1
|
Schiavolin L, Deneubourg G, Steinmetz J, Smeesters PR, Botteaux A. Group A Streptococcus adaptation to diverse niches: lessons from transcriptomic studies. Crit Rev Microbiol 2024; 50:241-265. [PMID: 38140809 DOI: 10.1080/1040841x.2023.2294905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Group A Streptococcus (GAS) is a major human pathogen, causing diseases ranging from mild superficial infections of the skin and pharyngeal epithelium to severe systemic and invasive diseases. Moreover, post infection auto-immune sequelae arise by a yet not fully understood mechanism. The ability of GAS to cause a wide variety of infections is linked to the expression of a large set of virulence factors and their transcriptional regulation in response to various physiological environments. The use of transcriptomics, among others -omics technologies, in addition to traditional molecular methods, has led to a better understanding of GAS pathogenesis and host adaptation mechanisms. This review focusing on bacterial transcriptomic provides new insight into gene-expression patterns in vitro, ex vivo and in vivo with an emphasis on metabolic shifts, virulence genes expression and transcriptional regulators role.
Collapse
Affiliation(s)
- Lionel Schiavolin
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Geoffrey Deneubourg
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Jenny Steinmetz
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Pierre R Smeesters
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium
| | - Anne Botteaux
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Hirose Y, Poudel S, Sastry AV, Rychel K, Lamoureux CR, Szubin R, Zielinski DC, Lim HG, Menon ND, Bergsten H, Uchiyama S, Hanada T, Kawabata S, Palsson BO, Nizet V. Elucidation of independently modulated genes in Streptococcus pyogenes reveals carbon sources that control its expression of hemolytic toxins. mSystems 2023; 8:e0024723. [PMID: 37278526 PMCID: PMC10308926 DOI: 10.1128/msystems.00247-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/02/2023] [Indexed: 06/07/2023] Open
Abstract
Streptococcus pyogenes can cause a wide variety of acute infections throughout the body of its human host. An underlying transcriptional regulatory network (TRN) is responsible for altering the physiological state of the bacterium to adapt to each unique host environment. Consequently, an in-depth understanding of the comprehensive dynamics of the S. pyogenes TRN could inform new therapeutic strategies. Here, we compiled 116 existing high-quality RNA sequencing data sets of invasive S. pyogenes serotype M1 and estimated the TRN structure in a top-down fashion by performing independent component analysis (ICA). The algorithm computed 42 independently modulated sets of genes (iModulons). Four iModulons contained the nga-ifs-slo virulence-related operon, which allowed us to identify carbon sources that control its expression. In particular, dextrin utilization upregulated the nga-ifs-slo operon by activation of two-component regulatory system CovRS-related iModulons, altering bacterial hemolytic activity compared to glucose or maltose utilization. Finally, we show that the iModulon-based TRN structure can be used to simplify the interpretation of noisy bacterial transcriptome data at the infection site. IMPORTANCE S. pyogenes is a pre-eminent human bacterial pathogen that causes a wide variety of acute infections throughout the body of its host. Understanding the comprehensive dynamics of its TRN could inform new therapeutic strategies. Since at least 43 S. pyogenes transcriptional regulators are known, it is often difficult to interpret transcriptomic data from regulon annotations. This study shows the novel ICA-based framework to elucidate the underlying regulatory structure of S. pyogenes allows us to interpret the transcriptome profile using data-driven regulons (iModulons). Additionally, the observations of the iModulon architecture lead us to identify the multiple regulatory inputs governing the expression of a virulence-related operon. The iModulons identified in this study serve as a powerful guidepost to further our understanding of S. pyogenes TRN structure and dynamics.
Collapse
Affiliation(s)
- Yujiro Hirose
- Department of Microbiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
| | - Saugat Poudel
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Anand V. Sastry
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Cameron R. Lamoureux
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Hyun Gyu Lim
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Biological Engineering, Inha University, Michuhol-gu, Incheon, South Korea
| | - Nitasha D. Menon
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Helena Bergsten
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
| | - Satoshi Uchiyama
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
| | - Tomoki Hanada
- Department of Microbiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Shigetada Kawabata
- Department of Microbiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Suita, Osaka, Japan
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Victor Nizet
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Identification of a Putative CodY Regulon in the Gram-Negative Phylum Synergistetes. Int J Mol Sci 2022; 23:ijms23147911. [PMID: 35887256 PMCID: PMC9318921 DOI: 10.3390/ijms23147911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
CodY is a dominant regulator in low G + C, Gram-positive Firmicutes that governs the regulation of various metabolic pathways and cellular processes. By using various bioinformatics analyses and DNA affinity precipitation assay (DAPA), this study confirmed the presence of CodY orthologues and corresponding regulons in Gram-negative Synergistetes. A novel palindromic sequence consisting of AT-rich arms separated by a spacer region of variable length and sequence was identified in the promoters of the putative codY-containing operons in Synergistetes. The consensus sequence from genera Synergistes and Cloacibacillus (5′-AATTTTCTTAAAATTTCSCTTGATATTTACAATTTT) contained three AT-rich regions, resulting in two palindromic sequences; one of which is identical to Firmicutes CodY box (5′-AATTTTCWGAAAATT). The function of the consensus sequence was tested by using a recombinant CodY protein (His-CodYDSM) of Cloacibacillus evryensis DSM19522 in DAPA. Mutations in the central AT-rich sequence reduced significantly the binding of His-CodYDSM, whereas mutations in the 5′ or 3′ end AT-rich sequence slightly reduced the binding, indicating that CodYDSM could recognize both palindromic sequences. The proposed binding sequences were found in the promoters of multiple genes involved in amino acids biosynthesis, metabolism, regulation, and stress responses in Synergistetes. Thus, a CodY-like protein from Synergistetes may function similarly to Firmicutes CodY.
Collapse
|
4
|
Pellegrini A, Lentini G, Famà A, Bonacorsi A, Scoffone VC, Buroni S, Trespidi G, Postiglione U, Sassera D, Manai F, Pietrocola G, Firon A, Biondo C, Teti G, Beninati C, Barbieri G. CodY Is a Global Transcriptional Regulator Required for Virulence in Group B Streptococcus. Front Microbiol 2022; 13:881549. [PMID: 35572655 PMCID: PMC9096947 DOI: 10.3389/fmicb.2022.881549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Group B Streptococcus (GBS) is a Gram-positive bacterium able to switch from a harmless commensal of healthy adults to a pathogen responsible for invasive infections in neonates. The signals and regulatory mechanisms governing this transition are still largely unknown. CodY is a highly conserved global transcriptional regulator that links nutrient availability to the regulation of major metabolic and virulence pathways in low-G+C Gram-positive bacteria. In this work, we investigated the role of CodY in BM110, a GBS strain representative of a hypervirulent lineage associated with the majority of neonatal meningitis. Deletion of codY resulted in a reduced ability of the mutant strain to cause infections in neonatal and adult animal models. The observed decreased in vivo lethality was associated with an impaired ability of the mutant to persist in the blood, spread to distant organs, and cross the blood-brain barrier. Notably, the codY null mutant showed reduced adhesion to monolayers of human epithelial cells in vitro and an increased ability to form biofilms, a phenotype associated with strains able to asymptomatically colonize the host. RNA-seq analysis showed that CodY controls about 13% of the genome of GBS, acting mainly as a repressor of genes involved in amino acid transport and metabolism and encoding surface anchored proteins, including the virulence factor Srr2. CodY activity was shown to be dependent on the availability of branched-chain amino acids, which are the universal cofactors of this regulator. These results highlight a key role for CodY in the control of GBS virulence.
Collapse
Affiliation(s)
- Angelica Pellegrini
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Germana Lentini
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Andrea Bonacorsi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Gabriele Trespidi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Umberto Postiglione
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | | | - Arnaud Firon
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Pathogènes à Gram-positif, Paris, France
| | - Carmelo Biondo
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | | | - Concetta Beninati
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Horstmann N, Myers KS, Tran CN, Flores AR, Shelburne III SA. CovS inactivation reduces CovR promoter binding at diverse virulence factor encoding genes in group A Streptococcus. PLoS Pathog 2022; 18:e1010341. [PMID: 35180278 PMCID: PMC8893699 DOI: 10.1371/journal.ppat.1010341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/03/2022] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
The control of virulence gene regulator (CovR), also called caspsule synthesis regulator (CsrR), is critical to how the major human pathogen group A Streptococcus fine-tunes virulence factor production. CovR phosphorylation (CovR~P) levels are determined by its cognate sensor kinase CovS, and functional abrogating mutations in CovS can occur in invasive GAS isolates leading to hypervirulence. Presently, the mechanism of CovR-DNA binding specificity is unclear, and the impact of CovS inactivation on global CovR binding has not been assessed. Thus, we performed CovR chromatin immunoprecipitation sequencing (ChIP-seq) analysis in the emm1 strain MGAS2221 and its CovS kinase deficient derivative strain 2221-CovS-E281A. We identified that CovR bound in the promoter regions of nearly all virulence factor encoding genes in the CovR regulon. Additionally, direct CovR binding was observed for numerous genes encoding proteins involved in amino acid metabolism, but we found limited direct CovR binding to genes encoding other transcriptional regulators. The consensus sequence AATRANAAAARVABTAAA was present in the promoters of genes directly regulated by CovR, and mutations of highly conserved positions within this motif relieved CovR repression of the hasA and MGAS2221_0187 promoters. Analysis of strain 2221-CovS-E281A revealed that binding of CovR at repressed, but not activated, promoters is highly dependent on CovR~P state. CovR repressed virulence factor encoding genes could be grouped dependent on how CovR~P dependent variation in DNA binding correlated with gene transcript levels. Taken together, the data show that CovR repression of virulence factor encoding genes is primarily direct in nature, involves binding to a newly-identified DNA binding motif, and is relieved by CovS inactivation. These data provide new mechanistic insights into one of the most important bacterial virulence regulators and allow for subsequent focused investigations into how CovR-DNA interaction at directly controlled promoters impacts GAS pathogenesis. Tight regulation of virulence factor production is a critical, but poorly understood aspect of bacterial pathogenesis. The OmpR/PhoB family member control of virulence regulator (CovR) is the master virulence factor controller in group A Streptococcus (GAS), a bacterium which commonly causes a diverse array of human infections. Mutations in the cognate kinase of CovR, CovS, are commonly observed among invasive GAS isolates, but the functional impact of CovS on global CovR function is unknown. Herein, we defined CovR global DNA binding locations, identified a consensus CovR binding motif, and determined how inactivation of the CovR cognate sensor kinase, CovS, impacts CovR-DNA interaction. Our findings show that CovR-repressed virulence factor encoding genes are directly regulated by CovR and that CovS inactivation markedly reduces CovR binding at CovR-repressed promoters. Given the widespread nature of CovR homologues in streptococci and other Gram-positive pathogens, these findings extend understanding of mechanisms by which OmpR/PhoB family members impact the ability of bacteria to cause serious infections.
Collapse
Affiliation(s)
- Nicola Horstmann
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chau Nguyen Tran
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Anthony R. Flores
- Center for Antimicrobial Resistance and Microbial Genomics McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Samuel A. Shelburne III
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Nakata M, Kreikemeyer B. Genetics, Structure, and Function of Group A Streptococcal Pili. Front Microbiol 2021; 12:616508. [PMID: 33633705 PMCID: PMC7900414 DOI: 10.3389/fmicb.2021.616508] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is an exclusively human pathogen. This bacterial species is responsible for a large variety of infections, ranging from purulent but mostly self-limiting oropharynx/skin diseases to streptococcal sequelae, including glomerulonephritis and rheumatic fever, as well as life-threatening streptococcal toxic-shock syndrome. GAS displays a wide array of surface proteins, with antigenicity of the M protein and pili utilized for M- and T-serotyping, respectively. Since the discovery of GAS pili in 2005, their genetic features, including regulation of expression, and structural features, including assembly mechanisms and protein conformation, as well as their functional role in GAS pathogenesis have been intensively examined. Moreover, their potential as vaccine antigens has been studied in detail. Pilus biogenesis-related genes are located in a discrete section of the GAS genome encoding fibronectin and collagen binding proteins and trypsin-resistant antigens (FCT region). Based on the heterogeneity of genetic composition and DNA sequences, this region is currently classified into nine distinguishable forms. Pili and fibronectin-binding proteins encoded in the FCT region are known to be correlated with infection sites, such as the skin and throat, possibly contributing to tissue tropism. As also found for pili of other Gram-positive bacterial pathogens, GAS pilin proteins polymerize via isopeptide bonds, while intramolecular isopeptide bonds present in the pilin provide increased resistance to degradation by proteases. As supported by findings showing that the main subunit is primarily responsible for T-serotyping antigenicity, pilus functions and gene expression modes are divergent. GAS pili serve as adhesins for tonsillar tissues and keratinocyte cell lines. Of note, a minor subunit is considered to have a harpoon function by which covalent thioester bonds with host ligands are formed. Additionally, GAS pili participate in biofilm formation and evasion of the immune system in a serotype/strain-specific manner. These multiple functions highlight crucial roles of pili during the onset of GAS infection. This review summarizes the current state of the art regarding GAS pili, including a new mode of host-GAS interaction mediated by pili, along with insights into pilus expression in terms of tissue tropism.
Collapse
Affiliation(s)
- Masanobu Nakata
- Department of Oral Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
7
|
Chen Z, Raghavan R, Qi F, Merritt J, Kreth J. Genome-wide screening of potential RNase Y-processed mRNAs in the M49 serotype Streptococcus pyogenes NZ131. Microbiologyopen 2019; 8:e00671. [PMID: 29900693 PMCID: PMC6460267 DOI: 10.1002/mbo3.671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 01/28/2023] Open
Abstract
RNase Y is a major endoribonuclease in Group A streptococcus (GAS) and other Gram-positive bacteria. Our previous study showed that RNase Y was involved in mRNA degradation and processing in GAS. We hypothesized that mRNA processing regulated the expression of important GAS virulence factors via altering their mRNA stabilities and that RNase Y mediated at least some of the mRNA-processing events. The aims of this study were to (1) identify mRNAs that were processed by RNase Y and (2) confirm the mRNA-processing events. The transcriptomes of Streptococcus pyogenes NZ131 wild type and its RNase Y mutant (Δrny) were examined with RNA-seq. The data were further analyzed to define GAS operons. The mRNA stabilities of the wild type and Δrny at subgene level were determined with tiling array analysis. Operons displaying segmental stability in the wild type but not in the Δrny were predicted to be RNase Y processed. Overall 865 operons were defined and their boundaries predicted. Further analysis narrowed down 15 mRNAs potentially processed by RNase Y. A selection of four candidates including folC1 (folylpolyglutamate synthetase), prtF (fibronectin-binding protein), speG (streptococcal exotoxin G), ropB (transcriptional regulator of speB), and ypaA (riboflavin transporter) mRNAs was examined with Northern blot analysis. However, only folC1 was confirmed to be processed, but it is unlikely that RNase Y is responsible. We conclude that GAS use RNase Y to selectively process mRNA, but the overall impact is confined to selected virulence factors.
Collapse
Affiliation(s)
- Zhiyun Chen
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahoma
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme EnvironmentsPortland State UniversityPortlandOregon
| | - Fengxia Qi
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahoma
| | - Justin Merritt
- Department of Restorative DentistryOregon Health and Science UniversityPortlandOregon
- Department of Molecular Microbiology and ImmunologyOregon Health and Science UniversityPortlandOregon
| | - Jens Kreth
- Department of Restorative DentistryOregon Health and Science UniversityPortlandOregon
| |
Collapse
|
8
|
Daou N, Wang Y, Levdikov VM, Nandakumar M, Livny J, Bouillaut L, Blagova E, Zhang K, Belitsky BR, Rhee K, Wilkinson AJ, Sun X, Sonenshein AL. Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027. PLoS One 2019; 14:e0206896. [PMID: 30699117 PMCID: PMC6353076 DOI: 10.1371/journal.pone.0206896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/25/2018] [Indexed: 12/16/2022] Open
Abstract
Toxin synthesis and endospore formation are two of the most critical factors that determine the outcome of infection by Clostridioides difficile. The two major toxins, TcdA and TcdB, are the principal factors causing damage to the host. Spores are the infectious form of C. difficile, permit survival of the bacterium during antibiotic treatment and are the predominant cell form that leads to recurrent infection. Toxin production and sporulation have their own specific mechanisms of regulation, but they share negative regulation by the global regulatory protein CodY. Determining the extent of such regulation and its detailed mechanism is important for understanding the linkage between two apparently independent biological phenomena and raises the possibility of creating new ways of limiting infection. The work described here shows that a codY null mutant of a hypervirulent (ribotype 027) strain is even more virulent than its parent in a mouse model of infection and that the mutant expresses most sporulation genes prematurely during exponential growth phase. Moreover, examining the expression patterns of mutants producing CodY proteins with different levels of residual activity revealed that expression of the toxin genes is dependent on total CodY inactivation, whereas most sporulation genes are turned on when CodY activity is only partially diminished. These results suggest that, in wild-type cells undergoing nutrient limitation, sporulation genes can be turned on before the toxin genes.
Collapse
Affiliation(s)
- Nadine Daou
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Yuanguo Wang
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Vladimir M. Levdikov
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Madhumitha Nandakumar
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, United States of America
| | - Jonathan Livny
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Laurent Bouillaut
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Elena Blagova
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Keshan Zhang
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States of America
| | - Boris R. Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Kyu Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, United States of America
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Abraham L. Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Branching Out: Alterations in Bacterial Physiology and Virulence Due to Branched-Chain Amino Acid Deprivation. mBio 2018; 9:mBio.01188-18. [PMID: 30181248 PMCID: PMC6123439 DOI: 10.1128/mbio.01188-18] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The branched-chain amino acids (BCAAs [Ile, Leu, and Val]) represent important nutrients in bacterial physiology, with roles that range from supporting protein synthesis to signaling and fine-tuning the adaptation to amino acid starvation. In some pathogenic bacteria, the adaptation to amino acid starvation includes induction of virulence gene expression: thus, BCAAs support not only proliferation during infection, but also the evasion of host defenses. The branched-chain amino acids (BCAAs [Ile, Leu, and Val]) represent important nutrients in bacterial physiology, with roles that range from supporting protein synthesis to signaling and fine-tuning the adaptation to amino acid starvation. In some pathogenic bacteria, the adaptation to amino acid starvation includes induction of virulence gene expression: thus, BCAAs support not only proliferation during infection, but also the evasion of host defenses. A body of research has accumulated over the years to describe the multifaceted physiological roles of BCAAs and the mechanisms bacteria use to maintain their intracellular levels. More recent studies have focused on understanding how fluctuations in their intracellular levels impact global regulatory pathways that coordinate the adaptation to nutrient limitation, especially in pathogenic bacteria. In this minireview, we discuss how these studies have refined the individual roles of BCAAs, shed light on how BCAA auxotrophy might promote higher sensitivity to exogenous BCAA levels, and revealed pathogen-specific responses to BCAA deprivation. These advancements improve our understanding of how bacteria meet their nutritional requirements for growth while simultaneously remaining responsive to changes in environmental nutrient availability to promote their survival in a range of environments.
Collapse
|
10
|
Impact of growth pH and glucose concentrations on the CodY regulatory network in Streptococcus salivarius. BMC Genomics 2018; 19:386. [PMID: 29792173 PMCID: PMC5966866 DOI: 10.1186/s12864-018-4781-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus salivarius is an abundant isolate of the human oral microbiota. Since both pH and glucose availability fluctuate frequently in the oral cavity, the goal of this study was to investigate regulation by CodY, a conserved pleiotropic regulator of Gram positive bacteria, in response to these two signals. The chemostat culture system was employed to precisely control the growth parameters, and the transcriptomes of wild-type S. salivarius 57.I and its CodY-null derivative (ΔcodY) grown at pH 7 and 5.5, with limited and excessive glucose supply were determined. Results The transcriptomic analysis revealed that CodY was most active at pH 7 under conditions of glucose limitation. Based on whether a CodY binding consensus could be located in the 5′ flanking region of the identified target, the transcriptomic analysis also found that CodY shaped the transcriptome via both direct and indirect regulation. Inactivation of codY reduced the glycolytic capacity and the viability of S. salivarius at pH 5.5 or in the presence of H2O2. Studies using the Galleria mellonella larva model showed that CodY was essential for the toxicity generated from S. salivarius infection, suggesting that CodY regulation was critical for immune evasion and systemic infections. Furthermore, the CodY-null mutant strain exhibited a clumping phenotype and reduced attachment in biofilm assays, suggesting that CodY also modulates cell wall metabolism. Finally, the expression of genes belonging to the CovR regulon was affected by codY inactivation, but CodY and CovR regulated these genes in opposite directions. Conclusions Metabolic adaptation in response to nutrient availability and growth pH is tightly linked to stress responses and virulence expression in S. salivarius. The regulation of metabolism by CodY allows for the maximal utilization of available nutrients and ATP production. The counteractive regulation of the CovR regulon could fine tune the transcriptomes in response to environmental changes. Electronic supplementary material The online version of this article (10.1186/s12864-018-4781-z) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Identification and Characterization of Serotype-Specific Variation in Group A Streptococcus Pilus Expression. Infect Immun 2018; 86:IAI.00792-17. [PMID: 29158432 DOI: 10.1128/iai.00792-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022] Open
Abstract
Isolates of a given bacterial pathogen often display phenotypic variation, and this can negatively impact public health, for example, by reducing the efficacy of preventative measures. Here, we identify that the human pathogen group A Streptococcus (GAS; Streptococcus pyogenes) expresses pili on its cell surface in a serotype-specific manner. Specifically, we show that serotype M3 GAS isolates, which are nonrandomly associated with causing particularly severe and lethal invasive infections, produce negligible amounts of pili relative to serotype M1 and M49 isolates. Performance of an interserotype transcriptome comparison (serotype M1 versus serotype M3) was instrumental in this discovery. We also identified that the transcriptional regulator Nra positively regulates pilus expression in M3 GAS isolates and that the low level of pilus expression of these isolates correlates with a low level of nra transcription. Finally, we discovered that the phenotypic consequences of low levels of pilus expression by M3 GAS isolates are a reduced ability to adhere to host cells and an increased ability to survive and proliferate in human blood. We propose that an enhanced ability to survive in human blood, in part due to reduced pilus expression, is a contributing factor in the association of serotype M3 isolates with highly invasive infections. In conclusion, our data show that GAS isolates express pili in a serotype-dependent manner and may inform vaccine development, given that pilus proteins are being discussed as possible GAS vaccine antigens.
Collapse
|
12
|
Chen Z, Mashburn-Warren L, Merritt J, Federle MJ, Kreth J. Interference of a speB 5' untranslated region partial deletion with mRNA degradation in Streptococcus pyogenes. Mol Oral Microbiol 2017; 32:390-403. [PMID: 28371435 PMCID: PMC10030001 DOI: 10.1111/omi.12181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2017] [Indexed: 01/28/2023]
Abstract
The 5' untranslated region (5' UTR) of an mRNA molecule embeds important determinants that modify its stability and translation efficiency. In Streptococcus pyogenes, a strict human pathogen, a gene encoding a secreted protease (speB) has a large 5' UTR with unknown functions. Here we describe that a partial deletion of the speB 5' UTR caused a general accumulation of mRNA in the stationary phase, and that the mRNA accumulation was due to retarded mRNA degradation. The phenotype was observed in several M serotypes harboring the partial deletion of the speB 5' UTR. The phenotype was triggered by the production of the truncated speB 5' UTR, but not by the disruption of the intact speB 5' UTR. RNase Y, a major endoribonuclease, was previously shown to play a central role in bulk mRNA turnover in stationary phase. However, in contrast to our expectations, we observed a weaker interaction between the truncated speB 5' UTR and RNase Y compared with the wild-type, which suggests that other unidentified RNA degrading components are required for the pleiotropic effects observed from the speB UTR truncation. Our study demonstrates how S. pyogenes uses distinct mRNA degradation schemes in exponential and stationary growth phases.
Collapse
Affiliation(s)
- Z Chen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - L Mashburn-Warren
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - J Merritt
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - M J Federle
- Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - J Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
13
|
Sitkiewicz I. How to become a killer, or is it all accidental? Virulence strategies in oral streptococci. Mol Oral Microbiol 2017; 33:1-12. [PMID: 28727895 DOI: 10.1111/omi.12192] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2017] [Indexed: 01/03/2023]
Abstract
Streptococci are a diverse group of Gram-positive microorganisms sharing common virulence traits and similar strategies to escape the oral niche and establish an infection in other parts of the host organism. Invasive infection with oral streptococci is "a perfect storm" that requires the concerted action of multiple biotic and abiotic factors. Our understanding of streptococcal pathogenicity and infectivity should probably be less mechanistic and driven not only by the identification of novel virulence factors. The observed diversity of the genus, including the range of virulence and pathogenicity mechanisms, is most likely the result of interspecies interactions, a massive horizontal gene transfer between streptococci within a shared oral niche, recombination events, selection of specialized clones, and modification of regulatory circuits. Selective pressure by the host and bacterial communities is a driving force for the selection of virulence traits and shaping the streptococcal genome. Global regulatory events driving niche adaptation and interactions with bacterial communities and the host steer research interests towards attempts to define the oral interactome on the transcriptional level and define signal cross-feeding and co-expression and co-regulation of virulence genes.
Collapse
Affiliation(s)
- I Sitkiewicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
14
|
A Nutrient-Regulated Cyclic Diguanylate Phosphodiesterase Controls Clostridium difficile Biofilm and Toxin Production during Stationary Phase. Infect Immun 2017; 85:IAI.00347-17. [PMID: 28652311 DOI: 10.1128/iai.00347-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
The signaling molecule cyclic diguanylate (c-di-GMP) mediates physiological adaptation to extracellular stimuli in a wide range of bacteria. The complex metabolic pathways governing c-di-GMP synthesis and degradation are highly regulated, but the specific cues that impact c-di-GMP signaling are largely unknown. In the intestinal pathogen Clostridium difficile, c-di-GMP inhibits flagellar motility and toxin production and promotes pilus-dependent biofilm formation, but no specific biological functions have been ascribed to any of the individual c-di-GMP synthases or phosphodiesterases (PDEs). Here, we report the functional and biochemical characterization of a c-di-GMP PDE, PdcA, 1 of 37 confirmed or putative c-di-GMP metabolism proteins in C. difficile 630. Our studies reveal that pdcA transcription is controlled by the nutrient-regulated transcriptional regulator CodY and accordingly increases during stationary phase. In addition, PdcA PDE activity is allosterically regulated by GTP, further linking c-di-GMP levels to nutrient availability. Mutation of pdcA increased biofilm formation and reduced toxin biosynthesis without affecting swimming motility or global intracellular c-di-GMP. Analysis of the transcriptional response to pdcA mutation indicates that PdcA-dependent phenotypes manifest during stationary phase, consistent with regulation by CodY. These results demonstrate that inactivation of this single PDE gene is sufficient to impact multiple c-di-GMP-dependent phenotypes, including the production of major virulence factors, and suggest a link between c-di-GMP signaling and nutrient availability.
Collapse
|
15
|
Lu SL, Kawabata T, Cheng YL, Omori H, Hamasaki M, Kusaba T, Iwamoto R, Arimoto H, Noda T, Lin YS, Yoshimori T. Endothelial cells are intrinsically defective in xenophagy of Streptococcus pyogenes. PLoS Pathog 2017; 13:e1006444. [PMID: 28683091 PMCID: PMC5500369 DOI: 10.1371/journal.ppat.1006444] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/04/2017] [Indexed: 11/18/2022] Open
Abstract
Group A Streptococcus (GAS) is deleterious pathogenic bacteria whose interaction with blood vessels leads to life-threatening bacteremia. Although xenophagy, a special form of autophagy, eliminates invading GAS in epithelial cells, we found that GAS could survive and multiply in endothelial cells. Endothelial cells were competent in starvation-induced autophagy, but failed to form double-membrane structures surrounding GAS, an essential step in xenophagy. This deficiency stemmed from reduced recruitment of ubiquitin and several core autophagy proteins in endothelial cells, as demonstrated by the fact that it could be rescued by exogenous coating of GAS with ubiquitin. The defect was associated with reduced NO-mediated ubiquitin signaling. Therefore, we propose that the lack of efficient clearance of GAS in endothelial cells is caused by their intrinsic inability to target GAS with ubiquitin to promote autophagosome biogenesis for xenophagy.
Collapse
Affiliation(s)
- Shiou-Ling Lu
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tsuyoshi Kawabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yi-Lin Cheng
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National-Yang Ming University, Taipei, Taiwan
| | - Hiroko Omori
- Research Institute for Microbial Disease, Osaka University, Osaka, Japan
| | - Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tatsuya Kusaba
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Ryo Iwamoto
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hirokazu Arimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takeshi Noda
- Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Tamotsu Yoshimori
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|
16
|
Willenborg J, Goethe R. Metabolic traits of pathogenic streptococci. FEBS Lett 2016; 590:3905-3919. [PMID: 27442496 DOI: 10.1002/1873-3468.12317] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
Invasive and noninvasive diseases caused by facultative pathogenic streptococci depend on their equipment with virulence factors and on their ability to sense and adapt to changing nutrients in different host environments. The knowledge of the principal metabolic mechanisms which allow these bacteria to recognize and utilize nutrients in host habitats is a prerequisite for our understanding of streptococcal pathogenicity and the development of novel control strategies. This review aims to summarize and compare the central carbohydrate metabolic and amino acid biosynthetic pathways of a selected group of streptococcal species, all belonging to the naso-oropharyngeal microbiome in humans and/or animals. We also discuss the urgent need of comprehensive metabolomics approaches for a better understanding of the streptococcal metabolism during host-pathogen interaction.
Collapse
Affiliation(s)
- Jörg Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Germany
| |
Collapse
|
17
|
Abstract
Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction.
Collapse
|
18
|
Lobel L, Herskovits AA. Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes. PLoS Genet 2016; 12:e1005870. [PMID: 26895237 PMCID: PMC4760761 DOI: 10.1371/journal.pgen.1005870] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/22/2016] [Indexed: 02/05/2023] Open
Abstract
Bacteria sense and respond to many environmental cues, rewiring their regulatory network to facilitate adaptation to new conditions/niches. Global transcription factors that co-regulate multiple pathways simultaneously are essential to this regulatory rewiring. CodY is one such global regulator, controlling expression of both metabolic and virulence genes in Gram-positive bacteria. Branch chained amino acids (BCAAs) serve as a ligand for CodY and modulate its activity. Classically, CodY was considered to function primarily as a repressor under rich growth conditions. However, our previous studies of the bacterial pathogen Listeria monocytogenes revealed that CodY is active also when the bacteria are starved for BCAAs. Under these conditions, CodY loses the ability to repress genes (e.g., metabolic genes) and functions as a direct activator of the master virulence regulator gene, prfA. This observation raised the possibility that CodY possesses multiple functions that allow it to coordinate gene expression across a wide spectrum of metabolic growth conditions, and thus better adapt bacteria to the mammalian niche. To gain a deeper understanding of CodY's regulatory repertoire and identify direct target genes, we performed a genome wide analysis of the CodY regulon and DNA binding under both rich and minimal growth conditions, using RNA-Seq and ChIP-Seq techniques. We demonstrate here that CodY is indeed active (i.e., binds DNA) under both conditions, serving as a repressor and activator of different genes. Further, we identified new genes and pathways that are directly regulated by CodY (e.g., sigB, arg, his, actA, glpF, gadG, gdhA, poxB, glnR and fla genes), integrating metabolism, stress responses, motility and virulence in L. monocytogenes. This study establishes CodY as a multifaceted factor regulating L. monocytogenes physiology in a highly versatile manner.
Collapse
Affiliation(s)
- Lior Lobel
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anat A. Herskovits
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
19
|
Feng L, Zhu J, Chang H, Gao X, Gao C, Wei X, Yuan F, Bei W. The CodY regulator is essential for virulence in Streptococcus suis serotype 2. Sci Rep 2016; 6:21241. [PMID: 26883762 PMCID: PMC4756307 DOI: 10.1038/srep21241] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/20/2016] [Indexed: 01/10/2023] Open
Abstract
The main role of CodY, a global regulatory protein in most low G + C gram-positive bacteria, is in transcriptional repression. To study the functions of CodY in Streptococcus suis serotype 2 (S. suis 2), a mutant codY clone named ∆codY was constructed to explore the phenotypic variation between ∆codY and the wild-type strain. The result showed that the codY mutation significantly inhibited cell growth, adherence and invasion ability of S. suis 2 to HEp-2 cells. The codY mutation led to decreased binding of the pathogen to the host cells, easier clearance by RAW264.7 macrophages and decreased growth ability in fresh blood of Cavia porcellus. The codY mutation also attenuated the virulence of S. suis 2 in BALB/c mice. Morphological analysis revealed that the codY mutation decreased the thickness of the capsule of S. suis 2 and changed the surface structures analylized by SDS-PAGE. Finally, the codY mutation altered the expressions of many virulence related genes, including sialic acid synthesis genes, leading to a decreased sialic acid content in capsule. Overall, mutation of codY modulated bacterial virulence by affecting the growth and colonization of S. suis 2, and at least via regulating sialic acid synthesis and capsule thickness.
Collapse
Affiliation(s)
- Liping Feng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Jiawen Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Chang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoping Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Gao
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Xiaofeng Wei
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Fangyan Yuan
- Hubei key laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
20
|
Ashwinkumar Subramenium G, Viszwapriya D, Iyer PM, Balamurugan K, Karutha Pandian S. covR Mediated Antibiofilm Activity of 3-Furancarboxaldehyde Increases the Virulence of Group A Streptococcus. PLoS One 2015; 10:e0127210. [PMID: 25978065 PMCID: PMC4433207 DOI: 10.1371/journal.pone.0127210] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/13/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Group A streptococcus (GAS, Streptococcus pyogenes), a multi-virulent, exclusive human pathogen responsible for various invasive and non-invasive diseases possesses biofilm forming phenomenon as one of its pathogenic armaments. Recently, antibiofilm agents have gained prime importance, since inhibiting the biofilm formation is expected to reduce development of antibiotic resistance and increase their susceptibility to the host immune cells. PRINCIPAL FINDINGS The current study demonstrates the antibiofilm activity of 3Furancarboxaldehyde (3FCA), a floral honey derived compound, against GAS biofilm, which was divulged using crystal violet assay, light microscopy, and confocal laser scanning microscopy. The report is extended to study its effect on various aspects of GAS (morphology, virulence, aggregation) at its minimal biofilm inhibitory concentration (132μg/ml). 3FCA was found to alter the growth pattern of GAS in solid and liquid medium and increased the rate of auto-aggregation. Electron microscopy unveiled the increase in extra polymeric substances around cell. Gene expression studies showed down-regulation of covR gene, which is speculated to be the prime target for the antibiofilm activity. Increased hyaluronic acid production and down regulation of srtB gene is attributed to the enhanced rate of auto-aggregation. The virulence genes (srv, mga, luxS and hasA) were also found to be over expressed, which was manifested with the increased susceptibility of the model organism Caenorhabditis elegans to 3FCA treated GAS. The toxicity of 3FCA was ruled out with no adverse effect on C. elegans. SIGNIFICANCE Though 3FCA possess antibiofilm activity against GAS, it was also found to increase the virulence of GAS. This study demonstrates that, covR mediated antibiofilm activity may increase the virulence of GAS. This also emphasizes the importance to analyse the acclimatization response and virulence of the pathogen in the presence of antibiofilm compounds prior to their clinical trials.
Collapse
Affiliation(s)
| | | | - Prasanth Mani Iyer
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | | | | |
Collapse
|
21
|
CodY regulates expression of the Bacillus subtilis extracellular proteases Vpr and Mpr. J Bacteriol 2015; 197:1423-32. [PMID: 25666135 DOI: 10.1128/jb.02588-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED CodY is a global transcriptional regulator in low-G+C Gram-positive bacteria that is responsive to GTP and branched-chain amino acids. By interacting with its two cofactors, it is able to sense the nutritional and energetic status of the cell and respond by regulating expression of adaptive genetic programs. In Bacillus subtilis, more than 200 genes, including those for peptide transporters, intracellular proteolytic enzymes, and amino acid degradative pathways, are controlled by CodY. In this study, we demonstrated that expression of two extracellular proteases, Vpr and Mpr, is negatively controlled by CodY. By gel mobility shift and DNase I footprinting assays, we showed that CodY binds to the regulatory regions of both genes, in the vicinity of their transcription start points. The mpr gene is also characterized by the presence of a second, higher-affinity CodY-binding site located at the beginning of its coding sequence. Using strains carrying vpr- or mpr-lacZ transcriptional fusions in which CodY-binding sites were mutated, we demonstrated that repression of both protease genes is due to the direct effect by CodY and that the mpr internal site is required for regulation. The vpr promoter is a rare example of a sigma H-dependent promoter that is regulated by CodY. In a codY null mutant, Vpr became one of the more abundant proteins of the B. subtilis exoproteome. IMPORTANCE CodY is a global transcriptional regulator of metabolism and virulence in low-G+C Gram-positive bacteria. In B. subtilis, more than 200 genes, including those for peptide transporters, intracellular proteolytic enzymes, and amino acid degradative pathways, are controlled by CodY. However, no role for B. subtilis CodY in regulating expression of extracellular proteases has been established to date. In this work, we demonstrate that by binding to the regulatory regions of the corresponding genes, B. subtilis CodY negatively controls expression of Vpr and Mpr, two extracellular proteases. Thus, in B. subtilis, CodY can now be seen to regulate the entire protein utilization pathway.
Collapse
|
22
|
Lobel L, Sigal N, Borovok I, Belitsky BR, Sonenshein AL, Herskovits AA. The metabolic regulator CodY links Listeria monocytogenes metabolism to virulence by directly activating the virulence regulatory gene prfA. Mol Microbiol 2014; 95:624-44. [PMID: 25430920 DOI: 10.1111/mmi.12890] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2014] [Indexed: 11/30/2022]
Abstract
Metabolic adaptations are critical to the ability of bacterial pathogens to grow within host cells and are normally preceded by sensing of host-specific metabolic signals, which in turn can influence the pathogen's virulence state. Previously, we reported that the intracellular bacterial pathogen Listeria monocytogenes responds to low availability of branched-chain amino acids (BCAAs) within mammalian cells by up-regulating both BCAA biosynthesis and virulence genes. The induction of virulence genes required the BCAA-responsive transcription regulator, CodY, but the molecular mechanism governing this mode of regulation was unclear. In this report, we demonstrate that CodY directly binds the coding sequence of the L. monocytogenes master virulence activator gene, prfA, 15 nt downstream of its start codon, and that this binding results in up-regulation of prfA transcription specifically under low concentrations of BCAA. Mutating this site abolished CodY binding and reduced prfA transcription in macrophages, and attenuated bacterial virulence in mice. Notably, the mutated binding site did not alter prfA transcription or PrfA activity under other conditions that are known to activate PrfA, such as during growth in the presence of glucose-1-phosphate. This study highlights the tight crosstalk between L. monocytogenes metabolism and virulence, while revealing novel features of CodY-mediated regulation.
Collapse
Affiliation(s)
- Lior Lobel
- The Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | | | | | | | |
Collapse
|
23
|
Intersection of the stringent response and the CodY regulon in low GC Gram-positive bacteria. Int J Med Microbiol 2013; 304:150-5. [PMID: 24462007 DOI: 10.1016/j.ijmm.2013.11.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacteria adapt efficiently to a wide range of nutritional environments. Therefore, they possess overlapping regulatory systems that detect intracellular pools of key metabolites. In low GC Gram-positive bacteria, two global regulators, the stringent response and the CodY repressor, respond to an intracellular decrease in amino acid content. Amino acid limitation leads to rapid synthesis of the alarmones pppGpp and ppGpp through the stringent response and inactivates the CodY repressor. Two cofactors, branched chain amino acids (BCAA) and GTP, are ligands for CodY and facilitate binding to the target DNA. Because (p)ppGpp synthesis and accumulation evidentially reduce the intracellular GTP pool, CodY is released from the DNA, and transcription of target genes is altered. Here, we focus on this intimate link between the stringent response and CodY regulation in different Gram-positive species.
Collapse
|
24
|
Natural variation in the promoter of the gene encoding the Mga regulator alters host-pathogen interactions in group a Streptococcus carrier strains. Infect Immun 2013; 81:4128-38. [PMID: 23980109 DOI: 10.1128/iai.00405-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Humans commonly carry pathogenic bacteria asymptomatically, but the molecular factors underlying microbial asymptomatic carriage are poorly understood. We previously reported that two epidemiologically unassociated serotype M3 group A Streptococcus (GAS) carrier strains had an identical 12-bp deletion in the promoter of the gene encoding Mga, a global positive gene regulator. Herein, we report on studies designed to test the hypothesis that the identified 12-bp deletion in the mga promoter alters GAS virulence, thereby potentially contributing to the asymptomatic carrier phenotype. Using allelic exchange, we introduced the variant promoter into a serotype M3 invasive strain and the wild-type promoter into an asymptomatic carrier strain. Compared to strains with the wild-type mga promoter, we discovered that strains containing the promoter with the 12-bp deletion produced significantly fewer mga and Mga-regulated gene transcripts. Consistent with decreased mga transcripts, strains containing the variant mga promoter were also significantly less virulent in in vivo and ex vivo models of GAS disease. Further, we provide evidence that the pleiotropic regulator protein CodY binds to the mga promoter and that the 12-bp deletion in the mga promoter reduces CodY-mediated mga transcription. We conclude that the naturally occurring 12-bp deletion in the mga promoter significantly alters the pathogen-host interaction of these asymptomatic carrier strains. Our findings provide new insight into the molecular basis of the carrier state of an important human pathogen.
Collapse
|
25
|
Multiple roles of RNase Y in Streptococcus pyogenes mRNA processing and degradation. J Bacteriol 2013; 195:2585-94. [PMID: 23543715 DOI: 10.1128/jb.00097-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Control over mRNA stability is an essential part of gene regulation that involves both endo- and exoribonucleases. RNase Y is a recently identified endoribonuclease in Gram-positive bacteria, and an RNase Y ortholog has been identified in Streptococcus pyogenes (group A streptococcus [GAS]). In this study, we used microarray and Northern blot analyses to determine the S. pyogenes mRNA half-life of the transcriptome and to understand the role of RNase Y in global mRNA degradation and processing. We demonstrated that S. pyogenes has an unusually high mRNA turnover rate, with median and mean half-lives of 0.88 min and 1.26 min, respectively. A mutation of the RNase Y-encoding gene (rny) led to a 2-fold increase in overall mRNA stability. RNase Y was also found to play a significant role in the mRNA processing of virulence-associated genes as well as in the rapid degradation of rnpB read-through transcripts. From these results, we conclude that RNase Y is a pleiotropic regulator required for mRNA stability, mRNA processing, and removal of read-through transcripts in S. pyogenes.
Collapse
|
26
|
Integrative genomic analysis identifies isoleucine and CodY as regulators of Listeria monocytogenes virulence. PLoS Genet 2012; 8:e1002887. [PMID: 22969433 PMCID: PMC3435247 DOI: 10.1371/journal.pgen.1002887] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 06/24/2012] [Indexed: 12/12/2022] Open
Abstract
Intracellular bacterial pathogens are metabolically adapted to grow within mammalian cells. While these adaptations are fundamental to the ability to cause disease, we know little about the relationship between the pathogen's metabolism and virulence. Here we used an integrative Metabolic Analysis Tool that combines transcriptome data with genome-scale metabolic models to define the metabolic requirements of Listeria monocytogenes during infection. Twelve metabolic pathways were identified as differentially active during L. monocytogenes growth in macrophage cells. Intracellular replication requires de novo synthesis of histidine, arginine, purine, and branch chain amino acids (BCAAs), as well as catabolism of L-rhamnose and glycerol. The importance of each metabolic pathway during infection was confirmed by generation of gene knockout mutants in the respective pathways. Next, we investigated the association of these metabolic requirements in the regulation of L. monocytogenes virulence. Here we show that limiting BCAA concentrations, primarily isoleucine, results in robust induction of the master virulence activator gene, prfA, and the PrfA-regulated genes. This response was specific and required the nutrient responsive regulator CodY, which is known to bind isoleucine. Further analysis demonstrated that CodY is involved in prfA regulation, playing a role in prfA activation under limiting conditions of BCAAs. This study evidences an additional regulatory mechanism underlying L. monocytogenes virulence, placing CodY at the crossroads of metabolism and virulence. Intracellular bacterial pathogens have developed sophisticated mechanisms to invade and replicate within eukaryotic cells. For successful replication, pathogens have adapted metabolically to the intracellular niche. While this adaptation is fundamental to the ability to cause disease, we know little about pathogen's intracellular metabolism and its association with virulence. In this study we took a global approach that combines computational and experimental methods to decipher the intracellular metabolic requirements of the human bacterial pathogen Listeria monocytogenes. We identified 12 metabolic pathways to be differentially active during infection in comparison to growth in rich lab media. We validated the essentiality of the active pathways for L. monocytogenes intracellular replication. Pathways included: biosynthesis of histidine, arginine, purine, and branch chain amino acids (BCAAs), as well as the catabolism of L-rhamnose and glycerol. Next we analyzed whether the requirement for these nutrients associates with virulence. We found that limiting concentrations of BCAAs, primarily of isoleucine, results in robust induction of the bacterial virulence state, a response that is dependent on the isoleucine responsive regulator, CodY. CodY was responsible for the up-regulation of the major virulence regulator of L. monocytogenes, PrfA. This study supports the premise that pathogens metabolism and virulence are closely interlinked.
Collapse
|
27
|
McDowell EJ, Callegari EA, Malke H, Chaussee MS. CodY-mediated regulation of Streptococcus pyogenes exoproteins. BMC Microbiol 2012; 12:114. [PMID: 22721528 PMCID: PMC3438106 DOI: 10.1186/1471-2180-12-114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 05/23/2012] [Indexed: 11/19/2022] Open
Abstract
Background The production of Streptococcus pyogenes exoproteins, many of which contribute to virulence, is regulated in response to nutrient availability. CodY is a transcriptional regulator that controls gene expression in response to amino acid availability. The purpose of this study was to identify differences in the expression of streptococcal exoproteins associated with deletion of the codY gene. Results We compared the secreted proteins produced by wild-type S. pyogenes to a codY mutant in the post-exponential phase of growth. We used both one and two-dimensional gel electrophoresis to separate exoproteins. Proteins that were significantly different in abundance upon repeated analysis were identified with tandem mass spectrometry. The production of the secreted cysteine protease SpeB, a secreted chromosomally encoded nuclease (SdaB), and a putative adhesion factor (Spy49_0549) were more abundant in supernatant fluids obtained from the codY mutant. In addition, hyaluronidase (HylA), CAMP factor (Cfa), a prophage encoded nuclease (Spd-3), and an uncharacterized extracellular protein (Spy49_0015) were less abundant in supernatant fluids obtained from the codY mutant strain. Enzymatic assays showed greater DNase activity in culture supernatants isolated in the post-exponential phase of growth from the codY mutant strain compared to the wild-type strain. Because extracellular nucleases and proteases can influence biofilm formation, we also measured the ability of the strains to form biofilms during growth with both rich medium (Todd Hewitt yeast extract; THY) and chemically defined media (CDM). No difference was observed with rich media but with CDM the biofilms formed by the codY mutant strain had less biomass compared to the wild-type strain. Conclusions Overall, the results indicate that CodY alters the abundance of a select group of S. pyogenes exoproteins, including DNases, a protease, and hylauronidase, which together may alleviate starvation by promoting dissemination of the pathogen to nutrient rich environments and by hydrolysis of host macromolecules.
Collapse
Affiliation(s)
- Emily J McDowell
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | | | | | | |
Collapse
|
28
|
Hall-Stoodley L, Stoodley P, Kathju S, Høiby N, Moser C, Costerton JW, Moter A, Bjarnsholt T. Towards diagnostic guidelines for biofilm-associated infections. ACTA ACUST UNITED AC 2012; 65:127-45. [PMID: 22469292 DOI: 10.1111/j.1574-695x.2012.00968.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/21/2012] [Accepted: 03/25/2012] [Indexed: 12/17/2022]
Abstract
Biofilms associated with the human body, particularly in typically sterile locations, are difficult to diagnose and treat effectively because of their recalcitrance to conventional antibiotic therapy and host immune responses. The study of biofilms in medicine today requires a translational approach, with examination of clinically relevant biofilms in the context of specific anatomic sites, host tissues, and diseases, focusing on what can be done to mitigate their pathologic consequences. This review, which grew out of a discussion session on clinical biofilms at the 5th ASM Biofilm Conference in Cancun, Mexico, is designed to give an overview of biofilm-associated infections (BAI) and to propose a platform for further discussion that includes clinicians, medical microbiologists, and biofilm researchers who are stakeholders in advancing the scientific pursuit of better diagnosis and treatment of BAI to mitigate their human and healthcare costs. It also highlights the need for better diagnostic markers, which exploit the difference between planktonic and biofilm cells.
Collapse
Affiliation(s)
- Luanne Hall-Stoodley
- Wellcome Trust Clinical Research Facility, University Hospital Southampton Foundation Trust, Southampton, UK.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Streptococcus pyogenes (group A streptococcus [GAS]) is a human-specific pathogen that causes a variety of diseases ranging from superficial infections to life-threatening diseases. SpeB, a potent extracellular cysteine proteinase, plays an important role in the pathogenesis of GAS infections. Previous studies show that SpeB expression and activity are controlled at the transcriptional and posttranslational levels, though it had been unclear whether speB was also regulated at the posttranscriptional level. In this study, we examined the growth phase-dependent speB mRNA level and decay using quantitative reverse transcription-PCR (qRT-PCR) and Northern blot analyses. We observed that speB mRNA accumulated rapidly during exponential growth, which occurred concomitantly with an increase in speB mRNA stability. A closer observation revealed that the increased speB mRNA stability was mainly due to progressive acidification. Inactivation of RNase Y, a recently identified endoribonuclease, revealed a role in processing and degradation of speB mRNA. We conclude that the increased speB mRNA stability contributes to the rapid accumulation of speB transcript during growth.
Collapse
|
30
|
Patenge N, Fiedler T, Kreikemeyer B. Common regulators of virulence in streptococci. Curr Top Microbiol Immunol 2012; 368:111-53. [PMID: 23242855 DOI: 10.1007/82_2012_295] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Streptococcal species are a diverse group of bacteria which can be found in animals and humans. Their interactions with host organisms can vary from commensal to pathogenic. Many of the pathogenic species are causative agents of severe, invasive infections in their hosts, accounting for a high burden of morbidity and mortality, associated with high economic costs in industry and health care. Among them, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus pneumoniae, and Streptococcus suis are discussed here. An environmentally stimulated and tightly controlled expression of their virulence factors is of utmost importance for their pathogenic potential. Thus, the most universal and widespread regulators from the classes of stand-alone transcriptional regulators, two-component signal transduction systems (TCS), eukaryotic-like serine/threonine kinases, and small noncoding RNAs are the topic of this chapter. The regulatory levels are reviewed with respect to function, activity, and their role in pathogenesis. Understanding of and interfering with transcriptional regulation mechanisms and networks is a promising basis for the development of novel anti-infective therapies.
Collapse
Affiliation(s)
- Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Schillingallee 70, 18057 Rostock, Germany
| | | | | |
Collapse
|
31
|
Involvement of T6 pili in biofilm formation by serotype M6 Streptococcus pyogenes. J Bacteriol 2011; 194:804-12. [PMID: 22155780 DOI: 10.1128/jb.06283-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The group A streptococcus (GAS) Streptococcus pyogenes is known to cause self-limiting purulent infections in humans. The role of GAS pili in host cell adhesion and biofilm formation is likely fundamental in early colonization. Pilus genes are found in the FCT (fibronectin-binding protein, collagen-binding protein, and trypsin-resistant antigen) genomic region, which has been classified into nine subtypes based on the diversity of gene content and nucleotide sequence. Several epidemiological studies have indicated that FCT type 1 strains, including serotype M6, produce large amounts of monospecies biofilm in vitro. We examined the direct involvement of pili in biofilm formation by serotype M6 clinical isolates. In the majority of tested strains, deletion of the tee6 gene encoding pilus shaft protein T6 compromised the ability to form biofilm on an abiotic surface. Deletion of the fctX and srtB genes, which encode pilus ancillary protein and class C pilus-associated sortase, respectively, also decreased biofilm formation by a representative strain. Unexpectedly, these mutant strains showed increased bacterial aggregation compared with that of the wild-type strain. When the entire FCT type 1 pilus region was ectopically expressed in serotype M1 strain SF370, biofilm formation was promoted and autoaggregation was inhibited. These findings indicate that assembled FCT type 1 pili contribute to biofilm formation and also function as attenuators of bacterial aggregation. Taken together, our results show the potential role of FCT type 1 pili in the pathogenesis of GAS infections.
Collapse
|
32
|
Horstmann N, Sahasrabhojane P, Suber B, Kumaraswami M, Olsen RJ, Flores A, Musser JM, Brennan RG, Shelburne SA. Distinct single amino acid replacements in the control of virulence regulator protein differentially impact streptococcal pathogenesis. PLoS Pathog 2011; 7:e1002311. [PMID: 22028655 PMCID: PMC3197619 DOI: 10.1371/journal.ppat.1002311] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/26/2011] [Indexed: 01/08/2023] Open
Abstract
Sequencing of invasive strains of group A streptococci (GAS) has revealed a diverse array of single nucleotide polymorphisms in the gene encoding the control of virulence regulator (CovR) protein. However, there is limited information regarding the molecular mechanisms by which CovR single amino acid replacements impact GAS pathogenesis. The crystal structure of the CovR C-terminal DNA-binding domain was determined to 1.50 Å resolution and revealed a three-stranded β-sheet followed by a winged helix-turn-helix DNA binding motif. Modeling of the CovR protein-DNA complex indicated that CovR single amino acid replacements observed in clinical GAS isolates could directly alter protein-DNA interaction and impact protein structure. Isoallelic GAS strains that varied by a single amino acid replacement in the CovR DNA binding domain had significantly different transcriptomes compared to wild-type and to each other. Similarly, distinct recombinant CovR variants had differential binding affinity for DNA from the promoter regions of several virulence factor-encoding genes. Finally, mice that were challenged with GAS CovR isoallelic strains had significantly different survival times, which correlated with the transcriptome and protein-DNA binding studies. Taken together, these data provide structural and functional insights into the critical and distinct effects of variation in the CovR protein on GAS pathogenesis. Group A Streptococcus (GAS) causes a variety of human infections including invasive disease that can often be deadly. GAS strains that cause serious infections may have alterations in the amino acid sequence of the control of virulence regulator (CovR) protein, but mechanisms by which changes in the CovR protein influence GAS disease are not understood. We determined the crystal structure of the CovR DNA binding region and found that alterations in the CovR protein observed in clinical, invasive GAS isolates are likely to disrupt CovR-DNA interaction and overall CovR structure. In accord with the structural data, CovR proteins with a single amino acid change had distinctly different binding affinities for various GAS virulence-factor encoding genes. Similarly, GAS strains that differed by only the presence of a single CovR amino acid change had distinct gene expression profiles. Finally, mice that were challenged with GAS strains that differed by only a single CovR amino acid replacement had significantly different survival times consistent with the idea that alterations in the CovR protein are a key determinant of clinical outcomes in GAS human infections. These findings provide mechanistic insights into how subtle genetic differences can profoundly impact the severity of bacterial infections.
Collapse
Affiliation(s)
- Nicola Horstmann
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Pranoti Sahasrabhojane
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Bryce Suber
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology and Genomic Medicine, The Methodist Hospital, Houston, Texas, United States of America
| | - Randall J. Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology and Genomic Medicine, The Methodist Hospital, Houston, Texas, United States of America
| | - Anthony Flores
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - James M. Musser
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology and Genomic Medicine, The Methodist Hospital, Houston, Texas, United States of America
| | - Richard G. Brennan
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Samuel A. Shelburne
- Department of Infectious Diseases, MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
CodY is a global transcriptional regulator known to control expression of more than 100 genes and operons in Bacillus subtilis. Some of the most strongly repressed targets of CodY, the nupNOPQ (formerly, yufNOPQ) genes, were found to encode a guanosine transporter. Using DNase I footprinting experiments, we identified two high-affinity CodY-binding sites in the regulatory region of the nupN gene. The two sites are located 50 bp upstream and 163 bp downstream of the transcription start site. The downstream site was responsible for 6- to 8-fold nupN repression in the absence of the upstream site. When the upstream site was intact, however, only a minor contribution of the downstream site to nupN regulation could be detected under the conditions tested. Both sites contained 15-bp CodY-binding motifs with two mismatches each with respect to the consensus sequence, AATTTTCWGTTTTAA. However, the experimentally determined binding sites included additional sequences flanking the 15-bp CodY-binding motifs. An additional version of the 15-bp CodY-binding motif, with 5 mismatches with respect to the consensus but essential for efficient regulation by CodY, was found within the upstream site. The presence of multiple 15-bp motifs may be a common feature of CodY-binding sites.
Collapse
|