1
|
Guiraud P, Germain E, Byrne D, Maisonneuve E. The YmgB-SpoT interaction triggers the stringent response in Escherichia coli. J Biol Chem 2023; 299:105429. [PMID: 37926282 PMCID: PMC10704370 DOI: 10.1016/j.jbc.2023.105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
Virtually all bacterial species synthesize (p)ppGpp (guanosine penta- or tetraphosphate), a pleiotropic regulator of the so-called stringent response, which controls many aspects of cellular physiology and metabolism. In Escherichia coli, (p)ppGpp levels are controlled by two homologous enzymes: the (p)ppGpp synthetase RelA and the bifunctional synthetase/hydrolase SpoT. We recently identified several protein candidates that can modulate (p)ppGpp levels in E. coli. In this work, we show that the putative two-component system connector protein YmgB can promote SpoT-dependent accumulation of ppGpp in E. coli. Importantly, we determined that the control of SpoT activities by YmgB is independent of its proposed role in the two-component Rcs system, and these two functions can be uncoupled. Using genetic and structure-function analysis, we show that the regulation of SpoT activities by YmgB occurs by functional and direct binding in vivo and in vitro to the TGS and Helical domains of SpoT. These results further support the role of these domains in controlling the reciprocal enzymatic states.
Collapse
Affiliation(s)
- Paul Guiraud
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France
| | - Elsa Germain
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France
| | - Deborah Byrne
- Protein Expression Facility, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ, Marseille, France
| | - Etienne Maisonneuve
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France.
| |
Collapse
|
2
|
Das S, Chatterjee A, Datta PP. Knockdown Experiment Reveals an Essential GTPase CgtA's Involvement in Growth, Viability, Motility, Morphology, and Persister Phenotypes in Vibrio cholerae. Microbiol Spectr 2023; 11:e0318122. [PMID: 36916969 PMCID: PMC10100748 DOI: 10.1128/spectrum.03181-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
CgtA is an essential bacterial GTPase consisting of a highly conserved N-terminal Spo0B-associated GTP-binding protein (Obg) domain, a central GTPase domain, and a variable C-terminal domain (CTD). This study reports global changes in the proteome and transcriptome of wild-type (Wt) versus full-length CgtA-depleted Vibrio cholerae in minimal media. Comparative transcriptome sequencing (RNA-Seq), followed by comparative proteomic analyses, revealed that the knockdown of cgtA significantly altered expressions of 311 proteins involved in diverse cellular activities, many of which are associated with the survival of V. cholerae. Various intracellular functional roles of CgtA in growth, viability, motility, morphology, and persister phenotypes in V. cholerae are revealed based on subsequent confirmatory experiments. Furthermore, a more sustained mRNA expression pattern of cgtA in a minimal medium than in a rich medium was also observed for Wt V. cholerae, where the highest level of mRNA expression of cgtA was observed during the logarithmic growth phase. Thereby, we propose that minimal medium-associated reduced growth rate coupled with cgtA depletion aggravates the intracellular stress in V. cholerae, interrupting vital cellular processes. The functional role of the CTD in V. cholerae is not fully understood. Hence, to specifically investigate the intracellular role of the 57-amino-acid-long CTD of CgtAVC, the CTD-only portion of CgtA was deleted. Subsequent proteomics studies revealed an altered expression of 240 proteins in the CgtA(ΔCTD) mutant, having major overlap with the full-length cgtA-deleted condition. Overall, our study reveals an alternative facet of the survival mechanism of V. cholerae during nutritional downshift as per the concomitant consequences of cgtA depletion. IMPORTANCE It is very important that we must find new drug target proteins from multidrug-resistant human-pathogenic organisms like V. cholerae. CgtA is among such potential candidates, and here, we are reporting about some newly identified cellular roles of it that are important for the survival of V. cholerae. Briefly, we knocked down the full-length cgtA gene, as well as did a partial deletion of this gene from the V. cholerae genome followed by RNA-Seq and proteomics studies. Results from our study revealed up- and downregulation of several known and unknown genes and proteins as the effect of the cgtA knockdown experiment. Also, we have presented some interesting observations that are linked with cgtA for growth, viability, motility, morphology, and persister phenotypes in V. cholerae. Our study enhances the importance of CgtA and paves the way for further exploration based on our provided data.
Collapse
Affiliation(s)
- Sagarika Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Partha Pratim Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
3
|
Choi E, Huh A, Hwang J. Novel rRNA transcriptional activity of NhaR revealed by its growth recovery for the bipA-deleted Escherichia coli at low temperature. Front Mol Biosci 2023; 10:1175889. [PMID: 37152896 PMCID: PMC10157491 DOI: 10.3389/fmolb.2023.1175889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
The BipA protein is a universally conserved GTPase in bacterial species and is structurally similar to translational GTPases. Despite its wide distribution, BipA is dispensable for growth under optimal growth conditions but is required under stress conditions. In particular, bipA-deleted cells (ESC19) have been shown to display a variety of phenotypic changes in ribosome assembly, capsule production, lipopolysaccharide (LPS) synthesis, biofilm formation, and motility at low temperature, suggesting its global regulatory roles in cold adaptation. Here, through genomic library screening, we found a suppressor clone containing nhaR, which encodes a Na+-responsive LysR-type transcriptional regulator and whose gene product partially restored the growth of strain ESC19 at 20°C. The suppressed cells showed slightly reduced capsule production and improved biofilm-forming ability at 20°C, whereas the defects in the LPS core and swimming motility were not restored but aggravated by overexpression of nhaR. Notably, the overexpression partially alleviated the defects in 50S ribosomal subunit assembly and rRNA processing of ESC19 cells by enhancing the overall transcription of rRNA. Electrophoretic mobility shift assay revealed the association of NhaR with the promoter of seven rrn operons, suggesting that NhaR directly regulates rRNA transcription in ESC19 at 20°C. The suppressive effects of NhaR on ribosomes, capsules, and LPS were dependent on its DNA-binding activity, implying that NhaR might be a transcriptional factor involved in regulating these genes at 20°C. Furthermore, we found that BipA may be involved in adaptation to salt stress, designating BipA as a global stress-responsive regulator, as the deletion of bipA led to growth defects at 37°C and high Na+ concentrations without ribosomal defects.
Collapse
Affiliation(s)
- Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| | - Ahhyun Huh
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
- *Correspondence: Jihwan Hwang,
| |
Collapse
|
4
|
Das S, Datta PP. Effect of a single amino acid substitution G98D in a ribosome-associated essential GTPase, CgtA, on the growth and morphology of Vibrio cholerae. Arch Microbiol 2022; 204:617. [PMID: 36097213 DOI: 10.1007/s00203-022-03233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
CgtA, a highly conserved 50S ribosome-associated essential GTPase, acts as a repressor of the stringent stress response under nutrient-rich growth conditions to suppress basal levels of the alarmone ppGpp in V. cholerae. To further explore the in vivo functionality of CgtA, we introduced an amino acid substitution, i.e., Gly98Asp, in a conserved glycine residue in the N-terminal domain. The constructed V. cholerae mutant was designated CgtA(G98D). Comparison of cell sizes of the CgtA(G98D)mutant with its isogenic wild-type (Wt) strain N16961 under different phases of growth by Transmission Electron Microscopy (TEM) and statistical analysis suggests that CgtA may control the cell size of V. cholerae. The cell length is significantly reduced, corresponding to the delayed growth in the mid-logarithmic phase. The differences in the cell length of CgtA(G98D) and Wt are indistinguishable in the late logarithmic phase. During the stationary phase, marked by higher OD600, a sub-population of CgtA(G98D) cells outnumbered the Wt cells lengthwise. CgtA(G98D) cells appeared slenderer than Wt cells with significantly reduced cell width. However, the centerline curvature is preserved in CgtA(G98D) cells. We propose that in addition to its multitude of intracellular roles, CgtA may influence the cell size of V. cholerae.
Collapse
Affiliation(s)
- Sagarika Das
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohanpur, Nadia, Kolkata, 741246, West Bengal, India
| | - Partha Pratim Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohanpur, Nadia, Kolkata, 741246, West Bengal, India.
| |
Collapse
|
5
|
Wu C, Balakrishnan R, Braniff N, Mori M, Manzanarez G, Zhang Z, Hwa T. Cellular perception of growth rate and the mechanistic origin of bacterial growth law. Proc Natl Acad Sci U S A 2022; 119:e2201585119. [PMID: 35544692 PMCID: PMC9171811 DOI: 10.1073/pnas.2201585119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
Many cellular activities in bacteria are organized according to their growth rate. The notion that ppGpp measures the cell’s growth rate is well accepted in the field of bacterial physiology. However, despite decades of interrogation and the identification of multiple molecular interactions that connects ppGpp to some aspects of cell growth, we lack a system-level, quantitative picture of how this alleged “measurement” is performed. Through quantitative experiments, we show that the ppGpp pool responds inversely to the rate of translational elongation in Escherichia coli. Together with its roles in inhibiting ribosome biogenesis and activity, ppGpp closes a key regulatory circuit that enables the cell to perceive and control the rate of its growth across conditions. The celebrated linear growth law relating the ribosome content and growth rate emerges as a consequence of keeping a supply of ribosome reserves while maintaining elongation rate in slow growth conditions. Further analysis suggests the elongation rate itself is detected by sensing the ratio of dwelling and translocating ribosomes, a strategy employed to collapse the complex, high-dimensional dynamics of the molecular processes underlying cell growth to perceive the physiological state of the whole.
Collapse
Affiliation(s)
- Chenhao Wu
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Rohan Balakrishnan
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Nathan Braniff
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Matteo Mori
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Gabriel Manzanarez
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Zhongge Zhang
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Terence Hwa
- Department of Physics, University of California San Diego, La Jolla, CA 92093
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
6
|
How to save a bacterial ribosome in times of stress. Semin Cell Dev Biol 2022; 136:3-12. [PMID: 35331628 DOI: 10.1016/j.semcdb.2022.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
Abstract
Biogenesis of ribosomes is one of the most cost- and resource-intensive processes in all living cells. In bacteria, ribosome biogenesis is rate-limiting for growth and must be tightly coordinated to yield maximum fitness of the cells. Since bacteria are continuously facing environmental changes and stress conditions, they have developed sophisticated systems to sense and regulate their nutritional status. Amino acid starvation leads to the synthesis and accumulation of the nucleotide-based second messengers ppGpp and pppGpp [(p)ppGpp], which in turn function as central players of a pleiotropic metabolic adaptation mechanism named the stringent response. Here, we review our current knowledge on the multiple roles of (p)ppGpp in the stress-related modulation of the prokaryotic protein biosynthesis machinery with the ribosome as its core constituent. The alarmones ppGpp/pppGpp act as competitors of their GDP/GTP counterparts, to affect a multitude of ribosome-associated P-loop GTPases involved in the translation cycle, ribosome biogenesis and hibernation. A similar mode of inhibition has been found for the GTPases of the proteins involved in the SRP-dependent membrane-targeting machinery present in the periphery of the ribosome. In this sense, during stringent conditions, binding of (p)ppGpp restricts the membrane insertion and secretion of proteins. Altogether, we highlight the enormously resource-intensive stages of ribosome biogenesis as a critical regulatory hub of the stringent response that ultimately tunes the protein synthesis capacity and consequently the survival of the cell.
Collapse
|
7
|
Shimizu K, Matsuoka Y. Feedback regulation and coordination of the main metabolism for bacterial growth and metabolic engineering for amino acid fermentation. Biotechnol Adv 2021; 55:107887. [PMID: 34921951 DOI: 10.1016/j.biotechadv.2021.107887] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Living organisms such as bacteria are often exposed to continuous changes in the nutrient availability in nature. Therefore, bacteria must constantly monitor the environmental condition, and adjust the metabolism quickly adapting to the change in the growth condition. For this, bacteria must orchestrate (coordinate and integrate) the complex and dynamically changing information on the environmental condition. In particular, the central carbon metabolism (CCM), monomer synthesis, and macromolecular synthesis must be coordinately regulated for the efficient growth. It is a grand challenge in bioscience, biotechnology, and synthetic biology to understand how living organisms coordinate the metabolic regulation systems. Here, we consider the integrated sensing of carbon sources by the phosphotransferase system (PTS), and the feed-forward/feedback regulation systems incorporated in the CCM in relation to the pool sizes of flux-sensing metabolites and αketoacids. We also consider the metabolic regulation of amino acid biosynthesis (as well as purine and pyrimidine biosyntheses) paying attention to the feedback control systems consisting of (fast) enzyme level regulation with (slow) transcriptional regulation. The metabolic engineering for the efficient amino acid production by bacteria such as Escherichia coli and Corynebacterium glutamicum is also discussed (in relation to the regulation mechanisms). The amino acid synthesis is important for determining the rate of ribosome biosynthesis. Thus, the growth rate control (growth law) is further discussed on the relationship between (p)ppGpp level and the ribosomal protein synthesis.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Department of Fisheries Distribution and Management, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan
| |
Collapse
|
8
|
Meyer L, Germain E, Maisonneuve E. Regulation of ytfK by cAMP-CRP Contributes to SpoT-Dependent Accumulation of (p)ppGpp in Response to Carbon Starvation YtfK Responds to Glucose Exhaustion. Front Microbiol 2021; 12:775164. [PMID: 34803996 PMCID: PMC8600398 DOI: 10.3389/fmicb.2021.775164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Guanosine penta- or tetraphosphate (known as (p)ppGpp) serves as second messenger to respond to nutrient downshift and other environmental stresses, a phenomenon called stringent response. Accumulation of (p)ppGpp promotes the coordinated inhibition of macromolecule synthesis, as well as the activation of stress response pathways to cope and adapt to harmful conditions. In Escherichia coli, the (p)ppGpp level is tightly regulated by two enzymes, the (p)ppGpp synthetase RelA and the bifunctional synthetase/hydrolase SpoT. We recently identified the small protein YtfK as a key regulator of SpoT-mediated activation of stringent response in E. coli. Here, we further characterized the regulation of ytfK. We observed that ytfK is subjected to catabolite repression and is positively regulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex. Importantly, YtfK contributes to SpoT-dependent accumulation of (p)ppGpp and cell survival in response to glucose starvation. Therefore, regulation of ytfK by the cAMP-CRP appears important to adjust (p)ppGpp level and coordinate cellular metabolism in response to glucose availability.
Collapse
Affiliation(s)
- Laura Meyer
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France
| | - Elsa Germain
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France
| | - Etienne Maisonneuve
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France
| |
Collapse
|
9
|
(p)ppGpp controls stringent factors by exploiting antagonistic allosteric coupling between catalytic domains. Mol Cell 2021; 81:3310-3322.e6. [PMID: 34416138 DOI: 10.1016/j.molcel.2021.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/26/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023]
Abstract
Amino acid starvation is sensed by Escherichia coli RelA and Bacillus subtilis Rel through monitoring the aminoacylation status of ribosomal A-site tRNA. These enzymes are positively regulated by their product-the alarmone nucleotide (p)ppGpp-through an unknown mechanism. The (p)ppGpp-synthetic activity of Rel/RelA is controlled via auto-inhibition by the hydrolase/pseudo-hydrolase (HD/pseudo-HD) domain within the enzymatic N-terminal domain region (NTD). We localize the allosteric pppGpp site to the interface between the SYNTH and pseudo-HD/HD domains, with the alarmone stimulating Rel/RelA by exploiting intra-NTD autoinhibition dynamics. We show that without stimulation by pppGpp, starved ribosomes cannot efficiently activate Rel/RelA. Compromised activation by pppGpp ablates Rel/RelA function in vivo, suggesting that regulation by the second messenger (p)ppGpp is necessary for mounting an acute starvation response via coordinated enzymatic activity of individual Rel/RelA molecules. Control by (p)ppGpp is lacking in the E. coli (p)ppGpp synthetase SpoT, thus explaining its weak synthetase activity.
Collapse
|
10
|
Bange G, Brodersen DE, Liuzzi A, Steinchen W. Two P or Not Two P: Understanding Regulation by the Bacterial Second Messengers (p)ppGpp. Annu Rev Microbiol 2021; 75:383-406. [PMID: 34343020 DOI: 10.1146/annurev-micro-042621-122343] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Under stressful growth conditions and nutrient starvation, bacteria adapt by synthesizing signaling molecules that profoundly reprogram cellular physiology. At the onset of this process, called the stringent response, members of the RelA/SpoT homolog (RSH) protein superfamily are activated by specific stress stimuli to produce several hyperphosphorylated forms of guanine nucleotides, commonly referred to as (p)ppGpp. Some bifunctional RSH enzymes also harbor domains that allow for degradation of (p)ppGpp by hydrolysis. (p)ppGpp synthesis or hydrolysis may further be executed by single-domain alarmone synthetases or hydrolases, respectively. The downstream effects of (p)ppGpp rely mainly on direct interaction with specific intracellular effectors, which are widely used throughout most cellular processes. The growing number of identified (p)ppGpp targets allows us to deduce both common features of and differences between gram-negative and gram-positive bacteria. In this review, we give an overview of (p)ppGpp metabolism with a focus on the functional and structural aspects of the enzymes involved and discuss recent findings on alarmone-regulated cellular effectors. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gert Bange
- SYNMIKRO Research Center, Philipps-University Marburg, 35043 Marburg, Germany; .,Department of Chemistry, Philipps-University Marburg, 35043 Marburg, Germany
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Aarhus University, 8000 Aarhus C, Denmark
| | - Anastasia Liuzzi
- Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Aarhus University, 8000 Aarhus C, Denmark
| | - Wieland Steinchen
- SYNMIKRO Research Center, Philipps-University Marburg, 35043 Marburg, Germany; .,Department of Chemistry, Philipps-University Marburg, 35043 Marburg, Germany
| |
Collapse
|
11
|
Steinchen W, Ahmad S, Valentini M, Eilers K, Majkini M, Altegoer F, Lechner M, Filloux A, Whitney JC, Bange G. Dual role of a (p)ppGpp- and (p)ppApp-degrading enzyme in biofilm formation and interbacterial antagonism. Mol Microbiol 2021; 115:1339-1356. [PMID: 33448498 DOI: 10.1111/mmi.14684] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The guanosine nucleotide-based second messengers ppGpp and pppGpp (collectively: (p)ppGpp) enable adaptation of microorganisms to environmental changes and stress conditions. In contrast, the closely related adenosine nucleotides (p)ppApp are involved in type VI secretion system (T6SS)-mediated killing during bacterial competition. Long RelA-SpoT Homolog (RSH) enzymes regulate synthesis and degradation of (p)ppGpp (and potentially also (p)ppApp) through their synthetase and hydrolase domains, respectively. Small alarmone hydrolases (SAH) that consist of only a hydrolase domain are found in a variety of bacterial species, including the opportunistic human pathogen Pseudomonas aeruginosa. Here, we present the structure and mechanism of P. aeruginosa SAH showing that the enzyme promiscuously hydrolyses (p)ppGpp and (p)ppApp in a strictly manganese-dependent manner. While being dispensable for P. aeruginosa growth or swimming, swarming, and twitching motilities, its enzymatic activity is required for biofilm formation. Moreover, (p)ppApp-degradation by SAH provides protection against the T6SS (p)ppApp synthetase effector Tas1, suggesting that SAH enzymes can also serve as defense proteins during interbacterial competition.
Collapse
Affiliation(s)
- Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Shehryar Ahmad
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Kira Eilers
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Mohamad Majkini
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Florian Altegoer
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - John C Whitney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
12
|
Cheng-Guang H, Gualerzi CO. The Ribosome as a Switchboard for Bacterial Stress Response. Front Microbiol 2021; 11:619038. [PMID: 33584583 PMCID: PMC7873864 DOI: 10.3389/fmicb.2020.619038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/03/2020] [Indexed: 12/29/2022] Open
Abstract
As free-living organisms, bacteria are subject to continuous, numerous and occasionally drastic environmental changes to which they respond with various mechanisms which enable them to adapt to the new conditions so as to survive. Here we describe three situations in which the ribosome and its functions represent the sensor or the target of the stress and play a key role in the subsequent cellular response. The three stress conditions which are described are those ensuing upon: a) zinc starvation; b) nutritional deprivation, and c) temperature downshift.
Collapse
|
13
|
Sanyal R, Harinarayanan R. Activation of RelA by pppGpp as the basis for its differential toxicity over ppGpp in Escherichia coli. J Biosci 2020. [DOI: 10.1007/s12038-020-9991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Sanyal R, Vimala A, Harinarayanan R. Studies on the Regulation of (p)ppGpp Metabolism and Its Perturbation Through the Over-Expression of Nudix Hydrolases in Escherichia coli. Front Microbiol 2020; 11:562804. [PMID: 33178149 PMCID: PMC7593582 DOI: 10.3389/fmicb.2020.562804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022] Open
Abstract
Stringent response mediated by modified guanosine nucleotides is conserved across bacteria and is regulated through the Rel/Spo functions. In Escherichia coli, RelA and SpoT proteins synthesize the modified nucleotides ppGpp and pppGpp, together referred to as (p)ppGpp. SpoT is also the primary (p)ppGpp hydrolase. In this study, using hypomorphic relA alleles, we provide experimental evidence for SpoT-mediated negative regulation of the amplification of RelA-dependent stringent response. We investigated the kinetics of ppGpp degradation in cells recovering from stringent response in the complete absence of SpoT function. We found that, although greatly diminished, there was slow ppGpp degradation and growth resumption after a lag period, concomitant with decrease in ppGpp pool. We present evidence for reduction in the ppGpp degradation rate following an increase in pppGpp pool, during recovery from stringent response. From a genetic screen, the nudix hydrolases MutT and NudG were identified as over-expression suppressors of the growth defect of ΔspoT and ΔspoT ΔgppA strains. The effect of over-expression of these hydrolases on the stringent response to amino acid starvation and basal (p)ppGpp pool was studied. Over-expression of each hydrolase reduced the strength of the stringent response to amino acid starvation, and additionally, perturbed the ratio of ppGpp to pppGpp in strains with reduced SpoT hydrolase activity. In these strains that do not accumulate pppGpp during amino acid starvation, the expression of NudG or MutT supported pppGpp accumulation. This lends support to the idea that a reduction in the SpoT hydrolase activity is sufficient to cause the loss of pppGpp accumulation and therefore the phenomenon is independent of hydrolases that target pppGpp, such as GppA.
Collapse
Affiliation(s)
- Rajeshree Sanyal
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Allada Vimala
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rajendran Harinarayanan
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
15
|
Takada H, Roghanian M, Murina V, Dzhygyr I, Murayama R, Akanuma G, Atkinson GC, Garcia-Pino A, Hauryliuk V. The C-Terminal RRM/ACT Domain Is Crucial for Fine-Tuning the Activation of 'Long' RelA-SpoT Homolog Enzymes by Ribosomal Complexes. Front Microbiol 2020; 11:277. [PMID: 32184768 PMCID: PMC7058999 DOI: 10.3389/fmicb.2020.00277] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/06/2020] [Indexed: 11/19/2022] Open
Abstract
The (p)ppGpp-mediated stringent response is a bacterial stress response implicated in virulence and antibiotic tolerance. Both synthesis and degradation of the (p)ppGpp alarmone nucleotide are mediated by RelA-SpoT Homolog (RSH) enzymes which can be broadly divided in two classes: single-domain 'short' and multi-domain 'long' RSH. The regulatory ACT (Aspartokinase, Chorismate mutase and TyrA)/RRM (RNA Recognition Motif) domain is a near-universal C-terminal domain of long RSHs. Deletion of RRM in both monofunctional (synthesis-only) RelA as well as bifunctional (i.e., capable of both degrading and synthesizing the alarmone) Rel renders the long RSH cytotoxic due to overproduction of (p)ppGpp. To probe the molecular mechanism underlying this effect we characterized Escherichia coli RelA and Bacillus subtilis Rel RSHs lacking RRM. We demonstrate that, first, the cytotoxicity caused by the removal of RRM is counteracted by secondary mutations that disrupt the interaction of the RSH with the starved ribosomal complex - the ultimate inducer of (p)ppGpp production by RelA and Rel - and, second, that the hydrolytic activity of Rel is not abrogated in the truncated mutant. Therefore, we conclude that the overproduction of (p)ppGpp by RSHs lacking the RRM domain is not explained by a lack of auto-inhibition in the absence of RRM or/and a defect in (p)ppGpp hydrolysis. Instead, we argue that it is driven by misregulation of the RSH activation by the ribosome.
Collapse
Affiliation(s)
- Hiraku Takada
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Mohammad Roghanian
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Victoriia Murina
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Ievgen Dzhygyr
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Rikinori Murayama
- Akita Prefectural Research Center for Public Health and Environment, Akita, Japan
| | - Genki Akanuma
- Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | | | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
- WELBIO, Brussels, Belgium
| | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
16
|
Fitzsimmons LF, Liu L, Kant S, Kim JS, Till JK, Jones-Carson J, Porwollik S, McClelland M, Vazquez-Torres A. SpoT Induces Intracellular Salmonella Virulence Programs in the Phagosome. mBio 2020; 11:e03397-19. [PMID: 32098823 PMCID: PMC7042702 DOI: 10.1128/mbio.03397-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 01/19/2023] Open
Abstract
Guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), together named (p)ppGpp, regulate diverse aspects of Salmonella pathogenesis, including synthesis of nutrients, resistance to inflammatory mediators, and expression of secretion systems. In Salmonella, these nucleotide alarmones are generated by the synthetase activities of RelA and SpoT proteins. In addition, the (p)ppGpp hydrolase activity of the bifunctional SpoT protein is essential to preserve cell viability. The contribution of SpoT to physiology and pathogenesis has proven elusive in organisms such as Salmonella, because the hydrolytic activity of this RelA and SpoT homologue (RSH) is vital to prevent inhibitory effects of (p)ppGpp produced by a functional RelA. Here, we describe the biochemical and functional characterization of a spoT-Δctd mutant Salmonella strain encoding a SpoT protein that lacks the C-terminal regulatory elements collectively referred to as "ctd." Salmonella expressing the spoT-Δctd variant hydrolyzes (p)ppGpp with similar kinetics to those of wild-type bacteria, but it is defective at synthesizing (p)ppGpp in response to acidic pH. Salmonella spoT-Δctd mutants have virtually normal adaptations to nutritional, nitrosative, and oxidative stresses, but poorly induce metal cation uptake systems and Salmonella pathogenicity island 2 (SPI-2) genes in response to the acidic pH of the phagosome. Importantly, spoT-Δctd mutant Salmonella replicates poorly intracellularly and is attenuated in a murine model of acute salmonellosis. Collectively, these investigations indicate that (p)ppGpp synthesized by SpoT serves a unique function in the adaptation of Salmonella to the intracellular environment of host phagocytes that cannot be compensated by the presence of a functional RelA.IMPORTANCE Pathogenic bacteria experience nutritional challenges during colonization and infection of mammalian hosts. Binding of the alarmone nucleotide guanosine tetraphosphate (ppGpp) to RNA polymerase coordinates metabolic adaptations and virulence gene transcription, increasing the fitness of diverse Gram-positive and Gram-negative bacteria as well as that of actinomycetes. Gammaproteobacteria such as Salmonella synthesize ppGpp by the combined activities of the closely related RelA and SpoT synthetases. Due to its profound inhibitory effects on growth, ppGpp must be removed; in Salmonella, this process is catalyzed by the vital hydrolytic activity of the bifunctional SpoT protein. Because SpoT hydrolase activity is essential in cells expressing a functional RelA, we have a very limited understanding of unique roles these two synthetases may assume during interactions of bacterial pathogens with their hosts. We describe here a SpoT truncation mutant that lacks ppGpp synthetase activity and all C-terminal regulatory domains but retains excellent hydrolase activity. Our studies of this mutant reveal that SpoT uniquely senses the acidification of phagosomes, inducing virulence programs that increase Salmonella fitness in an acute model of infection. Our investigations indicate that the coexistence of RelA/SpoT homologues in a bacterial cell is driven by the need to mount a stringent response to a myriad of physiological and host-specific signatures.
Collapse
Affiliation(s)
- Liam F Fitzsimmons
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Lin Liu
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Sashi Kant
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Ju-Sim Kim
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - James K Till
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Jessica Jones-Carson
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Steffen Porwollik
- University of California Irvine, School of Medicine, Department of Microbiology and Molecular Genetics, Irvine, California, USA
| | - Michael McClelland
- University of California Irvine, School of Medicine, Department of Microbiology and Molecular Genetics, Irvine, California, USA
| | - Andres Vazquez-Torres
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, USA
- Veterans Affairs, Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
17
|
Sanyal R, Harinarayanan R. Activation of RelA by pppGpp as the basis for its differential toxicity over ppGpp in Escherichia coli. J Biosci 2020; 45:28. [PMID: 32020910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The nucleotide derivatives (p)ppGpp, comprising ppGpp and pppGpp, are important signalling molecules that control various facets of gene regulation and protein synthesis in Escherichia coli. Their synthesis is catalysed by RelA (in response to amino acid limitation) and by SpoT (in response to the limitation of carbon source or fatty acids). SpoT is also a hydrolase for degradation of both ppGpp and pppGpp, while GppA catalyses the conversion of pppGpp to ppGpp. Here we provide evidence to show that pppGpp exerts heightened toxicity compared to that by ppGpp. Thus, gppA spoT double mutants exhibited lethality under conditions in which the single mutants were viable. The extent of RelA-catalysed (p)ppGpp accumulation in the gppA spoT strain was substantially greater than that in its isogenic gppA+ derivative. The data is interpreted in terms of a model in which toxicity of pppGpp in the gppA spoT mutants is mediated by its activation of RelA so as to result in a vicious cycle of (p)ppGpp synthesis.
Collapse
Affiliation(s)
- Rajeshree Sanyal
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | | |
Collapse
|
18
|
Irving SE, Corrigan RM. Triggering the stringent response: signals responsible for activating (p)ppGpp synthesis in bacteria. MICROBIOLOGY-SGM 2019; 164:268-276. [PMID: 29493495 DOI: 10.1099/mic.0.000621] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The stringent response is a conserved bacterial stress response mechanism that allows bacteria to respond to nutritional challenges. It is mediated by the alarmones pppGpp and ppGpp, nucleotides that are synthesized and hydrolyzed by members of the RSH superfamily. Whilst there are key differences in the binding targets for (p)ppGpp between Gram-negative and Gram-positive bacterial species, the transient accumulation of (p)ppGpp caused by nutritional stresses results in a global change in gene expression in all species. The RSH superfamily of enzymes is ubiquitous throughout the bacterial kingdom, and can be split into three main groups: the long-RSH enzymes; the small alarmone synthetases (SAS); and the small alarmone hydrolases (SAH). Despite the prevalence of these enzymes, there are important differences in the way in which they are regulated on a transcriptional and post-translational level. Here we provide an overview of the diverse regulatory mechanisms that are involved in governing this crucial signalling network. Understanding how the RSH superfamily members are regulated gives insights into the varied important biological roles for this signalling pathway across the bacteria.
Collapse
Affiliation(s)
- Sophie E Irving
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rebecca M Corrigan
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
19
|
Ronneau S, Hallez R. Make and break the alarmone: regulation of (p)ppGpp synthetase/hydrolase enzymes in bacteria. FEMS Microbiol Rev 2019; 43:389-400. [PMID: 30980074 PMCID: PMC6606846 DOI: 10.1093/femsre/fuz009] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/21/2019] [Indexed: 11/24/2022] Open
Abstract
Bacteria use dedicated mechanisms to respond adequately to fluctuating environments and to optimize their chances of survival in harsh conditions. One of the major stress responses used by virtually all bacteria relies on the sharp accumulation of an alarmone, the guanosine penta- or tetra-phosphate commonly referred to as (p)ppGpp. Under stressful conditions, essentially nutrient starvation, these second messengers completely reshape the metabolism and physiology by coordinately modulating growth, transcription, translation and cell cycle. As a central regulator of bacterial stress response, the alarmone is also involved in biofilm formation, virulence, antibiotics tolerance and resistance in many pathogenic bacteria. Intracellular concentrations of (p)ppGpp are determined by a highly conserved and widely distributed family of proteins called RelA-SpoT Homologs (RSH). Recently, several studies uncovering mechanisms that regulate RSH activities have renewed a strong interest in this field. In this review, we outline the diversity of the RSH protein family as well as the molecular devices used by bacteria to integrate and transform environmental cues into intracellular (p)ppGpp levels.
Collapse
Affiliation(s)
- Séverin Ronneau
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Régis Hallez
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| |
Collapse
|
20
|
Lavdovskaia E, Kolander E, Steube E, Mai MMQ, Urlaub H, Richter-Dennerlein R. The human Obg protein GTPBP10 is involved in mitoribosomal biogenesis. Nucleic Acids Res 2019; 46:8471-8482. [PMID: 30085210 PMCID: PMC6144781 DOI: 10.1093/nar/gky701] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/23/2018] [Indexed: 12/29/2022] Open
Abstract
The human mitochondrial translation apparatus, which synthesizes the core subunits of the oxidative phosphorylation system, is of central interest as mutations in several genes encoding for mitoribosomal proteins or translation factors cause severe human diseases. Little is known, how this complex machinery assembles from nuclear-encoded protein components and mitochondrial-encoded RNAs, and which ancillary factors are required to form a functional mitoribosome. We have characterized the human Obg protein GTPBP10, which associates specifically with the mitoribosomal large subunit at a late maturation state. Defining its interactome, we have shown that GTPBP10 is in a complex with other mtLSU biogenesis factors including mitochondrial RNA granule components, the 16S rRNA module and late mtLSU assembly factors such as MALSU1, SMCR7L, MTERF4 and NSUN4. GTPBP10 deficiency leads to a drastic reduction in 55S monosome formation resulting in defective mtDNA-expression and in a decrease in cell growth. Our results suggest that GTPBP10 is a ribosome biogenesis factor of the mtLSU required for late stages of maturation.
Collapse
Affiliation(s)
- Elena Lavdovskaia
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Elisa Kolander
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Emely Steube
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Mandy Mong-Quyen Mai
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | | |
Collapse
|
21
|
Hapeshi A, Benarroch JM, Clarke DJ, Waterfield NR. Iso-propyl stilbene: a life cycle signal? MICROBIOLOGY-SGM 2019; 165:516-526. [PMID: 30882293 DOI: 10.1099/mic.0.000790] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Members of the Gram-negative bacterial genus Photorhabdus are all highly insect pathogenic and exist in an obligate symbiosis with the entomopathogenic nematode worm Heterorhabditis. All members of the genus produce the small-molecule 3,5-dihydroxy-4-isopropyl-trans-stilbene (IPS) as part of their secondary metabolism. IPS is a multi-potent compound that has antimicrobial, antifungal, immunomodulatory and anti-cancer activities and also plays an important role in symbiosis with the nematode. In this study we have examined the response of Photorhabdus itself to exogenous ectopic addition of IPS at physiologically relevant concentrations. We observed that the bacteria had a measureable phenotypic response, which included a decrease in bioluminescence and pigment production. This was reflected in changes in its transcriptomic response, in which we reveal a reduction in transcript levels of genes relating to many fundamental cellular processes, such as translation and oxidative phosphorylation. Our observations suggest that IPS plays an important role in the biology of Photorhabdus bacteria, fulfilling roles in quorum sensing, antibiotic-competition advantage and maintenance of the symbiotic developmental cycle.
Collapse
Affiliation(s)
- Alexia Hapeshi
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jonatan Mimon Benarroch
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - David James Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nicholas Robin Waterfield
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
22
|
Li SHJ, Li Z, Park JO, King CG, Rabinowitz JD, Wingreen NS, Gitai Z. Escherichia coli translation strategies differ across carbon, nitrogen and phosphorus limitation conditions. Nat Microbiol 2018; 3:939-947. [PMID: 30038306 DOI: 10.1038/s41564-018-0199-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/15/2018] [Indexed: 11/09/2022]
Abstract
For cells to grow faster they must increase their protein production rate. Microorganisms have traditionally been thought to accomplish this increase by producing more ribosomes to enhance protein synthesis capacity, leading to the linear relationship between ribosome level and growth rate observed under most growth conditions previously examined. Past studies have suggested that this linear relationship represents an optimal resource allocation strategy for each growth rate, independent of any specific nutrient state. Here we investigate protein production strategies in continuous cultures limited for carbon, nitrogen and phosphorus, which differentially impact substrate supply for protein versus nucleic acid metabolism. Unexpectedly, we find that at slow growth rates, Escherichia coli achieves the same protein production rate using three different strategies under the three different nutrient limitations. Under phosphorus (P) limitation, translation is slow due to a particularly low abundance of ribosomes, which are RNA-rich and thus particularly costly for phosphorous-limited cells. Under nitrogen (N) limitation, translation elongation is slowed by processes including ribosome stalling at glutamine codons. Under carbon (C) limitation, translation is slowed by accumulation of inactive ribosomes not bound to messenger RNA. These extra ribosomes enable rapid growth acceleration during nutrient upshift. Thus, bacteria tune ribosome usage across different limiting nutrients to enable balanced nutrient-limited growth while also preparing for future nutrient upshifts.
Collapse
Affiliation(s)
| | - Zhiyuan Li
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, USA
| | - Junyoung O Park
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA
| | | | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA. .,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
23
|
Kim HY, Go J, Lee KM, Oh YT, Yoon SS. Guanosine tetra- and pentaphosphate increase antibiotic tolerance by reducing reactive oxygen species production in Vibrio cholerae. J Biol Chem 2018; 293:5679-5694. [PMID: 29475943 PMCID: PMC5900777 DOI: 10.1074/jbc.ra117.000383] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/16/2018] [Indexed: 02/06/2023] Open
Abstract
The pathogen Vibrio cholerae is the causative agent of cholera. Emergence of antibiotic-resistant V. cholerae strains is increasing, but the underlying mechanisms remain unclear. Herein, we report that the stringent response regulator and stress alarmone guanosine tetra- and pentaphosphate ((p)ppGpp) significantly contributes to antibiotic tolerance in V. cholerae We found that N16961, a pandemic V. cholerae strain, and its isogenic (p)ppGpp-overexpressing mutant ΔrelAΔspoT are both more antibiotic-resistant than (p)ppGpp0 (ΔrelAΔrelVΔspoT) and ΔdksA mutants, which cannot produce or utilize (p)ppGpp, respectively. We also found that additional disruption of the aconitase B-encoding and tricarboxylic acid (TCA) cycle gene acnB in the (p)ppGpp0 mutant increases its antibiotic tolerance. Moreover, expression of TCA cycle genes, including acnB, was increased in (p)ppGpp0, but not in the antibiotic-resistant ΔrelAΔspoT mutant, suggesting that (p)ppGpp suppresses TCA cycle activity, thereby entailing antibiotic resistance. Importantly, when grown anaerobically or incubated with an iron chelator, the (p)ppGpp0 mutant became antibiotic-tolerant, suggesting that reactive oxygen species (ROS) are involved in antibiotic-mediated bacterial killing. Consistent with that hypothesis, tetracycline treatment markedly increased ROS production in the antibiotic-susceptible mutants. Interestingly, expression of the Fe(III) ABC transporter substrate-binding protein FbpA was increased 10-fold in (p)ppGpp0, and fbpA gene deletion restored viability of tetracycline-exposed (p)ppGpp0 cells. Of note, FbpA expression was repressed in the (p)ppGpp-accumulating mutant, resulting in a reduction of intracellular free iron, required for the ROS-generating Fenton reaction. Our results indicate that (p)ppGpp-mediated suppression of central metabolism and iron uptake reduces antibiotic-induced oxidative stress in V. cholerae.
Collapse
Affiliation(s)
- Hwa Young Kim
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea and
| | - Junhyeok Go
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea and
| | - Kang-Mu Lee
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea and
| | - Young Taek Oh
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, SangJu 37242, Korea, To whom correspondence may be addressed:
Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, SangJu-si 37242, Korea. Tel.:
82-54-530-0932; Fax:
82-54-530-0949; E-mail:
| | - Sang Sun Yoon
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea and , To whom correspondence may be addressed:
Dept. of Microbiology and Immunology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu Seoul 120-752, Korea. Tel.:
82-2-2228-1824; Fax:
82-2-392-7088; E-mail:
| |
Collapse
|
24
|
Tkachenko AG. Stress Responses of Bacterial Cells as Mechanism of Development of Antibiotic Tolerance (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818020114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Pokhilko A. Monitoring of nutrient limitation in growing E. coli: a mathematical model of a ppGpp-based biosensor. BMC SYSTEMS BIOLOGY 2017; 11:106. [PMID: 29157236 PMCID: PMC5697348 DOI: 10.1186/s12918-017-0490-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/10/2017] [Indexed: 11/26/2022]
Abstract
Background E. coli can be used as bacterial cell factories for production of biofuels and other useful compounds. The efficient production of the desired products requires careful monitoring of growth conditions and the optimization of metabolic fluxes. To avoid nutrient depletion and maximize product yields we suggest using a natural mechanism for sensing nutrient limitation, related to biosynthesis of an intracellular messenger - guanosine tetraphosphate (ppGpp). Results We propose a design for a biosensor, which monitors changes in the intracellular concentration of ppGpp by coupling it to a fluorescent output. We used mathematical modelling to analyse the intracellular dynamics of ppGpp, its fluorescent reporter, and cell growth in normal and fatty acid-producing E. coli lines. The model integrates existing mechanisms of ppGpp regulation and predicts the biosensor response to changes in nutrient state. In particular, the model predicts that excessive stimulation of fatty acid production depletes fatty acid intermediates, downregulates growth and increases the levels of ppGpp-related fluorescence. Conclusions Our analysis demonstrates that the ppGpp sensor can be used for early detection of nutrient limitation during cell growth and for testing productivity of engineered lines. Electronic supplementary material The online version of this article (10.1186/s12918-017-0490-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Pokhilko
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
26
|
The Production of Curli Amyloid Fibers Is Deeply Integrated into the Biology of Escherichia coli. Biomolecules 2017; 7:biom7040075. [PMID: 29088115 PMCID: PMC5745457 DOI: 10.3390/biom7040075] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 12/29/2022] Open
Abstract
Curli amyloid fibers are the major protein component of the extracellular matrix produced by Enterobacteriaceae during biofilm formation. Curli are required for proper biofilm development and environmental persistence by Escherichia coli. Here, we present a complete and vetted genetic analysis of functional amyloid fiber biogenesis. The Keio collection of single gene deletions was screened on Congo red indicator plates to identify E. coli mutants that had defective amyloid production. We discovered that more than three hundred gene products modulated curli production. These genes were involved in fundamental cellular processes such as regulation, environmental sensing, respiration, metabolism, cell envelope biogenesis, transport, and protein turnover. The alternative sigma factors, σS and σE, had opposing roles in curli production. Mutations that induced the σE or Cpx stress response systems had reduced curli production, while mutant strains with increased σS levels had increased curli production. Mutations in metabolic pathways, including gluconeogenesis and the biosynthesis of lipopolysaccharide (LPS), produced less curli. Regulation of the master biofilm regulator, CsgD, was diverse, and the screen revealed several proteins and small RNAs (sRNA) that regulate csgD messenger RNA (mRNA) levels. Using previously published studies, we found minimal overlap between the genes affecting curli biogenesis and genes known to impact swimming or swarming motility, underlying the distinction between motile and sessile lifestyles. Collectively, the diversity and number of elements required suggest curli production is part of a highly regulated and complex developmental pathway in E. coli.
Collapse
|
27
|
Gkekas S, Singh RK, Shkumatov AV, Messens J, Fauvart M, Verstraeten N, Michiels J, Versées W. Structural and biochemical analysis of Escherichia coli ObgE, a central regulator of bacterial persistence. J Biol Chem 2017; 292:5871-5883. [PMID: 28223358 DOI: 10.1074/jbc.m116.761809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/03/2017] [Indexed: 12/28/2022] Open
Abstract
The Obg protein family belongs to the TRAFAC (translation factor) class of P-loop GTPases and is conserved from bacteria to eukaryotes. Essential roles in many different cellular processes have been suggested for the Obg protein from Escherichia coli (ObgE), and we recently showed that it is a central regulator of bacterial persistence. Here, we report the first crystal structure of ObgE at 1.85-Å resolution in the GDP-bound state, showing the characteristic N-terminal domain and a central G domain that are common to all Obg proteins. ObgE also contains an intrinsically disordered C-terminal domain, and we show here that this domain specifically contributed to GTP binding, whereas it did not influence GDP binding or GTP hydrolysis. Biophysical analysis, using small angle X-ray scattering and multi-angle light scattering experiments, revealed that ObgE is a monomer in solution, regardless of the bound nucleotide. In contrast to recent suggestions, our biochemical analyses further indicate that ObgE is neither activated by K+ ions nor by homodimerization. However, the ObgE GTPase activity was stimulated upon binding to the ribosome, confirming the ribosome-dependent GTPase activity of the Obg family. Combined, our data represent an important step toward further unraveling the detailed molecular mechanism of ObgE, which might pave the way to further studies into how this GTPase regulates bacterial physiology, including persistence.
Collapse
Affiliation(s)
- Sotirios Gkekas
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Ranjan Kumar Singh
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Alexander V Shkumatov
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Joris Messens
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels.,the VIB-VUB Center for Structural Biology, 1050 Brussels
| | - Maarten Fauvart
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and.,the Department of Life Science Technologies, Smart Systems and Emerging Technologies Unit, IMEC, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and
| | - Jan Michiels
- the Centre of Microbial and Plant Genetics, KU Leuven, University of Leuven, 3001 Leuven, and
| | - Wim Versées
- From the Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, .,the VIB-VUB Center for Structural Biology, 1050 Brussels
| |
Collapse
|
28
|
Kamarthapu V, Epshtein V, Benjamin B, Proshkin S, Mironov A, Cashel M, Nudler E. ppGpp couples transcription to DNA repair in E. coli. Science 2016; 352:993-6. [PMID: 27199428 DOI: 10.1126/science.aad6945] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/07/2016] [Indexed: 12/29/2022]
Abstract
The small molecule alarmone (p)ppGpp mediates bacterial adaptation to nutrient deprivation by altering the initiation properties of RNA polymerase (RNAP). ppGpp is generated in Escherichia coli by two related enzymes, RelA and SpoT. We show that ppGpp is robustly, but transiently, induced in response to DNA damage and is required for efficient nucleotide excision DNA repair (NER). This explains why relA-spoT-deficient cells are sensitive to diverse genotoxic agents and ultraviolet radiation, whereas ppGpp induction renders them more resistant to such challenges. The mechanism of DNA protection by ppGpp involves promotion of UvrD-mediated RNAP backtracking. By rendering RNAP backtracking-prone, ppGpp couples transcription to DNA repair and prompts transitions between repair and recovery states.
Collapse
Affiliation(s)
- Venu Kamarthapu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA. Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Vitaly Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Bradley Benjamin
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Sergey Proshkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow 119991, Russia
| | - Alexander Mironov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow 119991, Russia
| | - Michael Cashel
- Division of Developmental Biology, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA. Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
29
|
Steinchen W, Bange G. The magic dance of the alarmones (p)ppGpp. Mol Microbiol 2016; 101:531-44. [PMID: 27149325 DOI: 10.1111/mmi.13412] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2016] [Indexed: 11/26/2022]
Abstract
The alarmones (p)ppGpp are important second messengers that orchestrate pleiotropic adaptations of bacteria and plant chloroplasts in response to starvation and stress. Here, we review our structural and mechanistic knowledge on (p)ppGpp metabolism including their synthesis, degradation and interconversion by a highly diverse set of enzymes. Increasing structural information shows how (p)ppGpp interacts with an incredibly diverse set of different targets that are essential for replication, transcription, translation, ribosome assembly and metabolism. This raises the question how the chemically rather simple (p)ppGpp is able to interact with these different targets? Structural analysis shows that the diversity of (p)ppGpp interaction with cellular targets critically relies on the conformational flexibility of the 3' and 5' phosphate moieties allowing alarmones to efficiently modulate the activity of target structures in a broad concentration range. Current approaches in the design of (p)ppGpp-analogs as future antibiotics might be aided by the comprehension of conformational flexibility exhibited by the magic dancers (p)ppGpp.
Collapse
Affiliation(s)
- Wieland Steinchen
- Department of Chemistry, LOEWE Center for Synthetic Microbiology (Synmikro), Philipps University Marburg, Hans-Meerwein-Strasse, Marburg, 35043, Germany
| | - Gert Bange
- Department of Chemistry, LOEWE Center for Synthetic Microbiology (Synmikro), Philipps University Marburg, Hans-Meerwein-Strasse, Marburg, 35043, Germany
| |
Collapse
|
30
|
Lawrence MG, Shamsuzzaman M, Kondopaka M, Pascual C, Zengel JM, Lindahl L. The extended loops of ribosomal proteins uL4 and uL22 of Escherichia coli contribute to ribosome assembly and protein translation. Nucleic Acids Res 2016; 44:5798-810. [PMID: 27257065 PMCID: PMC4937340 DOI: 10.1093/nar/gkw493] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 05/21/2016] [Indexed: 11/13/2022] Open
Abstract
Nearly half of ribosomal proteins are composed of a domain on the ribosome surface and a loop or extension that penetrates into the organelle's RNA core. Our previous work showed that ribosomes lacking the loops of ribosomal proteins uL4 or uL22 are still capable of entering polysomes. However, in those experiments we could not address the formation of mutant ribosomes, because we used strains that also expressed wild-type uL4 and uL22. Here, we have focused on ribosome assembly and function in strains in which loop deletion mutant genes are the only sources of uL4 or uL22 protein. The uL4 and uL22 loop deletions have different effects, but both mutations result in accumulation of immature particles that do not accumulate in detectable amounts in wild-type strains. Thus, our results suggest that deleting the loops creates kinetic barriers in the normal assembly pathway, possibly resulting in assembly via alternate pathway(s). Furthermore, deletion of the uL4 loop results in cold-sensitive ribosome assembly and function. Finally, ribosomes carrying either of the loop-deleted proteins responded normally to the secM translation pausing peptide, but the uL4 mutant responded very inefficiently to the cmlAcrb pause peptide.
Collapse
Affiliation(s)
- Marlon G Lawrence
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Md Shamsuzzaman
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Maithri Kondopaka
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Clarence Pascual
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Janice M Zengel
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
31
|
Tarusawa T, Ito S, Goto S, Ushida C, Muto A, Himeno H. (p)ppGpp-dependent and -independent pathways for salt tolerance inEscherichia coli. J Biochem 2016; 160:19-26. [DOI: 10.1093/jb/mvw008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/27/2015] [Indexed: 11/13/2022] Open
|
32
|
Verstraeten N, Knapen W, Kint C, Liebens V, Van den Bergh B, Dewachter L, Michiels J, Fu Q, David C, Fierro A, Marchal K, Beirlant J, Versées W, Hofkens J, Jansen M, Fauvart M, Michiels J. Obg and Membrane Depolarization Are Part of a Microbial Bet-Hedging Strategy that Leads to Antibiotic Tolerance. Mol Cell 2015; 59:9-21. [DOI: 10.1016/j.molcel.2015.05.011] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/20/2015] [Accepted: 05/01/2015] [Indexed: 10/25/2022]
|
33
|
Zielke RA, Wierzbicki IH, Baarda BI, Sikora AE. The Neisseria gonorrhoeae Obg protein is an essential ribosome-associated GTPase and a potential drug target. BMC Microbiol 2015; 15:129. [PMID: 26122105 PMCID: PMC4487204 DOI: 10.1186/s12866-015-0453-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/28/2015] [Indexed: 11/10/2022] Open
Abstract
Background Neisseria gonorrhoeae (GC) is a Gram-negative pathogen that most commonly infects mucosal surfaces, causing sexually transmitted urethritis in men and endocervicitis in women. Serious complications associated with these infections are frequent and include pelvic inflammatory disease, ectopic pregnancy, and infertility. The incidence of gonorrhea cases remains high globally while antibiotic treatment options, the sole counter measures against gonorrhea, are declining due to the remarkable ability of GC to acquire resistance. Evaluating of potential drug targets is essential to provide opportunities for developing antimicrobials with new mechanisms of action. We propose the GC Obg protein, belonging to the Obg/CgtA GTPase subfamily, as a potential target for the development of therapeutic interventions against gonorrhea, and in this study perform its initial functional and biochemical characterization. Results We report that NGO1990 encodes Obg protein, which is an essential factor for GC viability, associates predominantly with the large 50S ribosomal subunit, and is stably expressed under conditions relevant to infection of the human host. The anti-Obg antisera cross-reacts with a panel of contemporary GC clinical isolates, demonstrating the ubiquitous nature of Obg. The cellular levels of Obg reach a maximum in the early logarithmic phase and remain constant throughout bacterial growth. The in vitro binding and hydrolysis of the fluorescent guanine nucleotide analogs mant-GTP and mant-GDP by recombinant wild type and T192AT193A mutated variants of Obg are also assessed. Conclusions Characterization of the GC Obg at the molecular and functional levels presented herein may facilitate the future targeting of this protein with small molecule inhibitors and the evaluation of identified lead compounds for bactericidal activity against GC and other drug-resistant bacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0453-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryszard A Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 433 Weniger Hall, 103 SW Memorial Pl, Corvallis, OR, 97330, USA.
| | - Igor H Wierzbicki
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 433 Weniger Hall, 103 SW Memorial Pl, Corvallis, OR, 97330, USA.
| | - Benjamin I Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 433 Weniger Hall, 103 SW Memorial Pl, Corvallis, OR, 97330, USA.
| | - Aleksandra E Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 433 Weniger Hall, 103 SW Memorial Pl, Corvallis, OR, 97330, USA.
| |
Collapse
|
34
|
Many means to a common end: the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis. J Bacteriol 2015; 197:1146-56. [PMID: 25605304 DOI: 10.1128/jb.02577-14] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In nearly all bacterial species examined so far, amino acid starvation triggers the rapid accumulation of the nucleotide second messenger (p)ppGpp, the effector of the stringent response. While for years the enzymes involved in (p)ppGpp metabolism and the significance of (p)ppGpp accumulation to stress survival were considered well defined, a recent surge of interest in the field has uncovered an unanticipated level of diversity in how bacteria metabolize and utilize (p)ppGpp to rapidly synchronize a variety of biological processes important for growth and stress survival. In addition to the classic activation of the stringent response, it has become evident that (p)ppGpp exerts differential effects on cell physiology in an incremental manner rather than simply acting as a biphasic switch that controls growth or stasis. Of particular interest is the intimate relationship of (p)ppGpp with persister cell formation and virulence, which has spurred the pursuit of (p)ppGpp inhibitors as a means to control recalcitrant infections. Here, we present an overview of the enzymes responsible for (p)ppGpp metabolism, elaborate on the intricacies that link basal production of (p)ppGpp to bacterial homeostasis, and discuss the implications of targeting (p)ppGpp synthesis as a means to disrupt long-term bacterial survival strategies.
Collapse
|
35
|
Starosta AL, Lassak J, Jung K, Wilson DN. The bacterial translation stress response. FEMS Microbiol Rev 2014; 38:1172-201. [PMID: 25135187 DOI: 10.1111/1574-6976.12083] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/18/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022] Open
Abstract
Throughout their life, bacteria need to sense and respond to environmental stress. Thus, such stress responses can require dramatic cellular reprogramming, both at the transcriptional as well as the translational level. This review focuses on the protein factors that interact with the bacterial translational apparatus to respond to and cope with different types of environmental stress. For example, the stringent factor RelA interacts with the ribosome to generate ppGpp under nutrient deprivation, whereas a variety of factors have been identified that bind to the ribosome under unfavorable growth conditions to shut-down (RelE, pY, RMF, HPF and EttA) or re-program (MazF, EF4 and BipA) translation. Additional factors have been identified that rescue ribosomes stalled due to stress-induced mRNA truncation (tmRNA, ArfA, ArfB), translation of unfavorable protein sequences (EF-P), heat shock-induced subunit dissociation (Hsp15), or antibiotic inhibition (TetM, FusB). Understanding the mechanism of how the bacterial cell responds to stress will not only provide fundamental insight into translation regulation, but will also be an important step to identifying new targets for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Agata L Starosta
- Gene Center, Department for Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
36
|
Systematic production of inactivating and non-inactivating suppressor mutations at the relA locus that compensate the detrimental effects of complete spot loss and affect glycogen content in Escherichia coli. PLoS One 2014; 9:e106938. [PMID: 25188023 PMCID: PMC4154780 DOI: 10.1371/journal.pone.0106938] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/06/2014] [Indexed: 11/28/2022] Open
Abstract
In Escherichia coli, ppGpp is a major determinant of growth and glycogen accumulation. Levels of this signaling nucleotide are controlled by the balanced activities of the ppGpp RelA synthetase and the dual-function hydrolase/synthetase SpoT. Here we report the construction of spoT null (ΔspoT) mutants obtained by transducing a ΔspoT allele from ΔrelAΔspoT double mutants into relA+ cells. Iodine staining of randomly selected transductants cultured on a rich complex medium revealed differences in glycogen content among them. Sequence and biochemical analyses of 8 ΔspoT clones displaying glycogen-deficient phenotypes revealed different inactivating mutations in relA and no detectable ppGpp when cells were cultured on a rich complex medium. Remarkably, although the co-existence of ΔspoT with relA proficient alleles has generally been considered synthetically lethal, we found that 11 ΔspoT clones displaying high glycogen phenotypes possessed relA mutant alleles with non-inactivating mutations that encoded stable RelA proteins and ppGpp contents reaching 45–85% of those of wild type cells. None of the ΔspoT clones, however, could grow on M9-glucose minimal medium. Both Sanger sequencing of specific genes and high-throughput genome sequencing of the ΔspoT clones revealed that suppressor mutations were restricted to the relA locus. The overall results (a) defined in around 4 nmoles ppGpp/g dry weight the threshold cellular levels that suffice to trigger net glycogen accumulation, (b) showed that mutations in relA, but not necessarily inactivating mutations, can be selected to compensate total SpoT function(s) loss, and (c) provided useful tools for studies of the invivo regulation of E. coli RelA ppGpp synthetase.
Collapse
|
37
|
Brown DR, Barton G, Pan Z, Buck M, Wigneshweraraj S. Nitrogen stress response and stringent response are coupled in Escherichia coli. Nat Commun 2014; 5:4115. [PMID: 24947454 PMCID: PMC4066584 DOI: 10.1038/ncomms5115] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/13/2014] [Indexed: 01/10/2023] Open
Abstract
Assimilation of nitrogen is an essential process in bacteria. The nitrogen regulation stress response is an adaptive mechanism used by nitrogen-starved Escherichia coli to scavenge for alternative nitrogen sources and requires the global transcriptional regulator NtrC. In addition, nitrogen-starved E. coli cells synthesize a signal molecule, guanosine tetraphosphate (ppGpp), which serves as an effector molecule of many processes including transcription to initiate global physiological changes, collectively termed the stringent response. The regulatory mechanisms leading to elevated ppGpp levels during nutritional stresses remain elusive. Here, we show that transcription of relA, a key gene responsible for the synthesis of ppGpp, is activated by NtrC during nitrogen starvation. The results reveal that NtrC couples these two major bacterial stress responses to manage conditions of nitrogen limitation, and provide novel mechanistic insights into how a specific nutritional stress leads to elevating ppGpp levels in bacteria.
Collapse
Affiliation(s)
- Daniel R. Brown
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Geraint Barton
- Centre for Systems Biology and Bioinformatics, Division of Biosciences, Imperial College London, London SW7 2AZ, UK
| | - Zhensheng Pan
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
38
|
Feng B, Mandava CS, Guo Q, Wang J, Cao W, Li N, Zhang Y, Zhang Y, Wang Z, Wu J, Sanyal S, Lei J, Gao N. Structural and functional insights into the mode of action of a universally conserved Obg GTPase. PLoS Biol 2014; 12:e1001866. [PMID: 24844575 PMCID: PMC4028186 DOI: 10.1371/journal.pbio.1001866] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/10/2014] [Indexed: 01/13/2023] Open
Abstract
Kinetics and cryo-electronmicroscopy data provide insights into GTPase ObgE’s role as a ribosome anti-association factor that is modulated by nutrient availability, coupling growth control to ribosome biosynthesis and protein translation. Obg proteins are a family of P-loop GTPases, conserved from bacteria to human. The Obg protein in Escherichia coli (ObgE) has been implicated in many diverse cellular functions, with proposed molecular roles in two global processes, ribosome assembly and stringent response. Here, using pre-steady state fast kinetics we demonstrate that ObgE is an anti-association factor, which prevents ribosomal subunit association and downstream steps in translation by binding to the 50S subunit. ObgE is a ribosome dependent GTPase; however, upon binding to guanosine tetraphosphate (ppGpp), the global regulator of stringent response, ObgE exhibits an enhanced interaction with the 50S subunit, resulting in increased equilibrium dissociation of the 70S ribosome into subunits. Furthermore, our cryo-electron microscopy (cryo-EM) structure of the 50S·ObgE·GMPPNP complex indicates that the evolutionarily conserved N-terminal domain (NTD) of ObgE is a tRNA structural mimic, with specific interactions with peptidyl-transferase center, displaying a marked resemblance to Class I release factors. These structural data might define ObgE as a specialized translation factor related to stress responses, and provide a framework towards future elucidation of functional interplay between ObgE and ribosome-associated (p)ppGpp regulators. Together with published data, our results suggest that ObgE might act as a checkpoint in final stages of the 50S subunit assembly under normal growth conditions. And more importantly, ObgE, as a (p)ppGpp effector, might also have a regulatory role in the production of the 50S subunit and its participation in translation under certain stressed conditions. Thus, our findings might have uncovered an under-recognized mechanism of translation control by environmental cues. GTPases commonly act as molecular switches in biological systems. By oscillating between two conformational states, depending on the type of guanine nucleotide bound (GTP or GDP), GTPases are essential regulators of many aspects of cell biology. Additional levels of regulation can be acquired through the synthesis of other guanine nucleotide derivatives that target GTPases; for instance, when nutrients are limited, bacterial cells produce guanine tetraphosphate/pentaphosphate—(p)ppGpp—as part of the “stringent response” to adjust the balance between growth and survival. ObgE is a GTPase with many reported cellular functions that include ribosome biogenesis, but none of its functions is understood at the molecular level. Here we characterize, both biochemically and structurally, the binding of ObgE to its cellular partner, the 50S ribosomal subunit. Our results show that ObgE is an anti-association factor, which binds to the 50S subunit to block the formation of the 70S ribosome, thereby inhibiting the initiation of translation. Furthermore, the binding and anti-association activities of ObgE are regulated by guanine nucleotides, as well as by (p)ppGpp. We thus propose that ObgE is a checkpoint protein in the assembly of the 50S subunit, which senses the cellular energy stress via levels of (p)ppGpp and links ribosome assembly to other global growth control pathways.
Collapse
Affiliation(s)
- Boya Feng
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | | | - Qiang Guo
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Wang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wei Cao
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ningning Li
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yixiao Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhixin Wang
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiawei Wu
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
- * E-mail: (NG); (JL); (SS)
| | - Jianlin Lei
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail: (NG); (JL); (SS)
| | - Ning Gao
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail: (NG); (JL); (SS)
| |
Collapse
|
39
|
Oh YT, Park Y, Yoon MY, Bari W, Go J, Min KB, Raskin DM, Lee KM, Yoon SS. Cholera toxin production during anaerobic trimethylamine N-oxide respiration is mediated by stringent response in Vibrio cholerae. J Biol Chem 2014; 289:13232-42. [PMID: 24648517 DOI: 10.1074/jbc.m113.540088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As a facultative anaerobe, Vibrio cholerae can grow by anaerobic respiration. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly promoted during anaerobic growth using trimethylamine N-oxide (TMAO) as an alternative electron acceptor. Here, we investigated the molecular mechanisms of TMAO-stimulated CT production and uncovered the crucial involvement of stringent response in this process. V. cholerae 7th pandemic strain N16961 produced a significantly elevated level of ppGpp, the bacterial stringent response alarmone, during anaerobic TMAO respiration. Bacterial viability was impaired, and DNA replication was also affected under the same growth condition, further suggesting that stringent response is induced. A ΔrelA ΔspoT ppGpp overproducer strain produced an enhanced level of CT, whereas anaerobic growth via TMAO respiration was severely inhibited. In contrast, a ppGpp-null strain (ΔrelA ΔspoT ΔrelV) grew substantially better, but produced no CT, suggesting that CT production and bacterial growth are inversely regulated in response to ppGpp accumulation. Bacterial capability to produce CT was completely lost when the dksA gene, which encodes a protein that works cooperatively with ppGpp, was deleted. In the ΔdksA mutant, stringent response growth inhibition was alleviated, further supporting the inverse regulation of CT production and anaerobic growth. In vivo virulence of ΔrelA ΔspoT ΔrelV or ΔdksA mutants was significantly attenuated. The ΔrelA ΔspoT mutant maintained virulence when infected with exogenous TMAO despite its defective growth. Together, our results reveal that stringent response is activated under TMAO-stimulated anaerobic growth, and it regulates CT production in a growth-dependent manner in V. cholerae.
Collapse
Affiliation(s)
- Young Taek Oh
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science and
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen J, Bang WY, Lee Y, Kim S, Lee KW, Kim SW, Son YS, Kim DW, Akhter S, Bahk JD. AtObgC-AtRSH1 interaction may play a vital role in stress response signal transduction in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:176-84. [PMID: 24308987 DOI: 10.1016/j.plaphy.2013.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 10/16/2013] [Indexed: 05/24/2023]
Abstract
The interaction of Obg (Spo0B-associated GTP-binding protein) GTPase and SpoT, which is a bifunctional ppGpp (guanosine 3',5'-bispyrophosphate) hydrolase/synthetase, is vital for the modulation of intracellular ppGpp levels during bacterial responses to environmental cues. It has been recently reported that the ppGpp level is also inducible by various stresses in the chloroplasts of plant cells. However, the function of the Obg-SpoT interaction in plants remains elusive. The results from the present and previous studies suggest that AtRSH1 is a putative bacterial SpoT homolog in Arabidopsis and that its transcription levels are responsive to wounding and salt stresses. In this study, we used a yeast two-hybrid analysis to map the regions required for the AtObgC-AtRSH1 interaction. Moreover, protein-protein docking simulations revealed reasonable geometric and electrostatic complementarity in the binding surfaces of the two proteins. The data support our experimental results, which suggest that the conserved domains in AtObgC and the N terminus of AtRSH1 containing the TGS domain contribute to their interaction. In addition, quantitative real-time PCR (qRT-PCR) analyses showed that the expression of AtObgC and AtRSH1 exhibit a similar inhibition pattern under wounding and salt-stress conditions, but the inhibition pattern was not greatly influenced by the presence or absence of light. Based on in vivo analyses, we further confirmed that the AtRSH1 and AtObgC proteins similarly localize in chloroplasts. Based on these results, we propose that the AtObgC-AtRSH1 interaction plays a vital role in ppGpp-mediated stress responses in chloroplasts.
Collapse
Affiliation(s)
- Ji Chen
- Agronomy College, Sichuan Agricultural University, Chengdu 611130, China; Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Woo Young Bang
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA
| | - Yuno Lee
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Songmi Kim
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Se Won Kim
- Green Bio Research Center, Cabbage Genomics Assisted Breeding Supporting Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Young Sim Son
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dae Won Kim
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Salina Akhter
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jeong Dong Bahk
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
41
|
Kint C, Verstraeten N, Hofkens J, Fauvart M, Michiels J. Bacterial Obg proteins: GTPases at the nexus of protein and DNA synthesis. Crit Rev Microbiol 2013; 40:207-24. [PMID: 23537324 DOI: 10.3109/1040841x.2013.776510] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Obg proteins (also known as ObgE, YhbZ and CgtA) are conserved P-loop GTPases, essential for growth in bacteria. Like other GTPases, Obg proteins cycle between a GTP-bound ON and a GDP-bound OFF state, thereby controlling cellular processes. Interestingly, the in vitro biochemical properties of Obg proteins suggest that they act as sensors for the cellular GDP/GTP pools and adjust their activity according to the cellular energy status. Obg proteins have been attributed a host of cellular functions, including roles in essential cellular processes (DNA replication, ribosome maturation) and roles in different stress adaptation pathways (stringent response, sporulation, general stress response). This review summarizes the current knowledge on Obg activity and function. Furthermore, we present a model that integrates the different functions of Obg by assigning it a fundamental role in cellular physiology, at the hub of protein and DNA synthesis. In particular, we believe that Obg proteins might provide a connection between different global pathways in order to fine-tune cellular processes in response to a given energy status.
Collapse
Affiliation(s)
- Cyrielle Kint
- Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven , Kasteelpark Arenberg 20, 3001 Heverlee , Kasteelpark Arenberg 20, 3001 Heverlee and
| | | | | | | | | |
Collapse
|
42
|
Boutte CC, Crosson S. Bacterial lifestyle shapes stringent response activation. Trends Microbiol 2013; 21:174-80. [PMID: 23419217 DOI: 10.1016/j.tim.2013.01.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 01/24/2023]
Abstract
Bacteria inhabit enormously diverse niches and have a correspondingly large array of regulatory mechanisms to adapt to often inhospitable and variable environments. The stringent response (SR) allows bacteria to quickly reprogram transcription in response to changes in nutrient availability. Although the proteins controlling this response are conserved in almost all bacterial species, recent work has illuminated considerable diversity in the starvation cues and regulatory mechanisms that activate stringent signaling proteins in bacteria from different environments. In this review, we describe the signals and genetic circuitries that control the stringent signaling systems of a copiotroph, a bacteriovore, an oligotroph, and a mammalian pathogen -Escherichia coli, Myxococcus xanthus, Caulobacter crescentus, and Mycobacterium tuberculosis, respectively - and discuss how control of the SR in these species is adapted to their particular lifestyles.
Collapse
Affiliation(s)
- Cara C Boutte
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | | |
Collapse
|
43
|
The universally conserved prokaryotic GTPases. Microbiol Mol Biol Rev 2012; 75:507-42, second and third pages of table of contents. [PMID: 21885683 DOI: 10.1128/mmbr.00009-11] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.
Collapse
|
44
|
Boutte CC, Crosson S. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol Microbiol 2011; 80:695-714. [PMID: 21338423 PMCID: PMC3093662 DOI: 10.1111/j.1365-2958.2011.07602.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bacteria rapidly adapt to nutritional changes via the stringent response, which entails starvation-induced synthesis of the small molecule, ppGpp, by RelA/SpoT homologue (Rsh) enzymes. Binding of ppGpp to RNA polymerase modulates the transcription of hundreds of genes and remodels the physiology of the cell. Studies of the stringent response have primarily focused on copiotrophic bacteria such as Escherichia coli; little is known about how stringent signalling is regulated in species that live in consistently nutrient-limited (i.e. oligotrophic) environments. Here we define the input logic and transcriptional output of the stringent response in the oligotroph, Caulobacter crescentus. The sole Rsh protein, SpoT(CC), binds to and is regulated by the ribosome, and exhibits AND-type control logic in which amino acid starvation is a necessary but insufficient signal for activation of ppGpp synthesis. While both glucose and ammonium starvation upregulate the synthesis of ppGpp, SpoT(CC) detects these starvation signals by two independent mechanisms. Although the logic of stringent response control in C. crescentus differs from E. coli, the global transcriptional effects of elevated ppGpp are similar, with the exception of 16S rRNA transcription, which is controlled independently of spoT(CC). This study highlights how the regulatory logic controlling the stringent response may be adapted to the nutritional niche of a bacterial species.
Collapse
Affiliation(s)
- Cara C. Boutte
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- The Committee on Microbiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
Ferenci T, Galbiati HF, Betteridge T, Phan K, Spira B. The constancy of global regulation across a species: the concentrations of ppGpp and RpoS are strain-specific in Escherichia coli. BMC Microbiol 2011; 11:62. [PMID: 21439067 PMCID: PMC3074542 DOI: 10.1186/1471-2180-11-62] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/25/2011] [Indexed: 12/21/2022] Open
Abstract
Background Sigma factors and the alarmone ppGpp control the allocation of RNA polymerase to promoters under stressful conditions. Both ppGpp and the sigma factor σS (RpoS) are potentially subject to variability across the species Escherichia coli. To find out the extent of strain variation we measured the level of RpoS and ppGpp using 31 E. coli strains from the ECOR collection and one reference K-12 strain. Results Nine ECORs had highly deleterious mutations in rpoS, 12 had RpoS protein up to 7-fold above that of the reference strain MG1655 and the remainder had comparable or lower levels. Strain variation was also evident in ppGpp accumulation under carbon starvation and spoT mutations were present in several low-ppGpp strains. Three relationships between RpoS and ppGpp levels were found: isolates with zero RpoS but various ppGpp levels, strains where RpoS levels were proportional to ppGpp and a third unexpected class in which RpoS was present but not proportional to ppGpp concentration. High-RpoS and high-ppGpp strains accumulated rpoS mutations under nutrient limitation, providing a source of polymorphisms. Conclusions The ppGpp and σS variance means that the expression of genes involved in translation, stress and other traits affected by ppGpp and/or RpoS are likely to be strain-specific and suggest that influential components of regulatory networks are frequently reset by microevolution. Different strains of E. coli have different relationships between ppGpp and RpoS levels and only some exhibit a proportionality between increasing ppGpp and RpoS levels as demonstrated for E. coli K-12.
Collapse
Affiliation(s)
- Thomas Ferenci
- School of Molecular and Microbial Biosciences, The University of Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
46
|
Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA. Proc Natl Acad Sci U S A 2011; 108:5712-7. [PMID: 21402902 DOI: 10.1073/pnas.1019383108] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We show here that the promoters for many of the Escherichia coli ribosomal protein operons are regulated directly by two transcription factors, the small RNA polymerase-binding protein DksA and the nutritional stress-induced nucleotide ppGpp. ppGpp and DksA work together to inhibit transcription initiation from ribosomal protein promoters in vitro and in vivo. The degree of promoter regulation by ppGpp/DksA varies among the r-protein promoters, but some are inhibited almost as much as rRNA promoters. Thus, many r-protein operons are regulated at the level of transcription in addition to their control by the classic translational feedback systems discovered ~30 y ago. We conclude that direct control of r-protein promoters and rRNA promoters by the same signal, ppGpp/DksA, makes a major contribution to the balanced and coordinated synthesis rates of all of the ribosomal components.
Collapse
|
47
|
Sasindran SJ, Saikolappan S, Scofield VL, Dhandayuthapani S. Biochemical and physiological characterization of the GTP-binding protein Obg of Mycobacterium tuberculosis. BMC Microbiol 2011; 11:43. [PMID: 21352546 PMCID: PMC3056739 DOI: 10.1186/1471-2180-11-43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 02/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obg is a highly conserved GTP-binding protein that has homologues in bacteria, archaea and eukaryotes. In bacteria, Obg proteins are essential for growth, and they participate in spore formation, stress adaptation, ribosome assembly and chromosomal partitioning. This study was undertaken to investigate the biochemical and physiological characteristics of Obg in Mycobacterium tuberculosis, which causes tuberculosis in humans. RESULTS We overexpressed M. tuberculosis Obg in Escherichia coli and then purified the protein. This protein binds to, hydrolyzes and is phosphorylated with GTP. An anti-Obg antiserum, raised against the purified Obg, detects a 55 kDa protein in immunoblots of M. tuberculosis extracts. Immunoblotting also discloses that cultured M. tuberculosis cells contain increased amounts of Obg in the late log phase and in the stationary phase. Obg is also associated with ribosomes in M. tuberculosis, and it is distributed to all three ribosomal fractions (30 S, 50 S and 70 S). Finally, yeast two-hybrid analysis reveals that Obg interacts with the stress protein UsfX, indicating that M. tuberculosis Obg, like other bacterial Obgs, is a stress related protein. CONCLUSIONS Although its GTP-hydrolyzing and phosphorylating activities resemble those of other bacterial Obg homologues, M. tuberculosis Obg differs from them in these respects: (a) preferential association with the bacterial membrane; (b) association with all three ribosomal subunits, and (c) binding to the stress protein UsfX, rather than to RelA. Generation of mutant alleles of Obg of M. tuberculosis, and their characterization in vivo, may provide additional insights regarding its role in this important human pathogen.
Collapse
Affiliation(s)
- Smitha J Sasindran
- Regional Academic Health Center and Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, Edinburg, Texas 78541, USA
| | | | | | | |
Collapse
|
48
|
Bugrysheva JV, Godfrey HP, Schwartz I, Cabello FC. Patterns and regulation of ribosomal RNA transcription in Borrelia burgdorferi. BMC Microbiol 2011; 11:17. [PMID: 21251259 PMCID: PMC3037291 DOI: 10.1186/1471-2180-11-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 01/20/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Borrelia burgdorferi contains one 16S and two tandem sets of 23S-5S ribosomal (r) RNA genes whose patterns of transcription and regulation are unknown but are likely to be critical for survival and persistence in its hosts. RESULTS RT-PCR of B. burgdorferi N40 and B31 revealed three rRNA region transcripts: 16S rRNA-alanine transfer RNA (tRNA Ala); tRNA Ile; and both sets of 23S-5S rRNA. At 34°C, there were no differences in growth rate or in accumulation of total protein, DNA and RNA in B31 cultured in Barbour-Stoenner-Kelly (BSK)-H whether rabbit serum was present or not. At 23°C, B31 grew more slowly in serum-containing BSK-H than at 34°C. DNA per cell was higher in cells in exponential as compared to stationary phase at either temperature; protein per cell was similar at both temperatures in both phases. Similar amounts of rRNA were produced in exponential phase at both temperatures, and rRNA was down-regulated in stationary phase at either temperature. Interestingly, a rel Bbu deletion mutant unable to generate (p)ppGpp did not down-regulate rRNA at transition to stationary phase in serum-containing BSK-H at 34°C, similar to the relaxed phenotype of E. coli relA mutants. CONCLUSIONS We conclude that rRNA transcription in B. burgdorferi is complex and regulated both by growth phase and by the stringent response but not by temperature-modulated growth rate.
Collapse
MESH Headings
- Animals
- Borrelia burgdorferi/genetics
- Borrelia burgdorferi/growth & development
- Culture Media
- DNA, Bacterial/genetics
- DNA, Ribosomal/genetics
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Genes, rRNA
- Molecular Sequence Data
- Polymerase Chain Reaction
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 5S/genetics
- RNA, Transfer, Ala/genetics
- Rabbits
- Transcription, Genetic
Collapse
Affiliation(s)
- Julia V Bugrysheva
- Department of Microbiology and Immunology, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA
| | - Henry P Godfrey
- Department of Pathology, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA
| | - Ira Schwartz
- Department of Microbiology and Immunology, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA
| | - Felipe C Cabello
- Department of Microbiology and Immunology, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
49
|
Vanterpool E, Aruni AW, Roy F, Fletcher HM. regT can modulate gingipain activity and response to oxidative stress in Porphyromonas gingivalis. MICROBIOLOGY-SGM 2010; 156:3065-3072. [PMID: 20595264 PMCID: PMC3068696 DOI: 10.1099/mic.0.038315-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recombinant VimA protein can interact with the gingipains and several other proteins that may play a role in its biogenesis in Porphyromonas gingivalis. In silico analysis of PG2096, a hypothetical protein that was shown to interact with VimA, suggests that it may have environmental stress resistance properties. To further evaluate the role(s) of PG2096, the predicted open reading frame was PCR amplified from P. gingivalis W83 and insertionally inactivated using the ermF-ermAM antibiotic-resistance cassette. One randomly chosen PG2096-defective mutant created by allelic exchange and designated FLL205 was further characterized. Under normal growth conditions at 37 °C, Arg-X and Lys-X gingipain activities in FLL205 were reduced by approximately 35 % and 21 %, respectively, compared to the wild-type strain. However, during prolonged growth at an elevated temperature of 42 °C, Arg-X activity was increased by more than 40 % in FLL205 in comparison to the wild-type strain. In addition, the PG2096-defective mutant was more resistant to oxidative stress when treated with 0.25 mM hydrogen peroxide. Taken together these results suggest that the PG2096 gene, designated regT (regulator of gingipain activity at elevated temperatures), may be involved in regulating gingipain activity at elevated temperatures and be important in oxidative stress resistance in P. gingivalis.
Collapse
Affiliation(s)
- E Vanterpool
- Department of Biological Sciences, Oakwood University, Huntsville, AL 35896, USA
| | - A Wilson Aruni
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - F Roy
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - H M Fletcher
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
50
|
Bratlie MS, Johansen J, Drabløs F. Relationship between operon preference and functional properties of persistent genes in bacterial genomes. BMC Genomics 2010; 11:71. [PMID: 20109203 PMCID: PMC2837039 DOI: 10.1186/1471-2164-11-71] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 01/28/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genes in bacteria may be organised into operons, leading to strict co-expression of the genes that participate in the same operon. However, comparisons between different bacterial genomes have shown that much of the operon structure is dynamic on an evolutionary time scale. This indicates that there are opposing effects influencing the tendency for operon formation, and these effects may be reflected in properties like evolutionary rate, complex formation, metabolic pathways and gene fusion. RESULTS We have used multi-species protein-protein comparisons to generate a high-quality set of genes that are persistent in bacterial genomes (i.e. they have close to universal distribution). We have analysed these genes with respect to operon participation and important functional properties, including evolutionary rate and protein-protein interactions. CONCLUSIONS Genes for ribosomal proteins show a very slow rate of evolution. This is consistent with a strong tendency for the genes to participate in operons and for their proteins to be involved in essential and well defined complexes. Persistent genes for non-ribosomal proteins can be separated into two classes according to tendency to participate in operons. Those with a strong tendency for operon participation make proteins with fewer interaction partners that seem to participate in relatively static complexes and possibly linear pathways. Genes with a weak tendency for operon participation tend to produce proteins with more interaction partners, but possibly in more dynamic complexes and convergent pathways. Genes that are not regulated through operons are therefore more evolutionary constrained than the corresponding operon-associated genes and will on average evolve more slowly.
Collapse
Affiliation(s)
- Marit S Bratlie
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7006 Trondheim, Norway
| | | | | |
Collapse
|