1
|
Zarate D, Isenberg RY, Pavelsky M, Speare L, Jackson A, Mandel MJ, Septer AN. The conserved global regulator H-NS has a strain-specific impact on biofilm formation in Vibrio fischeri symbionts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629378. [PMID: 39764008 PMCID: PMC11702600 DOI: 10.1101/2024.12.19.629378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. Vibrio fischeri is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation. We isolated a mutant of the fish symbiont V. fischeri MJ11 with a transposon insertion in the hns gene. This mutant formed sticky, moderately wrinkled colonies on LBS plates, a condition not known to induce biofilm in this species. A reconstructed hns mutant displayed the same wrinkled colony, which became smooth when hns was complemented in trans, indicating the hns disruption is causal for biofilm formation in MJ11. Transcriptomes revealed differential expression for the syp biofilm locus in the hns mutant, relative to the parent, suggesting biofilm may in part involve SYP polysaccharide. However, enhanced biofilm in the MJ11 hns mutant was not sufficient to allow colonization of a non-native squid host. Finally, moving the hns mutation into other V. fischeri strains, including the squid symbionts ES114 and ES401, and seawater isolate PP3, revealed strain-specific biofilm phenotypes: ES114 and ES401 hns mutants displayed minimal biofilm phenotypes while PP3 hns mutant colonies were more wrinkled than the MJ11 hns mutant. These findings together define H-NS as a novel regulator of V. fischeri symbiotic biofilm and demonstrate key strain specificity in that role. Importance This work, which shows how H-NS has strain-specific impacts on biofilm in Vibrio fischeri, underscores the importance of studying multiple strains, even when examining highly conserved genes and functions. Our observation that knocking out a conserved regulator can result in a wide range of biofilm phenotypes, depending on the isolate, serves as a powerful reminder that strain-level variation is common and worthy of exploration. Indeed, uncovering the mechanisms of strain-specific phenotypic differences is essential to understand drivers of niche differentiation and bacterial evolution. Thus, it is important to carefully match the number and type of strains used in a study with the research question to accurately interpret and extrapolate the results beyond a single genotype. The additional work required for multi-strain studies is often worth the investment of time and resources, as it provides a broader view of the complexity of within-species diversity in microbial systems.
Collapse
Affiliation(s)
- Dani Zarate
- Earth, Marine & Environmental Sciences Department, University of North Carolina, Chapel Hill, NC
| | - Ruth Y. Isenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, WI
- Current address: Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Morgan Pavelsky
- Earth, Marine & Environmental Sciences Department, University of North Carolina, Chapel Hill, NC
| | - Lauren Speare
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Aundre Jackson
- Earth, Marine & Environmental Sciences Department, University of North Carolina, Chapel Hill, NC
| | - Mark J. Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, WI
| | - Alecia N. Septer
- Earth, Marine & Environmental Sciences Department, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
2
|
Bellissimo KA, Septer AN, Whistler CA, Rodríguez C, Stabb EV. Deletion of luxI increases luminescence of Vibrio fischeri. mBio 2024; 15:e0244624. [PMID: 39315803 PMCID: PMC11481858 DOI: 10.1128/mbio.02446-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Bioluminescence in Vibrio fischeri is regulated by a quorum-dependent signaling system composed of LuxI and LuxR. LuxI generates N-3-oxohexanoyl homoserine lactone (3OC6-HSL), which triggers LuxR to activate transcription of the luxICDABEG operon responsible for bioluminescence. Surprisingly, a ∆luxI mutant produced more bioluminescence than the wild type in culture. In contrast, a 4 bp duplication within luxI, resulting in a frameshift mutation and null allele, decreased luminescence tenfold. A second signaling system encoded by ainSR affects bioluminescence by increasing levels of LuxR, via the transcriptional activator LitR, and the N-octanoyl homoserine lactone (C8-HSL) signal produced by AinS is considered only a weak activator of LuxR. However, ainS is required for the bright phenotype of the ∆luxI mutant in culture. When 3OC6-HSL was provided either in the medium or by expression of luxI in trans, all cultures were brighter, but the ∆luxI mutant remained significantly brighter than the luxI frameshift mutant. Taken together, these data suggest that the enhanced bioluminescence due to the LuxI product 3OC6-HSL counteracts a negative cis-acting regulatory element within the luxI gene and that when luxI is absent the C8-HSL signal is sufficient to induce luminescence. IMPORTANCE The regulation of bioluminescence by Vibrio fischeri is a textbook example of bacterial quorum-dependent pheromone signaling. The canonical regulatory model is that an autoinducer pheromone produced by LuxI accumulates as cells achieve a high density, and this LuxI-generated signal stimulates LuxR to activate transcription of the lux operon that underlies bioluminescence. The surprising observation that LuxI is dispensable for inducing bioluminescence forces a re-evaluation of the role of luxI. More broadly, the results underscore the potential deceptiveness of complex regulatory circuits, particularly those in which bacteria produce multiple related signaling molecules.
Collapse
Affiliation(s)
- Kathryn A. Bellissimo
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alecia N. Septer
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cheryl A. Whistler
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Coralis Rodríguez
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Eric V. Stabb
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Guckes KR, Yount TA, Steingard CH, Miyashiro TI. Quorum sensing inhibits interference competition among bacterial symbionts within a host. Curr Biol 2023; 33:4244-4251.e4. [PMID: 37689064 PMCID: PMC10592073 DOI: 10.1016/j.cub.2023.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
The symbioses that animals form with bacteria play important roles in health and disease, but the molecular details underlying how bacterial symbionts initially assemble within a host remain unclear.1,2,3 The bioluminescent bacterium Vibrio fischeri establishes a light-emitting symbiosis with the Hawaiian bobtail squid Euprymna scolopes by colonizing specific epithelium-lined crypt spaces within a symbiotic organ called the light organ.4 Competition for these colonization sites occurs between different strains of V. fischeri, with the lancet-like type VI secretion system (T6SS) facilitating strong competitive interference that results in strain incompatibility within a crypt space.5,6 Although recent studies have identified regulators of this T6SS, how the T6SS is controlled as symbionts assemble in vivo remains unknown.7,8 Here, we show that T6SS activity is suppressed by N-octanoyl-L-homoserine lactone (C8 HSL), which is a signaling molecule that facilitates quorum sensing in V. fischeri and is important for efficient symbiont assembly.9,10 We find that this signaling depends on the quorum-sensing regulator LitR, which lowers expression of the needle subunit Hcp, a key component of the T6SS, by repressing transcription of the T6SS regulator VasH. We show that LitR-dependent quorum sensing inhibits strain incompatibility within the squid light organ. Collectively, these results provide new insights into the mechanisms by which regulatory networks that promote symbiosis also control competition among symbionts, which in turn may affect the overall symbiont diversity that assembles within a host.
Collapse
Affiliation(s)
- Kirsten R Guckes
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Taylor A Yount
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Caroline H Steingard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tim I Miyashiro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Torres-Díaz M, Abreu-Takemura C, Díaz-Vázquez LM. Microalgae Peptide-Stabilized Gold Nanoparticles as a Versatile Material for Biomedical Applications. Life (Basel) 2022; 12:life12060831. [PMID: 35743862 PMCID: PMC9224969 DOI: 10.3390/life12060831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Microalgae peptides have many medical and industrial applications due to their functional properties. However, the rapid degradation of peptides not naturally present in biological samples represents a challenge. A strategy to increase microalgae peptide stability in biological samples is to use carriers to protect the active peptide and regulate its release. This study explores the use of gold nanoparticles (AuNPs) as carriers of the Chlorella microalgae peptide (VECYGPNRPQF). The potential of these peptide biomolecules as stabilizing agents to improve the colloidal stability of AuNPs in physiological environments is also discussed. Spectroscopic (UV-VIS, DLS) and Microscopic (TEM) analyses confirmed that the employed modification method produced spherical AuNPs by an average 15 nm diameter. Successful peptide capping of AuNPs was confirmed with TEM images and FTIR spectroscopy. The stability of the microalgae peptide increased when immobilized into the AuNPs surface, as confirmed by the observed thermal shifts in DSC and high zeta-potential values in the colloidal solution. By optimizing the synthesis of AuNPs and tracking the conferred chemical properties as AuNPs were modified with the peptide via various alternative methods, the synthesis of an effective peptide-based coating system for AuNPs and drug carriers was achieved. The microalgae peptide AuNPs showed lower ecotoxicity and better viability than the regular AuNPs.
Collapse
Affiliation(s)
- Marielys Torres-Díaz
- Department of Chemistry, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico;
| | - Caren Abreu-Takemura
- Department of Biology, University of Puerto Rico-Mayagüez Campus, Mayagüez 00680, Puerto Rico;
| | - Liz M. Díaz-Vázquez
- Department of Chemistry, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico;
- Correspondence:
| |
Collapse
|
5
|
Nocturnal Acidification: A Coordinating Cue in the Euprymna scolopes- Vibrio fischeri Symbiosis. Int J Mol Sci 2022; 23:ijms23073743. [PMID: 35409100 PMCID: PMC8999011 DOI: 10.3390/ijms23073743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
The Vibrio fischeri–Euprymna scolopes symbiosis has become a powerful model for the study of specificity, initiation, and maintenance between beneficial bacteria and their eukaryotic partner. In this invertebrate model system, the bacterial symbionts are acquired every generation from the surrounding seawater by newly hatched squid. These symbionts colonize a specialized internal structure called the light organ, which they inhabit for the remainder of the host’s lifetime. The V. fischeri population grows and ebbs following a diel cycle, with high cell densities at night producing bioluminescence that helps the host avoid predation during its nocturnal activities. Rhythmic timing of the growth of the symbionts and their production of bioluminescence only at night is critical for maintaining the symbiosis. V. fischeri symbionts detect their population densities through a behavior termed quorum-sensing, where they secrete and detect concentrations of autoinducer molecules at high cell density when nocturnal production of bioluminescence begins. In this review, we discuss events that lead up to the nocturnal acidification of the light organ and the cues used for pre-adaptive behaviors that both host and symbiont have evolved. This host–bacterium cross talk is used to coordinate networks of regulatory signals (such as quorum-sensing and bioluminescence) that eventually provide a unique yet stable environment for V. fischeri to thrive and be maintained throughout its life history as a successful partner in this dynamic symbiosis.
Collapse
|
6
|
Tepavčević J, Yarrington K, Fung B, Lin X, Visick KL. sRNA chaperone Hfq controls bioluminescence and other phenotypes through Qrr1-dependent and -independent mechanisms in Vibrio fischeri. Gene X 2022; 809:146048. [PMID: 34756963 PMCID: PMC8673744 DOI: 10.1016/j.gene.2021.146048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/26/2021] [Indexed: 02/01/2023] Open
Abstract
Colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri depends on bacterial biofilm formation, motility, and bioluminescence. Previous work has demonstrated an inhibitory role for the small RNA (sRNA) Qrr1 in quorum-induced bioluminescence of V. fischeri, but the contribution of the corresponding sRNA chaperone, Hfq, was not examined. We thus hypothesized that V. fischeri Hfq similarly functions to inhibit bacterial bioluminescence as well as regulate other key steps of symbiosis, including bacterial biofilm formation and motility. Surprisingly, deletion of hfq increased luminescence of V. fischeri beyond what was observed for the loss of qrr1 sRNA. Epistasis experiments revealed that, while Hfq contributes to the Qrr1-dependent regulation of light production, it also functions independently of Qrr1 and its downstream target, LitR. This Hfq-dependent, Qrr1-independent regulation of bioluminescence is also independent of the major repressor of light production in V. fischeri, ArcA. We further determined that Hfq is required for full motility of V. fischeri in a mechanism that partially depends on the Qrr1/LitR regulators. Finally, Hfq also appears to function in the control of biofilm formation: loss of Hfq delayed the timing and diminished the extent of wrinkled colony development, but did not eliminate the production of SYP-polysaccharide-dependent cohesive colonies. Furthermore, loss of Hfq enhanced production of cellulose and resulted in increased Congo red binding. Together, these findings point to Hfq as an important regulator of multiple phenotypes relevant to symbiosis between V. fischeri and its squid host.
Collapse
Affiliation(s)
- Jovanka Tepavčević
- Department of Biology, Wheaton College, Wheaton, Illinois, USA,Corresponding author
| | - Kaiti Yarrington
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Brittany Fung
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | - Xijin Lin
- Department of Biology, Wheaton College, Wheaton, Illinois, USA
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
7
|
Christensen DG, Tepavčević J, Visick KL. Genetic Manipulation of Vibrio fischeri. ACTA ACUST UNITED AC 2021; 59:e115. [PMID: 32975913 DOI: 10.1002/cpmc.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vibrio fischeri is a nonpathogenic organism related to pathogenic Vibrio species. The bacterium has been used as a model organism to study symbiosis in the context of its association with its host, the Hawaiian bobtail squid Euprymna scolopes. The genetic tractability of this bacterium has facilitated the mapping of pathways that mediate interactions between these organisms. The protocols included here describe methods for genetic manipulation of V. fischeri. Following these protocols, the researcher will be able to introduce linear DNA via transformation to make chromosomal mutations, to introduce plasmid DNA via conjugation and subsequently eliminate unstable plasmids, to eliminate antibiotic resistance cassettes from the chromosome, and to randomly or specifically mutagenize V. fischeri with transposons. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Transformation of V. fischeri with linear DNA Basic Protocol 2: Plasmid transfer into V. fischeri via conjugation Support Protocol 1: Removing FRT-flanked antibiotic resistance cassettes from the V. fischeri genome Support Protocol 2: Eliminating unstable plasmids from V. fischeri Alternate Protocol 1: Introduction of exogenous DNA using a suicide plasmid Alternate Protocol 2: Site-specific transposon insertion using a suicide plasmid Alternate Protocol 3: Random transposon mutagenesis using a suicide plasmid.
Collapse
Affiliation(s)
- David G Christensen
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | | | - Karen L Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
8
|
Dial CN, Eichinger SJ, Foxall R, Corcoran CJ, Tischler AH, Bolz RM, Whistler CA, Visick KL. Quorum Sensing and Cyclic di-GMP Exert Control Over Motility of Vibrio fischeri KB2B1. Front Microbiol 2021; 12:690459. [PMID: 34262549 PMCID: PMC8273514 DOI: 10.3389/fmicb.2021.690459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022] Open
Abstract
Bacterial motility is critical for symbiotic colonization by Vibrio fischeri of its host, the squid Euprymna scolopes, facilitating movement from surface biofilms to spaces deep inside the symbiotic organ. While colonization has been studied traditionally using strain ES114, others, including KB2B1, can outcompete ES114 for colonization for a variety of reasons, including superior biofilm formation. We report here that KB2B1 also exhibits an unusual pattern of migration through a soft agar medium: whereas ES114 migrates rapidly and steadily, KB2B1 migrates slowly and then ceases migration. To better understand this phenomenon, we isolated and sequenced five motile KB2B1 suppressor mutants. One harbored a mutation in the gene for the cAMP receptor protein (crp); because this strain also exhibited a growth defect, it was not characterized further. Two other suppressors contained mutations in the quorum sensing pathway that controls bacterial bioluminescence in response to cell density, and two had mutations in the diguanylate cyclase (DGC) gene VF_1200. Subsequent analysis indicated that (1) the quorum sensing mutations shifted KB2B1 to a perceived low cell density state and (2) the high cell density state inhibited migration via the downstream regulator LitR. Similar to the initial point mutations, deletion of the VF_1200 DGC gene increased migration. Consistent with the possibility that production of the second messenger c-di-GMP inhibited the motility of KB2B1, reporter-based measurements of c-di-GMP revealed that KB2B1 produced higher levels of c-di-GMP than ES114, and overproduction of a c-di-GMP phosphodiesterase promoted migration of KB2B1. Finally, we assessed the role of viscosity in controlling the quorum sensing pathway using polyvinylpyrrolidone and found that viscosity increased light production of KB2B1 but not ES114. Together, our data indicate that while the two strains share regulators in common, they differ in the specifics of the regulatory control over downstream phenotypes such as motility.
Collapse
Affiliation(s)
- Courtney N. Dial
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Steven J. Eichinger
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Randi Foxall
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Christopher J. Corcoran
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Alice H. Tischler
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Robert M. Bolz
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Cheryl A. Whistler
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
9
|
Patel K, Rodriguez C, Stabb EV, Hagen SJ. Wavelike propagation of quorum activation through a spatially distributed bacterial population under natural regulation. Phys Biol 2021; 18. [PMID: 34114973 DOI: 10.1088/1478-3975/ac02ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/18/2021] [Indexed: 11/11/2022]
Abstract
Many bacteria communicate using diffusible pheromone signals known as autoinducers. When the autoinducer concentration reaches a threshold, which requires a minimum population density or 'quorum', the bacteria activate specific gene regulatory pathways. Simple diffusion of autoinducer can activate quorum-dependent pathways in cells that are located at substantial distances from the secreting source. However, modeling has predicted that autoinducer diffusion, coupled with positive feedback regulation in autoinducer synthesis, could also allow a quorum-regulated behavior to spread more rapidly through a population by moving as a self-sustaining front at constant speed. Here we show that such propagation can occur in a population of bacteria whose quorum pathway operates under its own natural regulation. We find that in unstirred populations ofVibrio fischeri, introduction of autoinducer at one location triggers a wavelike traveling front of natural bioluminescence. The front moves with a well-defined speed ∼2.5 mm h-1, eventually outrunning the slower diffusional spreading of the initial stimulus. Consistent with predictions from modeling, the wave travels until late in growth, when population-wide activation occurs due to basal autoinducer production. Subsequent rounds of waves, including waves propagating in the reverse direction, can also be observed late in the growth ofV.fischeriunder natural regulation. Using an engineered,lac-dependent strain, we show that local stimuli other than autoinducers can also elicit a self-sustaining, propagating response. Our data show that the wavelike dynamics predicted by simple mathematical models of quorum signaling are readily detected in bacterial populations functioning under their own natural regulation, and that other, more complex traveling phenomena are also present. Because a traveling wave can substantially increase the efficiency of intercellular communication over macroscopic distances, our data indicate that very efficient modes of communication over distance are available to unmixed populations ofV.fischeriand other microbes.
Collapse
Affiliation(s)
- Keval Patel
- Physics Department, University of Florida, Gainesville, FL 32611-8440, United States of America
| | - Coralis Rodriguez
- Department of Microbiology, University of Georgia, Athens, GA 30602, United States of America
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, GA 30602, United States of America.,Biological Sciences, College of Liberal Arts and Sciences, University of Illinois, Chicago, IL 60607, United States of America
| | - Stephen J Hagen
- Physics Department, University of Florida, Gainesville, FL 32611-8440, United States of America
| |
Collapse
|
10
|
A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat Rev Microbiol 2021; 19:654-665. [PMID: 34089008 DOI: 10.1038/s41579-021-00557-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 01/10/2023]
Abstract
As our understanding of the human microbiome progresses, so does the need for natural experimental animal models that promote a mechanistic understanding of beneficial microorganism-host interactions. Years of research into the exclusive symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium Vibrio fischeri have permitted a detailed understanding of those bacterial genes underlying signal exchange and rhythmic activities that result in a persistent, beneficial association, as well as glimpses into the evolution of symbiotic competence. Migrating from the ambient seawater to regions deep inside the light-emitting organ of the squid, V. fischeri experiences, recognizes and adjusts to the changing environmental conditions. Here, we review key advances over the past 15 years that are deepening our understanding of these events.
Collapse
|
11
|
Control of Competence in Vibrio fischeri. Appl Environ Microbiol 2021; 87:AEM.01962-20. [PMID: 33397700 DOI: 10.1128/aem.01962-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/22/2020] [Indexed: 01/18/2023] Open
Abstract
Vibrio species, including the squid symbiont Vibrio fischeri, become competent to take up DNA under specific conditions. For example, V. fischeri becomes competent when grown in the presence of chitin oligosaccharides or upon overproduction of the competence regulatory factor TfoX. While little is known about the regulatory pathway(s) that controls V. fischeri competence, this microbe encodes homologs of factors that control competence in the well-studied V. cholerae To further develop V. fischeri as a genetically tractable organism, we evaluated the roles of some of these competence homologs. Using TfoX-overproducing cells, we found that competence depends upon LitR, the homolog of V. cholerae master quorum-sensing and competence regulator HapR, and upon homologs of putative pilus genes that in V. cholerae facilitate DNA uptake. Disruption of genes for negative regulators upstream of LitR, namely, the LuxO protein and the small RNA (sRNA) Qrr1, resulted in increased transformation frequencies. Unlike LitR-controlled light production, however, competence did not vary with cell density under tfoX overexpression conditions. Analogous to the case with V. cholerae, the requirement for LitR could be suppressed by loss of the Dns nuclease. We also found a role for the putative competence regulator CytR. Finally, we determined that transformation frequencies varied depending on the TfoX-encoding plasmid, and we developed a new dual tfoX and litR overexpression construct that substantially increased the transformation frequency of a less genetically tractable strain. By advancing the ease of genetic manipulation of V. fischeri, these findings will facilitate the rapid discovery of genes involved in physiologically relevant processes, such as biofilm formation and host colonization.IMPORTANCE The ability of bacteria to take up DNA (competence) and incorporate foreign DNA into their genomes (transformation) permits them to rapidly evolve and gain new traits and/or acquire antibiotic resistances. It also facilitates laboratory-based investigations into mechanisms of specific phenotypes, such as those involved in host colonization. Vibrio fischeri has long been a model for symbiotic bacterium-host interactions as well as for other aspects of its physiology, such as bioluminescence and biofilm formation. Competence of V. fischeri can be readily induced upon overexpression of the competence factor TfoX. Relatively little is known about the V. fischeri competence pathway, although homologs of factors known to be important in V. cholerae competence exist. By probing the importance of putative competence factors that control transformation of V. fischeri, this work deepens our understanding of the competence process and advances our ability to genetically manipulate this important model organism.
Collapse
|
12
|
Multiplexed Competition in a Synthetic Squid Light Organ Microbiome Using Barcode-Tagged Gene Deletions. mSystems 2020; 5:5/6/e00846-20. [PMID: 33323415 PMCID: PMC7771539 DOI: 10.1128/msystems.00846-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Beneficial microbes play essential roles in the health and development of their hosts. However, the complexity of animal microbiomes and general genetic intractability of their symbionts have made it difficult to study the coevolved mechanisms for establishing and maintaining specificity at the microbe-animal host interface. Beneficial symbioses between microbes and their eukaryotic hosts are ubiquitous and have widespread impacts on host health and development. The binary symbiosis between the bioluminescent bacterium Vibrio fischeri and its squid host Euprymna scolopes serves as a model system to study molecular mechanisms at the microbe-animal interface. To identify colonization factors in this system, our lab previously conducted a global transposon insertion sequencing (INSeq) screen and identified over 300 putative novel squid colonization factors in V. fischeri. To pursue mechanistic studies on these candidate genes, we present an approach to quickly generate barcode-tagged gene deletions and perform high-throughput squid competition experiments with detection of the proportion of each strain in the mixture by barcode sequencing (BarSeq). Our deletion approach improves on previous techniques based on splicing by overlap extension PCR (SOE-PCR) and tfoX-based natural transformation by incorporating a randomized barcode that results in unique DNA sequences within each deletion scar. Amplicon sequencing of the pool of barcoded strains before and after colonization faithfully reports on known colonization factors and provides increased sensitivity over colony counting methods. BarSeq enables rapid and sensitive characterization of the molecular factors involved in establishing the Vibrio-squid symbiosis and provides a valuable tool to interrogate the molecular dialogue at microbe-animal host interfaces. IMPORTANCE Beneficial microbes play essential roles in the health and development of their hosts. However, the complexity of animal microbiomes and general genetic intractability of their symbionts have made it difficult to study the coevolved mechanisms for establishing and maintaining specificity at the microbe-animal host interface. Model symbioses are therefore invaluable for studying the mechanisms of beneficial microbe-host interactions. Here, we present a combined barcode-tagged deletion and BarSeq approach to interrogate the molecular dialogue that ensures specific and reproducible colonization of the Hawaiian bobtail squid by Vibrio fischeri. The ability to precisely manipulate the bacterial genome, combined with multiplex colonization assays, will accelerate the use of this valuable model system for mechanistic studies of how environmental microbes—both beneficial and pathogenic—colonize specific animal hosts.
Collapse
|
13
|
Patel K, Rodriguez C, Stabb EV, Hagen SJ. Spatially propagating activation of quorum sensing in Vibrio fischeri and the transition to low population density. Phys Rev E 2020; 101:062421. [PMID: 32688581 DOI: 10.1103/physreve.101.062421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Bacteria communicate by secreting and detecting diffusible small molecule signals or pheromones. Using the local concentrations of these signals to regulate gene expression, individual cells can synchronize changes in phenotype population-wide, a behavior known as quorum sensing (QS). In unstirred media, the interplay between diffusion of signals, bacterial growth, and regulatory feedback can generate complex spatial and temporal patterns of expression of QS-controlled genes. Here we identify the parameters that allow a local signal to trigger a self-sustaining, traveling activation of QS behavior. Using the natural bioluminescence of wild-type Vibrio fischeri as a readout of its lux QS system, we measure the induction of a spreading QS response by a localized triggering stimulus in unstirred media. Our data show that a QS response propagates outward, sustained by positive feedback in synthesis of the diffusible signal, and that this response occurs only if the triggering stimulus exceeds a critical threshold. We also test how the autonomous or untriggered activation of the V. fischeri QS pathway changes at very low initial population densities. At the lowest population densities, clusters of cells do not transition to a self-sensing behavior, but rather remain in communication via signal diffusion until they reach sufficiently large size that their own growth slows. Our data, which are reproduced by simple growth and diffusion simulations, indicate that in part owing to bacterial growth behavior, natural QS systems can be characterized by long distance communication through signal diffusion even in very heterogeneous and spatially dispersed populations.
Collapse
Affiliation(s)
- Keval Patel
- Physics Department, University of Florida, Gainesville, Florida 32611-8440, USA
| | - Coralis Rodriguez
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
- Department of Biological Sciences, University of Illinois, Chicago, Illinois 60607, USA
| | - Stephen J Hagen
- Physics Department, University of Florida, Gainesville, Florida 32611-8440, USA
| |
Collapse
|
14
|
Lynch JB, Schwartzman JA, Bennett BD, McAnulty SJ, Knop M, Nyholm SV, Ruby EG. Ambient pH Alters the Protein Content of Outer Membrane Vesicles, Driving Host Development in a Beneficial Symbiosis. J Bacteriol 2019; 201:e00319-19. [PMID: 31331976 PMCID: PMC6755730 DOI: 10.1128/jb.00319-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Outer membrane vesicles (OMVs) are continuously produced by Gram-negative bacteria and are increasingly recognized as ubiquitous mediators of bacterial physiology. In particular, OMVs are powerful effectors in interorganismal interactions, driven largely by their molecular contents. These impacts have been studied extensively in bacterial pathogenesis but have not been well documented within the context of mutualism. Here, we examined the proteomic composition of OMVs from the marine bacterium Vibrio fischeri, which forms a specific mutualism with the Hawaiian bobtail squid, Euprymna scolopes We found that V. fischeri upregulates transcription of its major outer membrane protein, OmpU, during growth at an acidic pH, which V. fischeri experiences when it transitions from its environmental reservoir to host tissues. We used comparative genomics and DNA pulldown analyses to search for regulators of ompU and found that differential expression of ompU is governed by the OmpR, H-NS, and ToxR proteins. This transcriptional control combines with nutritional conditions to govern OmpU levels in OMVs. Under a host-encountered acidic pH, V. fischeri OMVs become more potent stimulators of symbiotic host development in an OmpU-dependent manner. Finally, we found that symbiotic development could be stimulated by OMVs containing a homolog of OmpU from the pathogenic species Vibrio cholerae, connecting the role of a well-described virulence factor with a mutualistic element. This work explores the symbiotic effects of OMV variation, identifies regulatory machinery shared between pathogenic and mutualistic bacteria, and provides evidence of the role that OMVs play in animal-bacterium mutualism.IMPORTANCE Beneficial bacteria communicate with their hosts through a variety of means. These communications are often carried out by a combination of molecules that stimulate responses from the host and are necessary for development of the relationship between these organisms. Naturally produced bacterial outer membrane vesicles (OMVs) contain many of those molecules and can stimulate a wide range of responses from recipient organisms. Here, we describe how a marine bacterium, Vibrio fischeri, changes the makeup of its OMVs under conditions that it experiences as it goes from its free-living lifestyle to associating with its natural host, the Hawaiian bobtail squid. This work improves our understanding of how bacteria change their signaling profile as they begin to associate with their beneficial partner animals.
Collapse
Affiliation(s)
- Jonathan B Lynch
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Julia A Schwartzman
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Brittany D Bennett
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Sarah J McAnulty
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Mirjam Knop
- Department of Molecular Physiology, Zoology, Kiel University, Kiel, Germany
| | - Spencer V Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Edward G Ruby
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Schwartzman JA, Lynch JB, Ramos SF, Zhou L, Apicella MA, Yew JY, Ruby EG. Acidic pH promotes lipopolysaccharide modification and alters colonization in a bacteria-animal mutualism. Mol Microbiol 2019; 112:1326-1338. [PMID: 31400167 PMCID: PMC6823639 DOI: 10.1111/mmi.14365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Environmental pH can be an important cue for symbiotic bacteria as they colonize their eukaryotic hosts. Using the model mutualism between the marine bacterium Vibrio fischeri and the Hawaiian bobtail squid, we characterized the bacterial transcriptional response to acidic pH experienced during the shift from planktonic to host-associated lifestyles. We found several genes involved in outer membrane structure were differentially expressed based on pH, indicating alterations in membrane physiology as V. fischeri initiates its symbiotic program. Exposure to host-like pH increased the resistance of V. fischeri to the cationic antimicrobial peptide polymixin B, which resembles antibacterial molecules that are produced by the squid to select V. fischeri from the ocean microbiota. Using a forward genetic screen, we identified a homolog of eptA, a predicted phosphoethanolamine transferase, as critical for antimicrobial defense. We used MALDI-MS to verify eptA as an ethanolamine transferase for the lipid-A portion of V. fischeri lipopolysaccharide. We then used a DNA pulldown approach to discover that eptA transcription is activated by the global regulator H-NS. Finally, we revealed that eptA promotes successful squid colonization by V. fischeri, supporting its potential role in initiation of this highly specific symbiosis.
Collapse
Affiliation(s)
- Julia A. Schwartzman
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison WI, USA
| | - Jonathan B. Lynch
- Pacific Biosciences Research Center, University of Hawaii-Manoa, Honolulu HI, USA
| | | | - Lawrence Zhou
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison WI, USA
| | - Michael A. Apicella
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City IA, USA
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawaii-Manoa, Honolulu HI, USA
| | - Edward G. Ruby
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison WI, USA
- Pacific Biosciences Research Center, University of Hawaii-Manoa, Honolulu HI, USA
| |
Collapse
|
16
|
Comparative analysis of Aliivibrio logei luxR1 and luxR2 genes regulation in Escherichia coli cells. Arch Microbiol 2019; 201:1415-1425. [PMID: 31392374 DOI: 10.1007/s00203-019-01691-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/16/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Regulation of Aliivibrio logei luxR1 and luxR2 genes was evaluated in Escherichia coli cells with use of transcriptional fusions of luxR1 and luxR2 promoter/operator regions with the Photorhabdus luminescens luxCDABE reporter gene cassette. Expression of the luxR1 and luxR2 genes was shown to largely depend on the CRP as activator. The hns::kan mutation increases the expression of luxR2 gene by two to three orders of magnitude and luxR1 gene by two to threefold. The LuxR1 and LuxR2 proteins in the presence of autoinducer (N-acyl homoserine lactone, AI) separately as well as together considerably enhanced the transcription of the luxR2 gene. In contrast, the transcription of luxR1 gene decreases depending on AI concentration in the presence of the luxR1 and luxR2 genes combination. It was identified that the promoter region of luxR2 gene consists of two promoters: Pcrp is located downstream of the crp box and Plux-box is located between the crp box and the lux box.
Collapse
|
17
|
Mutagenesis of Vibrio fischeri and Other Marine Bacteria Using Hyperactive Mini-Tn5 Derivatives. Methods Mol Biol 2019; 2016:87-104. [PMID: 31197712 DOI: 10.1007/978-1-4939-9570-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutagenizing bacterial genomes with selectable transposon insertions is an effective approach for identifying the genes underlying important phenotypes. Specific bacteria may require different tools and methods for effective transposon mutagenesis, and here we describe methods to mutagenize Vibrio fischeri using an engineered mini-Tn5 transposon with synthetic "mosaic" transposon ends. The transposon is delivered by conjugation on a plasmid that cannot replicate in V. fischeri and that encodes a hyperactive transposase outside the transposon itself. The chromosomal location of insertions can be readily identified by cloning and/or PCR-based methods described here. Although developed in V. fischeri, these tools and methods have proven effective in some other bacteria as well.
Collapse
|
18
|
An Iterative, Synthetic Approach To Engineer a High-Performance PhoB-Specific Reporter. Appl Environ Microbiol 2018; 84:AEM.00603-18. [PMID: 29752265 DOI: 10.1128/aem.00603-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/03/2018] [Indexed: 11/20/2022] Open
Abstract
Transcriptional reporters are common tools for analyzing either the transcription of a gene of interest or the activity of a specific transcriptional regulator. Unfortunately, the latter application has the shortcoming that native promoters did not evolve as optimal readouts for the activity of a particular regulator. We sought to synthesize an optimized transcriptional reporter for assessing PhoB activity, aiming for maximal "on" expression when PhoB is active, minimal background in the "off" state, and no control elements for other regulators. We designed specific sequences for promoter elements with appropriately spaced PhoB-binding sites, and at 19 additional intervening nucleotide positions for which we did not predict sequence-specific effects, the bases were randomized. Eighty-three such constructs were screened in Vibrio fischeri, enabling us to identify bases at particular randomized positions that significantly correlated with high-level "on" or low-level "off" expression. A second round of promoter design rationally constrained 13 additional positions, leading to a reporter with high-level PhoB-dependent expression, essentially no background, and no other known regulatory elements. As expressed reporters, we used both stable and destabilized variants of green fluorescent protein (GFP), the latter of which has a half-life of 81 min in V. fischeri In culture, PhoB induced the reporter when phosphate was depleted to a concentration below 10 μM. During symbiotic colonization of its host squid, Euprymna scolopes, the reporter indicated heterogeneous phosphate availability in different light-organ microenvironments. Finally, testing this construct in other members of the Proteobacteria demonstrated its broader utility. The results illustrate how a limited ability to predict synthetic promoter-reporter performance can be overcome through iterative screening and reengineering.IMPORTANCE Transcriptional reporters can be powerful tools for assessing when a particular regulator is active; however, native promoters may not be ideal for this purpose. Optimal reporters should be specific to the regulator being examined and should maximize the difference between the "on" and "off" states; however, these properties are distinct from the selective pressures driving the evolution of natural promoters. Synthetic promoters offer a promising alternative, but our understanding often does not enable fully predictive promoter design, and the large number of alternative sequence possibilities can be intractable. In a synthetic promoter region with over 34 billion sequence variants, we identified bases correlated with favorable performance by screening only 83 candidates, allowing us to rationally constrain our design. We thereby generated an optimized reporter that is induced by PhoB and used it to explore the low-phosphate response of V. fischeri This promoter design strategy will facilitate the engineering of other regulator-specific reporters.
Collapse
|
19
|
Tools for Rapid Genetic Engineering of Vibrio fischeri. Appl Environ Microbiol 2018; 84:AEM.00850-18. [PMID: 29776924 DOI: 10.1128/aem.00850-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/11/2018] [Indexed: 11/20/2022] Open
Abstract
Vibrio fischeri is used as a model for a number of processes, including symbiosis, quorum sensing, bioluminescence, and biofilm formation. Many of these studies depend on generating deletion mutants and complementing them. Engineering such strains, however, is a time-consuming, multistep process that relies on cloning and subcloning. Here, we describe a set of tools that can be used to rapidly engineer deletions and insertions in the V. fischeri chromosome without cloning. We developed a uniform approach for generating deletions using PCR splicing by overlap extension (SOEing) with antibiotic cassettes flanked by standardized linker sequences. PCR SOEing of the cassettes to sequences up- and downstream of the target gene generates a DNA product that can be directly introduced by natural transformation. Selection for the introduced antibiotic resistance marker yields the deletion of interest in a single step. Because these cassettes also contain FRT (FLP recognition target) sequences flanking the resistance marker, Flp recombinase can be used to generate an unmarked, in-frame deletion. We developed a similar methodology and tools for the rapid insertion of specific genes at a benign site in the chromosome for purposes such as complementation. Finally, we generated derivatives of these tools to facilitate different applications, such as inducible gene expression and assessing protein production. We demonstrated the utility of these tools by deleting and inserting genes known or predicted to be involved in motility. While developed for V. fischeri strain ES114, we anticipate that these tools can be adapted for use in other V. fischeri strains and, potentially, other microbes.IMPORTANCEVibrio fischeri is a model organism for studying a variety of important processes, including symbiosis, biofilm formation, and quorum sensing. To facilitate investigation of these biological mechanisms, we developed approaches for rapidly generating deletions and insertions and demonstrated their utility using two genes of interest. The ease, consistency, and speed of the engineering is facilitated by a set of antibiotic resistance cassettes with common linker sequences that can be amplified by PCR with universal primers and fused to adjacent sequences using splicing by overlap extension and then introduced directly into V. fischeri, eliminating the need for cloning and plasmid conjugation. The antibiotic cassettes are flanked by FRT sequences, permitting their removal using Flp recombinase. We augmented these basic tools with a family of constructs for different applications. We anticipate that these tools will greatly accelerate mechanistic studies of biological processes in V. fischeri and potentially other Vibrio species.
Collapse
|
20
|
Kimbrough JH, Stabb EV. Comparative analysis reveals regulatory motifs at the ainS/ainR pheromone-signaling locus of Vibrio fischeri. Sci Rep 2017; 7:11734. [PMID: 28916743 PMCID: PMC5601948 DOI: 10.1038/s41598-017-11967-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/01/2017] [Indexed: 11/22/2022] Open
Abstract
Vibrio fischeri uses the AinS/AinR pheromone-signaling system to control bioluminescence and other symbiotic colonization factors. The Ain system is thought to initiate cell-cell signaling at moderate cell densities and to prime the LuxI/LuxR signaling system. Here we compared and analyzed the ain locus from two V. fischeri strains and a Vibrio salmonicida strain to explore ain regulation. The ainS and ainR genes were predicted to constitute an operon, which we corroborated using RT-PCR. Comparisons between strains revealed a stark area of conservation across the ainS-ainR junction, including a large inverted repeat in ainR. We found that this inverted repeat in cis can affect accumulation of the AinS-generated pheromone N-octanoyl homoserine lactone, which may account for the previously unexplained low-signal phenotype of a ∆ainR mutant, although the mechanism behind this regulation remains elusive. We also extended the previous observation of a possible “lux box” LuxR binding site upstream of ainS by showing the conservation of this site as well as a second putative lux box. Using a plasmid-based reporter we found that LuxR can mediate repression of ainS, providing a negative feedback mechanism in the Ain/Lux signaling cascade. Our results provide new insights into the regulation, expression, and evolution of ainSR.
Collapse
Affiliation(s)
- John H Kimbrough
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
21
|
An Expanded Transposon Mutant Library Reveals that Vibrio fischeri δ-Aminolevulinate Auxotrophs Can Colonize Euprymna scolopes. Appl Environ Microbiol 2017; 83:AEM.02470-16. [PMID: 28003196 DOI: 10.1128/aem.02470-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/14/2016] [Indexed: 11/20/2022] Open
Abstract
Libraries of defined mutants are valuable research tools but necessarily lack gene knockouts that are lethal under the conditions used in library construction. In this study, we augmented a Vibrio fischeri mutant library generated on a rich medium (LBS, which contains [per liter] 10 g of tryptone, 5 g of yeast extract, 20 g of NaCl, and 50 mM Tris [pH 7.5]) by selecting transposon insertion mutants on supplemented LBS and screening for those unable to grow on LBS. We isolated strains with insertions in alr, glr (murI), glmS, several heme biosynthesis genes, and ftsA, as well as a mutant disrupted 14 bp upstream of ftsQ Mutants with insertions in ftsA or upstream of ftsQ were recovered by addition of Mg2+ to LBS, but their cell morphology and motility were affected. The ftsA mutant was more strongly affected and formed cells or chains of cells that appeared to wind back on themselves helically. Growth of mutants with insertions in glmS, alr, or glr was recovered with N-acetylglucosamine (NAG), d-alanine, or d-glutamate, respectively. We hypothesized that NAG, d-alanine, or d-glutamate might be available to V. fischeri in the Euprymna scolopes light organ; however, none of these mutants colonized the host effectively. In contrast, hemA and hemL mutants, which are auxotrophic for δ-aminolevulinate (ALA), colonized at wild-type levels, although mutants later in the heme biosynthetic pathway were severely impaired or unable to colonize. Our findings parallel observations that legume hosts provide Bradyrhizobium symbionts with ALA, but they contrast with virulence phenotypes of hemA mutants in some pathogens. The results further inform our understanding of the symbiotic light organ environment.IMPORTANCE By supplementing a rich yeast-based medium, we were able to recover V. fischeri mutants with insertions in conditionally essential genes, and further characterization of these mutants provided new insights into this bacterium's symbiotic environment. Most notably, we show evidence that the squid host can provide V. fischeri with enough ALA to support its growth in the light organ, paralleling the finding that legumes provide Bradyrhizobium ALA in symbiotic nodules. Taken together, our results show how a simple method of augmenting already rich media can expand the reach and utility of defined mutant libraries.
Collapse
|
22
|
Antisocial luxO Mutants Provide a Stationary-Phase Survival Advantage in Vibrio fischeri ES114. J Bacteriol 2015; 198:673-87. [PMID: 26644435 DOI: 10.1128/jb.00807-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED The squid light organ symbiont Vibrio fischeri controls bioluminescence using two acyl-homoserine lactone pheromone-signaling (PS) systems. The first of these systems to be activated during host colonization, AinS/AinR, produces and responds to N-octanoyl homoserine lactone (C(8)-AHL). We screened activity of a P(ainS)-lacZ transcriptional reporter in a transposon mutant library and found three mutants with decreased reporter activity, low C(8)-AHL output, and other traits consistent with low ainS expression. However, the transposon insertions were unrelated to these phenotypes, and genome resequencing revealed that each mutant had a distinct point mutation in luxO. In the wild type, LuxO is phosphorylated by LuxU and then activates transcription of the small RNA (sRNA) Qrr, which represses ainS indirectly by repressing its activator LitR. The luxO mutants identified here encode LuxU-independent, constitutively active LuxO* proteins. The repeated appearance of these luxO mutants suggested that they had some fitness advantage during construction and/or storage of the transposon mutant library, and we found that luxO* mutants survived better and outcompeted the wild type in prolonged stationary-phase cultures. From such cultures we isolated additional luxO* mutants. In all, we isolated LuxO* allelic variants with the mutations P41L, A91D, F94C, P98L, P98Q, V106A, V106G, T107R, V108G, R114P, L205F, H319R, H324R, and T335I. Based on the current model of the V. fischeri PS circuit, litR knockout mutants should resemble luxO* mutants; however, luxO* mutants outcompeted litR mutants in prolonged culture and had much poorer host colonization competitiveness than is reported for litR mutants, illustrating additional complexities in this regulatory circuit. IMPORTANCE Our results provide novel insight into the function of LuxO, which is a key component of pheromone signaling (PS) cascades in several members of the Vibrionaceae. Our results also contribute to an increasingly appreciated aspect of bacterial behavior and evolution whereby mutants that do not respond to a signal from like cells have a selective advantage. In this case, although "antisocial" mutants locked in the PS signal-off mode can outcompete parents, their survival advantage does not require wild-type cells to exploit. Finally, this work strikes a note of caution for those conducting or interpreting experiments in V. fischeri, as it illustrates how pleiotropic mutants could easily and inadvertently be enriched in this bacterium during prolonged culturing.
Collapse
|
23
|
Dunn AK, Rader BA, Stabb EV, Mandel MJ. Regulation of Bioluminescence in Photobacterium leiognathi Strain KNH6. J Bacteriol 2015; 197:3676-85. [PMID: 26350139 PMCID: PMC4626902 DOI: 10.1128/jb.00524-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/03/2015] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Bacterial bioluminescence is taxonomically restricted to certain proteobacteria, many of which belong to the Vibrionaceae. In the most well-studied cases, pheromone signaling plays a key role in regulation of light production. However, previous reports have indicated that certain Photobacterium strains do not use this regulatory method for controlling luminescence. In this study, we combined genome sequencing with genetic approaches to characterize the regulation of luminescence in Photobacterium leiognathi strain KNH6, an extremely bright isolate. Using transposon mutagenesis and screening for decreased luminescence, we identified insertions in genes encoding components necessary for the luciferase reaction (lux, lum, and rib operons) as well as in nine other loci. These additional loci encode gene products predicted to be involved in the tricarboxylic acid (TCA) cycle, DNA and RNA metabolism, transcriptional regulation, and the synthesis of cytochrome c, peptidoglycan, and fatty acids. The mutagenesis screen did not identify any mutants with disruptions of predicted pheromone-related loci. Using targeted gene insertional disruptions, we demonstrate that under the growth conditions tested, luminescence levels do not appear to be controlled through canonical pheromone signaling systems in this strain. IMPORTANCE Despite the long-standing interest in luminous bacteria, outside a few model organisms, little is known about the regulation and function of luminescence. Light-producing marine bacteria are widely distributed and have diverse lifestyles, suggesting that the control and significance of luminescence may be similarly diverse. In this study, we apply genetic tools to the study of regulation of light production in the extremely bright isolate Photobacterium leiognathi KNH6. Our results suggest an unusual lack of canonical pheromone-mediated control of luminescence and contribute to a better understanding of alternative strategies for regulation of a key bacterial behavior. These experiments lay the groundwork for further study of the regulation and role of bioluminescence in P. leiognathi.
Collapse
Affiliation(s)
- Anne K Dunn
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Bethany A Rader
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Mark J Mandel
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
24
|
Colton DM, Stabb EV. Rethinking the roles of CRP, cAMP, and sugar-mediated global regulation in the Vibrionaceae. Curr Genet 2015. [PMID: 26215147 DOI: 10.1007/s00294-015-0508-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Many proteobacteria modulate a suite of catabolic genes using the second messenger cyclic 3', 5'-AMP (cAMP) and the cAMP receptor protein (CRP). Together, the cAMP-CRP complex regulates target promoters, usually by activating transcription. In the canonical model, the phosphotransferase system (PTS), and in particular the EIIA(Glc) component for glucose uptake, provides a mechanistic link that modulates cAMP levels depending on glucose availability, resulting in more cAMP and activation of alternative catabolic pathways when glucose is unavailable. Within the Vibrionaceae, cAMP-CRP appears to play the classical role in modulating metabolic pathways; however, it also controls functions involved in natural competence, bioluminescence, pheromone signaling, and colonization of animal hosts. For this group of marine bacteria, chitin is an ecologically relevant resource, and chitin's monomeric sugar N-acetylglucosamine (NAG) supports robust growth while also triggering regulatory responses. Recent studies with Vibrio fischeri indicate that NAG and glucose uptake share EIIA(Glc), yet the responses of cAMP-CRP to these two carbon sources are starkly different. Moreover, control of cAMP levels appears to be more dominantly controlled by export and degradation. Perhaps more surprisingly, although CRP may require cAMP, its activity can be controlled in response to glucose by a mechanism independent of cAMP levels. Future studies in this area promise to shed new light on the role of cAMP and CRP.
Collapse
Affiliation(s)
- Deanna M Colton
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602, USA.
| |
Collapse
|
25
|
Colton DM, Stabb EV, Hagen SJ. Modeling Analysis of Signal Sensitivity and Specificity by Vibrio fischeri LuxR Variants. PLoS One 2015; 10:e0126474. [PMID: 25962099 PMCID: PMC4427320 DOI: 10.1371/journal.pone.0126474] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/13/2015] [Indexed: 01/22/2023] Open
Abstract
The LuxR protein of the bacterium Vibrio fischeri belongs to a family of transcriptional activators that underlie pheromone-mediated signaling by responding to acyl-homoserine lactones (-HSLs) or related molecules. V. fischeri produces two acyl-HSLs, N-3-oxo-hexanoyl-HSL (3OC6-HSL) and N-octanoyl-HSL (C8-HSL), each of which interact with LuxR to facilitate its binding to a "lux box" DNA sequence, thereby enabling LuxR to activate transcription of the lux operon responsible for bioluminescence. We have investigated the HSL sensitivity of four different variants of V. fischeri LuxR: two derived from wild-type strains ES114 and MJ1, and two derivatives of LuxRMJ1 generated by directed evolution. For each LuxR variant, we measured the bioluminescence induced by combinations of C8-HSL and 3OC6-HSL. We fit these data to a model in which the two HSLs compete with each other to form multimeric LuxR complexes that directly interact with lux to activate bioluminescence. The model reproduces the observed effects of HSL combinations on the bioluminescence responses directed by LuxR variants, including competition and non-monotonic responses to C8-HSL and 3OC6-HSL. The analysis yields robust estimates for the underlying dissociation constants and cooperativities (Hill coefficients) of the LuxR-HSL complexes and their affinities for the lux box. It also reveals significant differences in the affinities of LuxRMJ1 and LuxRES114 for 3OC6-HSL. Further, LuxRMJ1 and LuxRES114 differed sharply from LuxRs retrieved by directed evolution in the cooperativity of LuxR-HSL complex formation and the affinity of these complexes for lux. These results show how computational modeling of in vivo experimental data can provide insight into the mechanistic consequences of directed evolution.
Collapse
Affiliation(s)
- Deanna M. Colton
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Eric V. Stabb
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Stephen J. Hagen
- Physics Department, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
26
|
Septer AN, Bose JL, Lipzen A, Martin J, Whistler C, Stabb EV. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system. Mol Microbiol 2014; 95:283-96. [PMID: 25402589 DOI: 10.1111/mmi.12864] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2014] [Indexed: 11/28/2022]
Abstract
The Gac/Csr regulatory system is conserved throughout the γ-proteobacteria and controls key pathways in central carbon metabolism, quorum sensing, biofilm formation and virulence in important plant and animal pathogens. Here we show that elevated intracellular citrate levels in a Vibrio fischeri aconitase mutant correlate with activation of the Gac/Csr cascade and induction of bright luminescence. Spontaneous or directed mutations in the gene that encodes citrate synthase reversed the bright luminescence of aconitase mutants, eliminated their citrate accumulation and reversed their elevated expression of CsrB. Our data elucidate a correlative link between central metabolic and regulatory pathways, and they suggest that the Gac system senses a blockage at the aconitase step of the tricarboxylic acid cycle, either through elevated citrate levels or a secondary metabolic effect of citrate accumulation, and responds by modulating carbon flow and various functions associated with host colonization, including bioluminescence.
Collapse
Affiliation(s)
- Alecia N Septer
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602, USA
| | | | | | | | | | | |
Collapse
|
27
|
Global discovery of colonization determinants in the squid symbiont Vibrio fischeri. Proc Natl Acad Sci U S A 2014; 111:17284-9. [PMID: 25404340 DOI: 10.1073/pnas.1415957111] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animal epithelial tissue becomes reproducibly colonized by specific environmental bacteria. The bacteria (microbiota) perform critical functions for the host's tissue development, immune system development, and nutrition; yet the processes by which bacterial diversity in the environment is selected to assemble the correct communities in the host are unclear. To understand the molecular determinants of microbiota selection, we examined colonization of a simplified model in which the light organ of Euprymna scolopes squid is colonized exclusively by Vibrio fischeri bacteria. We applied high-throughput insertion sequencing to identify which bacterial genes are required during host colonization. A library of over 41,000 unique transposon insertions was analyzed before and after colonization of 1,500 squid hatchlings. Mutants that were reproducibly depleted following squid colonization represented 380 genes, including 37 that encode known colonization factors. Validation of select mutants in defined competitions against the wild-type strain identified nine mutants that exhibited a reproducible colonization defect. Some of the colonization factors identified included genes predicted to influence copper regulation and secretion. Other mutants exhibited defects in biofilm development, which is required for aggregation in host mucus and initiation of colonization. Biofilm formation in culture and in vivo was abolished in a strain lacking the cytoplasmic chaperone DnaJ, suggesting an important role for protein quality control during the elaboration of bacterial biofilm in the context of an intact host immune system. Overall these data suggest that cellular stress responses and biofilm regulation are critical processes underlying the reproducible colonization of animal hosts by specific microbial symbionts.
Collapse
|
28
|
Norsworthy AN, Visick KL. Gimme shelter: how Vibrio fischeri successfully navigates an animal's multiple environments. Front Microbiol 2013; 4:356. [PMID: 24348467 PMCID: PMC3843225 DOI: 10.3389/fmicb.2013.00356] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/09/2013] [Indexed: 12/19/2022] Open
Abstract
Bacteria successfully colonize distinct niches because they can sense and appropriately respond to a variety of environmental signals. Of particular interest is how a bacterium negotiates the multiple, complex environments posed during successful infection of an animal host. One tractable model system to study how a bacterium manages a host’s multiple environments is the symbiotic relationship between the marine bacterium, Vibrio fischeri, and its squid host, Euprymna scolopes. V. fischeri encounters many different host surroundings ranging from initial contact with the squid to ultimate colonization of a specialized organ known as the light organ. For example, upon recognition of the squid, V. fischeri forms a biofilm aggregate outside the light organ that is required for efficient colonization. The bacteria then disperse from this biofilm to enter the organ, where they are exposed to nitric oxide, a molecule that can act as both a signal and an antimicrobial. After successfully managing this potentially hostile environment, V. fischeri cells finally establish their niche in the deep crypts of the light organ where the bacteria bioluminesce in a pheromone-dependent fashion, a phenotype that E. scolopes utilizes for anti-predation purposes. The mechanism by which V. fischeri manages these environments to outcompete all other bacterial species for colonization of E. scolopes is an important and intriguing question that will permit valuable insights into how a bacterium successfully associates with a host. This review focuses on specific molecular pathways that allow V. fischeri to establish this exquisite bacteria–host interaction.
Collapse
Affiliation(s)
- Allison N Norsworthy
- Department of Microbiology and Immunology, Loyola University Medical Center Maywood, IL, USA
| | - Karen L Visick
- Department of Microbiology and Immunology, Loyola University Medical Center Maywood, IL, USA
| |
Collapse
|
29
|
Substrate specificity and function of the pheromone receptor AinR in Vibrio fischeri ES114. J Bacteriol 2013; 195:5223-32. [PMID: 24056099 DOI: 10.1128/jb.00913-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two distinct but interrelated pheromone-signaling systems, LuxI/LuxR and AinS/AinR, positively control bioluminescence in Vibrio fischeri. Although each system generates an acyl-homoserine lactone (AHL) signal, the protein sequences of LuxI/LuxR and AinS/AinR are unrelated. AinS and LuxI generate the pheromones N-octanoyl-AHL (C8-AHL) and N-3-oxo-hexanoyl-AHL (3OC6-AHL), respectively. LuxR is a transcriptional activator that responds to 3OC6-AHL, and to a lesser extent to C8-AHL. AinR is hypothesized to respond to C8-AHL and, based on homology to Vibrio harveyi LuxN, to mediate the repression of a Qrr regulatory RNA. However, a ΔainR mutation decreased luminescence, which was not predicted based on V. harveyi LuxN, raising the possibility of a distinct regulatory mechanism for AinR. Here we show that ainR can complement a luxN mutant, suggesting functional similarity. Moreover, in V. fischeri, we observed ainR-dependent repression of a Pqrr-lacZ transcriptional reporter in the presence of C8-AHL, consistent with its hypothesized regulatory role. The system appears quite sensitive, with a half-maximal effect on a Pqrr reporter at 140 pM C8-AHL. Several other AHLs with substituted and unsubstituted acyl chains between 6 and 10 carbons also displayed an AinR-dependent effect on Pqrr-lacZ; however, AHLs with acyl chains of four carbons or 12 or more carbons lacked activity. Interestingly, 3OC6-AHL also affected expression from the qrr promoter, but this effect was largely luxR dependent, indicating a previously unknown connection between these systems. Finally, we propose a preliminary explanation for the unexpected luminescence phenotype of the ΔainR mutant.
Collapse
|
30
|
Cyclic AMP receptor protein regulates pheromone-mediated bioluminescence at multiple levels in Vibrio fischeri ES114. J Bacteriol 2013; 195:5051-63. [PMID: 23995643 DOI: 10.1128/jb.00751-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bioluminescence in Vibrio fischeri ES114 is activated by autoinducer pheromones, and this regulation serves as a model for bacterial cell-cell signaling. As in other bacteria, pheromone concentration increases with cell density; however, pheromone synthesis and perception are also modulated in response to environmental stimuli. Previous studies suggested that expression of the pheromone-dependent bioluminescence activator LuxR is regulated in response to glucose by cyclic AMP (cAMP) receptor protein (CRP) (P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 164:45-50, 1985; P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 170:4040-4046, 1988; P. V. Dunlap, J. Bacteriol. 171:1199-1202, 1989; and W. F. Friedrich and E. P. Greenberg, Arch. Microbiol. 134:87-91, 1983). Consistent with this model, we found that bioluminescence in V. fischeri ES114 is modulated by glucose and stimulated by cAMP. In addition, a Δcrp mutant was ∼100-fold dimmer than ES114 and did not increase luminescence in response to added cAMP, even though cells lacking crp were still metabolically capable of producing luminescence. We further discovered that CRP regulates not only luxR but also the alternative pheromone synthase gene ainS. We found that His-tagged V. fischeri CRP could bind sequences upstream of both luxR and ainS, supporting bioinformatic predictions of direct regulation at both promoters. Luminescence increased in response to cAMP if either the ainS or luxR system was under native regulation, suggesting cAMP-CRP significantly increases luminescence through both systems. Finally, using transcriptional reporters in transgenic Escherichia coli, we elucidated two additional regulatory connections. First, LuxR-independent basal transcription of the luxI promoter was enhanced by CRP. Second, the effect of CRP on the ainS promoter depended on whether the V. fischeri regulatory gene litR was also introduced. These results suggest an integral role for CRP in pheromone signaling that goes beyond sensing cell density.
Collapse
|
31
|
Verma SC, Miyashiro T. Quorum sensing in the squid-Vibrio symbiosis. Int J Mol Sci 2013; 14:16386-401. [PMID: 23965960 PMCID: PMC3759917 DOI: 10.3390/ijms140816386] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 02/08/2023] Open
Abstract
Quorum sensing is an intercellular form of communication that bacteria use to coordinate group behaviors such as biofilm formation and the production of antibiotics and virulence factors. The term quorum sensing was originally coined to describe the mechanism underlying the onset of luminescence production in cultures of the marine bacterium Vibrio fischeri. Luminescence and, more generally, quorum sensing are important for V. fischeri to form a mutualistic symbiosis with the Hawaiian bobtail squid, Euprymna scolopes. The symbiosis is established when V. fischeri cells migrate via flagella-based motility from the surrounding seawater into a specialized structure injuvenile squid called the light organ. The cells grow to high cell densities within the light organ where the infection persists over the lifetime of the animal. A hallmark of a successful symbiosis is the luminescence produced by V. fischeri that camouflages the squid at night by eliminating its shadow within the water column. While the regulatory networks governing quorum sensing are critical for properly regulating V. fischeri luminescence within the squid light organ, they also regulate luminescence-independent processes during symbiosis. In this review, we discuss the quorum-sensing network of V. fischeri and highlight its impact at various stages during host colonization.
Collapse
Affiliation(s)
- Subhash C Verma
- Department of Biochemistry and Molecular Biology, Eberly College of Science, the Pennsylvania State University, 219 Wartik Lab, University Park, PA 16802, USA.
| | | |
Collapse
|
32
|
Abstract
Vibrio fischeri is a bioluminescent, Gram-negative marine bacterium that can be found free living and in a mutualistic association with certain squids and fishes. Over the past decades, the study of V. fischeri has led to important discoveries about bioluminescence, quorum sensing, and the mechanisms that underlie beneficial host-microbe interactions. This chapter highlights what has been learned about metabolic pathways in V. fischeri, and how this information contributes to a broader understanding of the role of bacterial metabolism in host colonization by both beneficial and pathogenic bacteria, as well as in the growth and survival of free-living bacteria.
Collapse
|
33
|
Symbiotic characterization of Vibrio fischeri ES114 mutants that display enhanced luminescence in culture. Appl Environ Microbiol 2013; 79:2480-3. [PMID: 23377934 DOI: 10.1128/aem.03111-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio fischeri ES114 is a bioluminescent symbiont of the squid Euprymna scolopes. Like most isolates from E. scolopes, ES114 produces only dim luminescence outside the host, even in dense cultures. We previously identified mutants with brighter luminescence, and here we report their symbiotic phenotypes, providing insights into the host environment.
Collapse
|
34
|
Weber M, Buceta J. Dynamics of the quorum sensing switch: stochastic and non-stationary effects. BMC SYSTEMS BIOLOGY 2013; 7:6. [PMID: 23324134 PMCID: PMC3614889 DOI: 10.1186/1752-0509-7-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 01/07/2013] [Indexed: 12/23/2022]
Abstract
Background A wide range of bacteria species are known to communicate through the so called quorum sensing (QS) mechanism by means of which they produce a small molecule that can freely diffuse in the environment and in the cells. Upon reaching a threshold concentration, the signalling molecule activates the QS-controlled genes that promote phenotypic changes. This mechanism, for its simplicity, has become the model system for studying the emergence of a global response in prokaryotic cells. Yet, how cells precisely measure the signal concentration and act coordinately, despite the presence of fluctuations that unavoidably affects cell regulation and signalling, remains unclear. Results We propose a model for the QS signalling mechanism in Vibrio fischeri based on the synthetic strains lux01 and lux02. Our approach takes into account the key regulatory interactions between LuxR and LuxI, the autoinducer transport, the cellular growth and the division dynamics. By using both deterministic and stochastic models, we analyze the response and dynamics at the single-cell level and compare them to the global response at the population level. Our results show how fluctuations interfere with the synchronization of the cell activation and lead to a bimodal phenotypic distribution. In this context, we introduce the concept of precision in order to characterize the reliability of the QS communication process in the colony. We show that increasing the noise in the expression of LuxR helps cells to get activated at lower autoinducer concentrations but, at the same time, slows down the global response. The precision of the QS switch under non-stationary conditions decreases with noise, while at steady-state it is independent of the noise value. Conclusions Our in silico experiments show that the response of the LuxR/LuxI system depends on the interplay between non-stationary and stochastic effects and that the burst size of the transcription/translation noise at the level of LuxR controls the phenotypic variability of the population. These results, together with recent experimental evidences on LuxR regulation in wild-type species, suggest that bacteria have evolved mechanisms to regulate the intensity of those fluctuations.
Collapse
Affiliation(s)
- Marc Weber
- Computer Simulation and Modelling (Co,S,Mo,) Lab, Parc Científic de Barcelona, C/ Baldiri Reixac 4, 08028 Barcelona, Spain
| | | |
Collapse
|
35
|
The iron-dependent regulator fur controls pheromone signaling systems and luminescence in the squid symbiont Vibrio fischeri ES114. Appl Environ Microbiol 2013; 79:1826-34. [PMID: 23315731 DOI: 10.1128/aem.03079-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria often use pheromones to coordinate group behaviors in specific environments. While high cell density is required for pheromones to achieve stimulatory levels, environmental cues can also influence pheromone accumulation and signaling. For the squid symbiont Vibrio fischeri ES114, bioluminescence requires pheromone-mediated regulation, and this signaling is induced in the host to a greater extent than in culture, even at an equivalent cell density. Our goal is to better understand this environment-specific control over pheromone signaling and bioluminescence. Previous work with V. fischeri MJ1 showed that iron limitation induces luminescence, and we recently found that ES114 encounters a low-iron environment in its host. Here we show that ES114 induces luminescence at lower cell density and achieves brighter luminescence in low-iron media. This iron-dependent effect on luminescence required ferric uptake regulator (Fur), which we propose influences two pheromone signaling master regulators, LitR and LuxR. Genetic and bioinformatic analyses suggested that under low-iron conditions, Fur-mediated repression of litR is relieved, enabling more LitR to perform its established role as an activator of luxR. Interestingly, Fur may similarly control the LitR homolog SmcR of Vibrio vulnificus. These results reveal an intriguing regulatory link between low-iron conditions, which are often encountered in host tissues, and pheromone-dependent master regulators.
Collapse
|
36
|
Coordination of the arc regulatory system and pheromone-mediated positive feedback in controlling the Vibrio fischeri lux operon. PLoS One 2012; 7:e49590. [PMID: 23152924 PMCID: PMC3496712 DOI: 10.1371/journal.pone.0049590] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/11/2012] [Indexed: 01/20/2023] Open
Abstract
Bacterial pheromone signaling is often governed both by environmentally responsive regulators and by positive feedback. This regulatory combination has the potential to coordinate a group response among distinct subpopulations that perceive key environmental stimuli differently. We have explored the interplay between an environmentally responsive regulator and pheromone-mediated positive feedback in intercellular signaling by Vibrio fischeri ES114, a bioluminescent bacterium that colonizes the squid Euprymna scolopes. Bioluminescence in ES114 is controlled in part by N-(3-oxohexanoyl)-L-homoserine lactone (3OC6), a pheromone produced by LuxI that together with LuxR activates transcription of the luxICDABEG operon, initiating a positive feedback loop and inducing luminescence. The lux operon is also regulated by environmentally responsive regulators, including the redox-responsive ArcA/ArcB system, which directly represses lux in culture. Here we show that inactivating arcA leads to increased 3OC6 accumulation to initiate positive feedback. In the absence of positive feedback, arcA-mediated control of luminescence was only ∼2-fold, but luxI-dependent positive feedback contributed more than 100 fold to the net induction of luminescence in the arcA mutant. Consistent with this overriding importance of positive feedback, 3OC6 produced by the arcA mutant induced luminescence in nearby wild-type cells, overcoming their ArcA repression of lux. Similarly, we found that artificially inducing ArcA could effectively repress luminescence before, but not after, positive feedback was initiated. Finally, we show that 3OC6 produced by a subpopulation of symbiotic cells can induce luminescence in other cells co-colonizing the host. Our results suggest that even transient loss of ArcA-mediated regulation in a sub-population of cells can induce luminescence in a wider community. Moreover, they indicate that 3OC6 can communicate information about both cell density and the state of ArcA/ArcB.
Collapse
|
37
|
Ray VA, Visick KL. LuxU connects quorum sensing to biofilm formation in Vibrio fischeri. Mol Microbiol 2012; 86:954-70. [PMID: 23035866 DOI: 10.1111/mmi.12035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2012] [Indexed: 11/29/2022]
Abstract
Biofilm formation by Vibrio fischeri is a complex process involving multiple regulators, including the sensor kinase (SK) RscS and the response regulator (RR) SypG, which control the symbiosis polysaccharide (syp) locus. To identify other regulators of biofilm formation in V. fischeri, we screened a transposon library for mutants defective in wrinkled colony formation. We identified LuxQ as a positive regulator of syp-dependent biofilm formation. LuxQ is a member of the Lux phosphorelay and is predicted to control bioluminescence in concert with the SK AinR, the phosphotransferase LuxU and the RR LuxO. Of these, LuxU was the only other regulator that exerted a substantial impact on biofilm formation. We propose a model in which the Lux pathway branches at LuxU to control both bioluminescence and biofilm formation. Furthermore, our evidence suggests that LuxU functions to regulate syp transcription, likely by controlling SypG activity. Finally, we found that, in contrast to its predicted function, the SK AinR has little impact on bioluminescence under our conditions. Thus, this study reveals a novel connection between the Lux and Syp pathways in V. fischeri, and furthers our understanding of how the Lux pathway regulates bioluminescence in this organism.
Collapse
Affiliation(s)
- Valerie A Ray
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | |
Collapse
|
38
|
Defoirdt T, Sorgeloos P. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae. ISME JOURNAL 2012; 6:2314-9. [PMID: 22673627 DOI: 10.1038/ismej.2012.58] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host-pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.
Collapse
Affiliation(s)
- Tom Defoirdt
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, 9000 Gent, Belgium.
| | | |
Collapse
|
39
|
May AL, Eisenhauer ME, Coulston KS, Campagna SR. Detection and quantitation of bacterial acylhomoserine lactone quorum sensing molecules via liquid chromatography-isotope dilution tandem mass spectrometry. Anal Chem 2012; 84:1243-52. [PMID: 22235749 DOI: 10.1021/ac202636d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A range of acylhomoserine lactones (AHLs) are used as intraspecies quorum sensing signals by Gram-negative bacteria, and the detection and quantitation of these molecules is of interest. This manuscript reports a liquid chromatographic-isotope dilution tandem mass spectrometric method for the quantitation of these molecules. A divergent solid-phase synthesis of stable-isotope-labeled AHLs suitable for use as an internal standard is reported. This route relies on the biomimetic conversion of a dideuterated methionine equivalent, N-Fmoc-(4,4-(2)H(2))methionine, to the desired labeled AHL, and a representative series of eight of these molecules was produced in >95% purity and yields up to ~50%. The representative AHL internal standards were then used to develop an optimized liquid chromatography-tandem mass spectrometric (LC-MS/MS) separation and detection protocol for these molecules, which relies on a high-efficiency C18 core-shell column to minimize the time necessary for separation. The addition of internal standards at different steps during sampling was also found to affect the analysis for hydrophobic AHLs with addition prior to cell removal giving the most accurate results. Taken together, the use of the internal standards and separation method reported herein provides a rapid and quantitative method for the study of AHL production in bacteria.
Collapse
Affiliation(s)
- Amanda L May
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, USA
| | | | | | | |
Collapse
|
40
|
The novel sigma factor-like regulator RpoQ controls luminescence, chitinase activity, and motility in Vibrio fischeri. mBio 2012; 3:mBio.00285-11. [PMID: 22233679 PMCID: PMC3252764 DOI: 10.1128/mbio.00285-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vibrio fischeri, the bacterial symbiont of the Hawaiian bobtail squid, Euprymna scolopes, uses quorum sensing to control genes involved in bioluminescence, host colonization, and other biological processes. Previous work has shown that AinS/R-directed quorum sensing also regulates the expression of rpoQ (VF_A1015), a gene annotated as an RpoS-like sigma factor. In this study, we demonstrate using phylogenetics that RpoQ is related to, but distinct from, the stationary-phase sigma factor RpoS. Overexpression of rpoQ results in elevated chitinase activity but decreased motility and luminescence, three activities associated with symbiosis. The reduction in bacterial luminescence associated with the overexpression of rpoQ occurs both in culture and within the light-emitting organ of the squid host. This suppression of bioluminescence is due to the repression of the luxICDABEG promoter. Our results highlight RpoQ as a novel regulatory component, embedded in the quorum-signaling network that controls several biological processes in V. fischeri. Quorum signaling is a widely occurring phenomenon that functions in diverse bacterial taxa. It is most often found associated with species that interact with animal or plant hosts, either as mutualists or pathogens, and controls the expression of genes critical to tissue colonization. We present the discovery of rpoQ, which encodes a new regulatory component in the quorum-signaling pathway of Vibrio fischeri. RpoQ is a novel protein in the RpoS family of stationary-phase sigma factors. Unlike many other regulatory proteins involved in the quorum-signaling pathways of the Vibrionaceae, the distribution of RpoQ appears to be restricted to only two closely related species. The role of this regulator is to enhance some quorum-signaling outputs (chitinase activity) while suppressing others (luminescence). We propose that RpoQ may be a recently evolved or acquired component in V. fischeri that provides this organism with an additional level of regulation to modulate its existing quorum-signaling pathway.
Collapse
|
41
|
Pérez PD, Weiss JT, Hagen SJ. Noise and crosstalk in two quorum-sensing inputs of Vibrio fischeri. BMC SYSTEMS BIOLOGY 2011; 5:153. [PMID: 21959018 PMCID: PMC3224347 DOI: 10.1186/1752-0509-5-153] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/29/2011] [Indexed: 11/10/2022]
Abstract
Background One of the puzzles in bacterial quorum sensing is understanding how an organism integrates the information gained from multiple input signals. The marine bacterium Vibrio fischeri regulates its bioluminescence through a quorum sensing mechanism that receives input from three pheromone signals, including two acyl homoserine lactone (HSL) signals. While the role of the 3-oxo-C6 homoserine lactone (3OC6HSL) signal in activating the lux genes has been extensively studied and modeled, the role of the C8 homoserine lactone (C8HSL) is less obvious, as it can either activate luminescence or block its activation. It remains unclear how crosstalk between C8HSL and 3OC6HSL affects the information that the bacterium obtains through quorum sensing. Results We have used microfluidic methods to measure the response of individual V.fischeri cells to combinations of C8HSL and 3OC6HSL. By measuring the fluorescence of individual V.fischeri cells containing a chromosomal gfp-reporter for the lux genes, we study how combinations of exogenous HSLs affect both the population average and the cell-to-cell variability of lux activation levels. At the level of a population average, the crosstalk between the C8HSL and 3OC6HSL inputs is well-described by a competitive inhibition model. At the level of individual cells, the heterogeneity in the lux response depends only on the average degree of activation, so that the noise in the output is not reduced by the presence of the second HSL signal. Overall we find that the mutual information between the signal inputs and the lux output is less than one bit. A nonlinear correlation between fluorescence and bioluminescence outputs from lux leads to different noise properties for these reporters. Conclusions The lux genes in V.fischeri do not appear to distinguish between the two HSL inputs, and even with two signal inputs the regulation of lux is extremely noisy. Hence the role of crosstalk from the C8HSL input may not be to improve sensing precision, but rather to suppress the sensitivity of the switch for as long as possible during colony growth.
Collapse
Affiliation(s)
- Pablo D Pérez
- Department of Physics, University of Florida, Gainesville, FL 32611-8440, USA
| | | | | |
Collapse
|