1
|
Tepekule B, Barcik W, Staiger WI, Bergadà-Pijuan J, Scheier T, Brülisauer L, Hall AR, Günthard HF, Hilty M, Kouyos RD, Brugger SD. Computational and in vitro evaluation of probiotic treatments for nasal Staphylococcus aureus decolonization. Proc Natl Acad Sci U S A 2025; 122:e2412742122. [PMID: 39932999 PMCID: PMC11848298 DOI: 10.1073/pnas.2412742122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Despite the rising challenge of antibiotic resistance, current approaches to eradicate nasal pathobionts Staphylococcus aureus and Streptococcus pneumoniae rely on antibacterials. An alternative is the artificial inoculation of commensal bacteria, i.e., probiotic treatment, supported by the increasing evidence for commensal-mediated inhibition of pathogens. To systematically investigate the potential of this approach, we developed a quantitative framework simulating the nasal microbiome dynamics by combining mathematical modeling with longitudinal microbiota data. By inferring community parameters using 16S ribosomal RNA (rRNA) amplicon sequencing data and simulating the nasal microbial dynamics of patients colonized with S. aureus, we compared the decolonization performance of probiotic and antibiotic treatments under different assumptions on patients' community composition and susceptibility profile. To further compare the robustness of these treatments, we simulated an S. aureus challenge and quantified the recolonization probability. Through in vitro experiments using nasal swabs of adults colonized with S. aureus, we confirmed that after antibiotic treatment, recolonization of S. aureus was inhibited in samples treated with a probiotic mixture compared to the nontreated control. Our results suggest that probiotic treatment outperforms antibiotics in terms of decolonization performance, recolonization robustness, and leads to less collateral reduction in the microbiome diversity. Thus, probiotic treatment may provide a promising alternative to combat antibiotic resistance, with the additional advantage of personalized treatment options via using the patient's own metagenomic data. The combination of an in silico framework with in vitro experiments using clinical samples reported in this work is an important step forward to further investigate this alternative in clinical trials.
Collapse
Affiliation(s)
- Burcu Tepekule
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich8091, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Weronika Barcik
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich8091, Switzerland
| | - Willy I. Staiger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich8091, Switzerland
| | - Judith Bergadà-Pijuan
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich8091, Switzerland
| | - Thomas Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich8091, Switzerland
| | - Laura Brülisauer
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Zurich8092, Switzerland
| | - Alex R. Hall
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Zurich8092, Switzerland
| | - Huldrych F. Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich8091, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern3001, Switzerland
| | - Roger D. Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich8091, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Silvio D. Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich8091, Switzerland
| |
Collapse
|
2
|
Dei-Dzeha MS, Dayie NTKD, Atiase Y, Baah BB, Tetteh-Quarcoo PB, Osei MM, Semevor GO, Okyere I, Kotey FCN, Donkor ES. Comparison of nasopharyngeal bacteriological profile between patients with diabetes and healthy individuals in Accra, Ghana. BMC Res Notes 2024; 17:362. [PMID: 39702258 DOI: 10.1186/s13104-024-07003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The nasopharynx is characterised by a rich microbial diversity, making it an important endogenous reservoir for respiratory infections. People living with diabetes (PLWD) have a high risk for acquisition of respiratory tract infections, but their nasopharyngeal bacterial flora have rarely been investigated. AIM To investigate the nasopharyngeal bacterial flora among PLWD and non-diabetics at the Korle Bu Teaching Hospital in Accra. METHODOLOGY This study was a case-control one, involving 130 each of PLWD and non-diabetics. Nasopharyngeal swab specimens were obtained from the participants and cultured for bacteria, which were identified using MALDITOF mass spectrometry. RESULTS The bacterial flora present in the anterior nares of the participants of both study groups was characterised by a rich diversity, comprising both Gram-positives and Gram-negatives. In the diabetics, the dominant bacteria were Acinetobacter baumannii (19.6%), Staphylococcus epidermidis (18.12%), Staphylococcus aureus (15.2%), and Rahnella aquatilis (12.3%). In the control group, however, the dominant bacteria were Staphylococcus epidermidis (21.9%), Staphylococcus aureus (19.0%), Proteus mirabilis (10.9%), Pseudomonas aeruginosa (10.2%), Acinetobacter baumannii (8.8%), and Enterobacter cloacae (7.2%). Between groups, Acinetobacter baumannii (19.6% vs. 8.8%, p = 0.014) and Rahnella aquatilis (12.3% vs. 0.0%, p < 0.001) recorded a significantly higher prevalence in the diabetes group than in the control group. On the contrary, Klebsiella pneumoniae (0.0% vs. 4.4%, p = 0.003), Proteus mirabilis (2.2% vs. 10.9%, p = 0.006), and Pseudomonas aeruginosa (0.7% vs. 10.2%, p < 0.001) had significantly lower prevalence than in the control group. CONCLUSION The nasopharyngeal bacterial flora of PLWD in Accra seems to have comparable diversities with those of non-diabetics. Nonetheless, the PLWD had a higher carriage rate of Acinetobacter baumannii but seem to have some protection against carriage of Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Michael S Dei-Dzeha
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Nicholas T K D Dayie
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Yacoba Atiase
- Department of Medicine, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Bismark B Baah
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Patience B Tetteh-Quarcoo
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Mary-Magdalene Osei
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Grace O Semevor
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Isaac Okyere
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Fleischer C N Kotey
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, P.O. Box KB 4236, Accra, Ghana.
| |
Collapse
|
3
|
Carreño A, Morales-Guevara R, Cepeda-Plaza M, Páez-Hernández D, Preite M, Polanco R, Barrera B, Fuentes I, Marchant P, Fuentes JA. Synthesis, Physicochemical Characterization, and Antimicrobial Evaluation of Halogen-Substituted Non-Metal Pyridine Schiff Bases. Molecules 2024; 29:4726. [PMID: 39407654 PMCID: PMC11477791 DOI: 10.3390/molecules29194726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Four synthetic Schiff bases (PSB1 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-dibromophenol], PSB2 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-diiodophenol], PSB3 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-iodophenol], and PSB4 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-chloro-6-iodophenol]) were fully characterized. These compounds exhibit an intramolecular hydrogen bond between the hydroxyl group of the phenolic ring and the nitrogen of the azomethine group, contributing to their stability. Their antimicrobial activity was evaluated against various Gram-negative and Gram-positive bacteria, and it was found that the synthetic pyridine Schiff bases, as well as their precursors, showed no discernible antimicrobial effect on Gram-negative bacteria, including Salmonella Typhi (and mutant derivatives), Salmonella Typhimurium, Escherichia coli, and Morganella morganii. In contrast, a more pronounced biocidal effect against Gram-positive bacteria was found, including Bacillus subtilis, Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecalis, Staphylococcus aureus, and Staphylococcus haemolyticus. Among the tested compounds, PSB1 and PSB2 were identified as the most effective against Gram-positive bacteria, with PSB2 showing the most potent biocidal effects. Although the presence of reactive oxygen species (ROS) was noted after treatment with PSB2, the primary mode of action for PSB2 does not appear to involve ROS generation. This conclusion is supported by the observation that antioxidant treatment with vitamin C only partially mitigated bacterial inhibition, indicating an alternative biocidal mechanism.
Collapse
Affiliation(s)
- Alexander Carreño
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, República 330, Santiago 8370186, Chile; (R.M.-G.); (D.P.-H.)
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago 8370146, Chile;
| | - Rosaly Morales-Guevara
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, República 330, Santiago 8370186, Chile; (R.M.-G.); (D.P.-H.)
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador B. O’Higgins 3363, Santiago 9170022, Chile
- Facultad de Ingeniería, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago 7501015, Chile
| | - Marjorie Cepeda-Plaza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago 8370146, Chile;
| | - Dayán Páez-Hernández
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, República 330, Santiago 8370186, Chile; (R.M.-G.); (D.P.-H.)
| | - Marcelo Preite
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Rubén Polanco
- Laboratorio de Hongos Fitopatógenos, Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, República 330, Santiago 8370186, Chile;
| | - Boris Barrera
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile;
| | - Ignacio Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 330, Santiago 8370186, Chile; (I.F.); (P.M.)
- Doctorado en Biotecnología, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 330, Santiago 8370186, Chile
| | - Pedro Marchant
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 330, Santiago 8370186, Chile; (I.F.); (P.M.)
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 330, Santiago 8370186, Chile; (I.F.); (P.M.)
| |
Collapse
|
4
|
Piewngam P, Otto M. Staphylococcus aureus colonisation and strategies for decolonisation. THE LANCET. MICROBE 2024; 5:e606-e618. [PMID: 38518792 PMCID: PMC11162333 DOI: 10.1016/s2666-5247(24)00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/24/2024]
Abstract
Staphylococcus aureus is a leading cause of death by infectious diseases worldwide. Treatment of S aureus infections is difficult due to widespread antibiotic resistance, necessitating alternative approaches and measures for prevention of infection. Because S aureus infections commonly arise from asymptomatic colonisation, decolonisation is considered a key approach for their prevention. Current decolonisation procedures include antibiotic-based and antiseptic-based eradication of S aureus from the nose and skin. However, despite the widespread implementation and partial success of such measures, S aureus infection rates remain worrisome, and resistance to decolonisation agents is on the rise. In this Review we outline the epidemiology and mechanisms of S aureus colonisation, describe how colonisation underlies infection, and discuss current and novel approaches for S aureus decolonisation, with a focus on the latest findings on probiotic strategies and the intestinal S aureus colonisation site.
Collapse
Affiliation(s)
- Pipat Piewngam
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Caron AJ, Ali IJ, Delgado MJ, Johnson D, Reeks JM, Strzhemechny YM, McGillivray SM. Zinc oxide nanoparticles mediate bacterial toxicity in Mueller-Hinton Broth via Zn 2. Front Microbiol 2024; 15:1394078. [PMID: 38711974 PMCID: PMC11070567 DOI: 10.3389/fmicb.2024.1394078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
As antibiotic resistance increases and antibiotic development dwindles, new antimicrobial agents are needed. Recent advances in nanoscale engineering have increased interest in metal oxide nanoparticles, particularly zinc oxide nanoparticles, as antimicrobial agents. Zinc oxide nanoparticles are promising due to their broad-spectrum antibacterial activity and low production cost. Despite many studies demonstrating the effectiveness of zinc oxide nanoparticles, the antibacterial mechanism is still unknown. Previous work has implicated the role of reactive oxygen species such as hydrogen peroxide, physical damage of the cell envelope, and/or release of toxic Zn2+ ions as possible mechanisms of action. To evaluate the role of these proposed methods, we assessed the susceptibility of S. aureus mutant strains, ΔkatA and ΔmprF, to zinc oxide nanoparticles of approximately 50 nm in size. These assays demonstrated that hydrogen peroxide and electrostatic interactions are not crucial for mediating zinc oxide nanoparticle toxicity. Instead, we found that Zn2+ accumulates in Mueller-Hinton Broth over time and that removal of Zn2+ through chelation reverses this toxicity. Furthermore, we found that the physical separation of zinc oxide nanoparticles and bacterial cells using a semi-permeable membrane still allows for growth inhibition. We concluded that soluble Zn2+ is the primary mechanism by which zinc oxide nanoparticles mediate toxicity in Mueller-Hinton Broth. Future work investigating how factors such as particle morphology (e.g., size, polarity, surface defects) and media contribute to Zn2+ dissolution could allow for the synthesis of zinc oxide nanoparticles that possess chemical and morphological properties best suited for antibacterial efficacy.
Collapse
Affiliation(s)
- Alexander J. Caron
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Iman J. Ali
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Michael J. Delgado
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Dustin Johnson
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States
| | - John M. Reeks
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States
| | - Yuri M. Strzhemechny
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States
| | | |
Collapse
|
6
|
Tsirigotaki M, Galanakis E. Impact of vaccines on Staphylococcus aureus colonization: A systematic review and meta-analysis. Vaccine 2023; 41:6478-6487. [PMID: 37777451 DOI: 10.1016/j.vaccine.2023.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/17/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Concerns regarding vaccine effects on microbial ecology have led to interest in the non-targeted effects of vaccinations. OBJECTIVES To systematically review the literature related to the impact of vaccines on S. aureus carriage. METHODS We conducted a systematic search of MEDLINE, Scopus and clinical trials.gov for studies that assessed vaccine effects on S. aureus carriage in children and adults using predefined inclusion and exclusion criteria. Generic inverse variance meta-analysis was done using random-effects models. RESULTS Of 1,686 studies screened, 34 were eligible for inclusion, of which 22 were observational and 12 randomized controlled studies (RCTs). 88.2% (30/34) provided data on pneumococcal conjugate vaccines (PCV), 23.5% on influenza vaccines (8/34), 6% on other vaccines (2/34) and 20.6% on more than one vaccine (7/34). Most studies tested nasopharyngeal specimens (82.3%, 28/34). Among children aged more than 18-24 months, evidence suggested no effect of PCV on S. aureus colonization [2 RCTs, pooled OR 1.09 (95% CI 0.94-1.25), p 0.25; 7 observational studies, pooled OR: 1.02 (95% CI 0.83-1.25), p 0.86]. A transient increase in S. aureus carriage in PCV-vaccinated infants 9-15 months was shown [2 RCTs, pooled OR 1.11 (95% CI 1.00-1.23), p 0.06; 4 observational studies, pooled OR 1.64 (95% CI 1.00-2.68), p 0.05]. A reduction in S. aureus carriage was observed after influenza vaccination [4 observational studies; OR 0.85 (95% CI 0.78-0.94), p 0.0001]. Based on the Grading of Recommendations Assessment, Development and Evaluation, the quality of evidence was considered low for randomized and very low for non-randomized trials. CONCLUSION Evidence did not suggest long-term effects of pneumococcal vaccinations on S. aureus nasopharyngeal carriage in children, however transient niche changes may occur in infants. Influenza vaccination was related to decreased rates of S. aureus carriage. Data regarding other vaccines is scarce. Further research and ongoing surveillance are needed to monitor colonization changes.
Collapse
|
7
|
Gierse LC, Meene A, Skorka S, Cuypers F, Surabhi S, Ferrero-Bordera B, Kreikemeyer B, Becher D, Hammerschmidt S, Siemens N, Urich T, Riedel K. Impact of Pneumococcal and Viral Pneumonia on the Respiratory and Intestinal Tract Microbiomes of Mice. Microbiol Spectr 2023; 11:e0344722. [PMID: 36988458 PMCID: PMC10269894 DOI: 10.1128/spectrum.03447-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
With 2.56 million deaths worldwide annually, pneumonia is one of the leading causes of death. The most frequent causative pathogens are Streptococcus pneumoniae and influenza A virus. Lately, the interaction between the pathogens, the host, and its microbiome have gained more attention. The microbiome is known to promote the immune response toward pathogens; however, our knowledge on how infections affect the microbiome is still scarce. Here, the impact of colonization and infection with S. pneumoniae and influenza A virus on the structure and function of the respiratory and gastrointestinal microbiomes of mice was investigated. Using a meta-omics approach, we identified specific differences between the bacterial and viral infection. Pneumococcal colonization had minor effects on the taxonomic composition of the respiratory microbiome, while acute infections caused decreased microbial complexity. In contrast, richness was unaffected following H1N1 infection. Within the gastrointestinal microbiome, we found exclusive changes in structure and function, depending on the pathogen. While pneumococcal colonization had no effects on taxonomic composition of the gastrointestinal microbiome, increased abundance of Akkermansiaceae and Spirochaetaceae as well as decreased amounts of Clostridiaceae were exclusively found during invasive S. pneumoniae infection. The presence of Staphylococcaceae was specific for viral pneumonia. Investigation of the intestinal microbiomés functional composition revealed reduced expression of flagellin and rubrerythrin and increased levels of ATPase during pneumococcal infection, while increased amounts of acetyl coenzyme A (acetyl-CoA) acetyltransferase and enoyl-CoA transferase were unique after H1N1 infection. In conclusion, identification of specific taxonomic and functional profiles of the respiratory and gastrointestinal microbiome allowed the discrimination between bacterial and viral pneumonia. IMPORTANCE Pneumonia is one of the leading causes of death worldwide. Here, we compared the impact of bacterial- and viral-induced pneumonia on the respiratory and gastrointestinal microbiome. Using a meta-omics approach, we identified specific profiles that allow discrimination between bacterial and viral causative.
Collapse
Affiliation(s)
| | - Alexander Meene
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sebastian Skorka
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Fabian Cuypers
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Surabhi Surabhi
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | | | - Bernd Kreikemeyer
- Institute for Medical Microbiology, Virology and Hygiene, Rostock University Medical Centre, Rostock, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Watanabe M, Igarashi K, Kato S, Kamagata Y, Kitagawa W. Critical Effect of H 2O 2 in the Agar Plate on the Growth of Laboratory and Environmental Strains. Microbiol Spectr 2022; 10:e0333622. [PMID: 36321925 PMCID: PMC9769597 DOI: 10.1128/spectrum.03336-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
We previously showed that autoclaving in preparing agar media is one of the sources of hydrogen peroxide (H2O2) in the medium. This medium-embedded H2O2 was shown to lower the total colony count of environmental microorganisms. However, the critical concentrations of H2O2 detrimental to colony formation on the agar plate remain largely undetermined. Herein, we elucidated the specific effect of H2O2 on microbial colony formation on solid agar medium by external supplementation of varying amounts of H2O2. While common laboratory strains (often called domesticated microbes) formed colonies in the presence of high H2O2 concentrations (48.8 μM or higher), microbes from a freshwater sample demonstrated greatly decreased colony counts in the presence of 8.3 μM H2O2. This implies that environmental microbes are susceptible to much lower concentrations of H2O2 than laboratory strains. Among the emergent colonies on agar plates supplemented with different H2O2 concentrations, the relative abundance of betaproteobacterial colonies was found to be lower on plates containing higher amounts of H2O2. Further, the growth of the representative betaproteobacterial isolates was completely inhibited in the presence of 7.2 μM H2O2. Therefore, our study clearly demonstrates that low micromolar levels of H2O2 in agar plates critically affect growth of environmental microbes, and large portions of those are far more susceptible to the same than laboratory strains. IMPORTANCE It is well-known that most of environmental microorganisms do not form colonies on agar medium despite that agar medium is the commonly used solidified medium. We previously demonstrated the negative effects of H2O2 generation during agar medium preparation on colony formation. In the present study, we investigated the independent effect of H2O2 on microbial growth by adding different concentrations of H2O2 to agar medium. Our results demonstrate for the first time that even low micromolar levels of H2O2 in agar plates, that are far lower than previously recognized as significant, adversely affect colony number obtained from freshwater inoculum.
Collapse
Affiliation(s)
- Motoyuki Watanabe
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Kensuke Igarashi
- Graduate School of Global Food Resources, Hokkaido University, Sapporo, Hokkaido, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Souichiro Kato
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Yoichi Kamagata
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Wataru Kitagawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| |
Collapse
|
9
|
Streptococcus agalactiae npx Is Required for Survival in Human Placental Macrophages and Full Virulence in a Model of Ascending Vaginal Infection during Pregnancy. mBio 2022; 13:e0287022. [PMID: 36409087 PMCID: PMC9765263 DOI: 10.1128/mbio.02870-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a Gram-positive encapsulated bacterium that colonizes the gastrointestinal tract of 30 to 50% of humans. GBS causes invasive infection during pregnancy that can lead to chorioamnionitis, funisitis, preterm prelabor rupture of membranes (PPROM), preterm birth, neonatal sepsis, and maternal and fetal demise. Upon infecting the host, GBS encounters sentinel innate immune cells, such as macrophages, within reproductive tissues. Once phagocytosed by macrophages, GBS upregulates the expression of the gene npx, which encodes an NADH peroxidase. GBS mutants with an npx deletion (Δnpx) are exquisitely sensitive to reactive oxygen stress. Furthermore, we have shown that npx is required for GBS survival in both THP-1 and placental macrophages. In an in vivo murine model of ascending GBS vaginal infection during pregnancy, npx is required for invading reproductive tissues and is critical for inducing disease progression, including PPROM and preterm birth. Reproductive tissue cytokine production was also significantly diminished in Δnpx mutant-infected animals compared to that in animals infected with wild-type (WT) GBS. Complementation in trans reversed this phenotype, indicating that npx is critical for GBS survival and the initiation of proinflammatory signaling in the gravid host. IMPORTANCE This study sheds new light on the way that group B Streptococcus (GBS) defends itself against oxidative stress in the infected host. The enzyme encoded by the GBS gene npx is an NADH peroxidase that, our study reveals, provides defense against macrophage-derived reactive oxygen stress and facilitates infections of the uterus during pregnancy. This enzyme could represent a tractable target for future treatment strategies against invasive GBS infections.
Collapse
|
10
|
The Catalase KatA Contributes to Microaerophilic H2O2 Priming to Acquire an Improved Oxidative Stress Resistance in Staphylococcus aureus. Antioxidants (Basel) 2022; 11:antiox11091793. [PMID: 36139867 PMCID: PMC9495333 DOI: 10.3390/antiox11091793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus has to cope with oxidative stress during infections. In this study, S. aureus was found to be resistant to 100 mM H2O2 during aerobic growth. While KatA was essential for this high aerobic H2O2 resistance, the peroxiredoxin AhpC contributed to detoxification of 0.4 mM H2O2 in the absence of KatA. In addition, the peroxiredoxins AhpC, Tpx and Bcp were found to be required for detoxification of cumene hydroperoxide (CHP). The high H2O2 tolerance of aerobic S. aureus cells was associated with priming by endogenous H2O2 levels, which was supported by an oxidative shift of the bacillithiol redox potential to −291 mV compared to −310 mV in microaerophilic cells. In contrast, S. aureus could be primed by sub-lethal doses of 100 µM H2O2 during microaerophilic growth to acquire an improved resistance towards the otherwise lethal triggering stimulus of 10 mM H2O2. This microaerophilic priming was dependent on increased KatA activity, whereas aerobic cells showed constitutive high KatA activity. Thus, KatA contributes to the high H2O2 resistance of aerobic cells and to microaerophilic H2O2 priming in order to survive the subsequent lethal triggering doses of H2O2, allowing the adaptation of S. aureus under infections to different oxygen environments.
Collapse
|
11
|
Clearance of mixed biofilms of Streptococcus pneumoniae and methicillin-susceptible/resistant Staphylococcus aureus by antioxidants N-acetyl-L-cysteine and cysteamine. Sci Rep 2022; 12:6668. [PMID: 35461321 PMCID: PMC9035182 DOI: 10.1038/s41598-022-10609-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/07/2022] [Indexed: 12/01/2022] Open
Abstract
Biofilm-associated infections are of great concern because they are associated with antibiotic resistance and immune evasion. Co-colonization by Staphylococcus aureus and Streptococcus pneumoniae is possible and a threat in clinical practice. We investigated the interaction between S. aureus and S. pneumoniae in mixed biofilms and tested new antibiofilm therapies with antioxidants N-acetyl-l-cysteine (NAC) and cysteamine (Cys). We developed two in vitro S. aureus–S. pneumoniae mixed biofilms in 96-well polystyrene microtiter plates and we treated in vitro biofilms with Cys and NAC analyzing their effect by CV staining and viable plate counting. S. pneumoniae needed a higher proportion of cells in the inoculum and planktonic culture to reach a similar population rate in the mixed biofilm. We demonstrated the effect of Cys in preventing S. aureus biofilms and S. aureus–S. pneumoniae mixed biofilms. Moreover, administration of 5 mg/ml of NAC nearly eradicated the S. pneumoniae population and killed nearly 94% of MSSA cells and 99% of MRSA cells in the mixed biofilms. The methicillin resistance background did not change the antioxidants effect in S. aureus. These results identify NAC and Cys as promising repurposed drug candidates for the prevention and treatment of mixed biofilms by S. pneumoniae and S. aureus.
Collapse
|
12
|
Dong PT, Jusuf S, Hui J, Zhan Y, Zhu Y, Liu GY, Cheng JX. Photoinactivation of catalase sensitizes wide-ranging bacteria to ROS-producing agents and immune cells. JCI Insight 2022; 7:153079. [PMID: 35446788 PMCID: PMC9220836 DOI: 10.1172/jci.insight.153079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Bacteria have evolved to cope with the detrimental effects of ROS using their essential molecular components. Catalase, a heme-containing tetramer protein expressed universally in most aerobic bacteria, plays an indispensable role in scavenging excess hydrogen peroxide (H2O2). Here, through use of wild-type and catalase-deficient mutants, we identified catalase as an endogenous therapeutic target of 400–420 nm blue light. Catalase residing inside bacteria could be effectively inactivated by blue light, subsequently rendering the pathogens extremely vulnerable to H2O2 and H2O2-producing agents. As a result, photoinactivation of catalase and H2O2 synergistically eliminated a wide range of catalase-positive planktonic bacteria and P. aeruginosa inside biofilms. In addition, photoinactivation of catalase was shown to facilitate macrophage defense against intracellular pathogens. The antimicrobial efficacy of catalase photoinactivation was validated using a Pseudomonas aeruginosa–induced mouse abrasion model. Taken together, our findings offer a catalase-targeting phototherapy approach against multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Pu-Ting Dong
- Department of Biomedical Engineering, Boston University, Boston, United States of America
| | - Sebastian Jusuf
- Department of Biomedical Engineering, Boston University, Boston, United States of America
| | - Jie Hui
- Department of Biomedical Engineering, Boston University, Boston, United States of America
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, United States of America
| | - Yifan Zhu
- Department of Chemistry, Boston University, Boston, United States of America
| | - George Y Liu
- Department of Pediatrics, University of California, San Diego, San Diego, United States of America
| | - Ji-Xin Cheng
- Boston University, Boston, United States of America
| |
Collapse
|
13
|
Mechanisms underlying interactions between two abundant oral commensal bacteria. THE ISME JOURNAL 2022; 16:948-957. [PMID: 34732850 PMCID: PMC8940909 DOI: 10.1038/s41396-021-01141-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/21/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
Complex polymicrobial biofilm communities are abundant in nature particularly in the human oral cavity where their composition and fitness can affect health. While the study of these communities during disease is essential and prevalent, little is known about interactions within the healthy plaque community. Here we describe interactions between two of the most abundant species in this healthy microbiome, Haemophilus parainfluenzae and Streptococcus mitis. We discovered that H. parainfluenzae typically exists adjacent to mitis group streptococci in vivo with which it is also positively correlated based on microbiome data. By comparing in vitro coculture data to ex vivo microscopy we revealed that this co-occurrence is density dependent and further influenced by H2O2 production. We discovered that H. parainfluenzae utilizes a more redundant, multifactorial response to H2O2 than related microorganisms and that this system's integrity enhances streptococcal fitness. Our results indicate that mitis group streptococci are likely the in vivo source of NAD for H. parainfluenzae and also evoke patterns of carbon utilization in vitro for H. parainfluenzae similar to those observed in vivo. Our findings describe mechanistic interactions between two of the most abundant and prevalent members of healthy supragingival plaque that contribute to their in vivo survival.
Collapse
|
14
|
Abstract
Like other microbes that live on or in the human body, the bacteria that inhabit the upper respiratory tract, in particular the nasal cavity, have evolved to survive in an environment that presents a number of physical and chemical challenges; these microbes are constantly bombarded with nutritional fluctuations, changes in humidity, the presence of inhaled particulate matter (odorants and allergens), and competition with other microbes. Indeed, only a specialized set of species is able to colonize this niche and successfully contend with the host's immune system and the constant threat from competitors. To this end, bacteria that live in the nasal cavity have evolved a variety of approaches to outcompete contenders for the limited nutrients and space; broadly speaking, these strategies may be considered a type of "bacterial warfare." A greater molecular understanding of bacterial warfare has the potential to reveal new approaches or molecules that can be developed as novel therapeutics. As such, there are many studies within the last decade that have sought to understand the complex polymicrobial interactions that occur in various environments. Here, we review what is currently known about the age-dependent structure and interbacterial relationships within the nasal microbiota and summarize the molecular mechanisms that are predicted to dictate bacterial warfare in this niche. Although the currently described interactions are complex, in reality, we have likely only scratched the surface in terms of a true understanding of the types of interbacterial competition and cooperation that are thought to take place in and on the human body.
Collapse
|
15
|
Garriss G, Henriques-Normark B. Lysogeny in Streptococcus pneumoniae. Microorganisms 2020; 8:E1546. [PMID: 33036379 PMCID: PMC7600539 DOI: 10.3390/microorganisms8101546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Bacterial viruses, or bacteriophages, are major contributors to the evolution, pathogenesis and overall biology of their host bacteria. During their life cycle, temperate bacteriophages form stable associations with their host by integrating into the chromosome, a process called lysogeny. Isolates of the human pathogen Streptococcus pneumoniae are frequently lysogenic, and genomic studies have allowed the classification of these phages into distinct phylogenetic groups. Here, we review the recent advances in the characterization of temperate pneumococcal phages, with a focus on their genetic features and chromosomal integration loci. We also discuss the contribution of phages, and specific phage-encoded features, to colonization and virulence. Finally, we discuss interesting research perspectives in this field.
Collapse
Affiliation(s)
- Geneviève Garriss
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital, Bioclinicum, 171 76 Stockholm, Sweden
- Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
16
|
Ashley SL, Sjoding MW, Popova AP, Cui TX, Hoostal MJ, Schmidt TM, Branton WR, Dieterle MG, Falkowski NR, Baker JM, Hinkle KJ, Konopka KE, Erb-Downward JR, Huffnagle GB, Dickson RP. Lung and gut microbiota are altered by hyperoxia and contribute to oxygen-induced lung injury in mice. Sci Transl Med 2020; 12:eaau9959. [PMID: 32801143 PMCID: PMC7732030 DOI: 10.1126/scitranslmed.aau9959] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 06/14/2019] [Accepted: 01/21/2020] [Indexed: 12/27/2022]
Abstract
Inhaled oxygen, although commonly administered to patients with respiratory disease, causes severe lung injury in animals and is associated with poor clinical outcomes in humans. The relationship between hyperoxia, lung and gut microbiota, and lung injury is unknown. Here, we show that hyperoxia conferred a selective relative growth advantage on oxygen-tolerant respiratory microbial species (e.g., Staphylococcus aureus) as demonstrated by an observational study of critically ill patients receiving mechanical ventilation and experiments using neonatal and adult mouse models. During exposure of mice to hyperoxia, both lung and gut bacterial communities were altered, and these communities contributed to oxygen-induced lung injury. Disruption of lung and gut microbiota preceded lung injury, and variation in microbial communities correlated with variation in lung inflammation. Germ-free mice were protected from oxygen-induced lung injury, and systemic antibiotic treatment selectively modulated the severity of oxygen-induced lung injury in conventionally housed animals. These results suggest that inhaled oxygen may alter lung and gut microbial communities and that these communities could contribute to lung injury.
Collapse
Affiliation(s)
- Shanna L Ashley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael W Sjoding
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA
| | - Antonia P Popova
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tracy X Cui
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthew J Hoostal
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thomas M Schmidt
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William R Branton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael G Dieterle
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicole R Falkowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer M Baker
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kevin J Hinkle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kristine E Konopka
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John R Erb-Downward
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gary B Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
- Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Welp AL, Bomberger JM. Bacterial Community Interactions During Chronic Respiratory Disease. Front Cell Infect Microbiol 2020; 10:213. [PMID: 32477966 PMCID: PMC7240048 DOI: 10.3389/fcimb.2020.00213] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic respiratory diseases including chronic rhinosinusitis, otitis media, asthma, cystic fibrosis, non-CF bronchiectasis, and chronic obstructive pulmonary disease are a major public health burden. Patients suffering from chronic respiratory disease are prone to persistent, debilitating respiratory infections due to the decreased ability to clear pathogens from the respiratory tract. Such infections often develop into chronic, life-long complications that are difficult to treat with antibiotics due to the formation of recalcitrant biofilms. The microbial communities present in the upper and lower respiratory tracts change as these respiratory diseases progress, often becoming less diverse and dysbiotic, correlating with worsening patient morbidity. Those with chronic respiratory disease are commonly infected with a shared group of respiratory pathogens including Haemophilus influenzae, Streptococcus pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Moraxella catarrhalis, among others. In order to understand the microbial landscape of the respiratory tract during chronic disease, we review the known inter-species interactions among these organisms and other common respiratory flora. We consider both the balance between cooperative and competitive interactions in relation to microbial community structure. By reviewing the major causes of chronic respiratory disease, we identify common features across disease states and signals that might contribute to community shifts. As microbiome shifts have been associated with respiratory disease progression, worsening morbidity, and increased mortality, these underlying community interactions likely have an impact on respiratory disease state.
Collapse
Affiliation(s)
- Allison L. Welp
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Wu X, Gordon O, Jiang W, Antezana BS, Angulo-Zamudio UA, Del Rio C, Moller A, Brissac T, Tierney ARP, Warncke K, Orihuela CJ, Read TD, Vidal JE. Interaction between Streptococcus pneumoniae and Staphylococcus aureus Generates ·OH Radicals That Rapidly Kill Staphylococcus aureus Strains. J Bacteriol 2019; 201:e00474-19. [PMID: 31405914 PMCID: PMC6779455 DOI: 10.1128/jb.00474-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae rapidly kills Staphylococcus aureus by producing membrane-permeable hydrogen peroxide (H2O2). The mechanism by which S. pneumoniae-produced H2O2 mediates S. aureus killing was investigated. An in vitro model that mimicked S. pneumoniae-S. aureus contact during colonization of the nasopharynx demonstrated that S. aureus killing required outcompeting densities of S. pneumoniae Compared to the wild-type strain, isogenic S. pneumoniae ΔlctO and S. pneumoniae ΔspxB, both deficient in production of H2O2, required increased density to kill S. aureus While residual H2O2 activity produced by single mutants was sufficient to eradicate S. aureus, an S. pneumoniae ΔspxB ΔlctO double mutant was unable to kill S. aureus A collection of 20 diverse methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains showed linear sensitivity (R2 = 0.95) for S. pneumoniae killing, but the same strains had different susceptibilities when challenged with pure H2O2 (5 mM). There was no association between the S. aureus clonal complex and sensitivity to either S. pneumoniae or H2O2 To kill S. aureus, S. pneumoniae produced ∼180 μM H2O2 within 4 h of incubation, while the killing-defective S. pneumoniae ΔspxB and S. pneumoniae ΔspxB ΔlctO mutants produced undetectable levels. Remarkably, a sublethal dose (1 mM) of pure H2O2 incubated with S. pneumoniae ΔspxB eradicated diverse S. aureus strains, suggesting that S. pneumoniae bacteria may facilitate conversion of H2O2 to a hydroxyl radical (·OH). Accordingly, S. aureus killing was completely blocked by incubation with scavengers of ·OH radicals, dimethyl sulfoxide (Me2SO), thiourea, or sodium salicylate. The ·OH was detected in S. pneumoniae cells by spin trapping and electron paramagnetic resonance. Therefore, S. pneumoniae produces H2O2, which is rapidly converted to a more potent oxidant, hydroxyl radicals, to rapidly intoxicate S. aureus strains.IMPORTANCEStreptococcus pneumoniae strains produce hydrogen peroxide (H2O2) to kill bacteria in the upper airways, including pathogenic Staphylococcus aureus strains. The targets of S. pneumoniae-produced H2O2 have not been discovered, in part because of a lack of knowledge about the underlying molecular mechanism. We demonstrated that an increased density of S. pneumoniae kills S. aureus by means of H2O2 produced by two enzymes, SpxB and LctO. We discovered that SpxB/LctO-produced H2O2 is converted into a hydroxyl radical (·OH) that rapidly intoxicates and kills S. aureus We successfully inhibited the toxicity of ·OH with three different scavengers and detected ·OH in the supernatant. The target(s) of the hydroxyl radicals represents a new alternative for the development of antimicrobials against S. aureus infections.
Collapse
Affiliation(s)
- Xueqing Wu
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Department of Infectious Disease, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Oren Gordon
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Wenxin Jiang
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Brenda S Antezana
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Uriel A Angulo-Zamudio
- Regional Program for the Doctorate in Biotechnology, Faculty of Chemical Sciences Biological, Autonomous University of Sinaloa, Sinaloa, Mexico
| | - Carlos Del Rio
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Abraham Moller
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Terry Brissac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aimee R P Tierney
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timothy D Read
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
- Antibiotic Research Center, Emory University, Atlanta, Georgia, USA
- School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jorge E Vidal
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
- Antibiotic Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Buchan KD, Foster SJ, Renshaw SA. Staphylococcus aureus: setting its sights on the human innate immune system. MICROBIOLOGY-SGM 2019; 165:367-385. [PMID: 30625113 DOI: 10.1099/mic.0.000759] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Staphylococcus aureus has colonized humans for at least 10 000 years, and today inhabits roughly a third of the population. In addition, S. aureus is a major pathogen that is responsible for a significant disease burden, ranging in severity from mild skin and soft-tissue infections to life-threatening endocarditis and necrotizing pneumonia, with treatment often hampered by resistance to commonly available antibiotics. Underpinning its versatility as a pathogen is its ability to evade the innate immune system. S. aureus specifically targets innate immunity to establish and sustain infection, utilizing a large repertoire of virulence factors to do so. Using these factors, S. aureus can resist phagosomal killing, impair complement activity, disrupt cytokine signalling and target phagocytes directly using proteolytic enzymes and cytolytic toxins. Although most of these virulence factors are well characterized, their importance during infection is less clear, as many display species-specific activity against humans or against animal hosts, including cows, horses and chickens. Several staphylococcal virulence factors display species specificity for components of the human innate immune system, with as few as two amino acid changes reducing binding affinity by as much as 100-fold. This represents a major issue for studying their roles during infection, which cannot be examined without the use of humanized infection models. This review summarizes the major factors S. aureus uses to impair the innate immune system, and provides an in-depth look into the host specificity of S. aureus and how this problem is being approached.
Collapse
Affiliation(s)
- Kyle D Buchan
- 1The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Simon J Foster
- 2Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Stephen A Renshaw
- 1The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
20
|
Kenny DJ, Balskus EP. Engineering chemical interactions in microbial communities. Chem Soc Rev 2018; 47:1705-1729. [PMID: 29210396 DOI: 10.1039/c7cs00664k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microbes living within host-associated microbial communities (microbiotas) rely on chemical communication to interact with surrounding organisms. These interactions serve many purposes, from supplying the multicellular host with nutrients to antagonizing invading pathogens, and breakdown of chemical signaling has potentially negative consequences for both the host and microbiota. Efforts to engineer microbes to take part in chemical interactions represent a promising strategy for modulating chemical signaling within these complex communities. In this review, we discuss prominent examples of chemical interactions found within host-associated microbial communities, with an emphasis on the plant-root microbiota and the intestinal microbiota of animals. We then highlight how an understanding of such interactions has guided efforts to engineer microbes to participate in chemical signaling in these habitats. We discuss engineering efforts in the context of chemical interactions that enable host colonization, promote host health, and exclude pathogens. Finally, we describe prominent challenges facing this field and propose new directions for future engineering efforts.
Collapse
Affiliation(s)
- Douglas J Kenny
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| | | |
Collapse
|
21
|
Thomsen IP, Liu GY. Targeting fundamental pathways to disrupt Staphylococcus aureus survival: clinical implications of recent discoveries. JCI Insight 2018. [PMID: 29515041 DOI: 10.1172/jci.insight.98216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The emergence of community-associated methicillin-resistant Staphylococcus aureus during the past decade along with an impending shortage of effective antistaphylococcal antibiotics have fueled impressive advances in our understanding of how S. aureus overcomes the host environment to establish infection. Backed by recent technologic advances, studies have uncovered elaborate metabolic, nutritional, and virulence strategies deployed by S. aureus to survive the restrictive and hostile environment imposed by the host, leading to a plethora of promising antimicrobial approaches that have potential to remedy the antibiotic resistance crisis. In this Review, we highlight some of the critical and recently elucidated bacterial strategies that are potentially amenable to intervention, discuss their relevance to human diseases, and address the translational challenges posed by current animal models.
Collapse
Affiliation(s)
- Isaac P Thomsen
- Department of Pediatrics, Division of Pediatric Infectious Diseases, and Vanderbilt Vaccine Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George Y Liu
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
22
|
Streptococcus pneumoniae Modulates Staphylococcus aureus Biofilm Dispersion and the Transition from Colonization to Invasive Disease. mBio 2018; 9:mBio.02089-17. [PMID: 29317512 PMCID: PMC5760742 DOI: 10.1128/mbio.02089-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae and Staphylococcus aureus are ubiquitous upper respiratory opportunistic pathogens. Individually, these Gram-positive microbes are two of the most common causative agents of secondary bacterial pneumonia following influenza A virus infection, and they constitute a significant source of morbidity and mortality. Since the introduction of the pneumococcal conjugate vaccine, rates of cocolonization with both of these bacterial species have increased, despite the traditional view that they are antagonistic and mutually exclusive. The interactions between S. pneumoniae and S. aureus in the context of colonization and the transition to invasive disease have not been characterized. In this report, we show that S. pneumoniae and S. aureus form stable dual-species biofilms on epithelial cells in vitro. When these biofilms are exposed to physiological changes associated with viral infection, S. pneumoniae disperses from the biofilm, whereas S. aureus dispersal is inhibited. These findings were supported by results of an in vivo study in which we used a novel mouse cocolonization model. In these experiments, mice cocolonized in the nares with both bacterial species were subsequently infected with influenza A virus. The coinfected mice almost exclusively developed pneumococcal pneumonia. These results indicate that despite our previous report that S. aureus disseminates into the lungs of mice stably colonized with these bacteria following influenza A virus infection, cocolonization with S. pneumoniae in vitro and in vivo inhibits S. aureus dispersal and transition to disease. This study provides novel insight into both the interactions between S. pneumoniae and S. aureus during carriage and the transition from colonization to secondary bacterial pneumonia. In this study, we demonstrate that Streptococcus pneumoniae can modulate the pathogenic potential of Staphylococcus aureus in a model of secondary bacterial pneumonia. We report that host physiological signals related to viral infection cease to elicit a dispersal response from S. aureus while in a dual-species setting with S. pneumoniae, in direct contrast to results of previous studies with each species individually. This study underscores the importance of studying polymicrobial communities and their implications in disease states.
Collapse
|
23
|
The nasopharyngeal microbiome. Emerg Top Life Sci 2017; 1:297-312. [PMID: 33525776 DOI: 10.1042/etls20170041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023]
Abstract
Human microbiomes have received increasing attention over the last 10 years, leading to a pervasiveness of hypotheses relating dysbiosis to health and disease. The respiratory tract has received much less attention in this respect than that of, for example, the human gut. Nevertheless, progress has been made in elucidating the immunological, ecological and environmental drivers that govern these microbial consortia and the potential consequences of aberrant microbiomes. In this review, we consider the microbiome of the nasopharynx, a specific niche of the upper respiratory tract. The nasopharynx is an important site, anatomically with respect to its gateway position between upper and lower airways, and for pathogenic bacterial colonisation. The dynamics of the latter are important for long-term respiratory morbidity, acute infections of both invasive and non-invasive disease and associations with chronic airway disease exacerbations. Here, we review the development of the nasopharyngeal (NP) microbiome over the life course, examining it from the early establishment of resilient profiles in neonates through to perturbations associated with pneumonia risk in the elderly. We focus specifically on the commensal, opportunistically pathogenic members of the NP microbiome that includes Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae and Moraxella catarrhalis. In addition, we consider the role of relatively harmless genera such as Dolosigranulum and Corynebacterium. Understanding that the NP microbiome plays such a key, beneficial role in maintaining equilibrium of commensal species, prevention of pathogen outgrowth and host immunity enables future research to be directed appropriately.
Collapse
|
24
|
Laub K, Kristóf K, Tirczka T, Tóthpál A, Kardos S, Kovács E, Sahin-Tóth J, Horváth A, Dobay O. First description of a catalase-negative Staphylococcus aureus from a healthy carrier, with a novel nonsense mutation in the katA gene. Int J Med Microbiol 2017; 307:431-434. [PMID: 29089242 DOI: 10.1016/j.ijmm.2017.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022] Open
Abstract
We have screened 2568 healthy individuals (mostly children) for Staphylococcus aureus and Streptococcus pneumoniae nasal carriage between 2010 and 2012. Out of the isolated 751 S. aureus strains, we found one methicillin-sensitive catalase-negative S. aureus (CNSA). Our CNSA isolate possessed a novel nonsense point mutation in the katA gene leading to early truncation of the protein product. The strain was resistant to penicillin and erythromycin, but sensitive to all other tested antibiotics and carried the enterotoxin A gene. It belonged to sequence type 5 (ST5), which is a successful, worldwide spread, usually MRSA clone. Catalase has been described as a virulence factor strictly required for nasal colonisation, and this is the first case contradicting this theory, as all previous CNSA isolates derived from infections. This is the first report of a CNSA from a symptomless carrier as well as the first occurrence in Hungary.
Collapse
Affiliation(s)
- Krisztina Laub
- Institute of Medical Microbiology, Semmelweis University, H-1089 Budapest, Hungary.
| | - Katalin Kristóf
- Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| | - Tamás Tirczka
- Department 1 of Bacteriology, National Public Health Institute, Budapest, Hungary.
| | - Adrienn Tóthpál
- Institute of Medical Microbiology, Semmelweis University, H-1089 Budapest, Hungary.
| | - Szilvia Kardos
- Institute of Medical Microbiology, Semmelweis University, H-1089 Budapest, Hungary.
| | - Eszter Kovács
- Institute of Medical Microbiology, Semmelweis University, H-1089 Budapest, Hungary.
| | - Judit Sahin-Tóth
- Institute of Medical Microbiology, Semmelweis University, H-1089 Budapest, Hungary.
| | - Andrea Horváth
- Institute of Medical Microbiology, Semmelweis University, H-1089 Budapest, Hungary.
| | - Orsolya Dobay
- Institute of Medical Microbiology, Semmelweis University, H-1089 Budapest, Hungary.
| |
Collapse
|
25
|
Reiss-Mandel A, Regev-Yochay G. Staphylococcus aureus and Streptococcus pneumoniae interaction and response to pneumococcal vaccination: Myth or reality? Hum Vaccin Immunother 2016; 12:351-7. [PMID: 26905680 DOI: 10.1080/21645515.2015.1081321] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
S. aureus and S. pneumoniae are both common pathogens that are also carried by a large proportion of healthy individuals in the nasal and nasopharyngeal spaces. A negative association between carriage of S. aureus and S. pneumoniae has been reported in children in various epidemiologic studies from different geographical regions. Most studies found that the negative association between S. pneumoniae and S. aureus was significant only for carriage of vaccine-type S. pneumoniae strains. In this review, we summarize the various suggested mechanisms of this suggested bacterial interference, and the clinical implications reported following PCV introduction to date in various geographical regions.
Collapse
Affiliation(s)
- Aylana Reiss-Mandel
- a Epidemiology of Infectious Diseases Section; Gertner Institute ; Tel-Hashomer , Israel.,b Infectious Dis. Unit; Sheba Medical Center; Ramat-Gan; Affiliated to the Sackler School of Medicine; Tel-Aviv University ; Tel Aviv , Israel
| | - Gili Regev-Yochay
- a Epidemiology of Infectious Diseases Section; Gertner Institute ; Tel-Hashomer , Israel.,b Infectious Dis. Unit; Sheba Medical Center; Ramat-Gan; Affiliated to the Sackler School of Medicine; Tel-Aviv University ; Tel Aviv , Israel
| |
Collapse
|
26
|
Echlin H, Frank MW, Iverson A, Chang TC, Johnson MDL, Rock CO, Rosch JW. Pyruvate Oxidase as a Critical Link between Metabolism and Capsule Biosynthesis in Streptococcus pneumoniae. PLoS Pathog 2016; 12:e1005951. [PMID: 27760231 PMCID: PMC5070856 DOI: 10.1371/journal.ppat.1005951] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 09/23/2016] [Indexed: 01/12/2023] Open
Abstract
The pneumococcus is one of the most prodigious producers of hydrogen peroxide amongst bacterial pathogens. Hydrogen peroxide production by the pneumococcus has been implicated in antibiotic synergism, competition between other bacterial colonizers of the nasopharynx, and damage to epithelial cells. However, the role during invasive disease has been less clear with mutants defective in hydrogen peroxide production demonstrating both attenuation and heightened invasive disease capacity depending upon strain and serotype background. This work resolves these conflicting observations by demonstrating that the main hydrogen peroxide producing enzyme of the pneumococcus, SpxB, is required for capsule formation in a strain dependent manner. Capsule production by strains harboring capsules with acetylated sugars was dependent upon the presence of spxB while capsule production in serotypes lacking such linkages were not. The spxB mutant had significantly lower steady-state cellular levels of acetyl-CoA, suggesting that loss of capsule arises from dysregulation of this intermediary metabolite. This conclusion is corroborated by deletion of pdhC, which also resulted in lower steady-state acetyl-CoA levels and phenocopied the capsule expression profile of the spxB mutant. Capsule and acetyl-CoA levels were restored in the spxB and lctO (lactate oxidase) double mutant, supporting the connection between central metabolism and capsule formation. Taken together, these data show that the defect in pathogenesis in the spxB mutant is due to a metabolic imbalance that attenuates capsule formation and not to reduced hydrogen peroxide formation. The pneumococcus polysaccharide capsule is one of the most critical virulence determinants produced by this major human pathogen. The pneumococcus also produces prodigious amounts of hydrogen peroxide via the enzymatic reaction catalyzed by pyruvate oxidase, SpxB. Deletion of spxB resulted in the loss of surface polysaccharide capsule production in a serotype dependent manner with a mirrored effect on the virulence of the mutants. We observed that deletion of spxB reduced the steady-state levels of acetyl-CoA, a key metabolic intermediate in peptidoglycan, fatty acid biosynthesis, and in capsule biosynthesis in a subset of serotypes. These data suggest that the defect in capsule production was due to altered metabolism that results in reduced acetyl-CoA availability. Corroborating these data, we found that capsule biosynthesis was impaired upon loss of PDHC, an additional metabolic enzyme that generates acetyl-CoA. These data reveal a critical link between pneumococcal metabolism and capsule biosynthesis as well as provide a striking example of how a virulence gene can have a differential contribution to pathogenesis dependent upon strain background.
Collapse
Affiliation(s)
- Haley Echlin
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Matthew W. Frank
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Amy Iverson
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ti-Cheng Chang
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Michael D. L. Johnson
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Charles O. Rock
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jason W. Rosch
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
27
|
Malheiro J, Gomes I, Borges A, Bastos MMSM, Maillard JY, Borges F, Simões M. Phytochemical profiling as a solution to palliate disinfectant limitations. BIOFOULING 2016; 32:1007-1016. [PMID: 27552663 DOI: 10.1080/08927014.2016.1220550] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
The indiscriminate use of biocides for general disinfection has contributed to the increased incidence of antimicrobial tolerant microorganisms. This study aims to assess the potential of seven phytochemicals (tyrosol, caffeic acid, ferulic acid, cinnamaldehyde, coumaric acid, cinnamic acid and eugenol) in the control of planktonic and sessile cells of Staphylococcus aureus and Escherichia coli. Cinnamaldehyde and eugenol showed antimicrobial properties, minimum inhibitory concentrations of 3-5 and 5-12 mM and minimum bactericidal concentrations of 10-12 and 10-14 mM against S. aureus and E. coli, respectively. Cinnamic acid was able to completely control adhered bacteria with effects comparable to peracetic acid and sodium hypochlorite and it was more effective than hydrogen peroxide (all at 10 mM). This phytochemical caused significant changes in bacterial membrane hydrophilicity. The observed effectiveness of phytochemicals makes them interesting alternatives and/or complementary products to commonly used biocidal products. Cinnamic acid is of particular interest for the control of sessile cells.
Collapse
Affiliation(s)
- J Malheiro
- a LEPABE, Department of Chemical Engineering, Faculty of Engineering of University of Porto , Porto , Portugal
- b CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences University of Porto , Porto , Portugal
- c Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University , Cardiff , UK
| | - I Gomes
- a LEPABE, Department of Chemical Engineering, Faculty of Engineering of University of Porto , Porto , Portugal
| | - A Borges
- a LEPABE, Department of Chemical Engineering, Faculty of Engineering of University of Porto , Porto , Portugal
- b CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences University of Porto , Porto , Portugal
| | - M M S M Bastos
- a LEPABE, Department of Chemical Engineering, Faculty of Engineering of University of Porto , Porto , Portugal
| | - J-Y Maillard
- c Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University , Cardiff , UK
| | - F Borges
- b CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences University of Porto , Porto , Portugal
| | - M Simões
- a LEPABE, Department of Chemical Engineering, Faculty of Engineering of University of Porto , Porto , Portugal
| |
Collapse
|
28
|
Khan F, Wu X, Matzkin GL, Khan MA, Sakai F, Vidal JE. Streptococcus pneumoniae Eradicates Preformed Staphylococcus aureus Biofilms through a Mechanism Requiring Physical Contact. Front Cell Infect Microbiol 2016; 6:104. [PMID: 27730096 PMCID: PMC5037180 DOI: 10.3389/fcimb.2016.00104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/01/2016] [Indexed: 11/27/2022] Open
Abstract
Staphylococcus aureus (Sau) strains are a main cause of disease, including nosocomial infections which have been linked to the production of biofilms and the propagation of antibiotic resistance strains such as methicillin-resistant Staphylococcus aureus (MRSA). A previous study found that Streptococcus pneumoniae (Spn) strains kill planktonic cultures of Sau strains. In this work, we have further evaluated in detail the eradication of Sau biofilms and investigated ultrastructural interactions of the biofilmicidal effect. Spn strain D39, which produces the competence stimulating peptide 1 (CSP1), reduced Sau biofilms within 8 h of inoculation, while TIGR4, producing CSP2, eradicated Sau biofilms and planktonic cells within 4 h. Differences were not attributed to pherotypes as other Spn strains producing different pheromones eradicated Sau within 4 h. Experiments using Transwell devices, which physically separated both species growing in the same well, demonstrated that direct contact between Spn and Sau was required to efficiently eradicate Sau biofilms and biofilm-released planktonic cells. Physical contact-mediated killing of Sau was not related to production of hydrogen peroxide as an isogenic TIGR4ΔspxB mutant eradicated Sau bacteria within 4 h. Confocal micrographs confirmed eradication of Sau biofilms by TIGR4 and allowed us to visualize ultrastructural point of contacts between Sau and Spn. A time-course study further demonstrated spatial colocalization of Spn chains and Sau tetrads as early as 30 min post-inoculation (Pearson's coefficient >0.72). Finally, precolonized biofilms produced by Sau strain Newman, or MRSA strain USA300, were eradicated by mid-log phase cultures of washed TIGR4 bacteria within 2 h post-inoculation. In conclusion, Spn strains rapidly eradicate pre-colonized Sau aureus biofilms, including those formed by MRSA strains, by a mechanism(s) requiring bacterium-bacterium contact, but independent from the production of hydrogen peroxide.
Collapse
Affiliation(s)
- Faidad Khan
- Hubert Department of Global Health at the Rollins School of Public Health, Emory UniversityAtlanta, GA, USA; National Centre of Excellence in Molecular Biology, University of the PunjabLahore, Pakistan
| | - Xueqing Wu
- Hubert Department of Global Health at the Rollins School of Public Health, Emory University Atlanta, GA, USA
| | - Gideon L Matzkin
- Hubert Department of Global Health at the Rollins School of Public Health, Emory University Atlanta, GA, USA
| | - Mohsin A Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Fuminori Sakai
- Hubert Department of Global Health at the Rollins School of Public Health, Emory University Atlanta, GA, USA
| | - Jorge E Vidal
- Hubert Department of Global Health at the Rollins School of Public Health, Emory University Atlanta, GA, USA
| |
Collapse
|
29
|
Beavers WN, Skaar EP. Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus. Pathog Dis 2016; 74:ftw060. [PMID: 27354296 DOI: 10.1093/femspd/ftw060] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a ubiquitous, versatile and dangerous pathogen. It colonizes over 30% of the human population, and is one of the leading causes of death by an infectious agent. During S. aureus colonization and invasion, leukocytes are recruited to the site of infection. To combat S. aureus, leukocytes generate an arsenal of reactive species including superoxide, hydrogen peroxide, nitric oxide and hypohalous acids that modify and inactivate cellular macromolecules, resulting in growth defects or death. When S. aureus colonization cannot be cleared by the immune system, antibiotic treatment is necessary and can be effective. Yet, this organism quickly gains resistance to each new antibiotic it encounters. Therefore, it is in the interest of human health to acquire a deeper understanding of how S. aureus evades killing by the immune system. Advances in this field will have implications for the design of future S. aureus treatments that complement and assist the host immune response. In that regard, this review focuses on how S. aureus avoids host-generated oxidative stress, and discusses the mechanisms used by S. aureus to survive oxidative damage including antioxidants, direct repair of damaged proteins, sensing oxidant stress and transcriptional changes. This review will elucidate areas for studies to identify and validate future antimicrobial targets.
Collapse
Affiliation(s)
- William N Beavers
- Department of Pathology, Microbiology and Immunology, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Medical Center North, Nashville, TN 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Medical Center North, Nashville, TN 37232, USA Tennessee Valley Healthcare System, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA
| |
Collapse
|
30
|
Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc Natl Acad Sci U S A 2016; 113:E3801-9. [PMID: 27286824 DOI: 10.1073/pnas.1523199113] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is a preeminent bacterial pathogen capable of colonizing diverse ecological niches within its human host. We describe here the pangenome of S. aureus based on analysis of genome sequences from 64 strains of S. aureus spanning a range of ecological niches, host types, and antibiotic resistance profiles. Based on this set, S. aureus is expected to have an open pangenome composed of 7,411 genes and a core genome composed of 1,441 genes. Metabolism was highly conserved in this core genome; however, differences were identified in amino acid and nucleotide biosynthesis pathways between the strains. Genome-scale models (GEMs) of metabolism were constructed for the 64 strains of S. aureus These GEMs enabled a systems approach to characterizing the core metabolic and panmetabolic capabilities of the S. aureus species. All models were predicted to be auxotrophic for the vitamins niacin (vitamin B3) and thiamin (vitamin B1), whereas strain-specific auxotrophies were predicted for riboflavin (vitamin B2), guanosine, leucine, methionine, and cysteine, among others. GEMs were used to systematically analyze growth capabilities in more than 300 different growth-supporting environments. The results identified metabolic capabilities linked to pathogenic traits and virulence acquisitions. Such traits can be used to differentiate strains responsible for mild vs. severe infections and preference for hosts (e.g., animals vs. humans). Genome-scale analysis of multiple strains of a species can thus be used to identify metabolic determinants of virulence and increase our understanding of why certain strains of this deadly pathogen have spread rapidly throughout the world.
Collapse
|
31
|
Lee KH, Gordon A, Foxman B. The role of respiratory viruses in the etiology of bacterial pneumonia: An ecological perspective. Evol Med Public Health 2016; 2016:95-109. [PMID: 26884414 PMCID: PMC4801059 DOI: 10.1093/emph/eow007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/29/2016] [Indexed: 12/18/2022] Open
Abstract
Pneumonia is the leading cause of death among children less than 5 years old worldwide. A wide range of viral, bacterial and fungal agents can cause pneumonia: although viruses are the most common etiologic agent, the severity of clinical symptoms associated with bacterial pneumonia and increasing antibiotic resistance makes bacterial pneumonia a major public health concern. Bacterial pneumonia can follow upper respiratory viral infection and complicate lower respiratory viral infection. Secondary bacterial pneumonia is a major cause of influenza-related deaths. In this review, we evaluate the following hypotheses: (i) respiratory viruses influence the etiology of pneumonia by altering bacterial community structure in the upper respiratory tract (URT) and (ii) respiratory viruses promote or inhibit colonization of the lower respiratory tract (LRT) by certain bacterial species residing in the URT. We conducted a systematic review of the literature to examine temporal associations between respiratory viruses and bacteria and a targeted review to identify potential mechanisms of interactions. We conclude that viruses both alter the bacterial community in the URT and promote bacterial colonization of the LRT. However, it is uncertain whether changes in the URT bacterial community play a substantial role in pneumonia etiology. The exception is Streptococcus pneumoniae where a strong link between viral co-infection, increased carriage and pneumococcal pneumonia has been established.
Collapse
Affiliation(s)
- Kyu Han Lee
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Betsy Foxman
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
A. Elnakady Y, Chatterjee I, Bischoff M, Rohde M, Josten M, Sahl HG, Herrmann M, Müller R. Investigations to the Antibacterial Mechanism of Action of Kendomycin. PLoS One 2016; 11:e0146165. [PMID: 26795276 PMCID: PMC4721675 DOI: 10.1371/journal.pone.0146165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 12/14/2015] [Indexed: 11/25/2022] Open
Abstract
Purpose The emergence of bacteria that are resistant to many currently used drugs emphasizes the need to discover and develop new antibiotics that are effective against such multi-resistant strains. Kendomycin is a novel polyketide that has a unique quinone methide ansa structure and various biological properties. This compound exhibits strong antibacterial activity against Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Despite the promise of kendomycinin in several therapeutic areas, its mode of action has yet to be identified. Methods In this study, we used a multidisciplinary approach to gain insight into the antibacterial mechanism of this compound. Results The antibacterial activity of kendomycin appears to be bacteriostatic rather than bactericidal. Kendomycin inhibited the growth of the MRSA strain COL at a low concentration (MIC of 5 μg/mL). Proteomic analysis and gene transcription profiling of kendomycin-treated cells indicated that this compound affected the regulation of numerous proteins and genes involved in central metabolic pathways, such as the tricarboxylic acid (TCA) cycle (SdhA) and gluconeogenesis (PckA and GapB), cell wall biosynthesis and cell division (FtsA, FtsZ, and MurAA), capsule production (Cap5A and Cap5C), bacterial programmed cell death (LrgA and CidA), the cellular stress response (ClpB, ClpC, ClpP, GroEL, DnaK, and GrpE), and oxidative stress (AhpC and KatA). Electron microscopy revealed that kendomycin strongly affected septum formation during cell division. Most kendomycin-treated cells displayed incomplete septa with abnormal morphology. Conclusions Kendomycin might directly or indirectly affect the cell division machinery, protein stability, and programmed cell death in S. aureus. Additional studies are still needed to obtain deeper insight into the mode of action of kendomycin.
Collapse
Affiliation(s)
- Yasser A. Elnakady
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
- Faculty of Science, Zoology Department, King Saud University, Riyadh, Saudi Arabia
| | - Indranil Chatterjee
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Manfred Rohde
- Department of Medical Microbiology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Michaele Josten
- Department of Medical Microbiology, Bonn University, Bonn, Germany
| | - Hans-Georg Sahl
- Department of Medical Microbiology, Bonn University, Bonn, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
33
|
Miljković-Selimović B, Dinić M, Orlović J, Babić T. Staphylococcus aureus: Immunopathogenesis and Human Immunity. ACTA FACULTATIS MEDICAE NAISSENSIS 2015. [DOI: 10.1515/afmnai-2015-0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SummaryConsidering a large number of pathogen factors that enable high virulence of a microorganism such as Staphylococcus aureus (S. aureus), it is essential to see them through the continuous adaptation to the newly acquired mechanisms of the host immune response and efforts to overcome these, allowing the bacteria a perfect ecological niche for growth, reproduction, and location of new hosts. Past efforts to create a vaccine that would provide effective protection against infections caused by S. aureus remained without success. The reasons for this stem from the outstanding adaptability skills of this microorganism to almost all environmental conditions, the existence of a numerous virulence factors whose mechanisms of action are not well known, as well as insufficient knowledge of the immune response to S. aureus infections. This review article deals with this issue from another perspective and emphasizes actual knowledge on virulence factors and immune response to S. aureus.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Methicillin-resistant strains of the important human pathogen Staphylococcus aureus pose a significant public health threat in the community, as they are easily transmitted, especially prone to cause invasive disease, and infect otherwise healthy individuals. The mechanistic basis for the ability of these organisms to evade the innate immune responses remains incompletely defined. RECENT FINDINGS The success of pathogens such as S. aureus rests, in part, on their capacity to overcome neutrophil-mediated host defense to establish infection and cause human disease. S. aureus has the potential to thwart effective neutrophil chemotaxis, and phagocytosis, and succeeds in evading killing by neutrophils. Furthermore, S. aureus surviving within neutrophils promotes neutrophil cytolysis, with release of host-derived molecules that promote local inflammation. Here, we provide a brief overview of our understanding of the mechanisms by which S. aureus - including methicillin-resistant S. aureus - avoids neutrophil-mediated host defense and causes disease. SUMMARY Understanding the molecular mechanisms by which S. aureus avoids neutrophil-mediated responses and initiates signaling cascades that culminate in neutrophil lysis will provide insights prerequisite to the development of novel targets for treating staphylococcal infections.
Collapse
|
35
|
Valle J, Burgui S, Langheinrich D, Gil C, Solano C, Toledo-Arana A, Helbig R, Lasagni A, Lasa I. Evaluation of Surface Microtopography Engineered by Direct Laser Interference for Bacterial Anti-Biofouling. Macromol Biosci 2015; 15:1060-9. [DOI: 10.1002/mabi.201500107] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/01/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Jaione Valle
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología; Universidad Pública de Navarra-CSIC-Gobierno de Navarra; Campus de Arrosadía Pamplona Spain
| | - Saioa Burgui
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología; Universidad Pública de Navarra-CSIC-Gobierno de Navarra; Campus de Arrosadía Pamplona Spain
| | - Denise Langheinrich
- Fraunhofer Institute for Material and Beam Technology (IWS) Dresden; Winterbergstraße 28 01277 Dresden Germany
- Institute for Manufacturing Technology; TU Dresden; George-Bähr-Straße 3c 01069 Dresden Germany
| | - Carmen Gil
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología; Universidad Pública de Navarra-CSIC-Gobierno de Navarra; Campus de Arrosadía Pamplona Spain
| | - Cristina Solano
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología; Universidad Pública de Navarra-CSIC-Gobierno de Navarra; Campus de Arrosadía Pamplona Spain
| | - Alejandro Toledo-Arana
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología; Universidad Pública de Navarra-CSIC-Gobierno de Navarra; Campus de Arrosadía Pamplona Spain
| | - Ralf Helbig
- Leibniz Institute of Polymer Research (IPF) Dresden; HoheStraße 6 01069 Dresden Germany
| | - Andrés Lasagni
- Fraunhofer Institute for Material and Beam Technology (IWS) Dresden; Winterbergstraße 28 01277 Dresden Germany
- Institute for Manufacturing Technology; TU Dresden; George-Bähr-Straße 3c 01069 Dresden Germany
| | - Iñigo Lasa
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología; Universidad Pública de Navarra-CSIC-Gobierno de Navarra; Campus de Arrosadía Pamplona Spain
| |
Collapse
|
36
|
Savijoki K, Iivanainen A, Siljamäki P, Laine PK, Paulin L, Karonen T, Pyörälä S, Kankainen M, Nyman TA, Salomäki T, Koskinen P, Holm L, Simojoki H, Taponen S, Sukura A, Kalkkinen N, Auvinen P, Varmanen P. Genomics and Proteomics Provide New Insight into the Commensal and Pathogenic Lifestyles of Bovine- and Human-Associated Staphylococcus epidermidis Strains. J Proteome Res 2014; 13:3748-3762. [DOI: 10.1021/pr500322d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Molecular characterization of a catalase-negative methicillin-susceptible Staphylococcus aureus subsp. aureus strain collected from a patient with cutaneous abscess. J Clin Microbiol 2013; 52:344-6. [PMID: 24131694 DOI: 10.1128/jcm.02455-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a cutaneous abscess caused by catalase-negative methicillin-susceptible Staphylococcus aureus subsp. aureus in a patient who was concomitantly colonized with virulent USA300 methicillin-resistant S. aureus (MRSA). Sequencing of the katA gene demonstrated a thymine insertion leading to a frameshift mutation and premature truncation of catalase to 21 amino acids.
Collapse
|
38
|
Gimeno M, Pinczowski P, Vázquez FJ, Pérez M, Santamaría J, Arruebo M, Luján L. Porous orthopedic steel implant as an antibiotic eluting device: prevention of post-surgical infection on an ovine model. Int J Pharm 2013; 452:166-72. [PMID: 23651643 DOI: 10.1016/j.ijpharm.2013.04.076] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 04/26/2013] [Accepted: 04/28/2013] [Indexed: 12/14/2022]
Abstract
Traumatology and orthopedic surgery can benefit from the use of efficient local antibiotic-eluting systems to avoid bacterial contamination of implanted materials. In this work a new percutaneous porous-wall hollow implant was successfully used as a local antibiotic-eluting device both in vitro and in vivo. The implant is a macroporous 316 L stainless steel filter tube with a nominal filtration cut-off size of 200 nm with one open end which was used to load the synthetic antibiotic linezolid and an opposite blind end. The antibiotic release kinetics from the device on a simulated biological fluid under in vitro conditions demonstrated an increased concentration during the first five days that subsequently was sustained for at least seven days, showing a kinetic close to a zero order release. Antibiotic-loaded implants were placed in the tibia of four sheep which were trans-surgically experimentally infected with a biofilm forming strain of Staphylococcus aureus. After 7 and 9 days post infection, sheep did not show any evidence of infection as demonstrated by clinical, pathological and microbiological findings. These results demonstrate the capability of such an antibiotic-loaded implant to prevent infection in orthopedic devices in vivo. Further research is needed to assess its possible use in traumatology and orthopedic surgery.
Collapse
Affiliation(s)
- Marina Gimeno
- Department of Animal Pathology, University of Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
van Sorge NM, Beasley FC, Gusarov I, Gonzalez DJ, von Köckritz-Blickwede M, Anik S, Borkowski AW, Dorrestein PC, Nudler E, Nizet V. Methicillin-resistant Staphylococcus aureus bacterial nitric-oxide synthase affects antibiotic sensitivity and skin abscess development. J Biol Chem 2013; 288:6417-26. [PMID: 23322784 DOI: 10.1074/jbc.m112.448738] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus infections present an enormous global health concern complicated by an alarming increase in antibiotic resistance. S. aureus is among the few bacterial species that express nitric-oxide synthase (bNOS) and thus can catalyze NO production from L-arginine. Here we generate an isogenic bNOS-deficient mutant in the epidemic community-acquired methicillin-resistant S. aureus (MRSA) USA300 clone to study its contribution to virulence and antibiotic susceptibility. Loss of bNOS increased MRSA susceptibility to reactive oxygen species and host cathelicidin antimicrobial peptides, which correlated with increased MRSA killing by human neutrophils and within neutrophil extracellular traps. bNOS also promoted resistance to the pharmaceutical antibiotics that act on the cell envelope such as vancomycin and daptomycin. Surprisingly, bNOS-deficient strains gained resistance to aminoglycosides, suggesting that the role of bNOS in antibiotic susceptibility is more complex than previously observed in Bacillus species. Finally, the MRSA bNOS mutant showed reduced virulence with decreased survival and smaller abscess generation in a mouse subcutaneous infection model. Together, these data indicate that bNOS contributes to MRSA innate immune and antibiotic resistance phenotypes. Future development of specific bNOS inhibitors could be an attractive option to simultaneously reduce MRSA pathology and enhance its susceptibility to commonly used antibiotics.
Collapse
Affiliation(s)
- Nina M van Sorge
- Departments of Pediatrics, University of California, San Diego, California 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shak JR, Vidal JE, Klugman KP. Influence of bacterial interactions on pneumococcal colonization of the nasopharynx. Trends Microbiol 2012; 21:129-35. [PMID: 23273566 DOI: 10.1016/j.tim.2012.11.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/13/2012] [Accepted: 11/19/2012] [Indexed: 12/11/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is a common commensal inhabitant of the nasopharynx and a frequent etiologic agent in serious diseases such as pneumonia, otitis media, bacteremia, and meningitis. Multiple pneumococcal strains can colonize the nasopharynx, which is also home to many other bacterial species. Intraspecies and interspecies interactions influence pneumococcal carriage in important ways. Co-colonization by two or more pneumococcal strains has implications for vaccine serotype replacement, carriage detection, and pneumonia diagnostics. Interactions between the pneumococcus and other bacterial species alter carriage prevalence, modulate virulence, and affect biofilm formation. By examining these interactions, this review highlights how the bacterial ecosystem of the nasopharynx changes the nature and course of pneumococcal carriage.
Collapse
Affiliation(s)
- Joshua R Shak
- Molecules to Mankind Program and Graduate Program in Population Biology, Ecology, and Evolution, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
41
|
Protection from the acquisition of Staphylococcus aureus nasal carriage by cross-reactive antibody to a pneumococcal dehydrogenase. Proc Natl Acad Sci U S A 2012; 109:13823-8. [PMID: 22869727 DOI: 10.1073/pnas.1208075109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nasal colonization by Staphylococcus aureus is the major risk factor for disease and transmission. Epidemiological studies have reported a reduced risk of S. aureus carriage in immunocompetent but not in immunocompromised children colonized by Streptococcus pneumoniae. We investigate the hypothesis that the immune response to pneumococcal colonization affects S. aureus colonization. We demonstrate that pneumococcal colonization in mice inhibits subsequent S. aureus acquisition in an antibody-dependent manner and elicits antibody that cross-reacts with S. aureus. We identify the staphylococcal target of cross-reactive antibody as 1-pyrroline-5-carboxylate dehydrogenase (P5CDH), and the homologous immunogen in S. pneumoniae as SP_1119, both of which are conserved dehydrogenases. These antigens are necessary and sufficient to inhibit the acquisition of S. aureus colonization in a mouse model. Our findings demonstrate that immune-mediated cross-reactivity between S. pneumoniae and S. aureus protects against S. aureus nasal acquisition and thus reveal a paradigm for identifying protective antigens against S. aureus.
Collapse
|
42
|
Lijek RS, Weiser JN. Co-infection subverts mucosal immunity in the upper respiratory tract. Curr Opin Immunol 2012; 24:417-23. [PMID: 22658762 DOI: 10.1016/j.coi.2012.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/10/2012] [Indexed: 02/05/2023]
Abstract
Polymicrobial interactions on mucosal surfaces can influence inflammation, immunity, and disease outcome. Here, we review how host responses to colonization in the upper respiratory tract with the bacterial pathogen Streptococcus pneumoniae can be altered by co-infection. Recent advances provide a mechanistic understanding of how mucosal immunity can be subverted at distinct immunological time-points during pneumococcal colonization by other pathogens such as Haemophilus influenzae, influenza type A and Staphylococcus aureus. These examples use animal models of co-infection to highlight how otherwise effective host responses can be rendered ineffective by co-infection, and vice versa. The complex microbial ecology of mucosal sites must be considered to fully understand how immune responses in a natural setting influence the outcome of host-pathogen interactions.
Collapse
Affiliation(s)
- Rebeccah S Lijek
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | |
Collapse
|
43
|
Reduced aeration affects the expression of the NorB efflux pump of Staphylococcus aureus by posttranslational modification of MgrA. J Bacteriol 2012; 194:1823-34. [PMID: 22287526 DOI: 10.1128/jb.06503-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that at acid pH, the transcription of norB, encoding the NorB efflux pump, increases due to a reduction in the phosphorylation level of MgrA, which in turn leads to a reduction in bacterial killing by moxifloxacin, a substrate of the NorB efflux pump. In this study, we demonstrated that reduced oxygen levels did not affect the transcript levels of mgrA but modified the dimerization of the MgrA protein, which remained mostly in its monomeric form. Under reduced aeration, we also observed a 21.7-fold increase in the norB transcript levels after 60 min of growth that contributed to a 4-fold increase in the MICs of moxifloxacin and sparfloxacin for Staphylococcus aureus RN6390. The relative proportions of MgrA in monomeric and dimeric forms were altered by treatment with H(2)O(2), but incubation of purified MgrA with extracts of cells grown under reduced but not normal aeration prevented MgrA from being converted to its dimeric DNA-binding form. This modification was associated with cleavage of a fragment of the dimerization domain of MgrA without change in MgrA phosphorylation and an increase in transcript levels of genes encoding serine proteases in cells incubated at reduced aeration. Taken together, these data suggest that modification of MgrA by proteases underlies the reversal of its repression of norB and increased resistance to NorB substrates in response to reduced-aeration conditions, illustrating a third mechanism of posttranslational modification, in addition to oxidation and phosphorylation, that modulates the regulatory activities of MgrA.
Collapse
|
44
|
Pottage T, Macken S, Walker J, Bennett A. Meticillin-resistant Staphylococcus aureus is more resistant to vaporized hydrogen peroxide than commercial Geobacillus stearothermophilus biological indicators. J Hosp Infect 2012; 80:41-5. [DOI: 10.1016/j.jhin.2011.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 11/01/2011] [Indexed: 10/14/2022]
|
45
|
Targeting the host–pathogen interface for treatment of Staphylococcus aureus infection. Semin Immunopathol 2011; 34:299-315. [DOI: 10.1007/s00281-011-0297-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/17/2011] [Indexed: 12/15/2022]
|
46
|
Abstract
Pneumococcal meningitis continues to be associated with high rates of mortality and long-term neurological sequelae. The most common route of infection starts by nasopharyngeal colonization by Streptococcus pneumoniae, which must avoid mucosal entrapment and evade the host immune system after local activation. During invasive disease, pneumococcal epithelial adhesion is followed by bloodstream invasion and activation of the complement and coagulation systems. The release of inflammatory mediators facilitates pneumococcal crossing of the blood-brain barrier into the brain, where the bacteria multiply freely and trigger activation of circulating antigen-presenting cells and resident microglial cells. The resulting massive inflammation leads to further neutrophil recruitment and inflammation, resulting in the well-known features of bacterial meningitis, including cerebrospinal fluid pleocytosis, cochlear damage, cerebral edema, hydrocephalus, and cerebrovascular complications. Experimental animal models continue to further our understanding of the pathophysiology of pneumococcal meningitis and provide the platform for the development of new adjuvant treatments and antimicrobial therapy. This review discusses the most recent views on the pathophysiology of pneumococcal meningitis, as well as potential targets for (adjunctive) therapy.
Collapse
|
47
|
Park B, Iwase T, Liu GY. Intranasal application of S. epidermidis prevents colonization by methicillin-resistant Staphylococcus aureus in mice. PLoS One 2011; 6:e25880. [PMID: 21998712 PMCID: PMC3187813 DOI: 10.1371/journal.pone.0025880] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/12/2011] [Indexed: 01/31/2023] Open
Abstract
Methicillin-resistant S. aureus emerged in recent decades to become a leading cause of infection worldwide. Colonization with MRSA predisposes to infection and facilitates transmission of the pathogen; however, available regimens are ineffective at preventing MRSA colonization. Studies of human nasal flora suggest that resident bacteria play a critical role in limiting S. aureus growth, and prompted us to query whether application of commensal resident bacteria could prevent nasal colonization with MRSA. We established a murine model system to study this question, and showed that mice nasally pre-colonized with S. epidermidis became more resistant to colonization with MRSA. Our study suggests that application of commensal bacteria with antibiotics could represent a more effective strategy to prevent MRSA colonization.
Collapse
Affiliation(s)
- Bonggoo Park
- Division of Infectious Diseases, Department of Pediatrics, Research Division of Immunology, Department of Biomedical Sciences, and the Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Tadayuki Iwase
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
| | - George Y. Liu
- Division of Infectious Diseases, Department of Pediatrics, Research Division of Immunology, Department of Biomedical Sciences, and the Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Pynnonen M, Stephenson RE, Schwartz K, Hernandez M, Boles BR. Hemoglobin promotes Staphylococcus aureus nasal colonization. PLoS Pathog 2011; 7:e1002104. [PMID: 21750673 PMCID: PMC3131264 DOI: 10.1371/journal.ppat.1002104] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 04/19/2011] [Indexed: 02/08/2023] Open
Abstract
Staphylococcus aureus nasal colonization is an important risk factor for community and nosocomial infection. Despite the importance of S. aureus to human health, molecular mechanisms and host factors influencing nasal colonization are not well understood. To identify host factors contributing to nasal colonization, we collected human nasal secretions and analyzed their ability to promote S. aureus surface colonization. Some individuals produced secretions possessing the ability to significantly promote S. aureus surface colonization. Nasal secretions pretreated with protease no longer promoted S. aureus surface colonization, suggesting the involvement of protein factors. The major protein components of secretions were identified and subsequent analysis revealed that hemoglobin possessed the ability to promote S. aureus surface colonization. Immunoprecipitation of hemoglobin from nasal secretions resulted in reduced S. aureus surface colonization. Furthermore, exogenously added hemoglobin significantly decreased the inoculum necessary for nasal colonization in a rodent model. Finally, we found that hemoglobin prevented expression of the agr quorum sensing system and that aberrant constitutive expression of the agr effector molecule, RNAIII, resulted in reduced nasal colonization of S. aureus. Collectively our results suggest that the presence of hemoglobin in nasal secretions contributes to S. aureus nasal colonization.
Collapse
Affiliation(s)
- Melissa Pynnonen
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rachel E. Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kelly Schwartz
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Margarita Hernandez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Blaise R. Boles
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
49
|
Molecular characterization of a catalase-negative Staphylococcus aureus subsp. aureus Strain collected from a patient with mitral valve endocarditis and pericarditis revealed a novel nonsense mutation in the katA gene. J Clin Microbiol 2011; 49:3398-402. [PMID: 21715584 DOI: 10.1128/jcm.00849-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report a case of endocarditis and pericarditis caused by catalase-negative Staphylococcus aureus. Molecular characterization revealed a novel nonsense mutation in the katA gene, leading to a loss of 238 amino acids (47% of the wild-type catalase protein), including the heme-binding site, NADPH-binding region, and Tyr-337, essential for catalysis.
Collapse
|
50
|
van Gils EJM, Hak E, Veenhoven RH, Rodenburg GD, Bogaert D, Bruin JP, van Alphen L, Sanders EAM. Effect of seven-valent pneumococcal conjugate vaccine on Staphylococcus aureus colonisation in a randomised controlled trial. PLoS One 2011; 6:e20229. [PMID: 21695210 PMCID: PMC3112202 DOI: 10.1371/journal.pone.0020229] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/12/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Heptavalent pneumococcal conjugate vaccine (PCV7) shifts nasopharyngeal colonisation with vaccine serotype pneumococci towards nonvaccine serotypes. Because of the reported negative association of vaccine serotype pneumococci and Staphylococcus aureus in the nasopharynx, we explored the effect of PCV7 on nasopharyngeal colonisation with S. aureus in children and parents. METHODOLOGY/PRINCIPAL FINDINGS This study was part of a randomised controlled trial on the effect of PCV7 on pneumococcal carriage, enrolling healthy newborns who were randomly assigned (1:1:1) to receive PCV7 (1) at 2 and 4 months of age (2) at 2, 4 and 11 months or (3) no PCV7 (controls). Nasopharyngeal colonisation of S. aureus was a planned secondary outcome. Nasopharyngeal swabs were obtained from all children over a 2-year period with 6-months interval and from one parent at the child's age of 12 and 24 months and cultured for Streptococcus pneumoniae and S. aureus. Between July 2005 and February 2006, 1005 children were enrolled and received either 2-doses of PCV7 (n = 336), 2+1-doses (336) or no dose (n = 333) before PCV7 implementation in the Dutch national immunization program. S. aureus colonisation had doubled in children in the 2+1-dose group at 12 months of age compared with unvaccinated controls (10.1% versus 5.0%; p = 0.019). A negative association for co-colonisation of S. pneumoniae and S. aureus was observed for both vaccine serotype (adjusted odds ratio (aOR) 0.53, 95% confidence interval (CI) 0.38-0.74) and nonvaccine serotype pneumococci (aOR 0.67, 95% CI 0.52-0.88). CONCLUSIONS/SIGNIFICANCE PCV7 induces a temporary increase in S. aureus colonisation in children around 12 months of age after a 2+1-dose PCV7 schedule. The potential clinical consequences are unknown and monitoring is warranted. TRIAL REGISTRATION ClinicalTrials.gov NCT00189020.
Collapse
Affiliation(s)
- Elske J M van Gils
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|