1
|
Zhao X, Zhang Y, He B, Han Y, Shen B, Zang Y, Wang H. Transcriptional control of carbohydrate catabolism by the CcpA protein in the ruminal bacterium Streptococcus bovis. Appl Environ Microbiol 2023; 89:e0047423. [PMID: 37823652 PMCID: PMC10617382 DOI: 10.1128/aem.00474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/23/2023] [Indexed: 10/13/2023] Open
Abstract
As a potent, pleiotropic regulatory protein in Gram-positive bacteria, catabolite control protein A (CcpA) mediates the transcriptional control of carbohydrate metabolism in Streptococcus bovis, a lactate-producing bacterium that plays an essential role in rumen acidosis in dairy cows. Although the rumen uptake of carbohydrates is multi-substrate, the focus of S. bovis research thus far has been on the glucose. With the aid of gene deletion, whole-genome sequencing, and transcriptomics, we have unraveled the role of CcpA in carbohydrate metabolism, on the one hand, and acidosis, on the other, and we show that the S. bovis strain S1 encodes "Carbohydrate-Active Enzymes" and that ccpA deletion slows the organism's growth rate and modulates the organic acid fermentation pathways toward lower lactate, higher formate, and acetate in the maltose and cellobiose. Furthermore, this study revealed the different regulatory functions of the CcpA protein in rumen metabolism and acidosis.IMPORTANCEThis study is important as it illustrates the varying regulatory role of the Streptococcus bovis catabolite control protein A protein in carbohydrate metabolism and the onset of acidosis in dairy cattle.
Collapse
Affiliation(s)
- Xiujuan Zhao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Banglin He
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yu Han
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ben Shen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yu Zang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Zhao X, Song Y, Wang T, Hua C, Hu R, Shang Y, Shi H, Chen S. Glutamine synthetase and GlnR regulate nitrogen metabolism in Paenibacillus polymyxa WLY78. Appl Environ Microbiol 2023; 89:e0013923. [PMID: 37668407 PMCID: PMC10537745 DOI: 10.1128/aem.00139-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023] Open
Abstract
Paenibacillus polymyxa WLY78, a N2-fixing bacterium, has great potential use as a biofertilizer in agriculture. Recently, we have revealed that GlnR positively and negatively regulates the transcription of the nif (nitrogen fixation) operon (nifBHDKENXhesAnifV) in P. polymyxa WLY78 by binding to two loci of the nif promoter according to nitrogen availability. However, the regulatory mechanisms of nitrogen metabolism mediated by GlnR in the Paenibacillus genus remain unclear. In this study, we have revealed that glutamine synthetase (GS) and GlnR in P. polymyxa WLY78 play a key role in the regulation of nitrogen metabolism. P. polymyxa GS (encoded by glnA within glnRA) and GS1 (encoded by glnA1) belong to distinct groups: GSI-α and GSI-β. Both GS and GS1 have the enzyme activity to convert NH4+ and glutamate into glutamine, but only GS is involved in the repression by GlnR. GlnR represses transcription of glnRA under excess nitrogen, while it activates the expression of glnA1 under nitrogen limitation. GlnR simultaneously activates and represses the expression of amtBglnK and gcvH in response to nitrogen availability. Also, GlnR regulates the expression of nasA, nasD1D2, nasT, glnQHMP, and glnS. IMPORTANCE In this study, we have revealed that Paenibacillus polymyxa GlnR uses multiple mechanisms to regulate nitrogen metabolism. GlnR activates or represses or simultaneously activates and inhibits the transcription of nitrogen metabolism genes in response to nitrogen availability. The multiple regulation mechanisms employed by P. polymyxa GlnR are very different from Bacillus subtilis GlnR which represses nitrogen metabolism under excess nitrogen. Both GS encoded by glnA within the glnRA operon and GS1 encoded by glnA1 in P. polymyxa WLY78 are involved in ammonium assimilation, but only GS is required for regulating GlnR activity. The work not only provides significant insight into understanding the interplay of GlnR and GS in nitrogen metabolism but also provides guidance for improving nitrogen fixation efficiency by modulating nitrogen metabolism.
Collapse
Affiliation(s)
- Xiyun Zhao
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Song
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tianshu Wang
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chongchong Hua
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Rui Hu
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yimin Shang
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haowen Shi
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sanfeng Chen
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Genome-wide mapping of GlnR-binding sites reveals the global regulatory role of GlnR in controlling the metabolism of nitrogen and carbon in Paenibacillus polymyxa WLY78. BMC Genomics 2023; 24:85. [PMID: 36823556 PMCID: PMC9948412 DOI: 10.1186/s12864-023-09147-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Paenibacillus polymyxa WLY78 is a Gram-positive, endospore-forming and N2-fixing bacterium. Our previous study has demonstrated that GlnR acts as both an activator and a repressor to regulate the transcription of the nif (nitrogen fixation) operon (nifBHDKENXhesAnifV) according to nitrogen availability, which is achieved by binding to the two GlnR-binding sites located in the nif promoter region. However, further study on the GlnR-mediated global regulation in this bacterium is still needed. RESULTS In this study, global identification of the genes directly under GlnR control is determined by using chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assays (EMSA). Our results reveal that GlnR directly regulates the transcription of 17 genes/operons, including a nif operon, 14 nitrogen metabolism genes/operons (glnRA, amtBglnK, glnA1, glnK1, glnQHMP, nasA, nasD1, nasD2EF, gcvH, ansZ, pucR, oppABC, appABCDF and dppABC) and 2 carbon metabolism genes (ldh3 and maeA1). Except for the glnRA and nif operon, the other 15 genes/operons are newly identified targets of GlnR. Furthermore, genome-wide transcription analyses reveal that GlnR not only directly regulates the expression of these 17 genes/operons, but also indirectly controls the expression of some other genes/operons involved in nitrogen fixation and the metabolisms of nitrogen and carbon. CONCLUSION This study provides a GlnR-mediated regulation network of nitrogen fixation and the metabolisms of nitrogen and carbon.
Collapse
|
4
|
Qiu H, Chang X, Luo Y, Shen F, Yin A, Miao T, Li Y, Xiao Y, Hai J, Xu B. Regulation of Nir gene in Lactobacillus plantarum WU14 mediated by GlnR. Front Microbiol 2022; 13:983485. [PMID: 36304950 PMCID: PMC9596149 DOI: 10.3389/fmicb.2022.983485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Nitrogen (N) is an essential element in the biosynthesis of key cellular components, such as proteins and nucleic acids, in all living organisms. Nitrite, as a form of nitrogen utilization, is the main nutrient for microbial growth. However, nitrite is a potential carcinogen that combines with secondary amines, which are breakdown products of proteins, to produce N-nitroso compounds that are strongly carcinogenic. Nitrite reductase (Nir) produced by microorganisms can reduce nitrite. Binding of GlnR to the promoter of nitrogen metabolism gene can regulate the expression of Nir operon. In this study, nitrite-resistant Lactobacillus plantarum WU14 was isolated from Pickles and its protease Nir was analyzed. GlnR-mediated regulation of L. plantarum WU14 Nir gene was investigated in this study. New GlnR and Nir genes were obtained from L. plantarum WU14. The regulation effect of GlnR on Nir gene was examined by gel block test, yeast two-hybrid system, bacterial single hybrid system and qRT-RCR. Detailed analysis showed that GlnR ound to the Nir promoter region and interacted with Nir at low nitrite concentrations, positively regulating the expression of NIR. However, the transcription levels of GlnR and Nir decreased gradually with increasing nitrite concentration. The results of this study improve our understanding of the function of the Nir operon regulatory system and serve as the ground for further study of the signal transduction pathway in lactic acid bacteria.
Collapse
Affiliation(s)
- Hulin Qiu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
| | - Xiaoyu Chang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yan Luo
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
| | - Fengfei Shen
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
| | - Aiguo Yin
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| | - Tingting Miao
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
| | - Ying Li
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
| | - Yunyi Xiao
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
| | - Jinping Hai
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
| | - Bo Xu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
- *Correspondence: Bo Xu,
| |
Collapse
|
5
|
Multi-omics Approach Reveals How Yeast Extract Peptides Shape Streptococcus thermophilus Metabolism. Appl Environ Microbiol 2020; 86:AEM.01446-20. [PMID: 32769193 DOI: 10.1128/aem.01446-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
Peptides present in growth media are essential for nitrogen nutrition and optimal growth of lactic acid bacteria. In addition, according to their amino acid composition, they can also directly or indirectly play regulatory roles and influence global metabolism. This is especially relevant during the propagation phase to produce high cell counts of active lactic acid bacteria used as starters in the dairy industry. In the present work, we aimed at investigating how the respective compositions of two different yeast extracts, with a specific focus on peptide content, influenced Streptococcus thermophilus metabolism during growth under pH-controlled conditions. In addition to free amino acid quantification, we used a multi-omics approach (peptidomics, proteomics, and transcriptomics) to identify peptides initially present in the two culture media and to follow S. thermophilus gene expression and bacterial protein production during growth. The free amino acid and peptide compositions of the two yeast extracts differed qualitatively and quantitatively. Nevertheless, the two yeast extracts sustained similar levels of growth of S. thermophilus and led to equivalent final biomasses. However, transcriptomics and proteomics showed differential gene expression and protein production in several S. thermophilus metabolic pathways, especially amino acid, citrate, urease, purine, and pyrimidine metabolisms. The probable role of the regulator CodY is discussed in this context. Moreover, we observed significant differences in the production of regulators and of a quorum sensing regulatory system. The possible roles of yeast extract peptides on the modulation of the quorum sensing system expression are evaluated.IMPORTANCE Improving the performance and industrial robustness of bacteria used in fermentations and food industry remains a challenge. We showed here that two Streptococcus thermophilus fermentations, performed with the same strain in media that differ only by their yeast extract compositions and, more especially, their peptide contents, led to similar growth kinetics and final biomasses, but several genes and proteins were differentially expressed/produced. In other words, subtle variations in peptide composition of the growth medium can finely tune the metabolism status of the starter. Our work, therefore, suggests that acting on growth medium components and especially on their peptide content, we could modulate bacterial metabolism and produce bacteria differently programmed for further purposes. This might have applications for preparing active starter cultures.
Collapse
|
6
|
Role of GlnR in Controlling Expression of Nitrogen Metabolism Genes in Listeria monocytogenes. J Bacteriol 2020; 202:JB.00209-20. [PMID: 32690554 DOI: 10.1128/jb.00209-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/10/2020] [Indexed: 01/27/2023] Open
Abstract
Listeria monocytogenes is a fastidious bacterial pathogen that can utilize only a limited number of nitrogen sources for growth. Both glutamine and ammonium are common nitrogen sources used in listerial defined growth media, but little is known about the regulation of their uptake or utilization. The functional role of L. monocytogenes GlnR, the transcriptional regulator of nitrogen metabolism genes in low-G+C Gram-positive bacteria, was determined using transcriptome sequencing and real-time reverse transcription-PCR experiments. The GlnR regulon included transcriptional units involved in ammonium transport (amtB glnK) and biosynthesis of glutamine (glnRA) and glutamate (gdhA) from ammonium. As in other bacteria, GlnR proved to be an autoregulatory repressor of the glnRA operon. Unexpectedly, GlnR was most active during growth with ammonium as the nitrogen source and less active in the glutamine medium, apparently because listerial cells perceive growth with glutamine as a nitrogen-limiting condition. Therefore, paradoxically, expression of the glnA gene, encoding glutamine synthetase, was highest in the glutamine medium. For the amtB glnK operon, GlnR served as both a negative regulator in the presence of ammonium and a positive regulator in the glutamine medium. The gdhA gene was subject to a third mode of regulation that apparently required an elevated level of GlnR for repression. Finally, activity of glutamate dehydrogenase encoded by the gdhA gene appeared to correlate inversely with expression of gltAB, the operon that encodes the other major glutamate-synthesizing enzyme, glutamate synthase. Both gdhA and amtB were also regulated, in a negative manner, by the global transcriptional regulator CodY.IMPORTANCE L. monocytogenes is a widespread foodborne pathogen. Nitrogen-containing compounds, such as the glutamate-containing tripeptide, glutathione, and glutamine, have been shown to be important for expression of L. monocytogenes virulence genes. In this work, we showed that a transcriptional regulator, GlnR, controls expression of critical listerial genes of nitrogen metabolism that are involved in ammonium uptake and biosynthesis of glutamine and glutamate. A different mode of GlnR-mediated regulation was found for each of these three pathways.
Collapse
|
7
|
Morikawa Y, Morimoto S, Yoshida E, Naka S, Inaba H, Matsumoto-Nakano M. Identification and functional analysis of glutamine transporter in Streptococcus mutans. J Oral Microbiol 2020; 12:1797320. [PMID: 32944153 PMCID: PMC7482851 DOI: 10.1080/20002297.2020.1797320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background Streptococcus mutans, a biofilm-forming bacterium, possesses several transporters that function as import/export molecules. Among them, the PII protein family is composed of members that regulate glutamine synthesis in bacterial species. Objective In this study, we characterized the function of the glutamine transporter in S. mutans MT8148. Methods The SMU.732 gene, corresponding to glnP in S. mutans, is homologous to the glutamine transporter gene in Bacillus subtilis. We constructed a glnP-inactivated mutant strain (GEMR) and a complement strain (comp-GEMR) and evaluated their biological functions. Results Growth of GEMR was similar in the presence and absence of glutamine, whereas the growth rates of MT8148 and comp-GEMR were significantly lower in the presence of glutamine as compared to its absence. Furthermore, biofilms formed by MT8148 and comp-GEMR were significantly thicker than that formed by GEMR, while the GEMR strain showed a significantly lower survival rate in an acidic environment than the other strains. Addition of n-phenyl-2-naphthylamine, used to label of the membrane, led to increased fluorescence intensity of MT8148 and GEMR, albeit that was significantly lower in the latter. Conclusions These results suggest that glnP is associated with glutamine transport in S. mutans, especially the import of glutamine involved in biofilm formation.
Collapse
Affiliation(s)
- Yuko Morikawa
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Setsuyo Morimoto
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eri Yoshida
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroaki Inaba
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
8
|
GlnR Negatively Regulates Glutamate-Dependent Acid Resistance in Lactobacillus brevis. Appl Environ Microbiol 2020; 86:AEM.02615-19. [PMID: 31953336 DOI: 10.1128/aem.02615-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/08/2020] [Indexed: 11/20/2022] Open
Abstract
Lactic acid bacteria often encounter a variety of multiple stresses in their natural and industrial fermentation environments. The glutamate decarboxylase (GAD) system is one of the most important acid resistance systems in lactic acid bacteria. In this study, we demonstrated that GlnR, a nitrogen regulator in Gram-positive bacteria, directly modulated γ-aminobutyric acid (GABA) conversion from glutamate and was involved in glutamate-dependent acid resistance in Lactobacillus brevis The glnR deletion strain (ΔglnR mutant) achieved a titer of 284.7 g/liter GABA, which is 9.8-fold higher than that of the wild-type strain. The cell survival of the glnR deletion strain was significantly higher than that of the wild-type strain under the condition of acid challenge and was positively correlated with initial glutamate concentration and GABA production. Quantitative reverse transcription-PCR assays demonstrated that GlnR inhibited the transcription of the glutamate decarboxylase-encoding gene (gadB), glutamate/GABA antiporter-encoding gene (gadC), glutamine synthetase-encoding gene (glnA), and specific transcriptional regulator-encoding gene (gadR) involved in gadCB operon regulation. Moreover, GABA production and glutamate-dependent acid resistance were absolutely abolished in the gadR glnR deletion strain. Electrophoretic mobility shift and DNase I footprinting assays revealed that GlnR directly bound to the 5'-untranslated regions of the gadR gene and gadCB operon, thus inhibiting their transcription. These results revealed a novel regulatory mechanism of GlnR on glutamate-dependent acid resistance in Lactobacillus IMPORTANCE Free-living lactic acid bacteria often encounter acid stresses because of their organic acid-producing features. Several acid resistance mechanisms, such as the glutamate decarboxylase system, F1Fo-ATPase proton pump, and alkali production, are usually employed to relieve growth inhibition caused by acids. The glutamate decarboxylase system is vital for GAD-containing lactic acid bacteria to protect cells from DNA damage, enzyme inactivation, and product yield loss in acidic habitats. In this study, we found that a MerR-type regulator, GlnR, was involved in glutamate-dependent acid resistance by directly regulating the transcription of the gadR gene and gadCB operon, resulting in an inhibition of GABA conversion from glutamate in L. brevis This study represents a novel mechanism for GlnR's regulation of glutamate-dependent acid resistance and also provides a simple and novel strategy to engineer Lactobacillus strains to elevate their acid resistance as well as GABA conversion from glutamate.
Collapse
|
9
|
Task Distribution between Acetate and Acetoin Pathways To Prolong Growth in Lactococcus lactis under Respiration Conditions. Appl Environ Microbiol 2018; 84:AEM.01005-18. [PMID: 30030222 DOI: 10.1128/aem.01005-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/06/2018] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is the main bacterium used for food fermentation and is a candidate for probiotic development. In addition to fermentation growth, supplementation with heme under aerobic conditions activates a cytochrome oxidase, which promotes respiration metabolism. In contrast to fermentation, in which cells consume energy to produce mainly lactic acid, respiration metabolism dramatically changes energy metabolism, such that massive amounts of acetic acid and acetoin are produced at the expense of lactic acid. Our goal was to investigate the metabolic changes that correlate with significantly improved growth and survival during respiration growth. Using transcriptional time course analyses, mutational analyses, and promoter-reporter fusions, we uncover two main pathways that can explain the robust growth and stability of respiration cultures. First, the acetate pathway contributes to biomass yield in respiration without affecting medium pH. Second, the acetoin pathway allows cells to cope with internal acidification, which directly affects cell density and survival in stationary phase. Our results suggest that manipulation of these pathways will lead to fine-tuning respiration growth, with improved yield and stability.IMPORTANCE Lactococcus lactis is used in food and biotechnology industries for its capacity to produce lactic acid, aroma, and proteins. This species grows by fermentation or by an aerobic respiration metabolism when heme is added. Whereas fermentation leads mostly to lactic acid production, respiration produces acetate and acetoin. Respiration growth leads to greatly improved bacterial growth and survival. Our study aims at deciphering mechanisms of respiration metabolism that have a major impact on bacterial physiology. Our results showed that two metabolic pathways (acetate and acetoin) are key elements of respiration. The acetate pathway contributes to biomass yield. The acetoin pathway is needed for pH homeostasis, which affects metabolic activities and bacterial viability in stationary phase. This study clarifies key metabolic elements that are required to maintain the growth advantage conferred by respiration metabolism and has potential uses in strain optimization for industrial and biomedical applications.
Collapse
|
10
|
Kok J, van Gijtenbeek LA, de Jong A, van der Meulen SB, Solopova A, Kuipers OP. The Evolution of gene regulation research in Lactococcus lactis. FEMS Microbiol Rev 2018; 41:S220-S243. [PMID: 28830093 DOI: 10.1093/femsre/fux028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/15/2017] [Indexed: 11/12/2022] Open
Abstract
Lactococcus lactis is a major microbe. This lactic acid bacterium (LAB) is used worldwide in the production of safe, healthy, tasteful and nutritious milk fermentation products. Its huge industrial importance has led to an explosion of research on the organism, particularly since the early 1970s. The upsurge in the research on L. lactis coincided not accidentally with the advent of recombinant DNA technology in these years. The development of methods to take out and re-introduce DNA in L. lactis, to clone genes and to mutate the chromosome in a targeted way, to control (over)expression of proteins and, ultimately, the availability of the nucleotide sequence of its genome and the use of that information in transcriptomics and proteomics research have enabled to peek deep into the functioning of the organism. Among many other things, this has provided an unprecedented view of the major gene regulatory pathways involved in nitrogen and carbon metabolism and their overlap, and has led to the blossoming of the field of L. lactis systems biology. All of these advances have made L. lactis the paradigm of the LAB. This review will deal with the exciting path along which the research on the genetics of and gene regulation in L. lactis has trodden.
Collapse
Affiliation(s)
- Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Lieke A van Gijtenbeek
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Sjoerd B van der Meulen
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Ana Solopova
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
11
|
Miao S, Wu H, Zhao Y, Caiyin Q, Li Y, Qiao J. Enhancing nisin yield by engineering a small noncodding RNA anti41 and inhibiting the expression of glnR in Lactococcus lactis F44. Biotechnol Lett 2018; 40:941-948. [PMID: 29619745 DOI: 10.1007/s10529-018-2550-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/31/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES To engineer a small nonconding RNA anti41 to enhance nisin yield by inhibiting the expression of glnR in Lactococcus lactis F44. RESULTS We constructed a screening library to determine appropriate artificial sRNAs and obtained a sRNA anti41 that can produce approximately three fold of the inhibitory effect on GlnR. Moreover, the transcription levels of the direct inhibitory targets of GlnR (glnP, glnQ, amtB, and glnK) were dramatically upregulated in the anti41 overexpression strain (F44-anti41), thereby confirming the inhibitory effect of anti41 on GlnR. In addition, anti41 overexpression improved the survival rate of cells by approximately three fold under acid stress, promoted cell growth, and increased nisin yield by 29.83%. CONCLUSIONS We were able to provide a novel strategy for the construction of robust high-producing industrial strains.
Collapse
Affiliation(s)
- Sen Miao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
| | - Hao Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yue Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
| | - Qinggele Caiyin
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yanni Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| |
Collapse
|
12
|
Energy Coupling Efficiency in the Type I ABC Transporter GlnPQ. J Mol Biol 2018; 430:853-866. [PMID: 29432725 DOI: 10.1016/j.jmb.2018.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 01/29/2023]
Abstract
Solute transport via ATP binding cassette (ABC) importers involves receptor-mediated substrate binding, which is followed by ATP-driven translocation of the substrate across the membrane. How these steps are exactly initiated and coupled, and how much ATP it takes to complete a full transport cycle, are subject of debate. Here, we reconstitute the ABC importer GlnPQ in nanodiscs and in proteoliposomes and determine substrate-(in)dependent ATP hydrolysis and transmembrane transport. We determined the conformational states of the substrate-binding domains (SBDs) by single-molecule Förster resonance energy transfer measurements. We find that the basal ATPase activity (ATP hydrolysis in the absence of substrate) is mainly caused by the docking of the closed-unliganded state of the SBDs onto the transporter domain of GlnPQ and that, unlike glutamine, arginine binds both SBDs but does not trigger their closing. Furthermore, comparison of the ATPase activity in nanodiscs with glutamine transport in proteoliposomes shows that the stoichiometry of ATP per substrate is close to two. These findings help understand the mechanism of transport and the energy coupling efficiency in ABC transporters with covalently linked SBDs, which may aid our understanding of Type I ABC importers in general.
Collapse
|
13
|
Koduru L, Kim Y, Bang J, Lakshmanan M, Han NS, Lee DY. Genome-scale modeling and transcriptome analysis of Leuconostoc mesenteroides unravel the redox governed metabolic states in obligate heterofermentative lactic acid bacteria. Sci Rep 2017; 7:15721. [PMID: 29147021 PMCID: PMC5691038 DOI: 10.1038/s41598-017-16026-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/06/2017] [Indexed: 11/09/2022] Open
Abstract
Obligate heterofermentative lactic acid bacteria (LAB) are well-known for their beneficial health effects in humans. To delineate the incompletely characterized metabolism that currently limits their exploitation, at systems-level, we developed a genome-scale metabolic model of the representative obligate heterofermenting LAB, Leuconostoc mesenteroides (iLME620). Constraint-based flux analysis was then used to simulate several qualitative and quantitative phenotypes of L. mesenteroides, thereby evaluating the model validity. With established predictive capabilities, we subsequently employed iLME620 to elucidate unique metabolic characteristics of L. mesenteroides, such as the limited ability to utilize amino acids as energy source, and to substantiate the role of malolactic fermentation (MLF) in the reduction of pH-homeostatic burden on F0F1-ATPase. We also reported new hypothesis on the MLF mechanism that could be explained via a substrate channelling-like phenomenon mainly influenced by intracellular redox state rather than the intermediary reactions. Model simulations further revealed possible proton-symporter dependent activity of the energy efficient glucose-phosphotransferase system in obligate heterofermentative LAB. Moreover, integrated transcriptomic analysis allowed us to hypothesize transcriptional regulatory bias affecting the intracellular redox state. The insights gained here about the low ATP-yielding metabolism of L. mesenteroides, dominantly controlled by the cellular redox state, could potentially aid strain design for probiotic and cell factory applications.
Collapse
Affiliation(s)
- Lokanand Koduru
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore
| | - Yujin Kim
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jeongsu Bang
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Dong-Yup Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore.
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore.
| |
Collapse
|
14
|
Xiao Y, Jiang W, Zhang F. Developing a Genetically Encoded, Cross-Species Biosensor for Detecting Ammonium and Regulating Biosynthesis of Cyanophycin. ACS Synth Biol 2017; 6:1807-1815. [PMID: 28683543 DOI: 10.1021/acssynbio.7b00069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Responding to nitrogen status is essential for all living organisms. Bacteria have evolved various complex and exquisite regulatory systems to control nitrogen metabolism. However, natural nitrogen regulatory systems, owing to their complexity, often function only in their original hosts and do not respond properly when transferred to another species. By harnessing the Lactococcus GlnRA system, we developed a genetically encoded, cross-species ammonium biosensor that displays a dynamic range up to 9-fold upon detection of ammonium ion. We demonstrated applications of this ammonium biosensor in three different species (Escherichia coli, Pseudomonas putida, and Synechocystis sp.) to detect different nitrogen sources. This ammonium sensor was further used to regulate the biosynthesis of a nitrogen-rich polymer, cyanophycin, based on ammonium concentration. Given the importance of nitrogen responses, the developed biosensor should be broadly applicable to synthetic biology and bioengineering.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Energy, Environmental and Chemical Engineering, ‡Division of Biological & Biomedical Sciences, §Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Wen Jiang
- Department of Energy, Environmental and Chemical Engineering, ‡Division of Biological & Biomedical Sciences, §Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, ‡Division of Biological & Biomedical Sciences, §Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| |
Collapse
|
15
|
Role of VicRKX and GlnR in pH-Dependent Regulation of the Streptococcus salivarius 57.I Urease Operon. mSphere 2016; 1:mSphere00033-16. [PMID: 27303745 PMCID: PMC4888889 DOI: 10.1128/msphere.00033-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/20/2016] [Indexed: 11/20/2022] Open
Abstract
Dental plaque rich in alkali-producing bacteria is less cariogenic, and thus, urease-producing Streptococcus salivarius has been considered as a therapeutic agent for dental caries control. Being one of the few ureolytic microbes in the oral cavity, S. salivarius strain 57.I promotes its competitiveness by mass-producing urease only at acidic growth pH. Here, we demonstrated that the downregulation of the transcription of the ure operon at neutral pH is controlled by a two-component system, VicRKX, whereas the upregulation at acidic pH is mediated by the global transcription regulator of nitrogen metabolism, GlnR. In the absence of VicR-mediated repression, the α subunit of RNA polymerase gains access to interact with the AT-rich sequence within the operator of VicR, leading to further activation of transcription. The overall regulation provides an advantage for S. salivarius to cope with the fluctuation of environmental pH, allowing it to persist in the mouth successfully. Ureolysis by Streptococcus salivarius is critical for pH homeostasis of dental plaque and prevention of dental caries. The expression of S. salivarius urease is induced by acidic pH and carbohydrate excess. The differential expression is mainly controlled at the transcriptional level from the promoter 5′ to ureI (pureI). Our previous study demonstrates that CodY represses pureI by binding to a CodY box 5′ to pureI, and the repression is more pronounced in cells grown at pH 7 than in cells grown at pH 5.5. Recent sequence analysis revealed a putative VicR consensus and two GlnR boxes 5′ to the CodY box. The results of DNA affinity precipitation assay, electrophoretic mobility shift assay, and chromatin immunoprecipitation-PCR analysis confirmed that both GlnR and VicR interact with the predicted binding sites in pureI. Isogenic mutant strains (vicRKX null and glnR null) and their derivatives (harboring S. salivariusvicRKX and glnR, respectively) were generated in a recombinant Streptococcus gordonii strain harboring a pureI-chloramphenicol acetyltransferase gene fusion on gtfG to investigate the regulation of VicR and GlnR. The results indicated that GlnR activates, whereas VicR represses, pureI expression. The repression by VicR is more pronounced at pH 7, whereas GlnR is more active at pH 5.5. Furthermore, the VicR box acts as an upstream element to enhance pureI expression in the absence of the cognate regulator. The overall regulation by CodY, VicR, and GlnR in response to pH ensures an optimal expression of urease in S. salivarius when the enzyme is most needed. IMPORTANCE Dental plaque rich in alkali-producing bacteria is less cariogenic, and thus, urease-producing Streptococcus salivarius has been considered as a therapeutic agent for dental caries control. Being one of the few ureolytic microbes in the oral cavity, S. salivarius strain 57.I promotes its competitiveness by mass-producing urease only at acidic growth pH. Here, we demonstrated that the downregulation of the transcription of the ure operon at neutral pH is controlled by a two-component system, VicRKX, whereas the upregulation at acidic pH is mediated by the global transcription regulator of nitrogen metabolism, GlnR. In the absence of VicR-mediated repression, the α subunit of RNA polymerase gains access to interact with the AT-rich sequence within the operator of VicR, leading to further activation of transcription. The overall regulation provides an advantage for S. salivarius to cope with the fluctuation of environmental pH, allowing it to persist in the mouth successfully.
Collapse
|
16
|
Relative Rates of Amino Acid Import via the ABC Transporter GlnPQ Determine the Growth Performance of Lactococcus lactis. J Bacteriol 2015; 198:477-85. [PMID: 26553850 DOI: 10.1128/jb.00685-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The GlnPQ transporter from Lactococcus lactis has the remarkable feature of having two substrate-binding domains (SBDs) fused to the N terminus of the transmembrane domain (TMD), and thus four SBDs are present in the homodimeric complex. Although X-ray structures and ligand binding data are available for both SBDs, little is known of how different amino acids compete with each other for transport via GlnPQ. Here we show GlnPQ has a broader substrate specificity than previously thought, with the ability to take up asparagine, glutamine, and glutamic acid, albeit via different routes and with different affinities. Asparagine and glutamine compete with each other at the level of binding to SBD1 and SBD2 (with differences in dissociation constant), but at the same time SBD1 and SBD2 compete with each other at the level of interaction with the translocator domain (with differences in affinity constant and rate of transport). Although glutamine transport via SBD1 is outcompeted by physiological concentrations of asparagine, SBD2 ensures high rates of import of the essential amino acid glutamine. Taken together, this study demonstrates that even in the presence of competing asparagine concentrations, GlnPQ has a high capacity to transport glutamine, which matches the high needs of the cell for glutamine and glutamate. IMPORTANCE GlnPQ is an ATP-binding cassette (ABC) transporter for glutamine, glutamic acid, and asparagine. The system is essential in various Gram-positive bacteria, including L. lactis and several pathogens. Here we show how the amino acids compete with each other for binding to the multiple SBDs of GlnPQ and how these SBDs compete with each other for substrate delivery to the transporter. Overall, our results show that GlnPQ has evolved to transport diverse substrates via different paths and to optimally acquire the abundant and essential amino acid glutamine.
Collapse
|
17
|
Goel A, Eckhardt TH, Puri P, de Jong A, Branco Dos Santos F, Giera M, Fusetti F, de Vos WM, Kok J, Poolman B, Molenaar D, Kuipers OP, Teusink B. Protein costs do not explain evolution of metabolic strategies and regulation of ribosomal content: does protein investment explain an anaerobic bacterial Crabtree effect? Mol Microbiol 2015; 97:77-92. [PMID: 25828364 DOI: 10.1111/mmi.13012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 01/21/2023]
Abstract
Protein investment costs are considered a major driver for the choice of alternative metabolic strategies. We tested this premise in Lactococcus lactis, a bacterium that exhibits a distinct, anaerobic version of the bacterial Crabtree/Warburg effect; with increasing growth rates it shifts from a high yield metabolic mode [mixed-acid fermentation; 3 adenosine triphosphate (ATP) per glucose] to a low yield metabolic mode (homolactic fermentation; 2 ATP per glucose). We studied growth rate-dependent relative transcription and protein ratios, enzyme activities, and fluxes of L. lactis in glucose-limited chemostats, providing a high-quality and comprehensive data set. A three- to fourfold higher growth rate rerouted metabolism from acetate to lactate as the main fermentation product. However, we observed hardly any changes in transcription, protein levels and enzyme activities. Even levels of ribosomal proteins, constituting a major investment in cellular machinery, changed only slightly. Thus, contrary to the original hypothesis, central metabolism in this organism appears to be hardly regulated at the level of gene expression, but rather at the metabolic level. We conclude that L. lactis is either poorly adapted to growth at low and constant glucose concentrations, or that protein costs play a less important role in fitness than hitherto assumed.
Collapse
Affiliation(s)
- Anisha Goel
- Systems Bioinformatics IBIVU, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.,Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands
| | - Thomas H Eckhardt
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Pranav Puri
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Anne de Jong
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Filipe Branco Dos Santos
- Systems Bioinformatics IBIVU, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands
| | - Martin Giera
- Systems Bioinformatics IBIVU, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Fabrizia Fusetti
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands
| | - Jan Kok
- Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands.,Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Bert Poolman
- Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands.,Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Douwe Molenaar
- Systems Bioinformatics IBIVU, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands
| | - Oscar P Kuipers
- Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands.,Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Netherlands Proteomics Centre and Zernike Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Bas Teusink
- Systems Bioinformatics IBIVU, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation/Netherlands consortium for Systems Biology (NCSB), P.O. Box 5057, 2600 GA, Delft, The Netherlands
| |
Collapse
|
18
|
Using a genome-scale metabolic model of Enterococcus faecalis V583 to assess amino acid uptake and its impact on central metabolism. Appl Environ Microbiol 2014; 81:1622-33. [PMID: 25527553 DOI: 10.1128/aem.03279-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increasing antibiotic resistance in pathogenic bacteria necessitates the development of new medication strategies. Interfering with the metabolic network of the pathogen can provide novel drug targets but simultaneously requires a deeper and more detailed organism-specific understanding of the metabolism, which is often surprisingly sparse. In light of this, we reconstructed a genome-scale metabolic model of the pathogen Enterococcus faecalis V583. The manually curated metabolic network comprises 642 metabolites and 706 reactions. We experimentally determined metabolic profiles of E. faecalis grown in chemically defined medium in an anaerobic chemostat setup at different dilution rates and calculated the net uptake and product fluxes to constrain the model. We computed growth-associated energy and maintenance parameters and studied flux distributions through the metabolic network. Amino acid auxotrophies were identified experimentally for model validation and revealed seven essential amino acids. In addition, the important metabolic hub of glutamine/glutamate was altered by constructing a glutamine synthetase knockout mutant. The metabolic profile showed a slight shift in the fermentation pattern toward ethanol production and increased uptake rates of multiple amino acids, especially l-glutamine and l-glutamate. The model was used to understand the altered flux distributions in the mutant and provided an explanation for the experimentally observed redirection of the metabolic flux. We further highlighted the importance of gene-regulatory effects on the redirection of the metabolic fluxes upon perturbation. The genome-scale metabolic model presented here includes gene-protein-reaction associations, allowing a further use for biotechnological applications, for studying essential genes, proteins, or reactions, and the search for novel drug targets.
Collapse
|
19
|
Ardin AC, Fujita K, Nagayama K, Takashima Y, Nomura R, Nakano K, Ooshima T, Matsumoto-Nakano M. Identification and functional analysis of an ammonium transporter in Streptococcus mutans. PLoS One 2014; 9:e107569. [PMID: 25229891 PMCID: PMC4167856 DOI: 10.1371/journal.pone.0107569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/13/2014] [Indexed: 12/26/2022] Open
Abstract
Streptococcus mutans, a Gram-positive bacterium, is considered to be a major etiologic agent of human dental caries and reported to form biofilms known as dental plaque on tooth surfaces. This organism is also known to possess a large number of transport proteins in the cell membrane for export and import of molecules. Nitrogen is an essential nutrient for Gram-positive bacteria, though alternative sources such as ammonium can also be utilized. In order to obtain nitrogen for macromolecular synthesis, nitrogen-containing compounds must be transported into the cell. However, the ammonium transporter in S. mutans remains to be characterized. The present study focused on characterizing the ammonium transporter gene of S. mutans and its operon, while related regulatory genes were also analyzed. The SMU.1658 gene corresponding to nrgA in S. mutans is homologous to the ammonium transporter gene in Bacillus subtilis and SMU.1657, located upstream of the nrgA gene and predicted to be glnB, is a member of the PII protein family. Using a nrgA-deficient mutant strain (NRGD), we examined bacterial growth in the presence of ammonium, calcium chloride, and manganese sulfate. Fluorescent efflux assays were also performed to reveal export molecules associated with the ammonium transporter. The growth rate of NRGD was lower, while its fluorescent intensity was much higher as compared to the parental strain. In addition, confocal laser scanning microscopy revealed that the structure of biofilms formed by NRGD was drastically different than that of the parental strain. Furthermore, transcriptional analysis showed that the nrgA gene was co-transcribed with the glnB gene. These results suggest that the nrgA gene in S. mutans is essential for export of molecules and biofilm formation.
Collapse
Affiliation(s)
- Arifah Chieko Ardin
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazuyo Fujita
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kayoko Nagayama
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yukiko Takashima
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Takashi Ooshima
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| |
Collapse
|
20
|
Abstract
Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.
Collapse
|
21
|
Kaspar D, Auer F, Schardt J, Schindele F, Ospina A, Held C, Ehrenreich A, Scherer S, Müller-Herbst S. Temperature- and nitrogen source-dependent regulation of GlnR target genes in Listeria monocytogenes. FEMS Microbiol Lett 2014; 355:131-41. [PMID: 24801548 DOI: 10.1111/1574-6968.12458] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 11/28/2022] Open
Abstract
The ubiquitous pathogen Listeria monocytogenes lives either saprophytically in the environment or within cells in a vertebrate host, thus adapting its lifestyle to its ecological niche. Growth experiments at 24 and 37 °C (environmental and host temperature) with ammonium or glutamine as nitrogen sources revealed that ammonium is the preferred nitrogen source of L. monocytogenes. Reduced growth on glutamine is more obvious at 24 °C. Global transcriptional microarray analyses showed that the most striking difference in temperature-dependent transcription was observed for central nitrogen metabolism genes, glnR (glutamine synthetase repressor GlnR), glnA (glutamine synthetase GlnA), amtB (ammonium transporter AmtB), glnK (PII regulatory protein GlnK), and gdh (glutamate dehydrogenase) when cells were grown on glutamine. When grown on ammonium, both at 24 and 37 °C, the transcriptional level of these genes resembles that of cells grown with glutamine at 37 °C. Electrophoretic mobility shift assay studies and qPCR analyses in the wild-type L. monocytogenes and the deletion mutant L. monocytogenes ∆glnR revealed that the transcriptional regulator GlnR is directly involved in temperature- and nitrogen source-dependent regulation of the respective genes. Glutamine, a metabolite known to influence GlnR activity, seems unlikely to be the (sole) intracellular signal mediating this temperature-and nitrogen source-dependent metabolic adaptation.
Collapse
Affiliation(s)
- Daniela Kaspar
- Lehrstuhl für Mikrobielle Ökologie, Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising, Germany; Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Technische Universität München, Freising, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Aller K, Adamberg K, Timarova V, Seiman A, Feštšenko D, Vilu R. Nutritional requirements and media development for Lactococcus lactis IL1403. Appl Microbiol Biotechnol 2014; 98:5871-81. [PMID: 24626960 DOI: 10.1007/s00253-014-5641-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/21/2014] [Accepted: 02/28/2014] [Indexed: 11/29/2022]
Abstract
Lactic acid bacteria are extensively used in food technology and for the production of various compounds, but they are fastidious in nutrient requirements. In order to elucidate the role of each component precisely, defined multicomponent media are required. This study focuses on determining nutrient auxotrophies and minimizing media components (amino acids, vitamins, metal ions, buffers and additional compounds) for the cultivation of Lactococcus lactis subsp. lactis IL1403, using microtitre plates and test tubes. It was shown that glutamine and asparagine were the most important media components for achieving higher biomass yields while the branched-chain amino acids were necessary to increase specific growth rate. The amino acid and glucose ratio was reduced to achieve minimal residual concentration of amino acids in the medium after the growth of cells, whereas the specific growth rate and biomass yield of cells were not considerably affected. As the percentage of each consumed amino acid compared to initial amount is larger than measurement error, these optimized media are important for achieving more precise data about amino acid utilization and metabolism.
Collapse
Affiliation(s)
- Kadri Aller
- The Competence Center of Food and Fermentation Technologies (CCFFT), Akadeemia tee 15A, 12618, Tallinn, Estonia,
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Here we study the influence of the putative fatty acid biosynthesis (FAB) regulator FabT (originally called RmaG [Llmg_1788]) on gene transcription in Lactococcus lactis MG1363. A strain with a knockout mutation of the putative regulator was constructed, and its transcriptome was compared to that of the wild-type strain. Almost all FAB genes were significantly upregulated in the knockout. Using electrophoretic mobility shift assays (EMSAs) and DNase I footprinting, the binding motif of the regulator and the binding locations in the genome were characterized. Fatty acid composition analysis revealed that a strain lacking FabT contained significantly more saturated acyl chains in its phospholipids. This observation demonstrates that the vital pathway of FAB in L. lactis is regulated by the repressor FabT.
Collapse
|
24
|
de Jong A, Pietersma H, Cordes M, Kuipers OP, Kok J. PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genomics 2012; 13:299. [PMID: 22747501 PMCID: PMC3472324 DOI: 10.1186/1471-2164-13-299] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 04/13/2012] [Indexed: 11/29/2022] Open
Abstract
Background Accurate prediction of DNA motifs that are targets of RNA polymerases, sigma factors and transcription factors (TFs) in prokaryotes is a difficult mission mainly due to as yet undiscovered features in DNA sequences or structures in promoter regions. Improved prediction and comparison algorithms are currently available for identifying transcription factor binding sites (TFBSs) and their accompanying TFs and regulon members. Results We here extend the current databases of TFs, TFBSs and regulons with our knowledge on Lactococcus lactis and developed a webserver for prediction, mining and visualization of prokaryote promoter elements and regulons via a novel concept. This new approach includes an all-in-one method of data mining for TFs, TFBSs, promoters, and regulons for any bacterial genome via a user-friendly webserver. We demonstrate the power of this method by mining WalRK regulons in Lactococci and Streptococci and, vice versa, use L. lactis regulon data (CodY) to mine closely related species. Conclusions The PePPER webserver offers, besides the all-in-one analysis method, a toolbox for mining for regulons, promoters and TFBSs and accommodates a new L. lactis regulon database in addition to already existing regulon data. Identification of putative regulons and full annotation of intergenic regions in any bacterial genome on the basis of existing knowledge on a related organism can now be performed by biologists and it can be done for a wide range of regulons. On the basis of the PePPER output, biologist can design experiments to further verify the existence and extent of the proposed regulons. The PePPER webserver is freely accessible at http://pepper.molgenrug.nl.
Collapse
Affiliation(s)
- Anne de Jong
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Gunka K, Commichau FM. Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation. Mol Microbiol 2012; 85:213-24. [DOI: 10.1111/j.1365-2958.2012.08105.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Groot Kormelink T, Koenders E, Hagemeijer Y, Overmars L, Siezen RJ, de Vos WM, Francke C. Comparative genome analysis of central nitrogen metabolism and its control by GlnR in the class Bacilli. BMC Genomics 2012; 13:191. [PMID: 22607086 PMCID: PMC3412718 DOI: 10.1186/1471-2164-13-191] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The assimilation of nitrogen in bacteria is achieved through only a few metabolic conversions between alpha-ketoglutarate, glutamate and glutamine. The enzymes that catalyze these conversions are glutamine synthetase, glutaminase, glutamate dehydrogenase and glutamine alpha-ketoglutarate aminotransferase. In low-GC Gram-positive bacteria the transcriptional control over the levels of the related enzymes is mediated by four regulators: GlnR, TnrA, GltC and CodY. We have analyzed the genomes of all species belonging to the taxonomic families Bacillaceae, Listeriaceae, Staphylococcaceae, Lactobacillaceae, Leuconostocaceae and Streptococcaceae to determine the diversity in central nitrogen metabolism and reconstructed the regulation by GlnR. RESULTS Although we observed a substantial difference in the extent of central nitrogen metabolism in the various species, the basic GlnR regulon was remarkably constant and appeared not affected by the presence or absence of the other three main regulators. We found a conserved regulatory association of GlnR with glutamine synthetase (glnRA operon), and the transport of ammonium (amtB-glnK) and glutamine/glutamate (i.e. via glnQHMP, glnPHQ, gltT, alsT). In addition less-conserved associations were found with, for instance, glutamate dehydrogenase in Streptococcaceae, purine catabolism and the reduction of nitrite in Bacillaceae, and aspartate/asparagine deamination in Lactobacillaceae. CONCLUSIONS Our analyses imply GlnR-mediated regulation in constraining the import of ammonia/amino-containing compounds and the production of intracellular ammonia under conditions of high nitrogen availability. Such a role fits with the intrinsic need for tight control of ammonia levels to limit futile cycling.
Collapse
Affiliation(s)
- Tom Groot Kormelink
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Pedersen MB, Gaudu P, Lechardeur D, Petit MA, Gruss A. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu Rev Food Sci Technol 2011; 3:37-58. [PMID: 22385163 DOI: 10.1146/annurev-food-022811-101255] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The lactic acid bacteria (LAB) are essential for food fermentations and their impact on gut physiology and health is under active exploration. In addition to their well-studied fermentation metabolism, many species belonging to this heterogeneous group are genetically equipped for respiration metabolism. In LAB, respiration is activated by exogenous heme, and for some species, heme and menaquinone. Respiration metabolism increases growth yield and improves fitness. In this review, we aim to present the basics of respiration metabolism in LAB, its genetic requirements, and the dramatic physiological changes it engenders. We address the question of how LAB acquired the genetic equipment for respiration. We present at length how respiration can be used advantageously in an industrial setting, both in the context of food-related technologies and in novel potential applications.
Collapse
Affiliation(s)
- Martin B Pedersen
- Department of Physiology, Cultures & Enzymes Division, Chr. Hansen A/S, DK-2970 Hørsholm, Denmark
| | | | | | | | | |
Collapse
|
28
|
Impact of glutamine transporters on pneumococcal fitness under infection-related conditions. Infect Immun 2010; 79:44-58. [PMID: 21078855 DOI: 10.1128/iai.00855-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The genomic analysis of Streptococcus pneumoniae predicted six putative glutamine uptake systems, which are expressed under in vitro conditions, as shown here by reverse transcription-PCR. Four of these operons consist of glnHPQ, while two lack glnH, which encodes a soluble glutamine-binding protein. Here, we studied the impact of two of these glutamine ATP-binding cassette transporters on S. pneumoniae D39 virulence and phagocytosis, which consist of GlnQ and a translationally fused protein of GlnH and GlnP. Mice infected intranasally with D39Δgln0411/0412 showed significantly increased survival times and a significant delay in the development of pneumococcal pneumonia compared to those infected with D39, as observed in real time using bioluminescent pneumococci. In a mouse sepsis model, the mutant D39Δgln0411/0412 showed only moderate but significant attenuation. In contrast, the D39Δgln1098/1099 knockout strain was massively attenuated in the pneumonia and septicemia mouse infection model. To cause pneumonia or sepsis with D39Δgln1098/1099, infection doses 100- to 10,000-fold higher than those used for wild-type strain D39 were required. In an experimental mouse meningitis model, D39Δgln1098/1099 produced decreased levels of white blood cells in cerebrospinal fluid and showed decreased numbers of bacteria in the bloodstream compared to D39 and D39Δgln0411/0412. Phagocytosis experiments revealed significantly decreased intracellular survival rates of mutants D39Δgln1098/1099 and D39Δgln0411/0412 compared to wild-type D39, suggesting that the deficiency of Gln uptake systems impairs resistance to oxidative stress. Taken together, our results demonstrate that both glutamine uptake systems are required for full virulence of pneumococci but exhibit different impacts on the pathogenesis of pneumococci under in vivo conditions.
Collapse
|
29
|
Role of GlnR in acid-mediated repression of genes encoding proteins involved in glutamine and glutamate metabolism in Streptococcus mutans. Appl Environ Microbiol 2010; 76:2478-86. [PMID: 20173059 DOI: 10.1128/aem.02622-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The acid tolerance response (ATR) is one of the major virulence traits of Streptococcus mutans. In this study, the role of GlnR in acid-mediated gene repression that affects the adaptive ATR in S. mutans was investigated. Using a whole-genome microarray and in silico analyses, we demonstrated that GlnR and the GlnR box (ATGTNAN(7)TNACAT) were involved in the transcriptional repression of clusters of genes encoding proteins involved in glutamine and glutamate metabolism under acidic challenge. Reverse transcription-PCR (RT-PCR) analysis revealed that the coordinated regulation of the GlnR regulon occurred 5 min after acid treatment and that prolonged acid exposure (30 min) resulted in further reduction in expression. A lower level but consistent reduction in response to acidic pH was also observed in chemostat-grown cells, confirming the negative regulation of GlnR. The repression by GlnR through the GlnR box in response to acidic pH was further confirmed in the citBZC operon, containing genes encoding the first three enzymes in the glutamine/glutamate biosynthesis pathway. The survival rate of the GlnR-deficient mutant at pH 2.8 was more than 10-fold lower than that in the wild-type strain 45 min after acid treatment, suggesting that the GlnR regulon participates in S. mutans ATR. It is hypothesized that downregulation of the synthesis of the amino acid precursors in response to acid challenge would promote citrate metabolism to pyruvate, with the consumption of H(+) and potential ATP synthesis. Such regulation will ensure an optimal acid adaption in S. mutans.
Collapse
|
30
|
Amon J, Titgemeyer F, Burkovski A. Common patterns - unique features: nitrogen metabolism and regulation in Gram-positive bacteria. FEMS Microbiol Rev 2010; 34:588-605. [PMID: 20337720 DOI: 10.1111/j.1574-6976.2010.00216.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gram-positive bacteria have developed elaborate mechanisms to control ammonium assimilation, at the levels of both transcription and enzyme activity. In this review, the common and specific mechanisms of nitrogen assimilation and regulation in Gram-positive bacteria are summarized and compared for the genera Bacillus, Clostridium, Streptomyces, Mycobacterium and Corynebacterium, with emphasis on the high G+C genera. Furthermore, the importance of nitrogen metabolism and control for the pathogenic lifestyle and virulence is discussed. In summary, the regulation of nitrogen metabolism in prokaryotes shows an impressive diversity. Virtually every phylum of bacteria evolved its own strategy to react to the changing conditions of nitrogen supply. Not only do the transcription factors differ between the phyla and sometimes even between families, but the genetic targets of a given regulon can also differ between closely related species.
Collapse
Affiliation(s)
- Johannes Amon
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
31
|
|
32
|
Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR-DNA complexes. Proc Natl Acad Sci U S A 2008; 105:1014-9. [PMID: 18195355 DOI: 10.1073/pnas.0709949105] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Bacillus subtilis GlnR repressor controls gene expression in response to nitrogen availability. Because all GlnR-regulated genes are expressed constitutively in mutants lacking glutamine synthetase (GS), GS is required for repression by GlnR. Feedback-inhibited GS (FBI-GS) was shown to activate GlnR DNA binding with an in vitro electophoretic mobility shift assay (EMSA). The activation of GlnR DNA binding by GS in these experiments depended on the feedback inhibitor glutamine and did not occur with mutant GS proteins defective in regulating GlnR activity in vivo. Although stable GS-GlnR-DNA ternary complexes were not observed in the EMSA experiments, cross-linking experiments showed that a protein-protein interaction occurs between GlnR and FBI-GS. This interaction was reduced in the absence of the feedback inhibitor glutamine and with mutant GS proteins. Because FBI-GS significantly reduced the dissociation rate of the GlnR-DNA complexes, the stability of these complexes is enhanced by FBI-GS. These results argue that FBI-GS acts as a chaperone that activates GlnR DNA binding through a transient protein-protein interaction that stabilizes GlnR-DNA complexes. GS was shown to control the activity of the B. subtilis nitrogen transcription factor TnrA by forming a stable complex between FBI-GS and TnrA that inhibits TnrA DNA binding. Thus, B. subtilis GS is an enzyme with dual catalytic and regulatory functions that uses distinct mechanisms to control the activity of two different transcription factors.
Collapse
|
33
|
Site-specific contributions of glutamine-dependent regulator GlnR and GlnR-regulated genes to virulence of Streptococcus pneumoniae. Infect Immun 2008; 76:1230-8. [PMID: 18174343 DOI: 10.1128/iai.01004-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional regulator GlnR of Streptococcus pneumoniae is involved in the regulation of glutamine and glutamate metabolism, controlling the expression of the glnRA and glnPQ-zwf operons, as well as the gdhA gene. To assess the contribution of the GlnR regulon to virulence, D39 wild-type and mutant strains lacking genes of this regulon were tested in an in vitro adherence assay and murine infection models. All of the mutants, except the DeltaglnR mutant, were attenuated in adherence to human pharyngeal epithelial Detroit 562 cells, suggesting a contribution of these genes to adherence during the colonization of humans. During murine colonization, only the DeltaglnA mutant and the glnP-glnA double mutant (DeltaglnAP) were attenuated, in contrast to DeltaglnP, indicating that the effect is caused by the lack of GlnA expression. In our pneumonia model, only DeltaglnP and DeltaglnAP showed a significantly reduced number of bacteria in the lungs and blood, indicating that GlnP is required for survival in the lungs and possibly for dissemination to the blood. In intravenously infected mice, glnP and glnA were individually dispensable for survival in the blood whereas the DeltaglnAP mutant was avirulent. Finally, transcriptome analysis of the DeltaglnAP mutant showed that many genes involved in amino acid metabolism were upregulated. This signifies the importance of glutamine/glutamate uptake and synthesis for full bacterial fitness and virulence. In conclusion, several genes of the GlnR regulon are required at different sites during pathogenesis, with glnA contributing to colonization and survival in the blood and glnP important for survival in the lungs and, possibly, efficient transition from the lungs to the blood.
Collapse
|
34
|
Transcriptome analysis of Lactococcus lactis in coculture with Saccharomyces cerevisiae. Appl Environ Microbiol 2007; 74:485-94. [PMID: 17993564 DOI: 10.1128/aem.01531-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The study of microbial interactions in mixed cultures remains an important conceptual and methodological challenge for which transcriptome analysis could prove to be the essential method for improving our understanding. However, the use of whole-genome DNA chips is often restricted to the pure culture of the species for which the chips were designed. In this study, massive cross-hybridization was observed between the foreign cDNA and the specific Lactococcus lactis DNA chip. A very simple method is proposed to considerably decrease this nonspecific hybridization, consisting of adding the microbial partner's DNA. A correlation was established between the resulting cross-hybridization and the phylogenetic distance between the microbial partners. The response of L. lactis to the presence of Saccharomyces cerevisiae was analyzed during the exponential growth phase in fermentors under defined growth conditions. Although no differences between growth kinetics were observed for the pure and the mixed cultures of L. lactis, the mRNA levels of 158 genes were significantly modified. More particularly, a strong reorientation of pyrimidine metabolism was observed when L. lactis was grown in mixed cultures. These changes in transcript abundance were demonstrated to be regulated by the ethanol produced by the yeast and were confirmed by an independent method (quantitative reverse transcription-PCR).
Collapse
|
35
|
Arioli S, Monnet C, Guglielmetti S, Parini C, De Noni I, Hogenboom J, Halami PM, Mora D. Aspartate biosynthesis is essential for the growth of Streptococcus thermophilus in milk, and aspartate availability modulates the level of urease activity. Appl Environ Microbiol 2007; 73:5789-96. [PMID: 17660309 PMCID: PMC2074928 DOI: 10.1128/aem.00533-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the carbon dioxide metabolism of Streptococcus thermophilus, evaluating the phenotype of a phosphoenolpyruvate carboxylase-negative mutant obtained by replacement of a functional ppc gene with a deleted and inactive version, Deltappc. The growth of the mutant was compared to that of the parent strain in a chemically defined medium and in milk, supplemented or not with L-aspartic acid, the final product of the metabolic pathway governed by phosphoenolpyruvate carboxylase. It was concluded that aspartate present in milk is not sufficient for the growth of S. thermophilus. As a consequence, phosphoenolpyruvate carboxylase activity was considered fundamental for the biosynthesis of L-aspartic acid in S. thermophilus metabolism. This enzymatic activity is therefore essential for growth of S. thermophilus in milk even if S. thermophilus was cultured in association with proteinase-positive Lactobacillus delbrueckii subsp. bulgaricus. It was furthermore observed that the supplementation of milk with aspartate significantly affected the level of urease activity. Further experiments, carried out with a p(ureI)-gusA recombinant strain, revealed that expression of the urease operon was sensitive to the aspartate concentration in milk and to the cell availability of glutamate, glutamine, and ammonium ions.
Collapse
Affiliation(s)
- Stefania Arioli
- Department of Food Science and Microbiology, University of Milan, Via Celoria 2, 20133 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Burne RA, Bessen DE, Broadbent JR, Claverys JP. The Seventh International Conference on the Genetics of Streptococci, Lactococci, and Enterococci. J Bacteriol 2006; 189:1209-18. [PMID: 17012391 PMCID: PMC1797339 DOI: 10.1128/jb.01363-06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Robert A Burne
- Department of Oral Biology, Gainesville, FL 32610-0424, USA.
| | | | | | | |
Collapse
|