1
|
Robledo M, Álvarez B, Cuevas A, González S, Ruano-Gallego D, Fernández L, de la Cruz F. Targeted bacterial conjugation mediated by synthetic cell-to-cell adhesions. Nucleic Acids Res 2022; 50:12938-12950. [PMID: 36511856 PMCID: PMC9825185 DOI: 10.1093/nar/gkac1164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic interventions on microbiomes, for clinical or biotechnological purposes, remain challenging. Conjugation-based delivery of genetic cargo is still unspecific and limited by low conjugation rates. Here we report an approach to overcome these problems, based on a synthetic bacterial adhesion system. Mating assemblers consist on a synthetic adhesion formed by the expression on the surface of donor and target cells of specific nanobodies (Nb) and their cognate antigen (Ag). The Nb-Ag bridge increased 1-3 logs transfer of a variety of plasmids, especially in liquid media, confirming that cell-cell docking is a main determinant limiting mating efficiency. Synthetic cell-to-cell adhesion allows efficient conjugation to targeted recipients, enhancing delivery of desired genes to a predefined subset of prey species, or even specific pathogenic strains such as enterohemorrhagic Escherichia coli (EHEC), within a bacterial community. The synthetic conjugation enhancer presented here optimizes plasmid delivery by selecting the target hosts with high selectivity.
Collapse
Affiliation(s)
- Marta Robledo
- Correspondence may also be addressed to Marta Robledo.
| | - Beatriz Álvarez
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Ana Cuevas
- Intergenomics Group, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, 39011, Santander, Spain
| | - Sheila González
- Intergenomics Group, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, 39011, Santander, Spain
| | - David Ruano-Gallego
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
2
|
Tozakidis IEP, Lüken LM, Üffing A, Meyers A, Jose J. Improving the autotransporter-based surface display of enzymes in Pseudomonas putida KT2440. Microb Biotechnol 2019; 13:176-184. [PMID: 31044490 PMCID: PMC6922575 DOI: 10.1111/1751-7915.13419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas putida can be used as a host for the autotransporter‐mediated surface display of enzymes (autodisplay), resulting in whole‐cell biocatalysts with recombinant functionalities on their cell envelope. The efficiency of autotransporter‐mediated secretion depends on the N‐terminal signal peptide as well as on the C‐terminal translocator domain of autotransporter fusion proteins. We set out to optimize autodisplay for P. putida as the host bacterium by comparing different signal peptides and translocator domains for the surface display of an esterase. The translocator domain did not have a considerable effect on the activity of the whole‐cell catalysts. In contrast, by using the signal peptide of the P. putida outer membrane protein OprF, the activity was more than 12‐fold enhanced to 638 mU ml−1 OD−1 compared with the signal peptide of V. cholerae CtxB (52 mU ml−1 OD−1). This positive effect was confirmed with a β‐glucosidase as a second example enzyme. Here, cells expressing the protein with N‐terminal OprF signal peptide showed more than fourfold higher β‐glucosidase activity (181 mU ml−1 OD−1) than with the CtxB signal peptide (42 mU ml−1 OD−1). SDS‐PAGE and flow cytometry analyses indicated that the increased activities correlated with an increased amount of recombinant protein in the outer membrane and a higher number of enzymes detectable on the cell surface.
Collapse
Affiliation(s)
- Iasson E P Tozakidis
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Lena M Lüken
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Alina Üffing
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Annika Meyers
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| |
Collapse
|
3
|
Molecular optimization of autotransporter-based tyrosinase surface display. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:486-494. [DOI: 10.1016/j.bbamem.2018.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/02/2018] [Accepted: 11/30/2018] [Indexed: 11/16/2022]
|
4
|
van Ulsen P, Zinner KM, Jong WSP, Luirink J. On display: autotransporter secretion and application. FEMS Microbiol Lett 2018; 365:5061625. [DOI: 10.1093/femsle/fny165] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Peter van Ulsen
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Katinka M Zinner
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | - Joen Luirink
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Abera Bioscience AB, SE-111 45 Stockholm, Sweden
| |
Collapse
|
5
|
Jong WSP, Schillemans M, ten Hagen-Jongman CM, Luirink J, van Ulsen P. Comparing autotransporter β-domain configurations for their capacity to secrete heterologous proteins to the cell surface. PLoS One 2018; 13:e0191622. [PMID: 29415042 PMCID: PMC5802855 DOI: 10.1371/journal.pone.0191622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/08/2018] [Indexed: 01/11/2023] Open
Abstract
Monomeric autotransporters have been extensively used for export of recombinant proteins to the cell surface of Gram-negative bacteria. A bottleneck in the biosynthesis of such constructs is the passage of the outer membrane, which is facilitated by the β-domain at the C terminus of an autotransporter in conjunction with the Bam complex in the outer membrane. We have evaluated eight β-domain constructs for their capacity to secrete fused proteins to the cell surface. These constructs derive from the monomeric autotransporters Hbp, IgA protease, Ag43 and EstA and the trimeric autotransporter Hia, which all were selected because they have been previously used for secretion of recombinant proteins. We fused three different protein domains to the eight β-domain constructs, being a Myc-tag, the Hbp passenger and a nanobody or VHH domain, and assessed expression, membrane insertion and surface exposure. Our results show that expression levels differed considerably between the constructs tested. The constructs that included the β-domains of Hbp and IgA protease appeared the most efficient and resulted in expression levels that were detectable on Coomassie-stained SDS-PAGE gels. The VHH domain appeared the most difficult fusion partner to export, probably due to its complex immunoglobulin-like structure with a tertiary structure stabilized by an intramolecular disulfide bond. Overall, the Hbp β-domain compared favorably in exporting the fused recombinant proteins, because it showed in every instance tested a good level of expression, stable membrane insertion and clear surface exposure.
Collapse
Affiliation(s)
- Wouter S. P. Jong
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Abera Bioscience AB, Stockholm, Sweden
- * E-mail: ;
| | | | - Corinne M. ten Hagen-Jongman
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joen Luirink
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Abera Bioscience AB, Stockholm, Sweden
| | - Peter van Ulsen
- Section Molecular Microbiology, Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- * E-mail: ;
| |
Collapse
|
6
|
Salema V, Fernández LÁ. Escherichia coli surface display for the selection of nanobodies. Microb Biotechnol 2017; 10:1468-1484. [PMID: 28772027 PMCID: PMC5658595 DOI: 10.1111/1751-7915.12819] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022] Open
Abstract
Nanobodies (Nbs) are the smallest functional antibody fragments known in nature and have multiple applications in biomedicine or environmental monitoring. Nbs are derived from the variable segment of camelid heavy chain-only antibodies, known as VHH. For selection, libraries of VHH gene segments from naïve, immunized animals or of synthetic origin have been traditionally cloned in E. coli phage display or yeast display systems, and clones binding the target antigen recovered, usually from plastic surfaces with the immobilized antigen (phage display) or using fluorescence-activated cell sorting (FACS; yeast display). This review briefly describes these conventional approaches and focuses on the distinct properties of an E. coli display system developed in our laboratory, which combines the benefits of both phage display and yeast display systems. We demonstrate that E. coli display using an N-terminal domain of intimin is an effective platform for the surface display of VHH libraries enabling selection of high-affinity Nbs by magnetic cell sorting and direct selection on live mammalian cells displaying the target antigen on their surface. Flow cytometry analysis of E. coli bacteria displaying the Nbs on their surface allows monitoring of the selection process, facilitates screening, characterization of antigen-binding clones, specificity, ligand competition and estimation of the equilibrium dissociation constant (KD ).
Collapse
Affiliation(s)
- Valencio Salema
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Luis Ángel Fernández
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología (CNB)Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| |
Collapse
|
7
|
Bodelón G, Marín E, Fernández LÁ. Analyzing the Role of Periplasmic Folding Factors in the Biogenesis of OMPs and Members of the Type V Secretion System. Methods Mol Biol 2015; 1329:77-110. [PMID: 26427678 DOI: 10.1007/978-1-4939-2871-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The outer membrane (OM) of gram-negative bacteria is highly packed with OM proteins (OMPs) and the trafficking and assembly of OMPs in gram-negative bacteria is a subject of intense research. Structurally, OMPs vary in the number of β-strands and in the size and complexity of extra-membrane domains, with extreme examples being the members of the type V protein secretion system (T5SS), such as the autotransporter (AT) and intimin/invasin families of secreted proteins, in which a large extracellular "passenger" domain is linked to a β-barrel that inserts in the OM. Despite their structural and functional diversity, OMPs interact in the periplasm with a relatively small set of protein chaperones that facilitate their transport from the inner membrane (IM) to the β-barrel assembly machinery (BAM complex), preventing aggregation and assisting their folding in various aspects including disulfide bond formation. This chapter is focused on the periplasmic folding factors involved in the biogenesis of integral OMPs and members of T5SS in E. coli, which are used as a model system in this field. Background information on these periplasmic folding factors is provided along with genetic methods to generate conditional mutants that deplete these factors from E. coli and biochemical methods to analyze the folding, surface display, disulfide formation and oligomerization state of OMPs/T5SS in these mutants.
Collapse
Affiliation(s)
- Gustavo Bodelón
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| | - Elvira Marín
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
8
|
Piñero-Lambea C, Bodelón G, Fernández-Periáñez R, Cuesta AM, Álvarez-Vallina L, Fernández LÁ. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synth Biol 2015; 4:463-73. [PMID: 25045780 PMCID: PMC4410913 DOI: 10.1021/sb500252a] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
In this work we report synthetic
adhesins (SAs) enabling the rational
design of the adhesion properties of E. coli. SAs
have a modular structure comprising a stable β-domain for outer
membrane anchoring and surface-exposed immunoglobulin domains with
high affinity and specificity that can be selected from large repertoires.
SAs are constitutively and stably expressed in an E. coli strain lacking a conserved set of natural adhesins, directing a
robust, fast, and specific adhesion of bacteria to target antigenic
surfaces and cells. We demonstrate the functionality of SAs in vivo, showing that, compared to wild type E.
coli, lower doses of engineered E. coli are
sufficient to colonize solid tumors expressing an antigen recognized
by the SA. In addition, lower levels of engineered bacteria were found
in non-target tissues. Therefore, SAs provide stable and specific
adhesion capabilities to E. coli against target surfaces
of interest for diverse applications using live bacteria.
Collapse
Affiliation(s)
- Carlos Piñero-Lambea
- Department
of Microbial Biotechnology, Centro Nacional de Biotecnología
(CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Gustavo Bodelón
- Department
of Microbial Biotechnology, Centro Nacional de Biotecnología
(CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | | | - Angel M. Cuesta
- Molecular
Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, 28222 Madrid, Spain
| | - Luis Álvarez-Vallina
- Molecular
Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, 28222 Madrid, Spain
| | - Luis Ángel Fernández
- Department
of Microbial Biotechnology, Centro Nacional de Biotecnología
(CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
9
|
Going beyond E. coli: autotransporter based surface display on alternative host organisms. N Biotechnol 2015; 32:644-50. [PMID: 25579193 DOI: 10.1016/j.nbt.2014.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/19/2014] [Accepted: 12/31/2014] [Indexed: 11/21/2022]
Abstract
Autotransporters represent one of the most popular anchoring motifs used to display peptides, proteins or enzymes on the cell surface of a Gram-negative bacterium. Applications range from vaccine delivery to library screenings to biocatalysis and bioremediation. Although the underlying secretion mechanism is supposed to be available in most, if not all, Gram-negative bacteria, autotransporters have to date almost exclusively been used for surface display on Escherichia coli. However, for their utilisation beyond a laboratory scale, in particular for biocatalysis, host bacteria with specific features and industrial applicability are required. A few groups have addressed this issue and demonstrated that bacteria other than E. coli can also be used for autotransporter based surface display. We summarise these studies and discuss opportunities and challenges that arise from surface display of recombinant proteins using the autotransporter pathway in alternative hosts.
Collapse
|
10
|
van Ulsen P, Rahman SU, Jong WS, Daleke-Schermerhorn MH, Luirink J. Type V secretion: From biogenesis to biotechnology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1592-611. [DOI: 10.1016/j.bbamcr.2013.11.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
|
11
|
Salema V, Marín E, Martínez-Arteaga R, Ruano-Gallego D, Fraile S, Margolles Y, Teira X, Gutierrez C, Bodelón G, Fernández LÁ. Selection of single domain antibodies from immune libraries displayed on the surface of E. coli cells with two β-domains of opposite topologies. PLoS One 2013; 8:e75126. [PMID: 24086454 PMCID: PMC3781032 DOI: 10.1371/journal.pone.0075126] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/08/2013] [Indexed: 01/21/2023] Open
Abstract
Screening of antibody (Ab) libraries by direct display on the surface of E. coli cells is hampered by the presence of the outer membrane (OM). In this work we demonstrate that the native β-domains of EhaA autotransporter and intimin, two proteins from enterohemorrhagic E. coli O157:H7 (EHEC) with opposite topologies in the OM, are effective systems for the display of immune libraries of single domain Abs (sdAbs) from camelids (nanobodies or VHH) on the surface of E. coli K-12 cells and for the selection of high affinity sdAbs using magnetic cell sorting (MACS). We analyzed the capacity of EhaA and intimin β-domains to display individual sdAbs and sdAb libraries obtained after immunization with the extracellular domain of the translocated intimin receptor from EHEC (TirMEHEC). We demonstrated that both systems displayed functional sdAbs on the surface of E. coli cells with little proteolysis and cellular toxicity, although E. coli cells displaying sdAbs with the β-domain of intimin showed higher antigen-binding capacity. Both E. coli display libraries were screened for TirMEHEC binding clones by MACS. High affinity binders were selected by both display systems, although more efficiently with the intimin β-domain. The specificity of the selected clones against TirMEHEC was demonstrated by flow cytometry of E. coli cells, along with ELISA and surface plasmon resonance with purified sdAbs. Finally, we employed the E. coli cell display systems to provide an estimation of the affinity of the selected sdAb by flow cytometry analysis under equilibrium conditions.
Collapse
Affiliation(s)
- Valencio Salema
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
| | - Elvira Marín
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
| | - Rocio Martínez-Arteaga
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
| | - David Ruano-Gallego
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
| | - Sofía Fraile
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
| | - Yago Margolles
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
| | - Xema Teira
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
| | - Carlos Gutierrez
- Department of Animal Medicine and Surgery, Veterinary Faculty, Universidad de Las Palmas de Gran Canaria (UPGC), Las Palmas, Canary Islands, Spain
| | - Gustavo Bodelón
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
12
|
Nicolay T, Vanderleyden J, Spaepen S. Autotransporter-based cell surface display in Gram-negative bacteria. Crit Rev Microbiol 2013; 41:109-23. [PMID: 23855358 DOI: 10.3109/1040841x.2013.804032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cell surface display of proteins can be used for several biotechnological applications such as the screening of protein libraries, whole cell biocatalysis and live vaccine development. Amongst all secretion systems and surface appendages of Gram-negative bacteria, the autotransporter secretion pathway holds great potential for surface display because of its modular structure and apparent simplicity. Autotransporters are polypeptides made up of an N-terminal signal peptide, a secreted or surface-displayed passenger domain and a membrane-anchored C-terminal translocation unit. Genetic replacement of the passenger domain allows for the surface display of heterologous passengers. An autotransporter-based surface expression module essentially consists of an application-dependent promoter system, a signal peptide, a passenger domain of interest and the autotransporter translocation unit. The passenger domain needs to be compatible with surface translocation although till now no general rules have been determined to test this compatibility. The autotransporter technology for surface display of heterologous passenger domains is critically discussed for various applications.
Collapse
Affiliation(s)
- Toon Nicolay
- Centre of Microbial and Plant Genetics , Leuven , Belgium
| | | | | |
Collapse
|
13
|
Grijpstra J, Arenas J, Rutten L, Tommassen J. Autotransporter secretion: varying on a theme. Res Microbiol 2013; 164:562-82. [PMID: 23567321 DOI: 10.1016/j.resmic.2013.03.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Autotransporters are widely distributed among Gram-negative bacteria. They can have a large variety of functions and many of them have a role in virulence. They are synthesized as large precursors with an N-terminal signal sequence that mediates transport across the inner membrane via the Sec machinery and a translocator domain that mediates the transport of the connected passenger domain across the outer membrane to the bacterial cell surface. Like integral outer membrane proteins, the translocator domain folds in a β-barrel structure and requires the Bam machinery for its insertion into the outer membrane. After transport across the outer membrane, the passenger may stay connected via the translocator domain to the bacterial cell surface or it is proteolytically released into the extracellular milieu. Based on the size of the translocator domain and its position relative to the passenger in the precursor, autotransporters are divided into four sub-categories. We review here the current knowledge of the biogenesis, structure and function of various autotransporters.
Collapse
Affiliation(s)
- Jan Grijpstra
- Section Molecular Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
14
|
Bodelón G, Palomino C, Fernández LÁ. Immunoglobulin domains inEscherichia coliand other enterobacteria: from pathogenesis to applications in antibody technologies. FEMS Microbiol Rev 2013; 37:204-50. [DOI: 10.1111/j.1574-6976.2012.00347.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/07/2012] [Accepted: 06/14/2012] [Indexed: 11/28/2022] Open
|
15
|
Nicolay T, Lemoine L, Lievens E, Balzarini S, Vanderleyden J, Spaepen S. Probing the applicability of autotransporter based surface display with the EstA autotransporter of Pseudomonas stutzeri A15. Microb Cell Fact 2012; 11:158. [PMID: 23237539 PMCID: PMC3546941 DOI: 10.1186/1475-2859-11-158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/11/2012] [Indexed: 11/10/2022] Open
Abstract
Background Autotransporters represent a widespread family of secreted proteins in Gram-negative bacteria. Their seemingly easy secretion mechanism and modular structure make them interesting candidates for cell surface display of heterologous proteins. The most widely applied host organism for this purpose is Escherichia coli. Pseudomonas stutzeri A15 is an interesting candidate host for environmentally relevant biotechnological applications. With the recently characterized P. stutzeri A15 EstA autotransporter at hand, all tools for developing a surface display system for environmental use are available. More general, this system could serve as a case-study to test the broad applicability of autotransporter based surface display. Results Based on the P. stutzeri A15 EstA autotransporter β-domain, a surface display expression module was constructed for use in P. stutzeri A15. Proof of concept of this module was presented by successful surface display of the original EstA passenger domain, which retained its full esterase activity. Almost all of the tested heterologous passenger domains however were not exposed at the cell surface of P. stutzeri A15, as assessed by whole cell proteinase K treatment. Only for a beta-lactamase protein, cell surface display in P. stutzeri A15 was comparable to presentation of the original EstA passenger domain. Development of expression modules based on the full-length EstA autotransporter did not resolve these problems. Conclusions Since only one of the tested heterologous passenger proteins could be displayed at the cell surface of P. stutzeri A15 to a notable extent, our results indicate that the EstA autotransporter cannot be regarded as a broad spectrum cell surface display system in P. stutzeri A15.
Collapse
Affiliation(s)
- Toon Nicolay
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001, Heverlee, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Ramesh B, Sendra VG, Cirino PC, Varadarajan N. Single-cell characterization of autotransporter-mediated Escherichia coli surface display of disulfide bond-containing proteins. J Biol Chem 2012; 287:38580-9. [PMID: 23019324 DOI: 10.1074/jbc.m112.388199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Autotransporters (ATs) are a family of bacterial proteins containing a C-terminal β-barrel-forming domain that facilitates the translocation of N-terminal passenger domain whose functions range from adhesion to proteolysis. Genetic replacement of the native passenger domain with heterologous proteins is an attractive strategy not only for applications such as biocatalysis, live-cell vaccines, and protein engineering but also for gaining mechanistic insights toward understanding AT translocation. The ability of ATs to efficiently display functional recombinant proteins containing multiple disulfides has remained largely controversial. By employing high-throughput single-cell flow cytometry, we have systematically investigated the ability of the Escherichia coli AT Antigen 43 (Ag43) to display two different recombinant reporter proteins, a single-chain antibody (M18 scFv) that contains two disulfides and chymotrypsin that contains four disulfides, by varying the signal peptide and deleting the different domains of the native protein. Our results indicate that only the C-terminal β-barrel and the threaded α-helix are essential for efficient surface display of functional recombinant proteins containing multiple disulfides. These results imply that there are no inherent constraints for functional translocation and display of disulfide bond-containing proteins mediated by the AT system and should open new avenues for protein display and engineering.
Collapse
Affiliation(s)
- Balakrishnan Ramesh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | | | | | | |
Collapse
|
17
|
Ko HJ, Park E, Song J, Yang TH, Lee HJ, Kim KH, Choi IG. Functional cell surface display and controlled secretion of diverse Agarolytic enzymes by Escherichia coli with a novel ligation-independent cloning vector based on the autotransporter YfaL. Appl Environ Microbiol 2012; 78:3051-8. [PMID: 22344647 PMCID: PMC3346495 DOI: 10.1128/aem.07004-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 02/08/2012] [Indexed: 11/20/2022] Open
Abstract
Autotransporters have been employed as the anchoring scaffold for cell surface display by replacing their passenger domains with heterologous proteins to be displayed. We adopted an autotransporter (YfaL) of Escherichia coli for the cell surface display system. The critical regions in YfaL for surface display were identified for the construction of a ligation-independent cloning (LIC)-based display system. The designed system showed no detrimental effect on either the growth of the host cell or overexpressing heterologous proteins on the cell surface. We functionally displayed monomeric red fluorescent protein (mRFP1) as a reporter protein and diverse agarolytic enzymes from Saccharophagus degradans 2-40, including Aga86C and Aga86E, which previously had failed to be functional expressed. The system could display different sizes of proteins ranging from 25.3 to 143 kDa. We also attempted controlled release of the displayed proteins by incorporating a tobacco etch virus protease cleavage site into the C termini of the displayed proteins. The maximum level of the displayed protein was 6.1 × 10(4) molecules per a single cell, which corresponds to 5.6% of the entire cell surface of actively growing E. coli.
Collapse
Affiliation(s)
- Hyeok-Jin Ko
- Computational and Synthetic Biology Laboratory, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Eunhye Park
- Computational and Synthetic Biology Laboratory, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Joseph Song
- Computational and Synthetic Biology Laboratory, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Taek Ho Yang
- Chemical and Polymer Laboratory, R&D Center, GS Caltex Corporation, Daejeon, South Korea
| | - Hee Jong Lee
- Chemical and Polymer Laboratory, R&D Center, GS Caltex Corporation, Daejeon, South Korea
| | - Kyoung Heon Kim
- Computational and Synthetic Biology Laboratory, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - In-Geol Choi
- Computational and Synthetic Biology Laboratory, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
18
|
May KL, Grabowicz M, Polyak SW, Morona R. Self-association of the Shigella flexneri IcsA autotransporter protein. MICROBIOLOGY-SGM 2012; 158:1874-1883. [PMID: 22516224 DOI: 10.1099/mic.0.056465-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The IcsA autotransporter protein is a major virulence factor of the human intracellular pathogen Shigella flexneri. IcsA is distributed at the poles in the outer membrane (OM) of S. flexneri and interacts with components of the host actin-polymerization machinery to facilitate intracellular actin-based motility and subsequent cell-to-cell spreading of the bacterium. We sought to characterize the biochemical properties of IcsA in the bacterial OM. Chemical cross-linking data suggested that IcsA exists in a complex in the OM. Furthermore, reciprocal co-immunoprecipitation of differentially epitope-tagged IcsA proteins indicated that IcsA is able to self-associate. The identification of IcsA linker-insertion mutants that were negatively dominant provided genetic evidence of IcsA-IcsA interactions. From these results, we propose a model whereby IcsA self-association facilitates efficient actin-based motility.
Collapse
Affiliation(s)
- Kerrie L May
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, South Australia, Australia
| | - Marcin Grabowicz
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, South Australia, Australia
| | - Steven W Polyak
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, South Australia, Australia
| | - Renato Morona
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, South Australia, Australia
| |
Collapse
|
19
|
From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis. Nat Rev Microbiol 2012; 10:213-25. [PMID: 22337167 DOI: 10.1038/nrmicro2733] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Autotransporters are a superfamily of proteins that use the type V secretion pathway for their delivery to the surface of Gram-negative bacteria. At first glance, autotransporters look to contain all the functional elements required to promote their own secretion: an amino-terminal signal peptide to mediate translocation across the inner membrane, a central passenger domain that is the secreted functional moiety, and a channel-forming carboxyl terminus that facilitates passenger domain translocation across the outer membrane. However, recent discoveries of common structural themes, translocation intermediates and accessory interactions have challenged the perceived simplicity of autotransporter secretion. Here, we discuss how these studies have led to an improved understanding of the mechanisms responsible for autotransporter biogenesis.
Collapse
|
20
|
Leyton DL, Sevastsyanovich YR, Browning DF, Rossiter AE, Wells TJ, Fitzpatrick RE, Overduin M, Cunningham AF, Henderson IR. Size and conformation limits to secretion of disulfide-bonded loops in autotransporter proteins. J Biol Chem 2011; 286:42283-42291. [PMID: 22006918 PMCID: PMC3234927 DOI: 10.1074/jbc.m111.306118] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/13/2011] [Indexed: 01/06/2023] Open
Abstract
Autotransporters are a superfamily of virulence factors typified by a channel-forming C terminus that facilitates translocation of the functional N-terminal passenger domain across the outer membrane of Gram-negative bacteria. This final step in the secretion of autotransporters requires a translocation-competent conformation for the passenger domain that differs markedly from the structure of the fully folded secreted protein. The nature of the translocation-competent conformation remains controversial, in particular whether the passenger domain can adopt secondary structural motifs, such as disulfide-bonded segments, while maintaining a secretion-competent state. Here, we used the endogenous and closely spaced cysteine residues of the plasmid-encoded toxin (Pet) from enteroaggregative Escherichia coli to investigate the effect of disulfide bond-induced folding on translocation of an autotransporter passenger domain. We reveal that rigid structural elements within disulfide-bonded segments are resistant to autotransporter-mediated secretion. We define the size limit of disulfide-bonded segments tolerated by the autotransporter system demonstrating that, when present, cysteine pairs are intrinsically closely spaced to prevent congestion of the translocator pore by large disulfide-bonded regions. These latter data strongly support the hairpin mode of autotransporter biogenesis.
Collapse
Affiliation(s)
- Denisse L Leyton
- School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | - Douglas F Browning
- School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Amanda E Rossiter
- School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Timothy J Wells
- School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Rebecca E Fitzpatrick
- School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Michael Overduin
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Adam F Cunningham
- School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ian R Henderson
- School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
21
|
Fan E, Fiedler S, Jacob-Dubuisson F, Müller M. Two-partner secretion of gram-negative bacteria: a single β-barrel protein enables transport across the outer membrane. J Biol Chem 2011; 287:2591-9. [PMID: 22134917 DOI: 10.1074/jbc.m111.293068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms of protein secretion by pathogenic bacteria remain poorly understood. In gram-negative bacteria, the two-partner secretion pathway exports large, mostly virulence-related "TpsA" proteins across the outer membrane via their dedicated "TpsB" transporters. TpsB transporters belong to the ubiquitous Omp85 superfamily, whose members are involved in protein translocation across, or integration into, cellular membranes. The filamentous hemagglutinin/FhaC pair of Bordetella pertussis is a model two-partner secretion system. We have reconstituted the TpsB transporter FhaC into proteoliposomes and demonstrate that FhaC is the sole outer membrane protein required for translocation of its cognate TpsA protein. This is the first in vitro system for analyzing protein secretion across the outer membrane of gram-negative bacteria. Our data also provide clear evidence for the protein translocation function of Omp85 transporters.
Collapse
Affiliation(s)
- Enguo Fan
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
22
|
Dautin N, Bernstein HD. Residues in a conserved α-helical segment are required for cleavage but not secretion of an Escherichia coli serine protease autotransporter passenger domain. J Bacteriol 2011; 193:3748-56. [PMID: 21642456 PMCID: PMC3147522 DOI: 10.1128/jb.05070-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/20/2011] [Indexed: 01/14/2023] Open
Abstract
Autotransporters are a superfamily of virulence factors produced by Gram-negative bacteria that are comprised of an N-terminal extracellular domain (passenger domain) and a C-terminal β barrel domain (β domain) that resides in the outer membrane (OM). The β domain promotes the translocation of the passenger domain across the OM by an unknown mechanism. Available evidence indicates that an α-helical segment that spans the passenger domain-β domain junction is embedded inside the β domain at an early stage of assembly. Following its secretion, the passenger domain of the serine protease autotransporters of the Enterobacteriaceae (SPATEs) and the pertactin family of Bordetella pertussis autotransporters is released from the β domain through an intrabarrel autoproteolytic cleavage of the α-helical segment. Although the mutation of conserved residues that surround the cleavage site has been reported to impair both the translocation and cleavage of the passenger domain of a SPATE called Tsh, we show here that the mutation of the same residues in another SPATE (EspP) affects only passenger domain cleavage. Our results strongly suggest that the conserved residues are required to position the α-helical segment for the cleavage reaction and are not required to promote passenger domain secretion.
Collapse
Affiliation(s)
| | - Harris D. Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
23
|
Wilhelm S, Rosenau F, Kolmar H, Jaeger KE. Autotransporters with GDSL Passenger Domains: Molecular Physiology and Biotechnological Applications. Chembiochem 2011; 12:1476-85. [DOI: 10.1002/cbic.201100013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Indexed: 12/12/2022]
|