1
|
Fulton RL, Sawyer BR, Downs DM. RidA proteins contribute to fitness of S. enterica and E. coli by reducing 2AA stress and moderating flux to isoleucine biosynthesis. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:339-352. [PMID: 39434937 PMCID: PMC11491847 DOI: 10.15698/mic2024.10.837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 10/23/2024]
Abstract
Defining the physiological role of a gene product relies on interpreting phenotypes caused by the lack, or alteration, of the respective gene product. Mutations in critical genes often lead to easily recognized phenotypes that can include changes in cellular growth, metabolism, structure etc. However, mutations in many important genes may fail to generate an obvious defect unless additional perturbations are caused by medium or genetic background. The latter scenario is exemplified by RidA proteins. In vitro RidA proteins deaminate numerous imine/enamines, including those generated by serine/threonine dehydratase IlvA (EC:4.3.1.19) from serine or threonine - 2-aminoacrylate (2AA) and 2-aminocrotonate (2AC), respectively. Despite this demonstrable biochemical activity, a lack of RidA has little to no effect on growth of E. coli or S. enterica without the application of additional metabolic perturbation. A cellular role of RidA is to prevent accumulation of 2AA which, if allowed to persist, can irreversibly damage pyridoxal 5'-phosphate (PLP)-dependent enzymes, causing global metabolic stress. Because the phenotypes caused by a lack of RidA are dependent on the unique structure of each metabolic network, the link between RidA function and 2AA stress is difficult to demonstrate in some organisms. The current study used coculture experiments to exacerbate differences in growth caused by the lack of RidA in S. enterica and E. coli. Results described here solidify the established role of RidA in removing 2AA, while also presenting evidence for a role of RidA in enhancing flux towards isoleucine biosynthesis in E. coli. Overall, these data emphasize that metabolic networks can generate distinct responses to perturbation, even when the individual components are conserved.
Collapse
Affiliation(s)
- Ronnie L. Fulton
- Department of Microbiology, University of GeorgiaAthens, GA 30602-2605
| | - Bryce R. Sawyer
- Department of Microbiology, University of GeorgiaAthens, GA 30602-2605
| | - Diana M Downs
- Department of Microbiology, University of GeorgiaAthens, GA 30602-2605
| |
Collapse
|
2
|
Li X, Gluth A, Feng S, Qian WJ, Yang B. Harnessing redox proteomics to study metabolic regulation and stress response in lignin-fed Rhodococci. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:180. [PMID: 37986172 PMCID: PMC10662689 DOI: 10.1186/s13068-023-02424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Rhodococci are studied for their bacterial ligninolytic capabilities and proclivity to accumulate lipids. Lignin utilization is a resource intensive process requiring a variety of redox active enzymes and cofactors for degradation as well as defense against the resulting toxic byproducts and oxidative conditions. Studying enzyme expression and regulation between carbon sources will help decode the metabolic rewiring that stymies lignin to lipid conversion in these bacteria. Herein, a redox proteomics approach was applied to investigate a fundamental driver of carbon catabolism and lipid anabolism: redox balance. RESULTS A consortium of Rhodococcus strains was employed in this study given its higher capacity for lignin degradation compared to monocultures. This consortium was grown on glucose vs. lignin under nitrogen limitation to study the importance of redox balance as it relates to nutrient availability. A modified bottom-up proteomics workflow was harnessed to acquire a general relationship between protein abundance and protein redox states. Global proteomics results affirm differential expression of enzymes involved in sugar metabolism vs. those involved in lignin degradation and aromatics metabolism. As reported previously, several enzymes in the lipid biosynthetic pathways were downregulated, whereas many involved in β-oxidation were upregulated. Interestingly, proteins involved in oxidative stress response were also upregulated perhaps in response to lignin degradation and aromatics catabolism, which require oxygen and reactive oxygen species and generate toxic byproducts. Enzymes displaying little-to-no change in abundance but differences in redox state were observed in various pathways for carbon utilization (e.g., β‑ketoadipate pathway), lipid metabolism, as well as nitrogen metabolism (e.g., purine scavenging/synthesis), suggesting potential mechanisms of redox-dependent regulation of metabolism. CONCLUSIONS Efficient lipid production requires a steady carbon and energy flux while balancing fundamental requirements for enzyme production and cell maintenance. For lignin, we theorize that this balance is difficult to establish due to resource expenditure for enzyme production and stress response. This is supported by significant changes to protein abundances and protein cysteine oxidation in various metabolic pathways and redox processes.
Collapse
Affiliation(s)
- Xiaolu Li
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Austin Gluth
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA
| | - Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Bin Yang
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA.
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
3
|
Fulton RL, Downs DM. Modulators of a robust and efficient metabolism: Perspective and insights from the Rid superfamily of proteins. Adv Microb Physiol 2023; 83:117-179. [PMID: 37507158 PMCID: PMC10642521 DOI: 10.1016/bs.ampbs.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Metabolism is an integrated network of biochemical pathways that assemble to generate the robust, responsive physiologies of microorganisms. Despite decades of fundamental studies on metabolic processes and pathways, our understanding of the nuance and complexity of metabolism remains incomplete. The ability to predict and model metabolic network structure, and its influence on cellular fitness, is complicated by the persistence of genes of unknown function, even in the best-studied model organisms. This review describes the definition and continuing study of the Rid superfamily of proteins. These studies are presented with a perspective that illustrates how metabolic complexity can complicate the assignment of function to uncharacterized genes. The Rid superfamily of proteins has been divided into eight subfamilies, including the well-studied RidA subfamily. Aside from the RidA proteins, which are present in all domains of life and prevent metabolic stress, most members of the Rid superfamily have no demonstrated physiological role. Recent progress on functional assignment supports the hypothesis that, overall, proteins in the Rid superfamily modulate metabolic processes to ensure optimal organismal fitness.
Collapse
Affiliation(s)
- Ronnie L Fulton
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, United States.
| |
Collapse
|
4
|
Fulton RL, Downs DM. DadY (PA5303) is required for fitness of Pseudomonas aeruginosa when growth is dependent on alanine catabolism. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:190-201. [PMID: 36483308 PMCID: PMC9714295 DOI: 10.15698/mic2022.12.788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 07/30/2023]
Abstract
Pseudomonas aeruginosa inhabits diverse environmental niches that can have varying nutrient composition. The ubiquity of this organism is facilitated by a metabolic strategy that preferentially utilizes low-energy, non-fermentable organic acids, such as amino acids, rather than the high-energy sugars preferred by many other microbes. The amino acid alanine is among the preferred substrates of P. aeruginosa. The dad locus encodes the constituents of the alanine catabolic pathway of P. aeruginosa. Physiological roles for DadR (AsnC-type transcriptional activator), DadX (alanine racemase), and DadA (D-amino acid dehydrogenase) have been defined in this pathway. An additional protein, PA5303, is encoded in the dad locus in P. aeruginosa. PA5303 is a member of the ubiquitous Rid protein superfamily and is designated DadY based on the data presented herein. Despite its conservation in numerous Pseudomonas species and membership in the Rid superfamily, no physiological function has been assigned to DadY. In the present study, we demonstrate that DadA releases imino-alanine that can be deaminated by DadY in vitro. While DadY was not required for alanine catabolism in monoculture, dadY mutants had a dramatic fitness defect in competition with wild-type P. aeruginosa when alanine served as the sole carbon or nitrogen source. The data presented herein support a model in which DadY facilitates flux through the alanine catabolic pathway by removing the imine intermediate generated by DadA. Functional characterization of DadY contributes to our understanding of the role of the broadly conserved Rid family members.
Collapse
Affiliation(s)
- Ronnie L. Fulton
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605
| | - Diana M. Downs
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605
| |
Collapse
|
5
|
The Cysteine Desulfurase IscS Is a Significant Target of 2-Aminoacrylate Damage in Pseudomonas aeruginosa. mBio 2022; 13:e0107122. [PMID: 35652590 PMCID: PMC9239102 DOI: 10.1128/mbio.01071-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa encodes eight members of the Rid protein superfamily. PA5339, a member of the RidA subfamily, is required for full growth and motility of P. aeruginosa. Our understanding of RidA integration into the metabolic network of P. aeruginosa is at an early stage, with analyses largely guided by the well-established RidA paradigm in Salmonella enterica. A P. aeruginosa strain lacking RidA has a growth and motility defect in a minimal glucose medium, both of which are exacerbated by exogenous serine. All described ridA mutant phenotypes are rescued by supplementation with isoleucine, indicating the primary generator of the reactive metabolite 2-aminoacrylate (2AA) in ridA mutants is a threonine/serine dehydratase. However, the critical (i.e., phenotype determining) targets of 2AA leading to growth and motility defects in P. aeruginosa remained undefined. This study was initiated to probe the effects of 2AA stress on the metabolic network of P. aeruginosa by defining the target(s) of 2AA that contribute to physiological defects of a ridA mutant. Suppressor mutations that restored growth to a P. aeruginosa ridA mutant were isolated, including an allele of iscS (encoding cysteine desulfurase). Damage to IscS was identified as a significant cause of growth defects of P. aeruginosa during enamine stress. A suppressing allele encoded an IscS variant that was less sensitive to damage by 2AA, resulting in a novel mechanism of phenotypic suppression of a ridA mutant. IMPORTANCE 2-aminoacrylate (2AA) is a reactive metabolite formed as an intermediate in various enzymatic reactions. In the absence of RidA, this metabolite can persist in vivo where it attacks and inactivates specific PLP-dependent enzymes, causing metabolic defects and organism-specific phenotypes. This work identifies the cysteine desulfurase IscS as the critical target of 2AA in Pseudomonas aeruginosa. A single substitution in IscS decreased sensitivity to 2AA and suppressed growth phenotypes of a ridA mutant. Here, we provide the first report of suppression of a ridA mutant phenotype by altering the sensitivity of a target enzyme to 2AA.
Collapse
|
6
|
2-Aminoacrylate stress damages diverse PLP-dependent enzymes in vivo. J Biol Chem 2022; 298:101970. [PMID: 35460692 PMCID: PMC9127364 DOI: 10.1016/j.jbc.2022.101970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 01/20/2023] Open
Abstract
Pyridoxal 5′-phosphate (PLP) is an essential cofactor for a class of enzymes that catalyze diverse reactions in central metabolism. The catalytic mechanism of some PLP-dependent enzymes involves the generation of reactive enamine intermediates like 2-aminoacrylate (2AA). 2AA can covalently modify PLP in the active site of some PLP-dependent enzymes and subsequently inactivate the enzyme through the formation of a PLP–pyruvate adduct. In the absence of the enamine/imine deaminase RidA, Salmonella enterica experiences 2AA-mediated metabolic stress. Surprisingly, PLP-dependent enzymes that generate endogenous 2AA appear to be immune to its attack, while other PLP-dependent enzymes accumulate damage in the presence of 2AA stress; however, structural determinants of 2AA sensitivity are unclear. In this study, we refined a molecular method to query proteins from diverse systems for their sensitivity to 2AA in vivo. This method was then used to examine active site residues of Alr, a 2AA-sensitive PLP-dependent enzyme, that affect its sensitivity to 2AA in vivo. Unexpectedly, our data also showed that a low level of 2AA stress can persist even in the presence of a functional RidA. In summary, this study expands our understanding of 2AA metabolism and takes an initial step toward characterizing the structural determinants influencing enzyme susceptibility to damage by free 2AA.
Collapse
|
7
|
Metabolomics Reveal Potential Natural Substrates of AcrB in Escherichia coli and Salmonella enterica Serovar Typhimurium. mBio 2021; 12:mBio.00109-21. [PMID: 33785633 PMCID: PMC8092203 DOI: 10.1128/mbio.00109-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multidrug-resistant Gram-negative bacteria pose a global threat to human health. The AcrB efflux pump confers inherent and evolved drug resistance to Enterobacterales, including Escherichia coli and Salmonella enterica serovar Typhimurium. In the fight against antibiotic resistance, drugs that target resistance mechanisms in bacteria can be used to restore the therapeutic effectiveness of antibiotics. The multidrug resistance efflux complex AcrAB-TolC is the most clinically relevant efflux pump in Enterobacterales and is a target for drug discovery. Inhibition of the pump protein AcrB allows the intracellular accumulation of a wide variety of antibiotics, effectively restoring their therapeutic potency. To facilitate the development of AcrB efflux inhibitors, it is desirable to discover the native substrates of the pump, as these could be chemically modified to become inhibitors. We analyzed the native substrate profile of AcrB in Escherichia coli MG1655 and Salmonella enterica serovar Typhimurium SL1344 using an untargeted metabolomics approach. We analyzed the endo- and exometabolome of the wild-type strain and their respective AcrB loss-of-function mutants (AcrB D408A) to determine the metabolites that are native substrates of AcrB. Although there is 95% homology between the AcrB proteins of S. Typhimurium and E. coli, we observed mostly different metabolic responses in the exometabolomes of the S. Typhimurium and E. coli AcrB D408A mutants relative to those in the wild type, potentially indicating a differential metabolic adaptation to the same mutation in these two species. Additionally, we uncovered metabolite classes that could be involved in virulence of S. Typhimurium and a potential natural substrate of AcrB common to both species.
Collapse
|
8
|
Using D- and L-Amino Acid Oxidases to Generate the Imino Acid Substrate to Measure the Activity of the Novel Rid (Enamine/Imine Deaminase) Class of Enzymes. Methods Mol Biol 2021. [PMID: 33751437 DOI: 10.1007/978-1-0716-1286-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
This chapter describes a method to assay the activity of reactive intermediate deaminases (Rid), a large family of conserved soluble enzymes, which have been proposed to prevent damages from metabolic intermediates such as the highly reactive and unstable compounds enamines/imines. In this method, the flavin adenine dinucleotide-dependent L- or D-amino acid oxidases generate an imino acid starting from a L- or D- amino acid, respectively. This reaction is coupled to the hydrolysis of the imino acid to the corresponding α-keto acid and ammonium ion catalyzed by a Rid enzyme. The spectrophotometric assay consists of measuring the decrease of the initial rate of formation of the semicarbazone, derived from the spontaneous reaction of the imino acid and semicarbazide, caused by the presence of the Rid enzyme. The set-up and testing of this method imply a preliminary characterization of the ability of the amino acid oxidase to release the imino acid required for the subsequent reactions. To this purpose, the activity of the L- or D-amino acid oxidases with different amino acids can be measured as production of hydrogen peroxide or formation of semicarbazone in parallel assays. The advantages and limitations of this assay of Rid activity are discussed.
Collapse
|
9
|
Irons JL, Hodge-Hanson K, Downs DM. RidA Proteins Protect against Metabolic Damage by Reactive Intermediates. Microbiol Mol Biol Rev 2020; 84:e00024-20. [PMID: 32669283 PMCID: PMC7373157 DOI: 10.1128/mmbr.00024-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Rid (YjgF/YER057c/UK114) protein superfamily was first defined by sequence homology with available protein sequences from bacteria, archaea, and eukaryotes (L. Parsons, N. Bonander, E. Eisenstein, M. Gilson, et al., Biochemistry 42:80-89, 2003, https://doi.org/10.1021/bi020541w). The archetypal subfamily, RidA (reactive intermediate deaminase A), is found in all domains of life, with the vast majority of free-living organisms carrying at least one RidA homolog. In over 2 decades, close to 100 reports have implicated Rid family members in cellular processes in prokaryotes, yeast, plants, and mammals. Functional roles have been proposed for Rid enzymes in amino acid biosynthesis, plant root development and nutrient acquisition, cellular respiration, and carcinogenesis. Despite the wealth of literature and over a dozen high-resolution structures of different RidA enzymes, their biochemical function remained elusive for decades. The function of the RidA protein was elucidated in a bacterial model system despite (i) a minimal phenotype of ridA mutants, (ii) the enzyme catalyzing a reaction believed to occur spontaneously, and (iii) confusing literature on the pleiotropic effects of RidA homologs in prokaryotes and eukaryotes. Subsequent work provided the physiological framework to support the RidA paradigm in Salmonella enterica by linking the phenotypes of mutants lacking ridA to the accumulation of the reactive metabolite 2-aminoacrylate (2AA), which damaged metabolic enzymes. Conservation of enamine/imine deaminase activity of RidA enzymes from all domains raises the likelihood that, despite the diverse phenotypes, the consequences when RidA is absent are due to accumulated 2AA (or a similar reactive enamine) and the diversity of metabolic phenotypes can be attributed to differences in metabolic network architecture. The discovery of the RidA paradigm in S. enterica laid a foundation for assessing the role of Rid enzymes in diverse organisms and contributed fundamental lessons on metabolic network evolution and diversity in microbes. This review describes the studies that defined the conserved function of RidA, the paradigm of enamine stress in S. enterica, and emerging studies that explore how this paradigm differs in other organisms. We focus primarily on the RidA subfamily, while remarking on our current understanding of the other Rid subfamilies. Finally, we describe the current status of the field and pose questions that will drive future studies on this widely conserved protein family to provide fundamental new metabolic information.
Collapse
Affiliation(s)
- Jessica L Irons
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
10
|
Digiovanni S, Visentin C, Degani G, Barbiroli A, Chiara M, Regazzoni L, Di Pisa F, Borchert AJ, Downs DM, Ricagno S, Vanoni MA, Popolo L. Two novel fish paralogs provide insights into the Rid family of imine deaminases active in pre-empting enamine/imine metabolic damage. Sci Rep 2020; 10:10135. [PMID: 32576850 PMCID: PMC7311433 DOI: 10.1038/s41598-020-66663-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
Reactive Intermediate Deaminase (Rid) protein superfamily includes eight families among which the RidA is conserved in all domains of life. RidA proteins accelerate the deamination of the reactive 2-aminoacrylate (2AA), an enamine produced by some pyridoxal phosphate (PLP)-dependent enzymes. 2AA accumulation inhibits target enzymes with a detrimental impact on fitness. As a consequence of whole genome duplication, teleost fish have two ridA paralogs, while other extant vertebrates contain a single-copy gene. We investigated the biochemical properties of the products of two paralogs, identified in Salmo salar. SsRidA-1 and SsRidA-2 complemented the growth defect of a Salmonella enterica ridA mutant, an in vivo model of 2AA stress. In vitro, both proteins hydrolyzed 2-imino acids (IA) to keto-acids and ammonia. SsRidA-1 was active on IA derived from nonpolar amino acids and poorly active or inactive on IA derived from other amino acids tested. In contrast, SsRidA-2 had a generally low catalytic efficiency, but showed a relatively higher activity with IA derived from L-Glu and aromatic amino acids. The crystal structures of SsRidA-1 and SsRidA-2 provided hints of the remarkably different conformational stability and substrate specificity. Overall, SsRidA-1 is similar to the mammalian orthologs whereas SsRidA-2 displays unique properties likely generated by functional specialization of a duplicated ancestral gene.
Collapse
Affiliation(s)
- Stefania Digiovanni
- Department of Biosciences, University of Milan, Milan, Italy.,Department of Chemical Biology I, University of Groningen, Groningen, The Netherlands
| | | | - Genny Degani
- Department of Biosciences, University of Milan, Milan, Italy
| | - Alberto Barbiroli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Matteo Chiara
- Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Flavio Di Pisa
- Department of Biosciences, University of Milan, Milan, Italy
| | - Andrew J Borchert
- Department of Microbiology, University of Georgia, Athens, GA, United States.,National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Laura Popolo
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
11
|
Proton Nuclear Magnetic Resonance Metabolomics Corroborates Serine Hydroxymethyltransferase as the Primary Target of 2-Aminoacrylate in a ridA Mutant of Salmonella enterica. mSystems 2020; 5:5/2/e00843-19. [PMID: 32156800 PMCID: PMC7065518 DOI: 10.1128/msystems.00843-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The accumulation of the reactive enamine intermediate 2-aminoacrylate (2AA) elicits global metabolic stress in many prokaryotes and eukaryotes by simultaneously damaging multiple pyridoxal 5′-phosphate (PLP)-dependent enzymes. This work employed 1H NMR to expand our understanding of the consequence(s) of 2AA stress on metabolite pools and effectively identify the metabolic changes stemming from one damaged target: GlyA. This study shows that nutrient supplementation during 1H NMR metabolomics experiments can disentangle complex metabolic outcomes stemming from a general metabolic stress. Metabolomics shows great potential to complement classical reductionist approaches to cost-effectively accelerate the rate of progress in expanding our global understanding of metabolic network structure and physiology. To that end, this work demonstrates the utility in implementing nutrient supplementation and genetic perturbation into metabolomics workflows as a means to connect metabolic outputs to physiological phenomena and establish causal relationships. The reactive intermediate deaminase RidA (EC 3.5.99.10) is conserved across all domains of life and deaminates reactive enamine species. When Salmonella entericaridA mutants are grown in minimal medium, 2-aminoacrylate (2AA) accumulates, damages several pyridoxal 5′-phosphate (PLP)-dependent enzymes, and elicits an observable growth defect. Genetic studies suggested that damage to serine hydroxymethyltransferase (GlyA), and the resultant depletion of 5,10-methelenetetrahydrofolate (5,10-mTHF), was responsible for the observed growth defect. However, the downstream metabolic consequence from GlyA damage by 2AA remains relatively unexplored. This study sought to use untargeted proton nuclear magnetic resonance (1H NMR) metabolomics to determine whether the metabolic state of an S. entericaridA mutant was accurately reflected by characterizing growth phenotypes. The data supported the conclusion that metabolic changes in a ridA mutant were due to the IlvA-dependent generation of 2AA, and that the majority of these changes were a consequence of damage to GlyA. While many of the metabolic differences for a ridA mutant could be explained, changes in some metabolites were not easily modeled, suggesting that additional levels of metabolic complexity remain to be unraveled. IMPORTANCE The accumulation of the reactive enamine intermediate 2-aminoacrylate (2AA) elicits global metabolic stress in many prokaryotes and eukaryotes by simultaneously damaging multiple pyridoxal 5′-phosphate (PLP)-dependent enzymes. This work employed 1H NMR to expand our understanding of the consequence(s) of 2AA stress on metabolite pools and effectively identify the metabolic changes stemming from one damaged target: GlyA. This study shows that nutrient supplementation during 1H NMR metabolomics experiments can disentangle complex metabolic outcomes stemming from a general metabolic stress. Metabolomics shows great potential to complement classical reductionist approaches to cost-effectively accelerate the rate of progress in expanding our global understanding of metabolic network structure and physiology. To that end, this work demonstrates the utility in implementing nutrient supplementation and genetic perturbation into metabolomics workflows as a means to connect metabolic outputs to physiological phenomena and establish causal relationships.
Collapse
|
12
|
Integrated Metabolomics and Transcriptomics Suggest the Global Metabolic Response to 2-Aminoacrylate Stress in Salmonella enterica. Metabolites 2019; 10:metabo10010012. [PMID: 31878179 PMCID: PMC7023182 DOI: 10.3390/metabo10010012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023] Open
Abstract
In Salmonella enterica, 2-aminoacrylate (2AA) is a reactive enamine intermediate generated during a number of biochemical reactions. When the 2-iminobutanoate/2-iminopropanoate deaminase (RidA; EC: 3.5.99.10) is eliminated, 2AA accumulates and inhibits the activity of multiple pyridoxal 5’-phosphate(PLP)-dependent enzymes. In this study, untargeted proton nuclear magnetic resonance (1H NMR) metabolomics and transcriptomics data were used to uncover the global metabolic response of S. enterica to the accumulation of 2AA. The data showed that elimination of RidA perturbed folate and branched chain amino acid metabolism. Many of the resulting perturbations were consistent with the known effect of 2AA stress, while other results suggested additional potential enzyme targets of 2AA-dependent damage. The majority of transcriptional and metabolic changes appeared to be the consequence of downstream effects on the metabolic network, since they were not directly attributable to a PLP-dependent enzyme. In total, the results highlighted the complexity of changes stemming from multiple perturbations of the metabolic network, and suggested hypotheses that will be valuable in future studies of the RidA paradigm of endogenous 2AA stress.
Collapse
|
13
|
Borchert AJ, Ernst DC, Downs DM. Reactive Enamines and Imines In Vivo: Lessons from the RidA Paradigm. Trends Biochem Sci 2019; 44:849-860. [PMID: 31103411 PMCID: PMC6760865 DOI: 10.1016/j.tibs.2019.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/19/2023]
Abstract
Metabolic networks are webs of integrated reactions organized to maximize growth and replication while minimizing the detrimental impact that reactive metabolites can have on fitness. Enamines and imines, such as 2-aminoacrylate (2AA), are reactive metabolites produced as short-lived intermediates in a number of enzymatic processes. Left unchecked, the inherent reactivity of enamines and imines may perturb the metabolic network. Genetic and biochemical studies have outlined a role for the broadly conserved reactive intermediate deaminase (Rid) (YjgF/YER057c/UK114) protein family, in particular RidA, in catalyzing the hydrolysis of enamines and imines to their ketone product. Herein, we discuss new findings regarding the biological significance of enamine and imine production and outline the importance of RidA in controlling the accumulation of reactive metabolites.
Collapse
Affiliation(s)
- Andrew J Borchert
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Dustin C Ernst
- Current address: Center for Circadian Biology, University of California, San Diego, San Diego, CA 92161, USA
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
14
|
Irons J, Sacher JC, Szymanski CM, Downs DM. Cj1388 Is a RidA Homolog and Is Required for Flagella Biosynthesis and/or Function in Campylobacter jejuni. Front Microbiol 2019; 10:2058. [PMID: 31555246 PMCID: PMC6742949 DOI: 10.3389/fmicb.2019.02058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni is the leading bacterial cause of acute gastroenteritis worldwide and thus significant to public health. C. jejuni primarily lives in the gastrointestinal tracts of poultry and can contaminate meat during processing. Despite a small genome, the metabolic plasticity of C. jejuni allows proliferation in chicken ceca and mammalian host intestines, and survival in environments with a variety of temperatures, pH, osmotic conditions, and nutrient availabilities. The exact mechanism of C. jejuni infection is unknown, however, virulence requires motility. Our data suggest the C. jejuni RidA homolog, Cj1388, plays a role in flagellar biosynthesis, regulation, structure, and/or function and, as such is expected to influence virulence of the organism. Mutants lacking cj1388 have defects in motility, autoagglutination, and phage infectivity under the conditions tested. Comparison to the RidA paradigm from Salmonella enterica indicates the phenotypes of the C. jejuni cj1388 mutant are likely due to the inhibition of one or more pyridoxal 5'-phosphate-dependent enzymes by the reactive enamine 2-aminoacrylate.
Collapse
Affiliation(s)
- Jessica Irons
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Jessica C Sacher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Christine M Szymanski
- Department of Microbiology, University of Georgia, Athens, GA, United States.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, United States
| |
Collapse
|
15
|
Borchert AJ, Downs DM. Analyses of variants of the Ser/Thr dehydratase IlvA provide insight into 2-aminoacrylate metabolism in Salmonella enterica. J Biol Chem 2018; 293:19240-19249. [PMID: 30327426 PMCID: PMC6302184 DOI: 10.1074/jbc.ra118.005626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
RidA is a conserved and broadly distributed protein that has enamine deaminase activity. In a variety of organisms tested thus far, lack of RidA results in the accumulation of the reactive metabolite 2-aminoacrylate (2AA), an obligate intermediate in the catalytic mechanism of several pyridoxal 5'-phosphate (PLP)-dependent enzymes. This study reports the characterization of variants of the biosynthetic serine/threonine dehydratase (EC 4.3.1.19; IlvA), which is a significant generator of 2AA in the bacteria Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa and the yeast Saccharomyces cerevisiae Two previously identified mutations, ilvA3210 and ilvA3211, suppressed the phenotypic growth consequences of 2AA accumulation in S. enterica Characterization of the respective protein variants suggested that they affect 2AA metabolism in vivo by two different catalytic mechanisms, both leading to an overall reduction in serine dehydratase activity. To emphasize the physiological relevance of the in vitro enzyme characterization, we sought to explain in vivo phenotypes using these data. A simple mathematical model describing the impact these catalytic deficiencies had on 2AA production was generally supported by our data. However, caveats arose when kinetic parameters, determined in vitro, were used to predict formation of the isoleucine precursor 2-ketobutyrate and model in vivo (growth) behaviors. Altogether, our data support the need for a holistic approach, including in vivo and in vitro analyses, to generate data used in understanding and modeling metabolism.
Collapse
Affiliation(s)
- Andrew J Borchert
- From the Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Diana M Downs
- From the Department of Microbiology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
16
|
Irons J, Hodge-Hanson KM, Downs DM. PA5339, a RidA Homolog, Is Required for Full Growth in Pseudomonas aeruginosa. J Bacteriol 2018; 200:e00434-18. [PMID: 30181125 PMCID: PMC6199476 DOI: 10.1128/jb.00434-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/27/2018] [Indexed: 01/27/2023] Open
Abstract
The Rid protein superfamily (YjgF/YER057c/UK114) is found in all domains of life. The archetypal protein, RidA from Salmonella enterica, is a deaminase that quenches the reactive metabolite 2-aminoacrylate (2AA). 2AA deaminase activity is conserved in RidA proteins from humans, plants, yeast, archaea, and bacteria. Mutants of Salmonella enterica, Escherichia coli, and Saccharomyces cerevisiae that lack a functional RidA exhibit growth defects, suggesting that 2AA metabolic stress is similarly conserved. The PubSEED database shows Pseudomonas aeruginosa (PAO1) encodes eight members of the Rid superfamily. Mutants of P. aeruginosa PAO1 lacking each of five Rid proteins were screened, and the mutant phenotypes that arose in the absence of PA5339 were dissected. A PA5339::Tn mutant has growth, motility, and biofilm defects that can all be linked to the accumulation of 2AA. Further, the PA5339 protein was demonstrably a 2AA deaminase in vitro and restored metabolic balance to a S. enterica ridA mutant in vivo The data presented here show that the RidA paradigm in Pseudomonas aeruginosa had similarities to those described in other organisms but was distinct in that deleting only one of multiple homologs generated deficiencies. Based on the collective data presented here in, PA5339 was renamed RidA.IMPORTANCE RidA is a widely conserved protein that prevents endogenous metabolic stress caused by 2-aminoacrylate (2AA) damage to pyridoxal 5'-phosphate (PLP)-dependent enzymes in prokaryotes and eukaryotes. The framework for understanding the accumulation of 2AA and its consequences have largely been defined in Salmonella enterica We show here that in P. aeruginosa (PAO1), 2AA accumulation leads to reduced growth, compromised motility, and defective biofilm formation. This study expands our knowledge how the metabolic architecture of an organism contributes to the consequences of 2AA inactivation of PLP-dependent enzymes and identifies a key RidA protein in P. aeruginosa.
Collapse
Affiliation(s)
- Jessica Irons
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
17
|
Ernst DC, Christopherson MR, Downs DM. Increased Activity of Cystathionine β-Lyase Suppresses 2-Aminoacrylate Stress in Salmonella enterica. J Bacteriol 2018; 200:e00040-18. [PMID: 29440255 PMCID: PMC5892115 DOI: 10.1128/jb.00040-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 01/07/2023] Open
Abstract
Reactive enamine stress caused by intracellular 2-aminoacrylate accumulation leads to pleiotropic growth defects in a variety of organisms. Members of the well-conserved RidA/YER057c/UK114 protein family prevent enamine stress by enhancing the breakdown of 2-aminoacrylate to pyruvate. In Salmonella enterica, disruption of RidA allows 2-aminoacrylate to accumulate and to inactivate a variety of pyridoxal 5'-phosphate-dependent enzymes by generating covalent bonds with the enzyme and/or cofactor. This study was initiated to identify mechanisms that can overcome 2-aminoacrylate stress in the absence of RidA. Multicopy suppressor analysis revealed that overproduction of the methionine biosynthesis enzyme cystathionine β-lyase (MetC) (EC 4.4.1.8) alleviated the pleiotropic consequences of 2-aminoacrylate stress in a ridA mutant strain. Degradation of cystathionine by MetC was not required for suppression of ridA phenotypes. The data support a model in which MetC acts on a noncystathionine substrate to generate a metabolite that reduces 2-aminoacrylate levels, representing a nonenzymatic mechanism of 2-aminoacrylate depletion.IMPORTANCE RidA proteins are broadly conserved and have been demonstrated to deaminate 2-aminoacrylate and other enamines. 2-Aminoacrylate is generated as an obligatory intermediate in several pyridoxal 5'-phosphate-dependent reactions; if it accumulates, it damages cellular enzymes. This study identified a novel mechanism to eliminate 2-aminoacrylate stress that required the overproduction, but not the canonical activity, of cystathionine β-lyase. The data suggest that a metabolite-metabolite interaction is responsible for quenching 2-aminoacrylate, and they emphasize the need for emerging technologies to probe metabolism in vivo.
Collapse
Affiliation(s)
- Dustin C Ernst
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
18
|
Downs DM, Bazurto JV, Gupta A, Fonseca LL, Voit EO. The three-legged stool of understanding metabolism: integrating metabolomics with biochemical genetics and computational modeling. AIMS Microbiol 2018; 4:289-303. [PMID: 31294216 PMCID: PMC6604926 DOI: 10.3934/microbiol.2018.2.289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/02/2018] [Indexed: 12/23/2022] Open
Abstract
Traditional biochemical research has resulted in a good understanding of many aspects of metabolism. However, this reductionist approach is time consuming and requires substantial resources, thus raising the question whether modern metabolomics and genomics should take over and replace the targeted experiments of old. We proffer that such a replacement is neither feasible not desirable and propose instead the tight integration of modern, system-wide omics with traditional experimental bench science and dedicated computational approaches. This integration is an important prerequisite toward the optimal acquisition of knowledge regarding metabolism and physiology in health and disease. The commentary describes advantages and drawbacks of current approaches to assessing metabolism and highlights the challenges to be overcome as we strive to achieve a deeper level of metabolic understanding in the future.
Collapse
Affiliation(s)
- Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Jannell V Bazurto
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Anuj Gupta
- Department of Biomedical Engineering, Georgia Institute of Technology, 950 Atlantic Drive, Suite 2115, Atlanta, GA, 30332-2000, USA
| | - Luis L Fonseca
- Department of Biomedical Engineering, Georgia Institute of Technology, 950 Atlantic Drive, Suite 2115, Atlanta, GA, 30332-2000, USA
| | - Eberhard O Voit
- Department of Biomedical Engineering, Georgia Institute of Technology, 950 Atlantic Drive, Suite 2115, Atlanta, GA, 30332-2000, USA
| |
Collapse
|
19
|
Imine Deaminase Activity and Conformational Stability of UK114, the Mammalian Member of the Rid Protein Family Active in Amino Acid Metabolism. Int J Mol Sci 2018; 19:ijms19040945. [PMID: 29565811 PMCID: PMC5979572 DOI: 10.3390/ijms19040945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/18/2022] Open
Abstract
Reactive intermediate deaminase (Rid) protein family is a recently discovered group of enzymes that is conserved in all domains of life and is proposed to play a role in the detoxification of reactive enamines/imines. UK114, the mammalian member of RidA subfamily, was identified in the early 90s as a component of perchloric acid-soluble extracts from goat liver and exhibited immunomodulatory properties. Multiple activities were attributed to this protein, but its function is still unclear. This work addressed the question of whether UK114 is a Rid enzyme. Biochemical analyses demonstrated that UK114 hydrolyzes α-imino acids generated by l- or d-amino acid oxidases with a preference for those deriving from Ala > Leu = l-Met > l-Gln, whereas it was poorly active on l-Phe and l-His. Circular Dichroism (CD) analyses of UK114 conformational stability highlighted its remarkable resistance to thermal unfolding, even at high urea concentrations. The half-life of heat inactivation at 95 °C, measured from CD and activity data, was about 3.5 h. The unusual conformational stability of UK114 could be relevant in the frame of a future evaluation of its immunogenic properties. In conclusion, mammalian UK114 proteins are RidA enzymes that may play an important role in metabolism homeostasis also in these organisms.
Collapse
|
20
|
Ernst DC, Downs DM. Mmf1p Couples Amino Acid Metabolism to Mitochondrial DNA Maintenance in Saccharomyces cerevisiae. mBio 2018; 9:e00084-18. [PMID: 29487232 PMCID: PMC5829821 DOI: 10.1128/mbio.00084-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
A variety of metabolic deficiencies and human diseases arise from the disruption of mitochondrial enzymes and/or loss of mitochondrial DNA. Mounting evidence shows that eukaryotes have conserved enzymes that prevent the accumulation of reactive metabolites that cause stress inside the mitochondrion. 2-Aminoacrylate is a reactive enamine generated by pyridoxal 5'-phosphate-dependent α,β-eliminases as an obligatory intermediate in the breakdown of serine. In prokaryotes, members of the broadly conserved RidA family (PF14588) prevent metabolic stress by deaminating 2-aminoacrylate to pyruvate. Here, we demonstrate that unmanaged 2-aminoacrylate accumulation in Saccharomyces cerevisiae mitochondria causes transient metabolic stress and the irreversible loss of mitochondrial DNA. The RidA family protein Mmf1p deaminates 2-aminoacrylate, preempting metabolic stress and loss of the mitochondrial genome. Disruption of the mitochondrial pyridoxal 5'-phosphate-dependent serine dehydratases (Ilv1p and Cha1p) prevents 2-aminoacrylate formation, avoiding stress in the absence of Mmf1p. Furthermore, chelation of iron in the growth medium improves maintenance of the mitochondrial genome in yeast challenged with 2-aminoacrylate, suggesting that 2-aminoacrylate-dependent loss of mitochondrial DNA is influenced by disruption of iron homeostasis. Taken together, the data indicate that Mmf1p indirectly contributes to mitochondrial DNA maintenance by preventing 2-aminoacrylate stress derived from mitochondrial amino acid metabolism.IMPORTANCE Deleterious reactive metabolites are produced as a consequence of many intracellular biochemical transformations. Importantly, reactive metabolites that appear short-lived in vitro have the potential to persist within intracellular environments, leading to pervasive cell damage and diminished fitness. To overcome metabolite damage, organisms utilize enzymatic reactive-metabolite defense systems to rid the cell of deleterious metabolites. In this report, we describe the importance of the RidA/YER057c/UK114 enamine/imine deaminase family in preventing 2-aminoacrylate stress in yeast. Saccharomyces cerevisiae lacking the enamine/imine deaminase Mmf1p was shown to experience pleiotropic growth defects and fails to maintain its mitochondrial genome. Our results provide the first line of evidence that uncontrolled 2-aminoacrylate stress derived from mitochondrial serine metabolism can negatively impact mitochondrial DNA maintenance in eukaryotes.
Collapse
Affiliation(s)
- Dustin C Ernst
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
21
|
Endogenously generated 2-aminoacrylate inhibits motility in Salmonella enterica. Sci Rep 2017; 7:12971. [PMID: 29021529 PMCID: PMC5636819 DOI: 10.1038/s41598-017-13030-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/19/2017] [Indexed: 11/21/2022] Open
Abstract
Members of the broadly distributed Rid/YER057c/UK114 protein family have imine/enamine deaminase activity, notably on 2-aminoacrylate (2AA). Strains of Salmonella enterica, and other organisms lacking RidA, have diverse growth phenotypes, attributed to the accumulation of 2AA. In S. enterica, 2AA inactivates a number of pyridoxal 5’-phosephate(PLP)-dependent enzymes, some of which have been linked to the growth phenotypes of a ridA mutant. This study used transcriptional differences between S. enterica wild-type and ridA strains to explore the breadth of the cellular consequences that resulted from accumulation of 2AA. Accumulation of endogenously generated 2AA in a ridA mutant resulted in lower expression of genes encoding many flagellar assembly components, which led to a motility defect. qRT-PCR results were consistent with the motility phenotype of a ridA mutant resulting from a defect in FlhD4C2 activity. In total, the results of comparative transcriptomics correctly predicted a 2AA-dependent motility defect and identified additional areas of metabolism impacted by the metabolic stress of 2AA in Salmonella enterica. Further, the data emphasized the value of integrating global approaches with biochemical genetic approaches to understand the complex system of microbial metabolism.
Collapse
|
22
|
Hodge-Hanson KM, Downs DM. Members of the Rid protein family have broad imine deaminase activity and can accelerate the Pseudomonas aeruginosa D-arginine dehydrogenase (DauA) reaction in vitro. PLoS One 2017; 12:e0185544. [PMID: 28957411 PMCID: PMC5619798 DOI: 10.1371/journal.pone.0185544] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/14/2017] [Indexed: 11/18/2022] Open
Abstract
The Rid (YjgF/YER057c/UK114) protein family is a group of small, sequence diverse proteins that consists of eight subfamilies. The archetypal RidA subfamily is found in all domains, while the Rid1-7 subfamilies are present only in prokaryotes. Bacterial genomes often encode multiple members of the Rid superfamily. The best characterized member of this protein family, RidA from Salmonella enterica, is a deaminase that quenches the reactive metabolite 2-aminoacrylate generated by pyridoxal 5’-phosphate-dependent enzymes and ultimately spares certain enzymes from damage. The accumulation of 2-aminoacrylate can damage enzymes and lead to growth defects in bacteria, plants, and yeast. While all subfamily members have been annotated as imine deaminases based on the RidA characterization, experimental evidence to support this annotation exists for a single protein outside the RidA subfamily. Here we report that six proteins, spanning Rid subfamilies 1–3, deaminate a variety of imine/enamine substrates with differing specific activities. Proteins from the Rid2 and Rid3 subfamilies, but not from the RidA and Rid1 subfamilies deaminated iminoarginine, generated in situ by the Pseudomonas aeruginosa D-arginine dehydrogenase DauA. These data biochemically distinguished the subfamilies and showed Rid proteins have activity on a metabolite that is physiologically relevant in Pseudomonas and other bacteria.
Collapse
Affiliation(s)
- Kelsey M. Hodge-Hanson
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Diana M. Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|