1
|
Ricci L, Cen X, Zu Y, Antonicelli G, Chen Z, Fino D, Pirri FC, Stephanopoulos G, Woolston BM, Re A. Metabolic Engineering of E. coli for Enhanced Diols Production from Acetate. ACS Synth Biol 2025; 14:1204-1219. [PMID: 40103233 PMCID: PMC12012870 DOI: 10.1021/acssynbio.4c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Effective employment of renewable carbon sources is highly demanded to develop sustainable biobased manufacturing. Here, we developed Escherichia coli strains to produce 2,3-butanediol and acetoin (collectively referred to as diols) using acetate as the sole carbon source by stepwise metabolic engineering. When tested in fed-batch experiments, the strain overexpressing the entire acetate utilization pathway was found to consume acetate at a 15% faster rate (0.78 ± 0.05 g/g/h) and to produce a 35% higher diol titer (1.16 ± 0.01 g/L) than the baseline diols-producing strain. Moreover, singularly overexpressing the genes encoding alternative acetate uptake pathways as well as alternative isoforms of genes in the malate-to-pyruvate pathway unveiled that leveraging ackA-pta and maeA is more effective in enhancing acetate consumption and diols production, compared to acs and maeB. Finally, the increased substrate consumption rate and diol production obtained in flask-based experiments were confirmed in bench-scale bioreactors operated in fed-batch mode. Consequently, the highest titer of 1.56 g/L achieved in this configuration increased by over 30% compared to the only other similar effort carried out so far.
Collapse
Affiliation(s)
- Luca Ricci
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02142, United States
- Centre
for Sustainable Future Technologies, Fondazione
Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- RINA
Consulting S.p.A., Energy Innovation Strategic
Centre, Via Antonio Cecchi,
6, 16129 Genoa, Italy
| | - Xuecong Cen
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02142, United States
- Department
of Chemical Engineering, Key Laboratory of Industrial Biocatalysis
(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yuexuan Zu
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02142, United States
| | - Giacomo Antonicelli
- Centre
for Sustainable Future Technologies, Fondazione
Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Zhen Chen
- Department
of Chemical Engineering, Key Laboratory of Industrial Biocatalysis
(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Debora Fino
- Centre
for Sustainable Future Technologies, Fondazione
Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Fabrizio C. Pirri
- Centre
for Sustainable Future Technologies, Fondazione
Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Gregory Stephanopoulos
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02142, United States
| | - Benjamin M. Woolston
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 223 Cullinane, Boston, Massachusetts 02115, United States
| | - Angela Re
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
2
|
Carter LM, MacFarlane CE, Karlock SP, Sen T, Kaar JL, Berberich JA, Boock JT. Increased cytoplasmic expression of PETase enzymes in E. coli. Microb Cell Fact 2024; 23:319. [PMID: 39582006 PMCID: PMC11587651 DOI: 10.1186/s12934-024-02585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Depolymerizing polyethylene terephthalate (PET) plastics using enzymes, such as PETase, offers a sustainable chemical recycling route. To enhance degradation, many groups have sought to engineer PETase for faster catalysis on PET and elevated stability. Considerably less effort has been focused toward expressing large quantities of the enzyme, which is necessary for large-scale application and widespread use. In this work, we evaluated several E. coli strains for their potential to produce soluble, folded, and active IsPETase, and moved the production to a benchtop bioreactor. As PETase is known to require disulfide bonds to be functional, we screened several disulfide-bond promoting strains of E. coli to produce IsPETase, FAST-PETase and Hot-PETase. RESULTS We found expression in SHuffle T7 Express results in higher active expression of IsPETase compared to standard E. coli production strains such as BL21(DE3), reaching a purified titer of 20 mg enzyme per L of culture from shake flasks using 2xLB medium. We characterized purified IsPETase on 4-nitrophenyl acetate and PET microplastics, showing the enzyme produced in the disulfide-bond promoting host has high activity. Using a complex medium with glycerol and a controlled bioreactor, IsPETase titer reached 104 mg per L for a 46-h culture. FAST-PETase was found to be produced at similar levels in BL21(DE3) or SHuffle T7 Express, with purified production reaching 65 mg per L culture when made in BL21(DE3). Hot-PETase titers were greatest in BL21(DE3) reaching 77 mg per L culture. CONCLUSIONS We provide protein expression methods to produce three important PETase variants. Importantly, for IsPETase, changing expression host, medium optimization and movement to a bioreactor resulted in a 50-fold improvement in production amount with a per cell dry weight productivity of 0.45 mgPETase gCDW-1 h-1, which is tenfold greater than that for K. pastoris. We show that the benefit of using SHuffle T7 Express for expression only extends to IsPETase, with FAST-PETase and Hot-PETase better produced and purified from BL21(DE3), which is unexpected given the number of cysteines present. This work represents a systematic evaluation of protein expression and purification conditions for PETase variants to permit further study of these important enzymes.
Collapse
Affiliation(s)
- Luke M Carter
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 E. High St., Engineering Building 64, Oxford, OH, 45056, USA
| | - Chris E MacFarlane
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 E. High St., Engineering Building 64, Oxford, OH, 45056, USA
| | - Samuel P Karlock
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 E. High St., Engineering Building 64, Oxford, OH, 45056, USA
| | - Tridwip Sen
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 E. High St., Engineering Building 64, Oxford, OH, 45056, USA
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Jason A Berberich
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 E. High St., Engineering Building 64, Oxford, OH, 45056, USA.
| | - Jason T Boock
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 E. High St., Engineering Building 64, Oxford, OH, 45056, USA.
| |
Collapse
|
3
|
Bae SH, Sim MS, Jeong KJ, He D, Kwon I, Kim TW, Kim HU, Choi JI. Intracellular Flux Prediction of Recombinant Escherichia coli Producing Gamma-Aminobutyric Acid. J Microbiol Biotechnol 2024; 34:978-984. [PMID: 38379308 DOI: 10.4014/jmb.2312.12022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
Genome-scale metabolic model (GEM) can be used to simulate cellular metabolic phenotypes under various environmental or genetic conditions. This study utilized the GEM to observe the internal metabolic fluxes of recombinant Escherichia coli producing gamma-aminobutyric acid (GABA). Recombinant E. coli was cultivated in a fermenter under three conditions: pH 7, pH 5, and additional succinic acids. External fluxes were calculated from cultivation results, and internal fluxes were calculated through flux optimization. Based on the internal flux analysis, glycolysis and pentose phosphate pathways were repressed under cultivation at pH 5, even though glutamate dehydrogenase increased GABA production. Notably, this repression was halted by adding succinic acid. Furthermore, proper sucA repression is a promising target for developing strains more capable of producing GABA.
Collapse
Affiliation(s)
- Sung Han Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Myung Sub Sim
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dan He
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Tae Wan Kim
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
4
|
Gruenberg MC, TerAvest MA. A common inducer molecule enhances sugar utilization by Shewanella oneidensis MR-1. J Ind Microbiol Biotechnol 2023; 50:kuad018. [PMID: 37537149 PMCID: PMC10549210 DOI: 10.1093/jimb/kuad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Shewanella oneidensis MR-1 is an electroactive bacterium that is a promising host for bioelectrochemical technologies, which makes it a common target for genetic engineering, including gene deletions and expression of heterologous pathways. Expression of heterologous genes and gene knockdown via CRISPRi in S. oneidensis are both frequently induced by β-D-1-thiogalactopyranoside (IPTG), a commonly used inducer molecule across many model organisms. Here, we report and characterize an unexpected phenotype; IPTG enhances the growth of wild-type S. oneidensis MR-1 on the sugar substrate N-acetylglucosamine (NAG). IPTG improves the carrying capacity of S. oneidensis growing on NAG while the growth rate remains similar to cultures without the inducer. Extracellular acetate accumulates faster and to a higher concentration in cultures without IPTG than those with it. IPTG appears to improve acetate metabolism, which combats the negative effect that acetate accumulation has on the growth of S. oneidensis with NAG. We recommend using extensive experimental controls and careful data interpretation when using both NAG and IPTG in S. oneidensis cultures.
Collapse
Affiliation(s)
- Megan C Gruenberg
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Michaela A TerAvest
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
5
|
Feng M, Gao B, Garcia LR, Sun Q. Microbiota-derived metabolites in regulating the development and physiology of Caenorhabditis elegans. Front Microbiol 2023; 14:1035582. [PMID: 36925470 PMCID: PMC10011103 DOI: 10.3389/fmicb.2023.1035582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Microbiota consist of microorganisms that provide essential health benefits and contribute to the animal's physiological homeostasis. Microbiota-derived metabolites are crucial mediators in regulating host development, system homeostasis, and overall fitness. In this review, by focusing on the animal model Caenorhabditis elegans, we summarize key microbial metabolites and their molecular mechanisms that affect animal development. We also provide, from a bacterial perspective, an overview of host-microbiota interaction networks used for maintaining host physiological homeostasis. Moreover, we discuss applicable methodologies for profiling new bacterial metabolites that modulate host developmental signaling pathways. Microbiota-derived metabolites have the potential to be diagnostic biomarkers for diseases, as well as promising targets for engineering therapeutic interventions against animal developmental or health-related defects.
Collapse
Affiliation(s)
- Min Feng
- Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Baizhen Gao
- Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - L Rene Garcia
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
6
|
Kutscha R, Pflügl S. Microbial Upgrading of Acetate into Value-Added Products-Examining Microbial Diversity, Bioenergetic Constraints and Metabolic Engineering Approaches. Int J Mol Sci 2020; 21:ijms21228777. [PMID: 33233586 PMCID: PMC7699770 DOI: 10.3390/ijms21228777] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 01/20/2023] Open
Abstract
Ecological concerns have recently led to the increasing trend to upgrade carbon contained in waste streams into valuable chemicals. One of these components is acetate. Its microbial upgrading is possible in various species, with Escherichia coli being the best-studied. Several chemicals derived from acetate have already been successfully produced in E. coli on a laboratory scale, including acetone, itaconic acid, mevalonate, and tyrosine. As acetate is a carbon source with a low energy content compared to glucose or glycerol, energy- and redox-balancing plays an important role in acetate-based growth and production. In addition to the energetic challenges, acetate has an inhibitory effect on microorganisms, reducing growth rates, and limiting product concentrations. Moreover, extensive metabolic engineering is necessary to obtain a broad range of acetate-based products. In this review, we illustrate some of the necessary energetic considerations to establish robust production processes by presenting calculations of maximum theoretical product and carbon yields. Moreover, different strategies to deal with energetic and metabolic challenges are presented. Finally, we summarize ways to alleviate acetate toxicity and give an overview of process engineering measures that enable sustainable acetate-based production of value-added chemicals.
Collapse
|
7
|
Kurgan G, Kurgan L, Schneider A, Onyeabor M, Rodriguez-Sanchez Y, Taylor E, Martinez R, Carbonell P, Shi X, Gu H, Wang X. Identification of major malate export systems in an engineered malate-producing Escherichia coli aided by substrate similarity search. Appl Microbiol Biotechnol 2019; 103:9001-9011. [DOI: 10.1007/s00253-019-10164-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/27/2019] [Accepted: 09/28/2019] [Indexed: 01/29/2023]
|
8
|
Pinhal S, Ropers D, Geiselmann J, de Jong H. Acetate Metabolism and the Inhibition of Bacterial Growth by Acetate. J Bacteriol 2019; 201:e00147-19. [PMID: 30988035 PMCID: PMC6560135 DOI: 10.1128/jb.00147-19] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/26/2019] [Indexed: 11/24/2022] Open
Abstract
During aerobic growth on glucose, Escherichia coli excretes acetate, a mechanism called "overflow metabolism." At high concentrations, the secreted acetate inhibits growth. Several mechanisms have been proposed for explaining this phenomenon, but a thorough analysis is hampered by the diversity of experimental conditions and strains used in these studies. Here, we describe the construction of a set of isogenic strains that remove different parts of the metabolic network involved in acetate metabolism. Analysis of these strains reveals that (i) high concentrations of acetate in the medium inhibit growth without significantly perturbing central metabolism; (ii) growth inhibition persists even when acetate assimilation is completely blocked; and (iii) regulatory interactions mediated by acetyl-phosphate play a small but significant role in growth inhibition by acetate. The major contribution to growth inhibition by acetate may originate in systemic effects like the uncoupling effect of organic acids or the perturbation of the anion composition of the cell, as previously proposed. Our data suggest, however, that under the conditions considered here, the uncoupling effect plays only a limited role.IMPORTANCE High concentrations of organic acids such as acetate inhibit growth of Escherichia coli and other bacteria. This phenomenon is of interest for understanding bacterial physiology but is also of practical relevance. Growth inhibition by organic acids underlies food preservation and causes problems during high-density fermentation in biotechnology. What causes this phenomenon? Classical explanations invoke the uncoupling effect of acetate and the establishment of an anion imbalance. Here, we propose and investigate an alternative hypothesis: the perturbation of acetate metabolism due to the inflow of excess acetate. We find that this perturbation accounts for 20% of the growth-inhibitory effect through a modification of the acetyl phosphate concentration. Moreover, we argue that our observations are not expected based on uncoupling alone.
Collapse
Affiliation(s)
- Stéphane Pinhal
- Univ. Grenoble Alpes, CNRS, Laboratoire Interdisciplinaire de Physique, Grenoble, France
| | | | - Johannes Geiselmann
- Univ. Grenoble Alpes, CNRS, Laboratoire Interdisciplinaire de Physique, Grenoble, France
- Univ. Grenoble Alpes, Inria, Grenoble, France
| | | |
Collapse
|
9
|
Global Lysine Acetylation in Escherichia coli Results from Growth Conditions That Favor Acetate Fermentation. J Bacteriol 2019; 201:JB.00768-18. [PMID: 30782634 DOI: 10.1128/jb.00768-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 01/17/2023] Open
Abstract
Lysine acetylation is thought to provide a mechanism for regulating metabolism in diverse bacteria. Indeed, many studies have shown that the majority of enzymes involved in central metabolism are acetylated and that acetylation can alter enzyme activity. However, the details regarding this regulatory mechanism are still unclear, specifically with regard to the signals that induce lysine acetylation. To better understand this global regulatory mechanism, we profiled changes in lysine acetylation during growth of Escherichia coli on the hexose glucose or the pentose xylose at both high and low sugar concentrations using label-free mass spectrometry. The goal was to see whether lysine acetylation differed during growth on these two different sugars. No significant differences, however, were observed. Rather, the initial sugar concentration was the principal factor governing changes in lysine acetylation, with higher sugar concentrations causing more acetylation. These results suggest that acetylation does not target specific metabolic pathways but rather simply targets accessible lysines, which may or may not alter enzyme activity. They further suggest that lysine acetylation principally results from conditions that favor accumulation of acetyl phosphate, the principal acetate donor in E. coli IMPORTANCE Bacteria alter their metabolism in response to nutrient availability, growth conditions, and environmental stresses using a number of different mechanisms. One is lysine acetylation, a posttranslational modification known to target many metabolic enzymes. However, little is known about this regulatory mode. We investigated the factors inducing changes in lysine acetylation by comparing growth on glucose and xylose. We found that the specific sugar used for growth did not alter the pattern of acetylation; rather, the amount of sugar did, with more sugar causing more acetylation. These results imply that lysine acetylation is a global regulatory mechanism that is responsive not to the specific carbon source per se but rather to the accumulation of downstream metabolites.
Collapse
|
10
|
Christensen DG, Baumgartner JT, Xie X, Jew KM, Basisty N, Schilling B, Kuhn ML, Wolfe AJ. Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes. mBio 2019; 10:e02708-18. [PMID: 30967470 PMCID: PMC6456759 DOI: 10.1128/mbio.02708-18] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Posttranslational modification of a protein, either alone or in combination with other modifications, can control properties of that protein, such as enzymatic activity, localization, stability, or interactions with other molecules. N-ε-Lysine acetylation is one such modification that has gained attention in recent years, with a prevalence and significance that rival those of phosphorylation. This review will discuss the current state of the field in bacteria and some of the work in archaea, focusing on both mechanisms of N-ε-lysine acetylation and methods to identify, quantify, and characterize specific acetyllysines. Bacterial N-ε-lysine acetylation depends on both enzymatic and nonenzymatic mechanisms of acetylation, and recent work has shed light into the regulation of both mechanisms. Technological advances in mass spectrometry have allowed researchers to gain insight with greater biological context by both (i) analyzing samples either with stable isotope labeling workflows or using label-free protocols and (ii) determining the true extent of acetylation on a protein population through stoichiometry measurements. Identification of acetylated lysines through these methods has led to studies that probe the biological significance of acetylation. General and diverse approaches used to determine the effect of acetylation on a specific lysine will be covered.
Collapse
Affiliation(s)
- D G Christensen
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, USA
| | - J T Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - X Xie
- Buck Institute for Research on Aging, Novato, California, USA
| | - K M Jew
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - N Basisty
- Buck Institute for Research on Aging, Novato, California, USA
| | - B Schilling
- Buck Institute for Research on Aging, Novato, California, USA
| | - M L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - A J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|