucleotide polymorphisms and/or through activation of cell wall signalling pathways resulting in altered cell wall proteome and elevated chitin content in the cell wall. Countering the cell wall remodelling process will enhance the effectiveness of β-1,3-glucan-active antifungal agents. Cell surface proteins are also important antifungal targets which can be used to develop rapid and robust diagnostics and more effective therapeutics. The cell wall remains a crucial target in fungi that needs to be harnessed to combat mycotic infections.
Collapse
Affiliation(s)
- Chibuike Ibe
- Department of Microbiology, Abia State University, PMB 2000 Uturu, Abia State, Nigeria.
| | - Rita O Oladele
- Medical Microbiology & Parasitology, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - Omran Alamir
- Natural Sciences, College of Health Sciences, Public Authority for Applied Education and Training, Al Asimah, Kuwait
| |
Collapse
|
11
|
The Role of B-Cells and Antibodies against Candida Vaccine Antigens in Invasive Candidiasis. Vaccines (Basel) 2021; 9:vaccines9101159. [PMID: 34696267 PMCID: PMC8540628 DOI: 10.3390/vaccines9101159] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Systemic candidiasis is an invasive fungal infection caused by members of the genus Candida. The recent emergence of antifungal drug resistance and increased incidences of infections caused by non-albicans Candida species merit the need for developing immune therapies against Candida infections. Although the role of cellular immune responses in anti-Candida immunity is well established, less is known about the role of humoral immunity against systemic candidiasis. This review summarizes currently available information on humoral immune responses induced by several promising Candida vaccine candidates, which have been identified in the past few decades. The protective antibody and B-cell responses generated by polysaccharide antigens such as mannan, β-glucan, and laminarin, as well as protein antigens like agglutinin-like sequence gene (Als3), secreted aspartyl proteinase (Sap2), heat shock protein (Hsp90), hyphally-regulated protein (Hyr1), hyphal wall protein (Hwp1), enolase (Eno), phospholipase (PLB), pyruvate kinase (Pk), fructose bisphosphate aldolase (Fba1), superoxide dismutase gene (Sod5) and malate dehydrogenase (Mdh1), are outlined. As per studies reviewed, antibodies induced in response to leading Candida vaccine candidates contribute to protection against systemic candidiasis by utilizing a variety of mechanisms such as opsonization, complement fixation, neutralization, biofilm inhibition, direct candidacidal activity, etc. The contributions of B-cells in controlling fungal infections are also discussed. Promising results using anti-Candida monoclonal antibodies for passive antibody therapy reinforces the need for developing antibody-based therapeutics including anti-idiotypic antibodies, single-chain variable fragments, peptide mimotopes, and antibody-derived peptides. Future research involving combinatorial immunotherapies using humanized monoclonal antibodies along with antifungal drugs/cytokines may prove beneficial for treating invasive fungal infections.
Collapse
|
12
|
Millar EV, Bennett JW, Barin B, Carey PM, Law NN, English CE, Schwartz MM, Cochrane T, Ellis MW, Tribble DR, Timothy Cooke M, Hennessey JP. Safety, immunogenicity, and efficacy of NDV-3A against Staphylococcus aureus colonization: A phase 2 vaccine trial among US Army Infantry trainees. Vaccine 2021; 39:3179-3188. [PMID: 33962841 PMCID: PMC10430023 DOI: 10.1016/j.vaccine.2021.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Military trainees are at increased risk for Staphylococcus aureus colonization and infection. Disease prevention strategies are needed, but a S. aureus vaccine does not currently exist. METHODS We enrolled US Army Infantry trainees (Fort Benning, GA) in a phase 2, randomized, double-blind, placebo-controlled trial of NDV-3A, a vaccine containing a recombinant adhesin/invasion protein of Candida albicans that has structural similarity to the S. aureus protein clumping factor A. Study participants received one intramuscular dose of NDV-3A or placebo (adjuvant alone) within 72 h of arrival on base. Longitudinal nasal and oral (throat) swabs were collected throughout the 14-week Infantry training cycle. Safety, immunogenicity, and efficacy of NDV-3A against S. aureus nasal / oral acquisition were the endpoints. RESULTS The NDV-3A candidate had minimal reactogenicity and elicited robust antigen-specific B- and T-cell responses. During the 56-day post-vaccination period, there was no difference in the incidence of S. aureus nasal acquisition between those who were randomized to receive NDV-3A vs. placebo (25.6% vs. 29.1%; vaccine efficacy [VE]: 12.1%; p = 0.31). In time-to-event analysis, there was no difference between study groups with respect to the S. aureus colonization-free interval (VE: 13%; p = 0.29). Similarly, the efficacy of NDV-3A against S. aureus oral acquisition was poor (VE: 2.4%; p = 0.52). CONCLUSIONS A single dose of NDV-3A did not prevent nasal nor oral acquisition of S. aureus in a population of military trainees at high risk for colonization.
Collapse
Affiliation(s)
- Eugene V Millar
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States.
| | - Jason W Bennett
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Burc Barin
- The Emmes Company, Rockville, MD, United States
| | - Patrick M Carey
- Benning Martin Army Community Hospital, Fort Benning, GA, United States
| | - Natasha N Law
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States; Benning Martin Army Community Hospital, Fort Benning, GA, United States
| | - Caroline E English
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | | | | | - Michael W Ellis
- University of Toledo Medical Center, Toledo, OH, United States
| | - David R Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | | |
Collapse
|
13
|
Millar EV, Schlett CD, Law NN, Whitman TJ, Ellis MW, Tribble DR, Bennett JW. Opportunities and Obstacles in the Prevention of Skin and Soft-Tissue Infections Among Military Personnel. Mil Med 2020; 184:35-43. [PMID: 31778193 DOI: 10.1093/milmed/usz105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/04/2019] [Accepted: 04/12/2019] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Skin and soft-tissue infections (SSTIs) are an important cause of infectious disease morbidity among military populations. Due to the high direct and indirect costs associated with SSTIs, particularly with methicillin-resistant Staphylococcus aureus (MRSA) infections, there remains a critical need for the development and evaluation of SSTI prevention strategies among high-risk military personnel. Herein, we review efforts of the Infectious Disease Clinical Research Program (IDCRP) related to the prevention of SSTIs in the military. METHODS The IDCRP of the Uniformed Services University has conducted clinical research protocols on SSTI epidemiology and prevention among military personnel since 2009. Observational studies have examined the epidemiology of Staphylococcus aureus colonization and SSTI in training and deployment settings. Two randomized controlled trials of personal hygiene strategies for SSTI prevention at Marine Corps Base Quantico (Virginia) and Fort Benning (Georgia) were performed. Lastly, two vaccine trials have been conducted by the IDCRP, including a Phase 2 S. aureus vaccine trial (currently ongoing) among military trainees. RESULTS Military recruits and deployed personnel experience an intense and prolonged exposure to S. aureus, the major causative agent of SSTI. The burden of S. aureus colonization and SSTI is particularly high in military trainees. Hygiene-based trials for S. aureus decolonization among military trainees were not effective in reducing rates of SSTI. In January 2018, the IDCRP initiated a Phase 2 S. aureus vaccine trial among the US Army Infantry training population at Fort Benning. CONCLUSIONS In the military, a disproportionate burden of SSTIs is borne by the recruit population. Strategies relying upon routine application of agents for S. aureus decolonization have not been effective in preventing SSTIs. A novel S. aureus vaccine candidate is being currently evaluated in a military training population and may represent a new opportunity to prevent SSTIs for the military.
Collapse
Affiliation(s)
- Eugene V Millar
- Infectious Disease Clinical Research Program, Preventive Medicine & Biostatistics Department, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Carey D Schlett
- Infectious Disease Clinical Research Program, Preventive Medicine & Biostatistics Department, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817
| | - Natasha N Law
- Infectious Disease Clinical Research Program, Preventive Medicine & Biostatistics Department, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD 20817.,Martin Army Community Hospital, 6600 Van Aalst Boulevard, Fort Benning, GA 31905
| | - Timothy J Whitman
- Department of Infectious Diseases, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20852
| | - Michael W Ellis
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, 3045 Arlington Avenue #3, Toledo, OH 43614
| | - David R Tribble
- Infectious Disease Clinical Research Program, Preventive Medicine & Biostatistics Department, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Jason W Bennett
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910.,Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| |
Collapse
|
14
|
Rasheed M, Battu A, Kaur R. Host-pathogen interaction in Candida glabrata infection: current knowledge and implications for antifungal therapy. Expert Rev Anti Infect Ther 2020; 18:1093-1103. [PMID: 32668993 DOI: 10.1080/14787210.2020.1792773] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The opportunistic fungal pathogen Candida glabrata poses a clinical challenge in the successful treatment of invasive Candida infections, owing to its low inherent susceptibility toward azole antifungals and the recent acquisition of coresistance toward azole and echinocandin drugs. Compared to other prevalent Candida bloodstream pathogens, C. glabrata neither exhibits secreted proteolytic activity nor invokes a strong immune response in a variety of host cells and is less virulent. It also does not form true hyphae, and the success of C. glabrata, therefore, as a prevalent human fungal pathogen, appears to be built upon a distinct set of virulence attributes. AREAS COVERED The focus of this review is to outline, in brief, the interaction of C. glabrata with the host, deduced from the knowledge gained from different in vitro, ex vivo, and in vivo model systems. In addition, we briefly discuss the current antifungals, antifungal resistance mechanisms, and the development of new antifungal therapies, along with the available information on the host response. EXPERT OPINION A detailed understanding of stresses, selection pressures and differential immune responses in the presence and absence of antifungals that C. glabrata encounters in varied niches of the host, is required to design effective antifungal therapy.
Collapse
Affiliation(s)
- Mubashshir Rasheed
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics , Hyderabad, India
| | - Anamika Battu
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics , Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education , Manipal, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics , Hyderabad, India
| |
Collapse
|
15
|
Edwards JE, Schwartz MM, Schmidt CS, Sobel JD, Nyirjesy P, Schodel F, Marchus E, Lizakowski M, DeMontigny EA, Hoeg J, Holmberg T, Cooke MT, Hoover K, Edwards L, Jacobs M, Sussman S, Augenbraun M, Drusano M, Yeaman MR, Ibrahim AS, Filler SG, Hennessey JP. A Fungal Immunotherapeutic Vaccine (NDV-3A) for Treatment of Recurrent Vulvovaginal Candidiasis-A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial. Clin Infect Dis 2019; 66:1928-1936. [PMID: 29697768 DOI: 10.1093/cid/ciy185] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/01/2018] [Indexed: 11/12/2022] Open
Abstract
Background Recurrent vulvovaginal candidiasis (RVVC) is a problematic form of mucosal Candida infection, characterized by repeated episodes per year. Candida albicans is the most common cause of RVVC. Currently, there are no immunotherapeutic treatments for RVVC. Methods This exploratory randomized, double-blind, placebo-controlled trial evaluated an immunotherapeutic vaccine (NDV-3A) containing a recombinant C. albicans adhesin/invasin protein for prevention of RVVC. Results The study in 188 women with RVVC (n = 178 evaluable) showed that 1 intramuscular dose of NDV-3A was safe and generated rapid and robust B- and T-cell immune responses. Post hoc exploratory analyses revealed a statistically significant increase in the percentage of symptom-free patients at 12 months after vaccination (42% vaccinated vs 22% placebo; P = .03) and a doubling in median time to first symptomatic episode (210 days vaccinated vs 105 days placebo) for the subset of patients aged <40 years (n = 137). The analysis of evaluable patients, which combined patients aged <40 years (77%) and ≥40 years (23%), trended toward a positive impact of NDV-3A versus placebo (P = .099). Conclusions In this unprecedented study of the effectiveness of a fungal vaccine in humans, NDV-3A administered to women with RVVC was safe and highly immunogenic and reduced the frequency of symptomatic episodes of vulvovaginal candidiasis for up to 12 months in women aged <40 years. These results support further development of NDV-3A vaccine and provide guidance for meaningful clinical endpoints for immunotherapeutic management of RVVC. Clinical Trials Registration NCT01926028.
Collapse
Affiliation(s)
- John E Edwards
- Los Angeles Biomedical Research Institute, Torrance.,David Geffen School of Medicine at University of California, Los Angeles
| | | | | | - Jack D Sobel
- School of Medicine, Wayne State University, Detroit, Michigan
| | - Paul Nyirjesy
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | - Jesse Hoeg
- NovaDigm Therapeutics, Inc, Boston, Massachusetts
| | | | | | | | - Lance Edwards
- Suffolk Obstetrics & Gynecology, Port Jefferson, New York
| | | | - Steven Sussman
- Lawrence OB-GYN Clinical Research, LLC, Lawrenceville, New Jersey
| | | | | | - Michael R Yeaman
- Los Angeles Biomedical Research Institute, Torrance.,David Geffen School of Medicine at University of California, Los Angeles
| | - Ashraf S Ibrahim
- Los Angeles Biomedical Research Institute, Torrance.,David Geffen School of Medicine at University of California, Los Angeles
| | - Scott G Filler
- Los Angeles Biomedical Research Institute, Torrance.,David Geffen School of Medicine at University of California, Los Angeles
| | | |
Collapse
|
16
|
The NDV-3A vaccine protects mice from multidrug resistant Candida auris infection. PLoS Pathog 2019; 15:e1007460. [PMID: 31381597 PMCID: PMC6695204 DOI: 10.1371/journal.ppat.1007460] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 08/15/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Candida auris is an emerging, multi-drug resistant, health care-associated fungal pathogen. Its predominant prevalence in hospitals and nursing homes indicates its ability to adhere to and colonize the skin, or persist in an environment outside the host—a trait unique from other Candida species. Besides being associated globally with life-threatening disseminated infections, C. auris also poses significant clinical challenges due to its ability to adhere to polymeric surfaces and form highly drug-resistant biofilms. Here, we performed bioinformatic studies to identify the presence of adhesin proteins in C. auris, with sequence as well as 3-D structural homologies to the major adhesin/invasin of C. albicans, Als3. Anti-Als3p antibodies generated by vaccinating mice with NDV-3A (a vaccine based on the N-terminus of Als3 protein formulated with alum) recognized C. auris in vitro, blocked its ability to form biofilms and enhanced macrophage-mediated killing of the fungus. Furthermore, NDV-3A vaccination induced significant levels of C. auris cross-reactive humoral and cellular immune responses, and protected immunosuppressed mice from lethal C. auris disseminated infection, compared to the control alum-vaccinated mice. The mechanism of protection is attributed to anti-Als3p antibodies and CD4+ T helper cells activating tissue macrophages. Finally, NDV-3A potentiated the protective efficacy of the antifungal drug micafungin, against C. auris candidemia. Identification of Als3-like adhesins in C. auris makes it a target for immunotherapeutic strategies using NDV-3A, a vaccine with known efficacy against other Candida species and safety as well as efficacy in clinical trials. Considering that C. auris can be resistant to almost all classes of antifungal drugs, such an approach has profound clinical relevance. Candida auris has emerged as a major health concern to hospitalized patients and nursing home subjects. C. auris strains display multidrug resistance to current antifungal therapy and cause lethal infections. We have determined that C. auris harbors homologs of C. albicans Als cell surface proteins. The C. albicans NDV-3A vaccine, harboring the N-terminus of Als3p formulated with alum, generates cross-reactive antibodies against C. auris clinical isolates and protects neutropenic mice from hematogenously disseminated C. auris infection. Importantly, the NDV-3A vaccine displays an additive protective effect in neutropenic mice when combined with micafungin. Due to its proven safety and efficacy in humans against C. albicans infection, our studies support the expedited testing of the NDV-3A vaccine against C. auris in future clinical trials.
Collapse
|
17
|
Nami S, Mohammadi R, Vakili M, Khezripour K, Mirzaei H, Morovati H. Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomed Pharmacother 2018; 109:333-344. [PMID: 30399567 DOI: 10.1016/j.biopha.2018.10.075] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/02/2018] [Accepted: 10/14/2018] [Indexed: 11/28/2022] Open
Abstract
Fungal infections include a wide range of opportunistic and invasive diseases. Two of four major fatal diseases in patients with human immunodeficiency virus (HIV) infection are related to the fungal infections, cryptococcosis, and pneumocystosis. Disseminated candidiasis and different clinical forms of aspergillosis annually impose expensive medical costs to governments and hospitalized patients and ultimately lead to high mortality rates. Therefore, urgent implementations are necessary to prevent the expansion of these diseases. Designing an effective vaccine is one of the most important approaches in this field. So far, numerous efforts have been carried out in developing an effective vaccine against fungal infections. Some of these challenges engaged in different stages of clinical trials but none of them could be approved by the United States Food and Drug Administration (FDA). Here, in addition to have a comprehensive overview on the data from studied vaccine programs, we will discuss the immunology response against fungal infections. Moreover, it will be attempted to clarify the underlying immune mechanisms of vaccines targeting different fungal infections that are crucial for designing an effective vaccination strategy.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine/Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Vakili
- Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kimia Khezripour
- Department of Pharmacotherapy, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Medrano-Díaz CL, Vega-González A, Ruiz-Baca E, Moreno A, Cuéllar-Cruz M. Moonlighting proteins induce protection in a mouse model against Candida species. Microb Pathog 2018; 124:21-29. [PMID: 30118801 DOI: 10.1016/j.micpath.2018.08.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 11/27/2022]
Abstract
In recent years, C. albicans and C. glabrata have been identified as the main cause of candidemia and invasive candidiasis in hospitalized and immunocompromised patients. In order to colonize the human host, these fungi express several virulence factors such as the response to oxidative stress and the formation of biofilms. In the expression of these virulence factors, the cell wall of C. albicans and C. glabrata is of fundamental importance. As the outermost structure of the yeast, the cell wall is the first to come in contact with the reactive oxygen species (ROS) generated during the respiratory outbreak, and in the formation of biofilms, it is the first to adhere to organs or medical devices implanted in the human host. In both processes, several cell wall proteins (CWP) are required, since they promote attachment to human cells or abiotic surfaces, as well as to detoxify ROS. In our working group we have identified moonlighting CWP in response to oxidative stress as well as in the formation of biofilms. Having identified moonlighting CWP in Candida species in response to two virulence factors indicates that these proteins may possibly be immunodominant. The aim of the present work was to evaluate whether proteins of this type such as fructose-bisphosphate aldolase (Fba1), phosphoglycerate kinase (Pgk) and pyruvate kinase (Pk), could confer protection in a mouse model against C. albicans and C. glabrata. For this, recombinant proteins His6-Fba1, His6-Pgk and His6-Pk were constructed and used to immunize several groups of mice. The immunized mice were infected with C. albicans or C. glabrata, and subsequently the liver, spleen and kidney were extracted and the number of CFU was determined. Our results showed that Pk confers immunity to mice against C. albicans, while Fba1 to C. glabrata. This data allows us to conclude that the moonlighting CWP, Fba1 and Pk confer in vivo protection in a specific way against each species of Candida. This makes them promising candidates for developing specific vaccines against these pathogens.
Collapse
Affiliation(s)
- César Luis Medrano-Díaz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, Mexico
| | - Arturo Vega-González
- Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Estela Ruiz-Baca
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Abel Moreno
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Ciudad de México, 04510, Mexico.
| | - Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
19
|
Uppuluri P, Singh S, Alqarihi A, Schmidt CS, Hennessey JP, Yeaman MR, Filler SG, Edwards JE, Ibrahim AS. Human Anti-Als3p Antibodies Are Surrogate Markers of NDV-3A Vaccine Efficacy Against Recurrent Vulvovaginal Candidiasis. Front Immunol 2018; 9:1349. [PMID: 29963049 PMCID: PMC6013566 DOI: 10.3389/fimmu.2018.01349] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022] Open
Abstract
A Phase 1b/2a clinical trial of NDV-3A vaccine containing a Candida albicans recombinant Als3 protein formulated with alum protected women <40 years old from recurrent vulvovaginal candidiasis (RVVC). We investigated the potential use of anti-Als3p sera as surrogate marker of NDV-3A efficacy. Pre- and post-vaccination sera from subjects who experienced recurrence of vulvovaginal candidiasis (R) vs. those who were recurrence-free [non-recurrent (NR)] were evaluated. Anti-Als3p antisera obtained were evaluated for (1) titer and subclass profile and (2) their ability to influence C. albicans virulence traits including hyphal elongation, adherence to plastic, invasion of vaginal epithelial cells, biofilm formation on plastic and catheter material, and susceptibility to neutrophil killing in vitro. Serum IgG titers in NR patients were consistently higher than in R patients, particularly for anti-Als3 subclass IgG2. Sera from vaccinated NR patients reduced hyphal elongation, adhesion to plastic, invasion of vaginal epithelial cells, and biofilm formation significantly more than pre-immune sera, or sera from R- or placebo-group subjects. Pre-adsorption of sera with C. albicans germ tubes eliminated these effects, while heat inactivation did not. Finally, sera from NR subjects enhanced neutrophil-mediated killing of C. albicans relative to pre-immune sera or sera from R patients. Our results suggest that higher Als3p antibody titers are associated with protection from RVVC, attenuate C. albicans virulence, and augment immune clearance of the fungus in vitro. Thus, Als3p serum IgG antibodies are likely useful markers of efficacy in RVVC patients vaccinated with NDV-3A.
Collapse
Affiliation(s)
- Priya Uppuluri
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Shakti Singh
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Abdullah Alqarihi
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States
| | | | | | - Michael R Yeaman
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Scott G Filler
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - John E Edwards
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Ashraf S Ibrahim
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
20
|
Tso GHW, Reales-Calderon JA, Pavelka N. The Elusive Anti- Candida Vaccine: Lessons From the Past and Opportunities for the Future. Front Immunol 2018; 9:897. [PMID: 29755472 PMCID: PMC5934487 DOI: 10.3389/fimmu.2018.00897] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Candidemia is a bloodstream fungal infection caused by Candida species and is most commonly observed in hospitalized patients. Even with proper antifungal drug treatment, mortality rates remain high at 40–50%. Therefore, prophylactic or preemptive antifungal medications are currently recommended in order to prevent infections in high-risk patients. Moreover, the majority of women experience at least one episode of vulvovaginal candidiasis (VVC) throughout their lifetime and many of them suffer from recurrent VVC (RVVC) with frequent relapses for the rest of their lives. While there currently exists no definitive cure, the only available treatment for RVVC is again represented by antifungal drug therapy. However, due to the limited number of existing antifungal drugs, their associated side effects and the increasing occurrence of drug resistance, other approaches are greatly needed. An obvious prevention measure for candidemia or RVVC relapse would be to immunize at-risk patients with a vaccine effective against Candida infections. In spite of the advanced and proven techniques successfully applied to the development of antibacterial or antiviral vaccines, however, no antifungal vaccine is still available on the market. In this review, we first summarize various efforts to date in the development of anti-Candida vaccines, highlighting advantages and disadvantages of each strategy. We next unfold and discuss general hurdles encountered along these efforts, such as the existence of large genomic variation and phenotypic plasticity across Candida strains and species, and the difficulty in mounting protective immune responses in immunocompromised or immunosuppressed patients. Lastly, we review the concept of “trained immunity” and discuss how induction of this rapid and nonspecific immune response may potentially open new and alternative preventive strategies against opportunistic infections by Candida species and potentially other pathogens.
Collapse
Affiliation(s)
- Gloria Hoi Wan Tso
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (ASTAR), Singapore, Singapore
| | | | - Norman Pavelka
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
21
|
Xu X, Lin J, Zhao Y, Kirkman E, So YS, Bahn YS, Lin X. Glucosamine stimulates pheromone-independent dimorphic transition in Cryptococcus neoformans by promoting Crz1 nuclear translocation. PLoS Genet 2017; 13:e1006982. [PMID: 28898238 PMCID: PMC5595294 DOI: 10.1371/journal.pgen.1006982] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Morphotype switch is a cellular response to external and internal cues. The Cryptococcus neoformans species complex can undergo morphological transitions between the yeast and the hypha form, and such morphological changes profoundly affect cryptococcal interaction with various hosts. Filamentation in Cryptococcus was historically considered a mating response towards pheromone. Recent studies indicate the existence of pheromone-independent signaling pathways but their identity or the effectors remain unknown. Here, we demonstrated that glucosamine stimulated the C. neoformans species complex to undergo self-filamentation. Glucosamine-stimulated filamentation was independent of the key components of the pheromone pathway, which is distinct from pheromone-elicited filamentation. Glucosamine stimulated self-filamentation in H99, a highly virulent serotype A clinical isolate and a widely used reference strain. Through a genetic screen of the deletion sets made in the H99 background, we found that Crz1, a transcription factor downstream of calcineurin, was essential for glucosamine-stimulated filamentation despite its dispensability for pheromone-mediated filamentation. Glucosamine promoted Crz1 translocation from the cytoplasm to the nucleus. Interestingly, multiple components of the high osmolality glycerol response (HOG) pathway, consisting of the phosphorelay system and some of the Hog1 MAPK module, acted as repressors of glucosamine-elicited filamentation through their calcineurin-opposing effect on Crz1’s nuclear translocation. Surprisingly, glucosamine-stimulated filamentation did not require Hog1 itself and was distinct from the conventional general stress response. The results demonstrate that Cryptococcus can resort to multiple genetic pathways for morphological transition in response to different stimuli. Given that the filamentous form attenuates cryptococcal virulence and is immune-stimulatory in mammalian models, the findings suggest that morphogenesis is a fertile ground for future investigation into novel means to compromise cryptococcal pathogenesis. Cryptococcal meningitis claims half a million lives each year. There is no clinically available vaccine and the current antifungal therapies have serious limitations. Thus identifying cryptococcal specific programs that can be targeted for antifungal or vaccine development is of great value. We have shown previously that switching from the yeast to the hypha form drastically attenuates/abolishes cryptococcal virulence. Cryptococcal cells in the filamentous form also trigger host immune responses that can protect the host from a subsequent lethal challenge. However, self-filamentation is rarely observed in serotype A isolates that are responsible for the vast majority of cryptococcosis cases. In this study, we found that glucosamine stimulated self-filamentation in genetically distinct strains of the Cryptococcus species complex, including the most commonly used serotype A reference strain H99. We demonstrated that filamentation elicited by glucosamine did not depend on the pheromone pathway, but it requires the calcineurin transcription factor Crz1. Glucosamine promotes nuclear translocation of Crz1, which is positively controlled by the phosphatase calcineurin and is suppressed by the HOG pathway. These findings raise the possibility of manipulating genetic pathways controlling fungal morphogenesis against diseases caused by the Cryptococcus species complex.
Collapse
Affiliation(s)
- Xinping Xu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (XL); (XX)
| | - Jianfeng Lin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Youbao Zhao
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Elyssa Kirkman
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Yee-Seul So
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (XL); (XX)
| |
Collapse
|
22
|
Abstract
The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.
Collapse
Affiliation(s)
- Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| | | | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| |
Collapse
|
23
|
Gow NAR, Latge JP, Munro CA. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0035-2016. [PMID: 28513415 PMCID: PMC11687499 DOI: 10.1128/microbiolspec.funk-0035-2016] [Citation(s) in RCA: 696] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 02/06/2023] Open
Abstract
The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.
Collapse
Affiliation(s)
- Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| | | | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| |
Collapse
|
24
|
Chaudhuri R, Ramachandran S. Immunoinformatics as a Tool for New Antifungal Vaccines. Methods Mol Biol 2017; 1625:31-43. [PMID: 28584981 DOI: 10.1007/978-1-4939-7104-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Immunoinformatics aids in screening for vaccine candidates, which can be experimentally tested for their efficacy. This chapter describes methods to use immunoinformatics to screen fungal vaccines candidates. Surface-localized molecules called adhesins could elicit immune response and serve as efficient vaccine candidates. The screening process is patterned on two steps, namely, a First Layer screen mostly used for value addition and prioritization based on characteristics of known antigens and a Second Layer highly focussed on core immunoinformatics analysis involving the binding and interactions of the molecules of the immune system. Together they offer a comprehensive objective evaluation of vaccine candidates selection in silico for fungal pathogens.
Collapse
Affiliation(s)
| | - Srinivasan Ramachandran
- CSIR-Institute of Genomics and Integrative Biology, Room 130, Mathura Road, Near Sukhdev Vihar DTC Bus Depot, New Delhi, 110 025, India.
| |
Collapse
|
25
|
Segal E. Testing Antifungal Vaccines in an Animal Model of Invasive Candidiasis and in Human Mucosal Candidiasis. Methods Mol Biol 2017; 1625:343-353. [PMID: 28585001 DOI: 10.1007/978-1-4939-7104-6_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The following article will concentrate on the NDV-3 anti-Candida and Staphylococcus vaccine. The vaccine is composed of the N-terminal portion of the Candida albicans agglutinin-like sequence 3 protein (Als3p) and aluminum hydroxide as adjuvant. The vaccine conferred protection to mice against experimental vaginal, oral, and intravenous challenge with C. albicans. Due to the sequence and structural homology of the Als3p with Staphylococcus aureus surface proteins, the vaccine also protected against experimental skin and IV infection with S. aureus. The vaccine has reached the stage of human trials: phase 1 clinical studies have shown that the vaccine is safe and immunogenic. The latest brief conference abstract reports of vaccination in women suffering from recurrent vaginal candidiasis, indicating that the recurrence rates were lower in the women receiving the vaccine.
Collapse
Affiliation(s)
- Esther Segal
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, P.O.B 39040, Ramat Aviv, Tel Aviv, 69978, Israel.
| |
Collapse
|
26
|
Wang L, Yan L, Li XX, Xu GT, An MM, Jiang YY. Vaccination with Recombinant Non-transmembrane Domain of Protein Mannosyltransferase 4 Improves Survival during Murine Disseminated Candidiasis. Biol Pharm Bull 2015; 38:1779-87. [PMID: 26268065 DOI: 10.1248/bpb.b15-00475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Candida albicans is the most common cause of invasive fungal infections in humans. The C. albicans cell wall proteins play an important role in crucial host-fungus interactions and might be ideal vaccine targets to induce protective immune response in host. Meanwhile, protein that is specific to C. albicans is also an ideal target of vaccine. In this study, 11 proteins involving cell wall biosynthesis, yeast-to-hypha formation, or specific to C. albicans were chosen and were successfully cloned, purified and verified. The immune protection of vaccination with each recombinant protein respectively in preventing systemic candidiasis in BALB/c mice was assessed. The injection of rPmt4p vaccination significantly increased survival rate, decreased fungal burdens in the heart, liver, brain, and kidneys, and increased serum levels of both immunoglobulin G (IgG) and IgM against rPmt4p in the immunized mice. Histopathological assessment demonstrated that rPmt4p vaccination protected the tissue structure, and decreased the infiltration of inflammatory cells. Passive transfer of the rPmt4p immunized serum increased survival rate against murine systemic candidiasis and significantly reduced organ fungal burden. The immune serum enhanced mouse neutrophil killing activity by directly neutralizing rPmt4p effects in vitro. Levels of interleukin (IL)-4, IL-10, IL-12p70, IL-17A and tumor necrosis factor (TNF)-α in serum were higher in the immunized mice compared to those in the adjuvant control group. In conclusion, our results suggested that rPmt4p vaccination may be considered as a potential vaccine candidate against systemic candidiasis.
Collapse
Affiliation(s)
- Li Wang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University
| | | | | | | | | | | |
Collapse
|
27
|
Whibley N, Gaffen SL. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species. Cytokine 2015; 76:42-52. [PMID: 26276374 DOI: 10.1016/j.cyto.2015.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 12/29/2022]
Abstract
The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our knowledge of immunity to Candida mainly comes from studies on Candida albicans, the most frequent species associated with disease. However, non-albicans Candida (NAC) species also cause disease and their prevalence is increasing. Although research into immunity to NAC species is still at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways from non-albicans species, with important implications for treatment, therapy and predicted demographic susceptibility. This review will discuss the current understanding of immunity to NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered questions.
Collapse
Affiliation(s)
- Natasha Whibley
- Division of Rheumatology & Clinical Immunology, Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Division of Rheumatology & Clinical Immunology, BST S702, 200 Lothrop St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
28
|
Abstract
Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections.
Collapse
Affiliation(s)
- Jonathan P Richardson
- a Mucosal and Salivary Biology Division ; Dental Institute; King's College London ; London , UK
| | | |
Collapse
|
29
|
Abstract
Candida albicans is the most common cause of hematogenously disseminated candidiasis, and this disease is particularly prevalent in immunocompromised patients. The mortality of invasive candidiasis remains 40% to 50% even with the proper treatment with current antifungal drugs. Recently, with the better understanding of host-fungus interactions, notable progress has been made in antifungal vaccine research. Most antifungal vaccines exert protection by inducing either (or both) B-cell and T-cell responses. Here we summarize the current available information on C. albicans vaccines, highlight the obstacles that researchers identified, and offer several suggestions.
Collapse
Affiliation(s)
- Xiao-juan Wang
- a Center for New Drug Research; School of Pharmacy ; Second Military Medical University ; 325 Guohe Road; Shanghai , P.R. China
| | | | | | | | | | | |
Collapse
|
30
|
Immunomodulatory Agents as Adjunctive Therapy for the Treatment of Resistant Candida Species. CURRENT FUNGAL INFECTION REPORTS 2013. [DOI: 10.1007/s12281-013-0132-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Abstract
Understanding the pathogenesis of an infectious disease is critical for developing new methods to prevent infection and diagnose or cure disease. Adherence of microorganisms to host tissue is a prerequisite for tissue invasion and infection. Fungal cell wall adhesins involved in adherence to host tissue or abiotic medical devices are critical for colonization leading to invasion and damage of host tissue. Here, with a main focus on pathogenic Candida species, we summarize recent progress made in the field of adhesins in human fungal pathogens and underscore the importance of these proteins in establishment of fungal diseases.
Collapse
|
32
|
Lin L, Tan B, Pantapalangkoor P, Ho T, Hujer AM, Taracila MA, Bonomo RA, Spellberg B. Acinetobacter baumannii rOmpA vaccine dose alters immune polarization and immunodominant epitopes. Vaccine 2012; 31:313-8. [PMID: 23153442 DOI: 10.1016/j.vaccine.2012.11.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/03/2012] [Accepted: 11/04/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND The rOmpA vaccine has been shown to protect mice from lethal infection caused by extreme-drug-resistant (XDR) Acinetobacter baumannii. The role of dose in immunology of the rOmpA vaccine was explored. METHODS Mice were vaccinated with various doses of rOmpA plus aluminum hydroxide (Al(OH)(3)) adjuvant. The impact of dose on antibody titers, cytokine production, and immunodominant epitopes was defined. RESULTS Anti-rOmpA IgG and IgG subtype titers were higher at larger vaccine doses (30 and 100 μg vs. 3 μg). The 3 μg dose induced a balanced IFN-γ-IL-4 immune response while the 100 μg dose induced a polarized IL-4/Type 2 response. Epitope mapping revealed distinct T cell epitopes that activated IFN-γ-, IL-4-, and IL-17-producing splenocytes. Vaccination with the 100 μg dose caused epitope spreading among IL-4-producing splenocytes, while it induced fewer reactive epitopes among IFN-γ-producing splenocytes. CONCLUSIONS Vaccine dose escalation resulted in an enhanced Type 2 immune response, accompanied by substantial IL-4-inducing T cell epitope spreading and restricted IFN-γ-inducing epitopes. These results inform continued development of the rOmpA vaccine against A. baumannii, and also are of general importance in that they indicate that immune polarization and epitope selectivity can be modulated by altering vaccine dose.
Collapse
Affiliation(s)
- Lin Lin
- Division of General Internal Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles Medical Center, Torrance, CA 90502, United States
| | | | | | | | | | | | | | | |
Collapse
|
33
|
NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine 2012; 30:7594-600. [PMID: 23099329 DOI: 10.1016/j.vaccine.2012.10.038] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 09/11/2012] [Accepted: 10/10/2012] [Indexed: 12/27/2022]
Abstract
The investigational vaccine, NDV-3, contains the N-terminal portion of the Candida albicans agglutinin-like sequence 3 protein (Als3p) formulated with an aluminum hydroxide adjuvant in phosphate-buffered saline. Preclinical studies demonstrated that the Als3p vaccine antigen protects mice from oropharyngeal, vaginal and intravenous challenge with C. albicans and other selected species of Candida as well as both intravenous challenge and skin and soft tissue infection with Staphylococcus aureus. The objectives of this first-in-human Phase I clinical trial were to evaluate the safety, tolerability and immunogenicity of NDV-3 at two different antigen levels compared to a saline placebo. Forty healthy, adult subjects were randomized to receive one dose of NDV-3 containing either 30 or 300 μg of Als3p, or placebo. NDV-3 at both dose levels was safe and generally well-tolerated. Anti-Als3p total IgG and IgA1 levels for both doses reached peak levels by day 14 post vaccination, with 100% seroconversion of all vaccinated subjects. On average, NDV-3 stimulated peripheral blood mononuclear cell (PBMC) production of both IFN-γ and IL-17A, which peaked at day 7 for subjects receiving the 300 μg dose and at day 28 for those receiving the 30 μg dose. Six months after receiving the first dose of NDV-3, nineteen subjects received a second dose of NDV-3 identical to their first dose to evaluate memory B- and T-cell immune responses. The second dose resulted in a significant boost of IgG and IgA1 titers in >70% of subjects, with the biggest impact in those receiving the 30 μg dose. A memory T-cell response was also noted for IFN-γ in almost all subjects and for IL-17A in the majority of subjects. These data support the continued investigation of NDV-3 as a vaccine candidate against Candida and S. aureus infections.
Collapse
|
34
|
Kuhn DM, Vyas VK. The Candida glabrata adhesin Epa1p causes adhesion, phagocytosis, and cytokine secretion by innate immune cells. FEMS Yeast Res 2012; 12:398-414. [DOI: 10.1111/j.1567-1364.2011.00785.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/21/2011] [Accepted: 12/21/2011] [Indexed: 12/25/2022] Open
Affiliation(s)
- Duncan M. Kuhn
- Whitehead Institute for Biomedical Research; 9 Cambridge Center; Cambridge; MA; USA
| | - Valmik K. Vyas
- Whitehead Institute for Biomedical Research; 9 Cambridge Center; Cambridge; MA; USA
| |
Collapse
|
35
|
Luo G, Ibrahim AS, French SW, Edwards JE, Fu Y. Active and passive immunization with rHyr1p-N protects mice against hematogenously disseminated candidiasis. PLoS One 2011; 6:e25909. [PMID: 22028796 PMCID: PMC3189951 DOI: 10.1371/journal.pone.0025909] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/13/2011] [Indexed: 11/18/2022] Open
Abstract
We previously reported that Candida albicans cell surface protein Hyr1 encodes a phagocyte killing resistance factor and active vaccination with a recombinant N-terminus of Hyr1 protein (rHyr1p-N), significantly protects immunocompetent mice from disseminated candidiasis. Here we report the marked efficacy of rHyr1p-N vaccine on improving the survival and reducing the fungal burden of disseminated candidiasis in both immunocompetent and immunocompromised mice using the FDA-approved adjuvant, alum. Importantly, we also show that pooled rabbit anti-Hyr1p polyclonal antibodies raised against 8 different peptide regions of rHyr1p-N protected mice in a hematogenously disseminated candidiasis model, raising the possibility of developing a successful passive immunotherapy strategy to treat this disease. Our data suggest that the rabbit anti-Hyr1p antibodies directly neutralized the Hyr1p virulence function, rather than enhanced opsonophagocytosis for subsequent killing by neutrophil in vitro. Finally, the rHyr1p-N vaccine was protective against non-albicans Candida spp. These preclinical data demonstrate that rHyr1p-N is likely to be a novel target for developing both active and passive immunization strategies against Candida infections.
Collapse
Affiliation(s)
- Guanpingsheng Luo
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Samuel W. French
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Pathology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - John E. Edwards
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Yue Fu
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abstract
Over the past two decades much has been learned about the immunology of invasive fungal infection, especially invasive candidiasis and invasive aspergillosis. Although quite different in their pathogenesis, the major common protective host response is Th1 mediated. It is through Th1 cytokine production that the effector cells, phagocytes, are activated to kill the fungus. A more thorough understanding of the pathogenesis of disease, the elicited protective Th1 immune response, the T cell antigen(s) which elicit this response, and the mechanism(s) whereby one can enhance, reconstitute, or circumvent the immunosuppressed state will, hopefully, lead to the development of a vaccine(s) capable of protecting even the most immunocompromised of hosts.
Collapse
Affiliation(s)
- James Isami Ito
- Division of Infectious Diseases, City of Hope, 1500E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
37
|
Martin R, Wächtler B, Schaller M, Wilson D, Hube B. Host-pathogen interactions and virulence-associated genes during Candida albicans oral infections. Int J Med Microbiol 2011; 301:417-22. [PMID: 21555244 DOI: 10.1016/j.ijmm.2011.04.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oral infections with Candida albicans are very common diseases in even only mildly immunocompromised patients. By using genome-wide microarrays, in vitro infection models and samples from patients with pseudomembranous candidiasis, several genes have been identified which encode known and unknown fungal factors associated with oral infection. The expression of selected genes has been investigated via qRT-PCR in both in vitro models and in vivo samples from patients. Several lines of evidence suggest that fungal morphology plays a key role in adhesion to and invasion into oral epithelial cells and mutants lacking regulators of hyphal formation are attenuated in their ability to invade and damage epithelial cells. Adhesion is mediated by hyphal-associated factors such as Hwp1 and the Als adhesin family. Hyphal formation facilitates epithelial invasion via two routes: active penetration and induced endocytosis. While induced endocytosis is predominantly mediated by the adhesin and invasin Als3, active penetration seems to be supported by hydrolase activity and mechanical pressure. Expression profiles reflect the morphological switch and an adaptive response to neutral pH, non-glucose carbon sources, and nitrosative stress.
Collapse
Affiliation(s)
- Ronny Martin
- Center for Innovation Competence Septomics, Research Group Fungal Septomics at the Leibniz Institute for Natural Products Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | | | | | | | | |
Collapse
|
38
|
Chaudhuri R, Ansari FA, Raghunandanan MV, Ramachandran S. FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens. BMC Genomics 2011; 12:192. [PMID: 21496229 PMCID: PMC3224177 DOI: 10.1186/1471-2164-12-192] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 04/15/2011] [Indexed: 01/11/2023] Open
Abstract
Background The availability of sequence data of human pathogenic fungi generates opportunities to develop Bioinformatics tools and resources for vaccine development towards benefitting at-risk patients. Description We have developed a fungal adhesin predictor and an immunoinformatics database with predicted adhesins. Based on literature search and domain analysis, we prepared a positive dataset comprising adhesin protein sequences from human fungal pathogens Candida albicans, Candida glabrata, Aspergillus fumigatus, Coccidioides immitis, Coccidioides posadasii, Histoplasma capsulatum, Blastomyces dermatitidis, Pneumocystis carinii, Pneumocystis jirovecii and Paracoccidioides brasiliensis. The negative dataset consisted of proteins with high probability to function intracellularly. We have used 3945 compositional properties including frequencies of mono, doublet, triplet, and multiplets of amino acids and hydrophobic properties as input features of protein sequences to Support Vector Machine. Best classifiers were identified through an exhaustive search of 588 parameters and meeting the criteria of best Mathews Correlation Coefficient and lowest coefficient of variation among the 3 fold cross validation datasets. The "FungalRV adhesin predictor" was built on three models whose average Mathews Correlation Coefficient was in the range 0.89-0.90 and its coefficient of variation across three fold cross validation datasets in the range 1.2% - 2.74% at threshold score of 0. We obtained an overall MCC value of 0.8702 considering all 8 pathogens, namely, C. albicans, C. glabrata, A. fumigatus, B. dermatitidis, C. immitis, C. posadasii, H. capsulatum and P. brasiliensis thus showing high sensitivity and specificity at a threshold of 0.511. In case of P. brasiliensis the algorithm achieved a sensitivity of 66.67%. A total of 307 fungal adhesins and adhesin like proteins were predicted from the entire proteomes of eight human pathogenic fungal species. The immunoinformatics analysis data on these proteins were organized for easy user interface analysis. A Web interface was developed for analysis by users. The predicted adhesin sequences were processed through 18 immunoinformatics algorithms and these data have been organized into MySQL backend. A user friendly interface has been developed for experimental researchers for retrieving information from the database. Conclusion FungalRV webserver facilitating the discovery process for novel human pathogenic fungal adhesin vaccine has been developed.
Collapse
Affiliation(s)
- Rupanjali Chaudhuri
- G.N Ramachandran Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi 110007, India
| | | | | | | |
Collapse
|
39
|
van de Veerdonk FL, Netea MG, Joosten LA, van der Meer JWM, Kullberg BJ. Novel strategies for the prevention and treatment of Candida infections: the potential of immunotherapy. FEMS Microbiol Rev 2011; 34:1063-75. [PMID: 20528948 DOI: 10.1111/j.1574-6976.2010.00232.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Infections caused by Candida spp. continue to be a substantial cause of disease burden, especially in immunocompromised patients. New approaches are needed to improve the outcome of patients suffering from Candida infections, because it seems unlikely that the established standard treatment will drastically lower the morbidity of mucocutaneous Candida infections and the high mortality associated with invasive candidiasis. New insights into the mechanisms of the anti-Candida host response have contributed to the design of novel immunotherapeutic approaches that have been proposed as adjuvant therapy in Candida infections. This review presents an overview of novel strategies in the prevention and treatment of Candida infections, with a special focus on adjuvant immunotherapy.
Collapse
Affiliation(s)
- Frank L van de Veerdonk
- Department of Medicine, Radboud University Nijmegen Medical Center, Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
40
|
Sosinska GJ, de Koning LJ, de Groot PWJ, Manders EMM, Dekker HL, Hellingwerf KJ, de Koster CG, Klis FM. Mass spectrometric quantification of the adaptations in the wall proteome of Candida albicans in response to ambient pH. MICROBIOLOGY-SGM 2010; 157:136-146. [PMID: 20864472 DOI: 10.1099/mic.0.044206-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mucosal layers colonized by the pathogenic fungus Candida albicans differ widely in ambient pH. Because the properties and functions of wall proteins are probably pH dependent, we hypothesized that C. albicans adapts its wall proteome to the external pH. We developed an in vitro system that mimics colonization of mucosal surfaces by growing biomats at pH 7 and 4 on semi-solid agarose containing mucin as the sole nitrogen source. The biomats expanded radially for at least 8 days at a rate of ~30 μm h(-1). At pH 7, hyphal growth predominated and growth was invasive, whereas at pH 4 only yeast and pseudohyphal cells were present and growth was noninvasive. Both qualitative mass spectrometric analysis of the wall proteome by tandem mass spectrometry and relative quantification of individual wall proteins (pH 7/pH 4), using Fourier transform mass spectrometry (FT-MS) and a reference mixture of (15)N-labelled yeast and hyphal walls, identified similar sets of >20 covalently linked wall proteins. The adhesion proteins Als1 and Als3, Hyr1, the transglucosidase Phr1, the detoxification enzyme Sod5 and the mammalian transglutaminase substrate Hwp1 (immunological detection) were only present at pH 7, whereas at pH 4 the level of the transglucosidase Phr2 was >35-fold higher than at pH 7. Sixteen out of the 22 proteins identified by FT-MS showed a greater than twofold change. These results demonstrate that ambient pH strongly affects the wall proteome of C. albicans, show that our quantitative approach can give detailed insights into the dynamics of the wall proteome, and point to potential vaccine targets.
Collapse
Affiliation(s)
- Grazyna J Sosinska
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Leo J de Koning
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Piet W J de Groot
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Erik M M Manders
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Henk L Dekker
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Chris G de Koster
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Frans M Klis
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
41
|
An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 2010; 9:719-27. [PMID: 20725094 DOI: 10.1038/nrd3074] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Invasive fungal infections are increasing in incidence and are associated with substantial mortality. Improved diagnostics and the availability of new antifungals have revolutionized the field of medical mycology in the past decades. This Review focuses on recent developments in the antifungal pipeline, concentrating on promising candidates such as new azoles, polyenes and echinocandins, as well as agents such as nikkomycin Z and the sordarins. Developments in vaccines and antibody-based immunotherapy are also discussed. Few therapeutic products are currently in active development, and progression of therapeutic agents with fungus-specific mechanisms of action is of key importance.
Collapse
|
42
|
Lin L, Ibrahim AS, Xu X, Farber JM, Avanesian V, Baquir B, Fu Y, French SW, Edwards JE, Spellberg B. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog 2009; 5:e1000703. [PMID: 20041174 PMCID: PMC2792038 DOI: 10.1371/journal.ppat.1000703] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/19/2009] [Indexed: 01/17/2023] Open
Abstract
We sought to define protective mechanisms of immunity to Staphylococcus aureus and Candida albicans bloodstream infections in mice immunized with the recombinant N-terminus of Als3p (rAls3p-N) vaccine plus aluminum hydroxide (Al(OH3) adjuvant, or adjuvant controls. Deficiency of IFN-γ but not IL-17A enhanced susceptibility of control mice to both infections. However, vaccine-induced protective immunity against both infections required CD4+ T-cell-derived IFN-γ and IL-17A, and functional phagocytic effectors. Vaccination primed Th1, Th17, and Th1/17 lymphocytes, which produced pro-inflammatory cytokines that enhanced phagocytic killing of both organisms. Vaccinated, infected mice had increased IFN-γ, IL-17, and KC, increased neutrophil influx, and decreased organism burden in tissues. In summary, rAls3p-N vaccination induced a Th1/Th17 response, resulting in recruitment and activation of phagocytes at sites of infection, and more effective clearance of S. aureus and C. albicans from tissues. Thus, vaccine-mediated adaptive immunity can protect against both infections by targeting microbes for destruction by innate effectors. The bacterium Staphylococcus aureus and the fungus Candida are the second and third leading cause of bloodstream infections in hospitalized patients. A vaccine to prevent such infections would be of enormous public health benefit. The leading hypothesis to explain why vaccines have not been successfully developed against these infections is that the microbes causing the infections are highly complex, and use multiple weapons (so-called “virulence factors”) to cause disease in humans. Therefore, a vaccine targeting either infection would have to neutralize many of these virulence factors at the same time. We have been developing a vaccine that simultaneously targets both types of infections. Our vaccine is based on a single virulence factor used by Candida, which has a similar shape to virulence factors used by S. aureus. In the current study, we report that our vaccine induces specialized cells in the immune system to more effectively call in reinforcements to kill the organisms. These data demonstrate that vaccines against both organisms can be developed even if they do not work by neutralizing multiple virulence factors, and therefore open the door to a far wider array of vaccine types against both infections.
Collapse
Affiliation(s)
- Lin Lin
- The Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Ashraf S. Ibrahim
- The Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- The David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Xin Xu
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua M. Farber
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Valentina Avanesian
- The Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Beverlie Baquir
- The Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
| | - Yue Fu
- The Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- The David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Samuel W. French
- The David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- The Department of Pathology, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - John E. Edwards
- The Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- The David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Brad Spellberg
- The Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, California, United States of America
- The David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- The Division of General Internal Medicine, Harbor-UCLA Medical Center, Torrance, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Kabir MA, Hussain MA. Human fungal pathogen Candida albicans in the postgenomic era: an overview. Expert Rev Anti Infect Ther 2009; 7:121-34. [PMID: 19622061 DOI: 10.1586/14787210.7.1.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Candida albicans is an opportunistic human fungal pathogen and is responsible for candidiasis. Owing to the improvement in healthcare, the number of immunocompromised patients in hospitals has increased worldwide and these individuals are susceptible to infections caused by many pathogenic microbes, among which C. albicans is one of the major players. Currently, the complete genome sequence of this pathogen is available and the size of this was estimated to be of 16 Mb. Annotation of C. albicans genome revealed that there are 6114 open reading frames (ORFs), of which 774 are specific to C. albicans. This poses a challenge as well as an opportunity to the Candida community to understand the functions of the unknown genes, especially those specific to C. albicans. Efforts have been made by the Candida community to systematically delete the ORFs and assign the functions. This will, in turn, help in understanding the biology of C. albicans and its interactions with animals as well as humans, and better drugs can be developed to treat Candida infections. In this article, we review updates on the Candida biology in the context of the availability of the genome sequence, its functional analysis and anti-Candida therapy. Finally, in the light of present trends in Candida research and current challenges, various opportunities are identified and suggestions are made.
Collapse
Affiliation(s)
- M Anaul Kabir
- Department of Biotechnology, PA College of Engineering, Kairangala, Mangalore-574153, Karnataka, India.
| | | |
Collapse
|
44
|
Klis FM, Sosinska GJ, de Groot PWJ, Brul S. Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res 2009; 9:1013-28. [PMID: 19624749 DOI: 10.1111/j.1567-1364.2009.00541.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The cell wall of Candida albicans consists of an internal skeletal layer and an external protein coat. This coat has a mosaic-like nature, containing c. 20 different protein species covalently linked to the skeletal layer. Most of them are GPI proteins. Coat proteins vary widely in function. Many of them are involved in the primary interactions between C. albicans and the host and mediate adhesive steps or invasion of host cells. Others are involved in biofilm formation and cell-cell aggregation. They further include iron acquisition proteins, superoxide dismutases, and yapsin-like aspartic proteases. In addition, several covalently linked carbohydrate-active enzymes are present, whose precise functions remain hitherto largely elusive. The expression levels of the genes that encode covalently linked cell wall proteins (CWPs) can vary enormously. They depend on the mode of growth and the combined inputs of several signaling pathways that sense environmental conditions. This is reflected in the unusually long intergenic regions of most of these genes. Finally, the precise location of several covalently linked CWPs is temporally and spatially regulated. We conclude that covalently linked CWPs of C. albicans play a crucial role in fitness and virulence and that their expression is tightly controlled.
Collapse
Affiliation(s)
- Frans M Klis
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1018 WV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
45
|
Immunization protocols for use in animal models of candidiasis. Methods Mol Biol 2009. [PMID: 19152036 DOI: 10.1007/978-1-60327-151-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Immunoprotection during most forms of candidiasis (oropharyngeal, invasive) is lacking since most candidiasis patients are immunosuppressed either as a result of their allogeneic transplant, cancer chemotherapy, or HIV infection. Consequently, immunization might be considered as an unlikely way to protect patients from such infection. Nonetheless, there are a number of investigations that indicate active immunization or the passive treatment with hyperimmune, specific antibodies can result in protection in models of experimental candidiasis. The former subject, active immunization, is the subject of this chapter. We focus on recent efforts with the Als family of cell wall proteins to serve as a model, and also offer immunization methods in candidiasis models that can be adapted to any antigen of the organism.
Collapse
|
46
|
Angiolella L, Vitali A, Stringaro A, Mignogna G, Maras B, Bonito M, Colone M, Palamara AT, Cassone A. Localisation of Bgl2p upon antifungal drug treatment in Candida albicans. Int J Antimicrob Agents 2008; 33:143-8. [PMID: 19013773 DOI: 10.1016/j.ijantimicag.2008.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
Several proteins are covalently bound to the cell wall glucan (glucan-associated proteins (GAPs)) in Candida albicans and different drugs may cause their modulation. Proteomic analysis is a suitable approach to study differential GAP patterns between control and drug-treated cells. Since antimycotics induce variation in GAP content, we investigated the effect of a sublethal dose of micafungin and observed a clear increase in Bgl2p, an enzyme with glucanosyltransferase activity, with respect to a general decrease in cell wall protein content. Immunoelectron microscopy using mouse antiserum confirmed this increase of Bgl2p on the outer cell wall but also revealed a dramatic increase in the immature Bgl2p isoform in the cytoplasm of drug-treated cells. Since this increased expression of Bgl2p is clearly dependent upon micafungin treatment, this enzyme appears to be one of the survival strategies of C. albicans and thus could be considered the molecular basis of antifungal resistance and also as a potential valuable candidate for future vaccine development.
Collapse
Affiliation(s)
- Letizia Angiolella
- Department of Public Health Sciences G. Sanarelli, University of Rome La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Villar CC, Dongari-Bagtzoglou A. Immune defence mechanisms and immunoenhancement strategies in oropharyngeal candidiasis. Expert Rev Mol Med 2008; 10:e29. [PMID: 18847522 PMCID: PMC2712880 DOI: 10.1017/s1462399408000835] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The prevalence of oropharyngeal candidiasis continues to be high, mainly because of an increasing population of immunocompromised patients. Traditional treatment of oropharyngeal candidiasis has relied on the use of antimicrobial drugs. However, unsatisfactory results with drug monotherapy and the emergence of resistant strains have prompted investigations into the potential use of adjunctive immunoenhancing therapies for the treatment of these infections. Here we review the host-recognition systems of Candida albicans, the immune and inflammatory response to infection, and antifungal effector mechanisms. The potential of immune modulation as a therapeutic strategy in oropharyngeal candidiasis is also discussed.
Collapse
MESH Headings
- Animals
- Antifungal Agents/therapeutic use
- Candidiasis, Oral/drug therapy
- Candidiasis, Oral/immunology
- Cytokines/immunology
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Cellular
- Immunity, Innate
- Immunity, Mucosal
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mannose Receptor
- Mannose-Binding Lectins/immunology
- Mannose-Binding Lectins/metabolism
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Models, Biological
- Nerve Tissue Proteins/immunology
- Nerve Tissue Proteins/metabolism
- Oropharynx
- Pharyngeal Diseases/immunology
- Pharyngeal Diseases/microbiology
- Pharyngeal Diseases/therapy
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- T-Lymphocytes, Regulatory/immunology
- Toll-Like Receptors/immunology
- Toll-Like Receptors/metabolism
Collapse
Affiliation(s)
- Cristina Cunha Villar
- Department of Periodontics, University of Texas Health Science Center at San Antonio School of Dentistry, San Antonio, Texas 78229, USA.
| | | |
Collapse
|
48
|
Nather K, Munro CA. Generating cell surface diversity in Candida albicans and other fungal pathogens. FEMS Microbiol Lett 2008; 285:137-45. [PMID: 18616597 DOI: 10.1111/j.1574-6968.2008.01263.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The fungal cell surface contributes to pathogenesis by mediating interactions with host cells and eliciting host immune responses. This review focuses on the cell wall proteome of the major fungal pathogen Candida albicans and discusses how diversity at the cell surface can be introduced by altering the expression and structure of cell wall proteins. Remodelling the cell wall architecture is critical to maintain cellular integrity in response to different environments and stresses including challenge with antifungal drugs. In addition, the dynamic nature of the cell surface alters the physical properties of the fungal interface with host cells and thereby influences adhesion to the host and recognition by components of the host's immune system. Examples of the role of cell surface diversity in the pathogenesis of a number of microorganisms are described.
Collapse
Affiliation(s)
- Kerstin Nather
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
49
|
The antifungal vaccine derived from the recombinant N terminus of Als3p protects mice against the bacterium Staphylococcus aureus. Infect Immun 2008; 76:4574-80. [PMID: 18644876 DOI: 10.1128/iai.00700-08] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccination with the recombinant N terminus of the candidal adhesin Als3p (rAls3p-N) protects mice from lethal candidemia. Candidal Als3p also is structurally similar to the microbial surface components recognizing adhesive matrix molecule adhesin, clumping factor, from Staphylococcus aureus. To determine the potential for cross-kingdom vaccination, we immunized mice with rAls3p-N or negative control proteins and challenged them via the tail vein with S. aureus or other gram-positive or gram-negative pathogens. The rAls3p-N vaccine, but neither tetanus toxoid nor a related Als protein (Als5p), improved the survival of vaccinated mice subsequently infected with multiple clinical isolates of S. aureus, including methicillin-resistant strains. The rAls3p-N vaccine was effective against S. aureus when combined with aluminum hydroxide adjuvant. However, the vaccine did not improve the survival of mice infected with other bacterial pathogens. Vaccinated, infected mice mounted moderated type 1 immune responses. T lymphocyte-deficient mice were more susceptible to S. aureus infection, but B lymphocyte-deficient mice were not. Furthermore, T but not B lymphocytes from vaccinated mice mediated protection in adoptive transfer studies. The passive transfer of immune serum was not protective. These data provide the foundation for cross-kingdom vaccine development against S. aureus and Candida, which collectively cause 200,000 bloodstream infections resulting in >/=40,000 to 50,000 deaths annually in the United States alone.
Collapse
|
50
|
Hamad M. Antifungal Immunotherapy and Immunomodulation: A Double-hitter Approach to Deal with Invasive Fungal Infections. Scand J Immunol 2008; 67:533-43. [DOI: 10.1111/j.1365-3083.2008.02101.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|