1
|
Tebele SM, Marks RA, Farrant JM. Microbial survival strategies in desiccated roots of Myrothamnus flabellifolia. Front Microbiol 2025; 16:1560114. [PMID: 40226100 PMCID: PMC11985526 DOI: 10.3389/fmicb.2025.1560114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Root-associated microbiomes are critical to plant vigor, particularly under drought stress. The spatial dynamics of microbial community diversity and composition are strongly influenced by plant root and environmental factors. While the desiccation tolerance of the resurrection plant Myrothamnus flabellifolia using leaf tissue has been previously investigated, the transcriptional responses of its root-associated microbiomes under desiccation remain completely unexplored. Methods Here, we conducted metatranscriptome sequencing on root samples of M. flabellifolia collected in the field across four states: dry, desiccated, partially hydrated, and fully hydrated. Results Bacterial transcripts dominated the root metatranscriptome across all conditions. Desiccated roots exhibited a significant increase in transcripts from Actinomycetota, whereas fully hydrated roots showed an enrichment of Pseudomonadota. Under desiccation, root-associated bacteria upregulated genes involved in antioxidant systems, trehalose biosynthesis, and hormonal regulation. Discussion These findings highlight microbial adaptive mechanisms to withstand extreme water loss. In contrast, the bacterial transcriptional response in hydrated roots was characterized by genes linked to peptidoglycan biosynthesis, sugar transporters, and chemotaxis. Taken together, our findings indicate that root-associated bacteria deploy defense mechanisms analogous to those of their host plant to adapt to extreme drought stress, highlighting their crucial role in plant resilience.
Collapse
Affiliation(s)
- Shandry M. Tebele
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Rose A. Marks
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jill M. Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
2
|
Zhang Y, Ku YS, Cheung TY, Cheng SS, Xin D, Gombeau K, Cai Y, Lam HM, Chan TF. Challenges to rhizobial adaptability in a changing climate: Genetic engineering solutions for stress tolerance. Microbiol Res 2024; 288:127886. [PMID: 39232483 DOI: 10.1016/j.micres.2024.127886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Rhizobia interact with leguminous plants in the soil to form nitrogen fixing nodules in which rhizobia and plant cells coexist. Although there are emerging studies on rhizobium-associated nitrogen fixation in cereals, the legume-rhizobium interaction is more well-studied and usually serves as the model to study rhizobium-mediated nitrogen fixation in plants. Rhizobia play a crucial role in the nitrogen cycle in many ecosystems. However, rhizobia are highly sensitive to variations in soil conditions and physicochemical properties (i.e. moisture, temperature, salinity, pH, and oxygen availability). Such variations directly caused by global climate change are challenging the adaptive capabilities of rhizobia in both natural and agricultural environments. Although a few studies have identified rhizobial genes that confer adaptation to different environmental conditions, the genetic basis of rhizobial stress tolerance remains poorly understood. In this review, we highlight the importance of improving the survival of rhizobia in soil to enhance their symbiosis with plants, which can increase crop yields and facilitate the establishment of sustainable agricultural systems. To achieve this goal, we summarize the key challenges imposed by global climate change on rhizobium-plant symbiosis and collate current knowledge of stress tolerance-related genes and pathways in rhizobia. And finally, we present the latest genetic engineering approaches, such as synthetic biology, implemented to improve the adaptability of rhizobia to changing environmental conditions.
Collapse
Affiliation(s)
- Yunjia Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yee-Shan Ku
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tsz-Yan Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sau-Shan Cheng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China
| | - Kewin Gombeau
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
3
|
Del-Canto A, Sanz-Saez A, Heath KD, Grillo MA, Heras J, Lacuesta M. Conventional management has a greater negative impact on Phaseolus vulgaris L. rhizobia diversity and abundance than water scarcity. FRONTIERS IN PLANT SCIENCE 2024; 15:1408125. [PMID: 39011306 PMCID: PMC11246888 DOI: 10.3389/fpls.2024.1408125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/22/2024] [Indexed: 07/17/2024]
Abstract
Introduction Drought is one of the biggest problems for crop production and also affects the survival and persistence of soil rhizobia, which limits the establishment of efficient symbiosis and endangers the productivity of legumes, the main source of plant protein worldwide. Aim Since the biodiversity can be altered by several factors including abiotic stresses or cultural practices, the objective of this research was to evaluate the effect of water availability, plant genotype and agricultural management on the presence, nodulation capacity and genotypic diversity of rhizobia. Method A field experiment was conducted with twelve common bean genotypes under irrigation and rain-fed conditions, both in conventional and organic management. Estimation of the number of viable rhizobia present in soils was performed before the crop establishment, whereas the crop yield, nodule number and the strain diversity of bacteria present in nodules were determined at postharvest. Results Rainfed conditions reduced the number of nodules and of isolated bacteria and their genetic diversity, although to a lesser extent than the agrochemical inputs related to conventional management. In addition, the effect of water scarcity on the conventional management soil was greater than observed under organic conditions. Conclusions The preservation of diversity will be a key factor to maintain crop production in the future, as problems caused by drought will be exacerbated by climate change and organic management can help to maintain the biodiversity of soil microbiota, a fundamental aspect for soil health and quality.
Collapse
Affiliation(s)
- Arantza Del-Canto
- Department of Plant Biology and Ecology, Pharmacy Faculty, University of the Basque Country, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alvaro Sanz-Saez
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Katy D Heath
- Department of Plant Biology, University of Illinois, Urbana, IL, United States
| | - Michael A Grillo
- Department of Plant Biology, University of Illinois, Urbana, IL, United States
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Jónathan Heras
- Department of Mathematics and Computer Science, University of La Rioja, Logroño, Spain
| | - Maite Lacuesta
- Department of Plant Biology and Ecology, Pharmacy Faculty, University of the Basque Country, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
4
|
Ujaoney AK, Anaganti N, Padwal MK, Basu B. Tracing the serendipitous genesis of radiation resistance. Mol Microbiol 2024; 121:142-151. [PMID: 38082498 DOI: 10.1111/mmi.15208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/15/2024]
Abstract
Free-living organisms frequently encounter unfavorable abiotic environmental factors. Those who adapt and cope with sudden changes in the external environment survive. Desiccation is one of the most common and frequently encountered stresses in nature. On the contrary, ionizing radiations are limited to high local concentrations of naturally occurring radioactive materials and related anthropogenic activities. Yet, resistance to high doses of ionizing radiation is evident across the tree of life. The evolution of desiccation resistance has been linked to the evolution of ionizing radiation resistance, although, evidence to support the idea that the evolution of desiccation tolerance is a necessary precursor to ionizing radiation resistance is lacking. Moreover, the presence of radioresistance in hyperthermophiles suggests multiple paths lead to radiation resistance. In this minireview, we focus on the molecular aspects of damage dynamics and damage response pathways comprising protective and restorative functions with a definitive survival advantage, to explore the serendipitous genesis of ionizing radiation resistance.
Collapse
Affiliation(s)
- Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Narasimha Anaganti
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
5
|
Liu S, Xue R, Qin W, Yang X, Ye Q, Wu Q. Performance and transcriptome analysis of Salmonella enterica serovar Enteritidis PT 30 under persistent desiccation stress: Cultured by lawn and broth methods. Food Microbiol 2023; 115:104323. [PMID: 37567618 DOI: 10.1016/j.fm.2023.104323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 08/13/2023]
Abstract
Lawn-harvest method uses a solid medium (e.g., tryptic soy agar, TSA) to produce bacterial lawns and is widely accepted for the culture of microorganisms in microbial studies of low-moisture foods (LMFs, foods with water activity less than 0.85). It produces desiccation-tolerant cells with higher D-values in LMFs; however, little is known about the molecular mechanisms underlying bacterial resistance. Salmonella enterica Enteritidis PT 30 (S. Enteritidis), the most pertinent pathogen in LMFs, was cultured in TSA and tryptic soy broth (TSB). Cells were harvested and inoculated on filter papers to assess their performance under a relative humidity of 32 ± 2%. Transcriptome analysis of cultured cells during long-term desiccation (24, 72, and 168 h) was conducted in TruSeq PE Cluster Kit (Illumina) by paired-end methods. Lawn-cultured S. Enteritidis cells have stronger survivability (only decreased by 0.78 ± 0.12 log after 130 d of storage) and heat tolerance (higher D/β value) than those from the broth method. More desiccation genes of lawn-cultured cells were significantly upregulated from growth to long-term desiccation. Differentially expressed genes were the most enriched in the ribosome and sulfur metabolism pathways in the lawn- and broth-cultured groups. This study tracked the transcriptomic differences between two cultured groups in response to long-term desiccation stress and revealed some molecular mechanisms underlying their different suitability in microbial studies of LMFs.
Collapse
Affiliation(s)
- Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Ruimin Xue
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
6
|
Identification of Ensifer meliloti genes required for survival during peat-based bioinoculant maturation by STM-seq. J Biotechnol 2023; 362:12-23. [PMID: 36535417 DOI: 10.1016/j.jbiotec.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Rhizobial inoculants are sold either as rhizobia within a liquid matrix; or as rhizobia adhered to granules composed of peat prill or finely ground peat moss. During the production of peat-based inoculants, a series of physiological changes occur that result in an increased capability of the rhizobia to survive on the seeds. The number of viable rhizobia on preinoculated seeds at the point of sale, however, is often a limiting factor, as is the inefficiency of the inoculant bacteria to compete with the local rhizobia for the host colonization. In the present work, we used STM-seq for the genome-wide screening of Ensifer meliloti mutants affected in the survival during the maturation of peat-based inoculant formulations. Through this approach, we were able to identify a set of mutants whose behavior suggests that persistence in peat inoculants involves a complex phenotype that is connected to diverse cellular activities, mainly related to satisfying the requirements of bacterial nutrition (e.g., carbon sources, ions) and to coping with specific stresses (e.g., oxidative, mutational). These results also provide a base knowledge that could be used to more completely understand the survival mechanisms used by rhizobia during the maturation of peat-based inoculants, as well as for the design and implementation of practical strategies to improve inoculant formulations.
Collapse
|
7
|
Hernández-Fernández G, Galán B, Carmona M, Castro L, García JL. Transcriptional response of the xerotolerant Arthrobacter sp. Helios strain to PEG-induced drought stress. Front Microbiol 2022; 13:1009068. [PMID: 36312951 PMCID: PMC9608346 DOI: 10.3389/fmicb.2022.1009068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
A new bacterial strain has been isolated from the microbiome of solar panels and classified as Arthrobacter sp. Helios according to its 16S rDNA, positioning it in the “Arthrobacter citreus group.” The isolated strain is highly tolerant to desiccation, UV radiation and to the presence of metals and metalloids, while it is motile and capable of growing in a variety of carbon sources. These characteristics, together with observation that Arthrobacter sp. Helios seems to be permanently prepared to handle the desiccation stress, make it very versatile and give it a great potential to use it as a biotechnological chassis. The new strain genome has been sequenced and its analysis revealed that it is extremely well poised to respond to environmental stresses. We have analyzed the transcriptional response of this strain to PEG6000-mediated arid stress to investigate the desiccation resistance mechanism. Most of the induced genes participate in cellular homeostasis such as ion and osmolyte transport and iron scavenging. Moreover, the greatest induction has been found in a gene cluster responsible for biogenic amine catabolism, suggesting their involvement in the desiccation resistance mechanism in this bacterium.
Collapse
Affiliation(s)
- Gabriel Hernández-Fernández
- Department of Microbial and Plant Biotechnology, Margarita Salas Centre for Biological Research-CSIC, Madrid, Spain
| | - Beatriz Galán
- Department of Microbial and Plant Biotechnology, Margarita Salas Centre for Biological Research-CSIC, Madrid, Spain
| | - Manuel Carmona
- Department of Microbial and Plant Biotechnology, Margarita Salas Centre for Biological Research-CSIC, Madrid, Spain
| | - Laura Castro
- Department of Chemical and Materials Engineering, Complutense University of Madrid, Madrid, Spain
| | - José Luis García
- Department of Microbial and Plant Biotechnology, Margarita Salas Centre for Biological Research-CSIC, Madrid, Spain
- *Correspondence: José Luis García,
| |
Collapse
|
8
|
Identification and Validation of Reference Genes for Expression Analysis in Nitrogen-Fixing Bacteria under Environmental Stress. Life (Basel) 2022; 12:life12091379. [PMID: 36143415 PMCID: PMC9505014 DOI: 10.3390/life12091379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Reference genes, also referred to as housekeeping genes (HKGs), play an important role in gene expression analysis by serving as an internal control. These HKGs are usually involved in basic cellular functions and their expression should remain at relatively constant levels. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) has been used to measure gene expression. Since the normalization of gene expression data depends on baseline expression of HKGs, it is important to identify and verify true HKGs for the qRT-PCR analysis. The goal of this study is to identify and confirm HKGs in Bradyrhizobium diazoefficiens, a nitrogen fixing bacterium which forms a symbiotic relationship with soybean. By revealing such HKGs, the normalization of gene expression would be more robust, reliable, and consistent. Here, we analyzed previous gene expression data for B. diazoefficiens under multiple environmental conditions. As a result, we identified seven constitutively expressed genes among 8453 genes across all conditions. Their fold-change values were within a range of −1.25-fold < x < 1.25-fold. We adopted GeNorm, NormFinder, and comparative ∆Ct methods to rank the seven candidate genes based on their expression stability. To validate these potential HKGs, we measured their expression in various experimental conditions, such as heat, pH, and heavy metal stress. The HKGs that were found in B. diazoefficiens were also applied in closely related species by identifying their homologs.
Collapse
|
9
|
Draft Genome Sequences of Two Desiccation-Tolerant Strains, Bradyrhizobium japonicum TXVA and TXEA, Isolated from the Root Nodules of Soybean Grown in Texas. Microbiol Resour Announc 2022; 11:e0046722. [PMID: 35916509 PMCID: PMC9387295 DOI: 10.1128/mra.00467-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two Bradyrhizobium japonicum strains, TXVA and TXEA, were isolated for their desiccation tolerance and symbiotic performance with soybean as biofertilizers. Their genomes were sequenced and annotated using the Department of Energy Joint Genome Institute annotation pipeline. Sequencing yielded chromosomes of 9,193,770 and 9,339,455 bp for TXVA and TXEA, respectively.
Collapse
|
10
|
Khani-Juyabad F, Mohammadi P, Zarrabi M. Insights from cyanobacterial genomic and transcriptomic analyses into adaptation strategies in terrestrial environments. Genomics 2022; 114:110438. [PMID: 35902068 DOI: 10.1016/j.ygeno.2022.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 11/26/2022]
Abstract
Phylogenomic analysis of Nostoc sp. MG11, a terrestrial cyanobacterium, and some terrestrial and freshwater Nostoc strains showed that the terrestrial strains grouped together in a distinctive clade, which reveals the effect of habitat on shaping Nostoc genomes. Terrestrial strains showed larger genomes and had higher predicted CDS contents than freshwater strains. Comparative genomic analysis demonstrated that genome expansion in the terrestrial Nostoc is supported by an increase in copy number of the core genes and acquisition of shared genes. Transcriptomic profiling analysis under desiccation stress revealed that Nostoc sp. MG11 protected its cell by induction of catalase, proteases, sucrose synthase, trehalose biosynthesis and maltodextrin utilization genes and maintained its normal metabolism during this condition by up-regulation of genes related to phycobilisomes and light reactions of photosynthesis, CO2 fixation and protein metabolism. These results provide insights into the strategies related to survival and adaptation of Nostoc strains to terrestrial environments.
Collapse
Affiliation(s)
- Fatemeh Khani-Juyabad
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| | - Mahbubeh Zarrabi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| |
Collapse
|
11
|
Ferreira EGC, Gomes DF, Delai CV, Barreiros MAB, Grange L, Rodrigues EP, Henning LMM, Barcellos FG, Hungria M. Revealing potential functions of hypothetical proteins induced by genistein in the symbiosis island of Bradyrhizobium japonicum commercial strain SEMIA 5079 (= CPAC 15). BMC Microbiol 2022; 22:122. [PMID: 35513812 PMCID: PMC9069715 DOI: 10.1186/s12866-022-02527-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Bradyrhizobium japonicum strain SEMIA 5079 (= CPAC 15) is a nitrogen-fixing symbiont of soybean broadly used in commercial inoculants in Brazil. Its genome has about 50% of hypothetical (HP) protein-coding genes, many in the symbiosis island, raising questions about their putative role on the biological nitrogen fixation (BNF) process. This study aimed to infer functional roles to 15 HP genes localized in the symbiosis island of SEMIA 5079, and to analyze their expression in the presence of a nod-gene inducer. RESULTS A workflow of bioinformatics tools/databases was established and allowed the functional annotation of the HP genes. Most were enzymes, including transferases in the biosynthetic pathways of cobalamin, amino acids and secondary metabolites that may help in saprophytic ability and stress tolerance, and hydrolases, that may be important for competitiveness, plant infection, and stress tolerance. Putative roles for other enzymes and transporters identified are discussed. Some HP proteins were specific to the genus Bradyrhizobium, others to specific host legumes, and the analysis of orthologues helped to predict roles in BNF. CONCLUSIONS All 15 HP genes were induced by genistein and high induction was confirmed in five of them, suggesting major roles in the BNF process.
Collapse
Affiliation(s)
- Everton Geraldo Capote Ferreira
- Londrina State University (UEL), Celso Garcia Cid Road (PR 445), km 380, CEP 86057-970 Londrina, PR Brazil
- Embrapa Soja, Rodovia Carlos João Strass, C.P. 231, CEP 86001-970 Londrina, PR Brazil
| | | | - Caroline Vanzzo Delai
- Federal University of Paraná (UFPR), Estrada dos Pioneiros 2153, CEP 85950-000 Palotina, PR Brazil
| | | | - Luciana Grange
- Federal University of Paraná (UFPR), Estrada dos Pioneiros 2153, CEP 85950-000 Palotina, PR Brazil
| | - Elisete Pains Rodrigues
- Londrina State University (UEL), Celso Garcia Cid Road (PR 445), km 380, CEP 86057-970 Londrina, PR Brazil
| | | | - Fernando Gomes Barcellos
- Londrina State University (UEL), Celso Garcia Cid Road (PR 445), km 380, CEP 86057-970 Londrina, PR Brazil
| | - Mariangela Hungria
- Londrina State University (UEL), Celso Garcia Cid Road (PR 445), km 380, CEP 86057-970 Londrina, PR Brazil
- Embrapa Soja, Rodovia Carlos João Strass, C.P. 231, CEP 86001-970 Londrina, PR Brazil
| |
Collapse
|
12
|
Analysis of Ensifer aridi Mutants Affecting Regulation of Methionine, Trehalose, and Inositol Metabolisms Suggests a Role in Stress Adaptation and Symbiosis Development. Microorganisms 2022; 10:microorganisms10020298. [PMID: 35208753 PMCID: PMC8877191 DOI: 10.3390/microorganisms10020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/10/2022] Open
Abstract
Isolated from desert, the nitrogen-fixing bacterium Ensifer aridi LMR001 is capable of survival under particularly harsh environmental conditions. To obtain insights in molecular mechanisms involved in stress adaptation, a recent study using RNAseq revealed that the RpoE2-mediated general stress response was activated under mild saline stress but appeared non-essential for the bacterium to thrive under stress and develop the symbiosis. Functions associated with the stress response included the metabolisms of trehalose, methionine, and inositol. To explore the roles of these metabolisms in stress adaptation and symbiosis development, and the possible regulatory mechanisms involved, mutants were generated notably in regulators and their transcriptions were studied in various mutant backgrounds. We found that mutations in regulatory genes nesR and sahR of the methionine cycle generating S-adenosylmethionine negatively impacted symbiosis, tolerance to salt, and motility in the presence of NaCl. When both regulators were mutated, an increased tolerance to detergent, oxidative, and acid stresses was found, suggesting a modification of the cell wall components which may explain these phenotypes and support a major role of the fine-tuning methylation for symbiosis and stress adaptation of the bacterium. In contrast, we also found that mutations in the predicted trehalose transport and utilization regulator ThuR and the trehalose phosphate phosphatase OtsB-encoding genes improved symbiosis and growth in liquid medium containing 0.4 M of NaCl of LMR001ΔotsB, suggesting that trehalose metabolism control and possibly trehalose-6 phosphate cellular status may be biotechnologically engineered for improved symbiosis under stress. Finally, transcriptional fusions of gfp to promoters of selected genes and expression studies in the various mutant backgrounds suggest complex regulatory interplay between inositol, methionine, and trehalose metabolic pathways.
Collapse
|
13
|
Yang H, Hu C. Soil Chemistry and Nutrients Influence the Distribution of Aerobic Anoxygenic Phototrophic Bacteria and Eukaryotic Phototrophic Microorganisms of Physical Soil Crusts at Different Elevations on the Tibetan Plateau. MICROBIAL ECOLOGY 2022; 83:100-113. [PMID: 33733304 DOI: 10.1007/s00248-021-01734-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic microorganisms are widely distributed in the soil and play an important role in plant-free soil crusts. However, the distribution and environmental drivers of phototrophic microbial communities in physical soil crusts, where the abundance of cyanobacteria is low, are scarcely understood. Here, we performed high-throughput sequencing of pufM and 18S rRNA genes in soil crusts at different elevations on the Tibetan Plateau and used the data combined with environmental variables to analyze the diversity and structure of phototrophic microbial communities. We found that the dominant taxa of aerobic anoxygenic phototrophic bacteria (AAPB) and eukaryotic phototrophic microorganisms (EPM) were shown to shift with elevation. The phototrophic microbial diversity showed a single-peak pattern, with the lowest diversity of AAPB and highest diversity of EPM at middle elevations. Moreover, the elevation and soil property determined the phototrophic microbial community. Soil salts, especially Cl-, were the most important for AAPB. Likewise, soil nutrients, especially carbon, were the most important for EPM. The relationship between high-abundance taxa and environmental variables showed that Rhizobiales was significantly negatively correlated with salt ions and positively correlated with chlorophyll. Rhodobacterales showed the strongest and significant positive associations with Cl-. Chlorophyceae and Bacillariophyceae were positively correlated with CO32-. These results indicated that salinity and soil nutrients affected the diversity and structure of microbial communities. This study contributes to our understanding of the diversity, composition, and structure of photosynthetic microorganisms in physical soil crusts and helps in developing new approaches for controlling desertification and salinization and improving the desert ecological environment.
Collapse
Affiliation(s)
- Haijian Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
14
|
Zhu J, Jiang X, Guan D, Kang Y, Li L, Cao F, Zhao B, Ma M, Zhao J, Li J. Effects of rehydration on physiological and transcriptional responses of a water-stressed rhizobium. J Microbiol 2022; 60:31-46. [PMID: 34826097 DOI: 10.1007/s12275-022-1325-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023]
Abstract
As a microsymbiont of soybean, Bradyrhizobium japonicum plays an important role in symbiotic nitrogen fixation and sustainable agriculture. However, the survival of B. japonicum cells under water-deplete (e.g., drought) and water-replete (e.g., flood) conditions is a major concern affecting their nitrogen-fixing ability by establishing the symbiotic relationship with the host. In this study, we isolated a water stress tolerant rhizobium from soybean root nodules and tested its survival under water-deplete conditions. The rhizobium was identified as Bradyrhizobium japonicum and named strain 5038. Interestingly, both plate counting and live/dead fluorescence staining assays indicate that a number of viable but non-culturable cells exist in the culture medium upon the rehydration process which could cause dilution stress. Bradyrhizobium japonicum 5038 cells increased production of exopolysaccharide (EPS) and trehalose when dehydrated, suggesting that protective responses were stimulated. As expected, cells reduced their production upon the subsequent rehydration. To examine differential gene expression of B. japonicum 5038 when exposed to water-deplete and subsequent water-replete conditions, whole-genome transcriptional analysis was performed under 10% relative humidity (RH), and subsequent 100% RH, respectively. A total of 462 differentially expressed genes (DEGs, > 2.0-fold) were identified under the 10% RH condition, while 3,776 genes showed differential expression during the subsequent rehydration (100% RH) process. Genes involved in signal transduction, inorganic ion transport, energy production and metabolisms of carbohydrates, amino acids, and lipids were far more up-regulated than down-regulated in the 10% RH condition. Notably, trehalose biosynthetic genes (otsAB, treS, and treYZ), genes ligD, oprB, and a sigma factor rpoH were significantly induced by 10% RH. Under the subsequent 100% RH condition, genes involved in transcription, translation, cell membrane regulation, replication and repair, and protein processing were highly up-regulated. Interestingly, most of 10%-RH inducible genes displayed rehydration-repressed, except three genes encoding heat shock (Hsp20) proteins. Therefore, this study provides molecular evidence for the switch of gene expression of B. japonicum cells when encountered the opposite water availability from water-deplete to water-replete conditions.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China.
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Yaowei Kang
- Life Sciences College of Zhaoqing University, Zhaoqing, 526061, P. R. China
| | - Li Li
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Baisuo Zhao
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Ji Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China.
| |
Collapse
|
15
|
Yuan S, Zhou S, Feng Y, Zhang C, Huang Y, Shan Z, Chen S, Guo W, Yang H, Yang Z, Qiu D, Chen H, Zhou X. Identification of the Important Genes of Bradyrhizobium diazoefficiens 113-2 Involved in Soybean Nodule Development and Senescence. Front Microbiol 2021; 12:754837. [PMID: 34858367 PMCID: PMC8632152 DOI: 10.3389/fmicb.2021.754837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Legume nodule development and senescence directly affect nitrogen fixation efficiency and involve a programmed series of molecular events. These molecular events are carried out synchronously by legumes and rhizobia. The characteristics and molecular mechanisms of nitrogen fixation at soybean important developmental stages play critical roles in soybean cultivation and fertilizer application. Although the gene expression of soybean were analyzed in nodules at five important soybean developmental stages, information on the expression of rhizobial genes in these nodule samples is limited. In the present study, we investigated the expression of Bradyrhizobium diazoefficiens 113-2 genes in the nodule samples from five developmental stages of soybean (Branching stage, flowering stage, fruiting stage, pod stage and harvest stage). Similar gene expression patterns of B. diazoefficiens 113-2 were existed during optimal symbiotic functioning, while different expression patterns were found among early nodule development, nitrogen fixation progress and nodule senescence. Besides, we identified 164 important different expression genes (DEGs) associated with nodule development and senescence. These DEGs included those encoding nod, nif, fix proteins and T3SS secretion system-related proteins, as well as proteins involved in nitrogen metabolism, ABC transporters and two-component system pathways. Gene Ontology, KEGG pathway and homology analysis of the identified DEGs revealed that most of these DEGs are uncharacterized genes associated with nodule development and senescence, and they are not core genes among the rhizobia genomes. Our results provide new clues for the understanding of the genetic determinants of soil rhizobia in nodule development and senescence, and supply theoretical basis for the creation of high efficiency soybean cultivation technology.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Shunxin Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Yong Feng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Zhihui Shan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Shuilian Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Zhonglu Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Dezhen Qiu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| |
Collapse
|
16
|
Seager S, Petkowski JJ, Gao P, Bains W, Bryan NC, Ranjan S, Greaves J. The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere. ASTROBIOLOGY 2021; 21:1206-1223. [PMID: 32787733 DOI: 10.1089/ast.2020.2244] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We revisit the hypothesis that there is life in the venusian clouds to propose a life cycle that resolves the conundrum of how life can persist aloft for hundreds of millions to billions of years. Most discussions of an aerial biosphere in the venusian atmosphere temperate layers never address whether the life-small microbial-type particles-is free floating or confined to the liquid environment inside cloud droplets. We argue that life must reside inside liquid droplets such that it will be protected from a fatal net loss of liquid to the atmosphere, an unavoidable problem for any free-floating microbial life forms. However, the droplet habitat poses a lifetime limitation: Droplets inexorably grow (over a few months) to large enough sizes that are forced by gravity to settle downward to hotter, uninhabitable layers of the venusian atmosphere. (Droplet fragmentation-which would reduce particle size-does not occur in venusian atmosphere conditions.) We propose for the first time that the only way life can survive indefinitely is with a life cycle that involves microbial life drying out as liquid droplets evaporate during settling, with the small desiccated "spores" halting at, and partially populating, the venusian atmosphere stagnant lower haze layer (33-48 km altitude). We, thus, call the venusian lower haze layer a "depot" for desiccated microbial life. The spores eventually return to the cloud layer by upward diffusion caused by mixing induced by gravity waves, act as cloud condensation nuclei, and rehydrate for a continued life cycle. We also review the challenges for life in the extremely harsh conditions of the venusian atmosphere, refuting the notion that the "habitable" cloud layer has an analogy in any terrestrial environment.
Collapse
Affiliation(s)
- Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Peter Gao
- Department of Astronomy, University of California at Berkeley, California, USA
| | - William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Noelle C Bryan
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sukrit Ranjan
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jane Greaves
- School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
- Institute of Astronomy, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
17
|
Bosch J, Varliero G, Hallsworth JE, Dallas TD, Hopkins D, Frey B, Kong W, Lebre P, Makhalanyane TP, Cowan DA. Microbial anhydrobiosis. Environ Microbiol 2021; 23:6377-6390. [PMID: 34347349 DOI: 10.1111/1462-2920.15699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/28/2022]
Abstract
The loss of cellular water (desiccation) and the resulting low cytosolic water activity are major stress factors for life. Numerous prokaryotic and eukaryotic taxa have evolved molecular and physiological adaptions to periods of low water availability or water-limited environments that occur across the terrestrial Earth. The changes within cells during the processes of desiccation and rehydration, from the activation (and inactivation) of biosynthetic pathways to the accumulation of compatible solutes, have been studied in considerable detail. However, relatively little is known on the metabolic status of organisms in the desiccated state; that is, in the sometimes extended periods between the drying and rewetting phases. During these periods, which can extend beyond decades and which we term 'anhydrobiosis', organismal survival could be dependent on a continued supply of energy to maintain the basal metabolic processes necessary for critical functions such as macromolecular repair. Here, we review the state of knowledge relating to the function of microorganisms during the anhydrobiotic state, highlighting substantial gaps in our understanding of qualitative and quantitative aspects of molecular and biochemical processes in desiccated cells.
Collapse
Affiliation(s)
- Jason Bosch
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Gilda Varliero
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | - Tiffany D Dallas
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK
| | | | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Weidong Kong
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Pedro Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
18
|
Ledermann R, Emmenegger B, Couzigou JM, Zamboni N, Kiefer P, Vorholt JA, Fischer HM. Bradyrhizobium diazoefficiens Requires Chemical Chaperones To Cope with Osmotic Stress during Soybean Infection. mBio 2021; 12:e00390-21. [PMID: 33785618 PMCID: PMC8092242 DOI: 10.1128/mbio.00390-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/24/2023] Open
Abstract
When engaging in symbiosis with legume hosts, rhizobia are confronted with environmental changes, including nutrient availability and stress exposure. Genetic circuits allow responding to these environmental stimuli to optimize physiological adaptations during the switch from the free-living to the symbiotic life style. A pivotal regulatory system of the nitrogen-fixing soybean endosymbiont Bradyrhizobium diazoefficiens for efficient symbiosis is the general stress response (GSR), which relies on the alternative sigma factor σEcfG However, the GSR-controlled process required for symbiosis has not been identified. Here, we demonstrate that biosynthesis of trehalose is under GSR control, and mutants lacking the respective biosynthetic genes otsA and/or otsB phenocopy GSR-deficient mutants under symbiotic and selected free-living stress conditions. The role of trehalose as a cytoplasmic chemical chaperone and stress protectant can be functionally replaced in an otsA or otsB mutant by introducing heterologous genetic pathways for biosynthesis of the chemically unrelated compatible solutes glycine betaine and (hydroxy)ectoine. Alternatively, uptake of exogenously provided trehalose also restores efficient symbiosis and tolerance to hyperosmotic and hyperionic stress of otsA mutants. Hence, elevated cytoplasmic trehalose levels resulting from GSR-controlled biosynthesis are crucial for B. diazoefficiens cells to overcome adverse conditions during early stages of host infection and ensure synchronization with root nodule development.IMPORTANCE The Bradyrhizobium-soybean symbiosis is of great agricultural significance and serves as a model system for fundamental research in bacterium-plant interactions. While detailed molecular insight is available about mutual recognition and early nodule organogenesis, our understanding of the host-imposed conditions and the physiology of infecting rhizobia during the transition from a free-living state in the rhizosphere to endosymbiotic bacteroids is currently limited. In this study, we show that the requirement of the rhizobial general stress response (GSR) during host infection is attributable to GSR-controlled biosynthesis of trehalose. Specifically, trehalose is crucial for an efficient symbiosis by acting as a chemical chaperone to protect rhizobia from osmostress during host infection.
Collapse
Affiliation(s)
| | | | | | - Nicola Zamboni
- ETH Zurich, Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Patrick Kiefer
- ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | | | | |
Collapse
|
19
|
Cao Y, Ashline DJ, Ficko-Blean E, Klein AS. Trehalose and (iso)floridoside production under desiccation stress in red alga Porphyra umbilicalis and the genes involved in their synthesis. JOURNAL OF PHYCOLOGY 2020; 56:1468-1480. [PMID: 33460146 DOI: 10.1111/jpy.13057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 05/09/2020] [Indexed: 06/12/2023]
Abstract
The marine red alga Porphyra umbilicalis has high tolerance toward various abiotic stresses. In this study, the contents of floridoside, isofloridoside, and trehalose were measured using gas chromatography mass spectrometry (GC-MS) in response to desiccation and rehydration treatments; these conditions are similar to the tidal cycles that P. umbilicalis experiences in its natural habitats. The GC-MS analysis showed that the concentration of floridoside and isofloridoside did not change in response to desiccation as expected of compatible solutes. Genes involved in the synthesis of (iso)floridoside and trehalose were identified from the recently completed Porphyra genome, including four putative trehalose-6-phosphate synthase (TPS) genes, two putative trehalose-6-phosphate phosphatase (TPP) genes, and one putative trehalose synthase/amylase (TreS) gene. Based on the phylogenetic, conserved domain, and gene expression analyses, it is suggested that the Pum4785 and Pum5014 genes are related to floridoside and isofloridoside synthesis, respectively, and that the Pum4637 gene is probably involved in trehalose synthesis. Our study verifies the occurrences of nanomolar concentrations trehalose in P. umbilicalis for the first time and identifies additional genes possibly encoding trehalose phosphate synthases.
Collapse
Affiliation(s)
- Yuanyu Cao
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, 03824, USA
| | - David J Ashline
- The Glycomics Center, University of New Hampshire, Durham, New Hampshire, 03824, USA
| | - Elizabeth Ficko-Blean
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France
| | - Anita S Klein
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, 03824, USA
| |
Collapse
|
20
|
Sharma MP, Grover M, Chourasiya D, Bharti A, Agnihotri R, Maheshwari HS, Pareek A, Buyer JS, Sharma SK, Schütz L, Mathimaran N, Singla-Pareek SL, Grossman JM, Bagyaraj DJ. Deciphering the Role of Trehalose in Tripartite Symbiosis Among Rhizobia, Arbuscular Mycorrhizal Fungi, and Legumes for Enhancing Abiotic Stress Tolerance in Crop Plants. Front Microbiol 2020; 11:509919. [PMID: 33042042 PMCID: PMC7527417 DOI: 10.3389/fmicb.2020.509919] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/20/2020] [Indexed: 01/31/2023] Open
Abstract
Drought is a critical factor limiting the productivity of legumes worldwide. Legumes can enter into a unique tripartite symbiotic relationship with root-nodulating bacteria of genera Rhizobium, Bradyrhizobium, or Sinorhizobium and colonization by arbuscular mycorrhizal fungi (AMF). Rhizobial symbiosis provides nitrogen necessary for growth. AMF symbiosis enhances uptake of diffusion-limited nutrients such as P, Zn, Cu, etc., and also water from the soil via plant-associated fungal hyphae. Rhizobial and AMF symbioses can act synergistically in promoting plant growth and fitness, resulting in overall yield benefits under drought stress. One of the approaches that rhizobia use to survive under stress is the accumulation of compatible solutes, or osmolytes, such as trehalose. Trehalose is a non-reducing disaccharide and an osmolyte reported to accumulate in a range of organisms. High accumulation of trehalose in bacteroids during nodulation protects cells and proteins from osmotic shock, desiccation, and heat under drought stress. Manipulation of trehalose cell concentrations has been directly correlated with stress response in plants and other organisms, including AMF. However, the role of this compound in the tripartite symbiotic relationship is not fully explored. This review describes the biological importance and the role of trehalose in the tripartite symbiosis between plants, rhizobia, and AMF. In particular, we review the physiological functions and the molecular investigations of trehalose carried out using omics-based approaches. This review will pave the way for future studies investigating possible metabolic engineering of this biomolecule for enhancing abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Mahaveer P. Sharma
- Microbiology Section, ICAR-Indian Institute of Soybean Research, Indore, India
| | - Minakshi Grover
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Dipanti Chourasiya
- Microbiology Section, ICAR-Indian Institute of Soybean Research, Indore, India
| | - Abhishek Bharti
- Microbiology Section, ICAR-Indian Institute of Soybean Research, Indore, India
| | - Richa Agnihotri
- Microbiology Section, ICAR-Indian Institute of Soybean Research, Indore, India
| | | | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jeffrey S. Buyer
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Sushil K. Sharma
- ICAR-National Institute of Biotic Stress Management, Raipur, India
| | - Lukas Schütz
- Department of Environmental Sciences-Botany, University of Basel, Basel, Switzerland
| | - Natarajan Mathimaran
- Department of Environmental Sciences-Botany, University of Basel, Basel, Switzerland
- M S Swaminathan Research Foundation, Chennai, India
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Julie M. Grossman
- Department of Horticultural Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN, United States
| | - Davis J. Bagyaraj
- Center for Natural Biological Resources and Community Development, Bengaluru, India
| |
Collapse
|
21
|
Exploring the Role of Bacterial Extracellular Polymeric Substances for Sustainable Development in Agriculture. Curr Microbiol 2020; 77:3224-3239. [PMID: 32876713 DOI: 10.1007/s00284-020-02169-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023]
Abstract
The incessant need to increase crop yields has led to the development of many chemical fertilizers containing NPK (nitrogen-phosphorous-potassium) which can degrade soil health in the long term. In addition, these fertilizers are often leached into nearby water bodies causing algal bloom and eutrophication. Bacterial secondary metabolites exuded into the extracellular space, termed extracellular polymeric substances (EPS) have gained commercial significance because of their biodegradability, non-toxicity, and renewability. In many habitats, bacterial communities faced with adversity will adhere together by production of EPS which also serves to bond them to surfaces. Typically, hygroscopic, EPS retain moisture in desiccating conditions and modulate nutrient exchange. Many plant growth-promoting bacteria (PGPR) combat harsh environmental conditions like salinity, drought, and attack of pathogens by producing EPS. The adhesive nature of EPS promotes soil aggregation and restores moisture thus combating soil erosion and promoting soil fertility. In addition, these molecules play vital roles in maintaining symbiosis and nitrogen fixation thus enhancing sustainability. Thus, along with other commercial applications, EPS show promising avenues for improving agricultural productivity thus helping to address land scarcity as well as minimizing environmental pollution.
Collapse
|
22
|
Paraburkholderia phymatum STM815 σ54 Controls Utilization of Dicarboxylates, Motility, and T6SS-b Expression. NITROGEN 2020. [DOI: 10.3390/nitrogen1020008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rhizobia have two major life styles, one as free-living bacteria in the soil, and the other as bacteroids within the root/stem nodules of host legumes where they convert atmospheric nitrogen into ammonia. In the soil, rhizobia have to cope with changing and sometimes stressful environmental conditions, such as nitrogen limitation. In the beta-rhizobial strain Paraburkholderia phymatum STM815, the alternative sigma factor σ54 (or RpoN) has recently been shown to control nitrogenase activity during symbiosis with Phaseolus vulgaris. In this study, we determined P. phymatum’s σ54 regulon under nitrogen-limited free-living conditions. Among the genes significantly downregulated in the absence of σ54, we found a C4-dicarboxylate carrier protein (Bphy_0225), a flagellar biosynthesis cluster (Bphy_2926-64), and one of the two type VI secretion systems (T6SS-b) present in the P. phymatum STM815 genome (Bphy_5978-97). A defined σ54 mutant was unable to grow on C4 dicarboxylates as sole carbon source and was less motile compared to the wild-type strain. Both defects could be complemented by introducing rpoNin trans. Using promoter reporter gene fusions, we also confirmed that the expression of the T6SS-b cluster is regulated by σ54. Accordingly, we show that σ54 affects in vitro competitiveness of P. phymatum STM815 against Paraburkholderia diazotrophica.
Collapse
|
23
|
Jayeola V, McClelland M, Porwollik S, Chu W, Farber J, Kathariou S. Identification of Novel Genes Mediating Survival of Salmonella on Low-Moisture Foods via Transposon Sequencing Analysis. Front Microbiol 2020; 11:726. [PMID: 32499760 PMCID: PMC7242855 DOI: 10.3389/fmicb.2020.00726] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/27/2020] [Indexed: 01/11/2023] Open
Abstract
Salmonella enterica is the leading foodborne pathogen associated with outbreaks involving low-moisture foods (LMFs). However, the genes involved in Salmonella's long-term survival on LMFs remain poorly characterized. In this study, in-shell pistachios were inoculated with Tn5-based mutant libraries of S. Enteritidis P125109, S. Typhimurium 14028s, and S. Newport C4.2 at approximate 108 CFU/g and stored at 25°C. Transposon sequencing analysis (Tn-seq) was then employed to determine the relative abundance of each Tn5 insertion site immediately after inoculation (T0), after drying (T1), and at 120 days (T120). In S. Enteritidis, S. Typhimurium, and S. Newport mutant libraries, the relative abundance of 51, 80, and 101 Tn5 insertion sites, respectively, was significantly lower at T1 compared to T0, while in libraries of S. Enteritidis and S. Typhimurium the relative abundance of 42 and 68 Tn5 insertion sites, respectively, was significantly lower at T120 compared to T1. Tn5 insertion sites with reduced relative abundance in this competition assay were localized in DNA repair, lipopolysaccharide biosynthesis and stringent response genes. Twelve genes among those under strong negative selection in the competition assay were selected for further study. Whole gene deletion mutants in ten of these genes, sspA, barA, uvrB, damX, rfbD, uvrY, lrhA, yifE, rbsR, and ompR, were impaired for individual survival on pistachios. The findings highlight the value of combined mutagenesis and sequencing to identify novel genes important for the survival of Salmonella in low-moisture foods.
Collapse
Affiliation(s)
- Victor Jayeola
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Jeffrey Farber
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Sophia Kathariou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
24
|
Microbial inoculum development for ameliorating crop drought stress: A case study of Variovorax paradoxus 5C-2. N Biotechnol 2020; 56:103-113. [DOI: 10.1016/j.nbt.2019.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 12/24/2019] [Accepted: 12/29/2019] [Indexed: 01/01/2023]
|
25
|
Leung PM, Bay SK, Meier DV, Chiri E, Cowan DA, Gillor O, Woebken D, Greening C. Energetic Basis of Microbial Growth and Persistence in Desert Ecosystems. mSystems 2020; 5:e00495-19. [PMID: 32291352 PMCID: PMC7159902 DOI: 10.1128/msystems.00495-19] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial life is surprisingly abundant and diverse in global desert ecosystems. In these environments, microorganisms endure a multitude of physicochemical stresses, including low water potential, carbon and nitrogen starvation, and extreme temperatures. In this review, we summarize our current understanding of the energetic mechanisms and trophic dynamics that underpin microbial function in desert ecosystems. Accumulating evidence suggests that dormancy is a common strategy that facilitates microbial survival in response to water and carbon limitation. Whereas photoautotrophs are restricted to specific niches in extreme deserts, metabolically versatile heterotrophs persist even in the hyper-arid topsoils of the Atacama Desert and Antarctica. At least three distinct strategies appear to allow such microorganisms to conserve energy in these oligotrophic environments: degradation of organic energy reserves, rhodopsin- and bacteriochlorophyll-dependent light harvesting, and oxidation of the atmospheric trace gases hydrogen and carbon monoxide. In turn, these principles are relevant for understanding the composition, functionality, and resilience of desert ecosystems, as well as predicting responses to the growing problem of desertification.
Collapse
Affiliation(s)
- Pok Man Leung
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Sean K Bay
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Dimitri V Meier
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Eleonora Chiri
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde Boker, Israel
| | - Dagmar Woebken
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Greffe VRG, Michiels J. Desiccation-induced cell damage in bacteria and the relevance for inoculant production. Appl Microbiol Biotechnol 2020; 104:3757-3770. [PMID: 32170388 DOI: 10.1007/s00253-020-10501-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022]
Abstract
Plant growth-promoting bacteria show great potential for use in agriculture although efficient application remains challenging to achieve. Cells often lose viability during inoculant production and application, jeopardizing the efficacy of the inoculant. Since desiccation has been documented to be the primary stress factor affecting the decrease in survival, obtaining xerotolerance in plant growth-promoting bacteria is appealing. The molecular damage that occurs by drying bacteria has been broadly investigated, although a complete view is still lacking due to the complex nature of the process. Mechanic, structural, and metabolic changes that occur as a result of water depletion may potentially afflict lethal damage to membranes, DNA, and proteins. Bacteria respond to these harsh conditions by increasing production of exopolysaccharides, changing composition of the membrane, improving the stability of proteins, reducing oxidative stress, and repairing DNA damage. This review provides insight into the complex nature of desiccation stress in bacteria in order to facilitate strategic choices to improve survival and shelf life of newly developed inoculants. KEY POINTS: Desiccation-induced damage affects most major macromolecules in bacteria. Most bacteria are not xerotolerant despite multiple endogenous adaption mechanisms. Sensitivity to drying severely hampers inoculant quality.
Collapse
Affiliation(s)
- Vincent Robert Guy Greffe
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium. .,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.
| |
Collapse
|
27
|
Protein Aggregation is Associated with Acinetobacter baumannii Desiccation Tolerance. Microorganisms 2020; 8:microorganisms8030343. [PMID: 32121206 PMCID: PMC7142981 DOI: 10.3390/microorganisms8030343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/23/2022] Open
Abstract
Desiccation tolerance has been implicated as an important characteristic that potentiates the spread of the bacterial pathogen Acinetobacter baumannii on dry surfaces. Here we explore several factors influencing desiccation survival of A. baumannii. At the macroscale level, we find that desiccation tolerance is influenced by cell density and growth phase. A transcriptome analysis indicates that desiccation represents a unique state for A. baumannii compared to commonly studied growth phases and strongly influences pathways responsible for proteostasis. Remarkably, we find that an increase in total cellular protein aggregates, which is often considered deleterious, correlates positively with the ability of A. baumannii to survive desiccation. We show that inducing protein aggregate formation prior to desiccation increases survival and, importantly, that proteins incorporated into cellular aggregates can retain activity. Our results suggest that protein aggregates may promote desiccation tolerance in A. baumannii through preserving and protecting proteins from damage during desiccation until rehydration occurs.
Collapse
|
28
|
Palud A, Salem K, Cavin JF, Beney L, Licandro H. Identification and transcriptional profile of Lactobacillus paracasei genes involved in the response to desiccation and rehydration. Food Microbiol 2020; 85:103301. [DOI: 10.1016/j.fm.2019.103301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/10/2019] [Accepted: 08/10/2019] [Indexed: 12/18/2022]
|
29
|
Kibido T, Kunert K, Makgopa M, Greve M, Vorster J. Improvement of rhizobium‐soybean symbiosis and nitrogen fixation under drought. Food Energy Secur 2020. [DOI: 10.1002/fes3.177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tsholofelo Kibido
- Department of Plant and Soil Sciences University of Pretoria Pretoria South Africa
- Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| | - Karl Kunert
- Department of Plant and Soil Sciences University of Pretoria Pretoria South Africa
- Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| | - Matome Makgopa
- Department of Plant and Soil Sciences University of Pretoria Pretoria South Africa
| | - Michelle Greve
- Department of Plant and Soil Sciences University of Pretoria Pretoria South Africa
| | - Juan Vorster
- Department of Plant and Soil Sciences University of Pretoria Pretoria South Africa
- Forestry and Agricultural Biotechnology Institute University of Pretoria Pretoria South Africa
| |
Collapse
|
30
|
Sajjad S, Ha JS, Seo SH, Yoon TS, Oh HM, Lee HG, Kang S. Differential proteomic analyses of green microalga Ettlia sp. at various dehydration levels. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:198-210. [PMID: 31756606 DOI: 10.1016/j.plaphy.2019.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Water deprivation could be a lethal stress for aquatic and aero-terrestrial organisms. Ettlia sp. is a unicellular photosynthetic freshwater microalga. In the present study, proteomic alterations and physiological characteristics of Ettlia sp. were analyzed to comprehend the molecular changes in dehydrated conditions. Varying levels of dehydration were achieved by incubating drained Ettlia sp. in different relative humidity environments for 24 hours. Using a comparative proteomic analysis, 52 differentially expressed protein spots were identified that could be divided into eight functional groups. The PCA analysis of normalized protein expression values demonstrated a clear segregation of protein expression profiles among different dehydration levels. Identified proteins could be grouped into four clusters based on their expression profiles. Proteins relating to photosynthesis comprised the largest group with 25% of the identified proteins that were decreased in dehydrated samples and belonged to cluster I. The photosynthetic activities were measured with rehydrated Ettlia sp. These results revealed that photosynthesis remained inhibited over extended time in response to dehydration. The expressions of reactive oxygen species (ROS) scavenger proteins increased in strong dehydration and were assigned to cluster III. Carbon metabolism proteins were suppressed, which might limit energy consumption, whereas glycolysis was activated at mild dehydration. The accumulation of desiccation-associated late embryogenesis proteins might inhibit the aggregation of housekeeping proteins. DNA protective proteins were expressed higher in the dehydrated state, which might reduce DNA damage, and membrane-stabilizing proteins increased in abundance in desiccation. These findings provide an understanding of Ettlia's adaptation and survival capabilities in a dehydrated state.
Collapse
Affiliation(s)
- Saba Sajjad
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Ji-San Ha
- Cell Factory Research Center, KRIBB, Daejeon, Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Biological Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Republic of Korea
| | - Seong-Hyun Seo
- Cell Factory Research Center, KRIBB, Daejeon, Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Life Science, Hanyang University, Haengdang 1-dong, Seongdong-gu, Seoul, Republic of Korea
| | - Tae-Sung Yoon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, KRIBB, Daejeon, Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Center, KRIBB, Daejeon, Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Sunghyun Kang
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
31
|
Transcriptional response of otsA, P5CR, glgX, nodC, and molecular chaperone genes under the PEG-induced drought stress in Mesorhizobium ciceri Ca181. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Rodríguez-Andrade O, Corral-Lugo A, Morales-García YE, Quintero-Hernández V, Rivera-Urbalejo AP, Molina-Romero D, Martínez-Contreras RD, Bernal P, Muñoz-Rojas J. Identification of Klebsiella Variicola T29A Genes Involved In Tolerance To Desiccation. Open Microbiol J 2019. [DOI: 10.2174/1874285801913010256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Introduction:Several plant-beneficial bacteria have the capability to promote the growth of plants through different mechanisms. The survival of such bacteria could be affected by environmental abiotic factors compromising their capabilities of phytostimulation. One of the limiting abiotic factors is low water availability.Materials and Methods:In extreme cases, bacterial cells can suffer desiccation, which triggers harmful effects on cells. Bacteria tolerant to desiccation have developed different strategies to cope with these conditions; however, the genes involved in these processes have not been sufficiently explored.Klebsiella variicolaT29A is a beneficial bacterial strain that promotes the growth of corn plants and is highly tolerant to desiccation. In the present work, we investigated genes involved in desiccation tolerance.Results & Discussion:As a result, a library of 8974 mutants of this bacterial strain was generated by random mutagenesis with mini-Tn5 transposon, and mutants that lost the capability to tolerate desiccation were selected. We found 14 sensitive mutants; those with the lowest bacterial survival rate contained mini-Tn5 transposon inserted into genes encoding a protein domain related to BetR, putative secretion ATPase and dihydroorotase. The mutant in the betR gene had the lowest survival; therefore, the mutagenized gene was validated using specific amplification and sequencing.Conclusion:Trans complementation with the wild-type gene improved the survival of the mutant under desiccation conditions, showing that this gene is a determinant for the survival ofK. variicolaT29A under desiccation conditions.
Collapse
|
33
|
Dupuy P, Sauviac L, Bruand C. Stress-inducible NHEJ in bacteria: function in DNA repair and acquisition of heterologous DNA. Nucleic Acids Res 2019; 47:1335-1349. [PMID: 30517704 PMCID: PMC6379672 DOI: 10.1093/nar/gky1212] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
DNA double-strand breaks (DSB) in bacteria can be repaired by non-homologous end-joining (NHEJ), a two-component system relying on Ku and LigD. While performing a genetic characterization of NHEJ in Sinorhizobium meliloti, a representative of bacterial species encoding several Ku and LigD orthologues, we found that at least two distinct functional NHEJ repair pathways co-exist: one is dependent on Ku2 and LigD2, while the other depends on Ku3, Ku4 and LigD4. Whereas Ku2 likely acts as canonical bacterial Ku homodimers, genetic evidences suggest that Ku3-Ku4 form eukaryotic-like heterodimers. Strikingly, we found that the efficiency of both NHEJ systems increases under stress conditions, including heat and nutrient starvation. We found that this stimulation results from the transcriptional up-regulation of the ku and/or ligD genes, and that some of these genes are controlled by the general stress response regulator RpoE2. Finally, we provided evidence that NHEJ not only repairs DSBs, but can also capture heterologous DNA fragments into genomic breaks. Our data therefore suggest that NHEJ could participate to horizontal gene transfer from distantly related species, bypassing the need of homology to integrate exogenous DNA. This supports the hypothesis that NHEJ contributes to evolution and adaptation of bacteria under adverse environmental conditions.
Collapse
Affiliation(s)
- Pierre Dupuy
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Laurent Sauviac
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Claude Bruand
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
34
|
Sharaf H, Rodrigues RR, Moon J, Zhang B, Mills K, Williams MA. Unprecedented bacterial community richness in soybean nodules vary with cultivar and water status. MICROBIOME 2019; 7:63. [PMID: 30992078 PMCID: PMC6469096 DOI: 10.1186/s40168-019-0676-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/28/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Soybean (Glycine max) and other legumes are key crops grown around the world, providing protein and nutrients to a growing population, in a way that is more sustainable than most other cropping systems. Diazotrophs inhabiting root nodules provide soybean with nitrogen required for growth. Despite the knowledge of culturable Bradyrhizobium spp. and how they can differ across cultivars, less is known about the overall bacterial community (bacteriome) diversity within nodules, in situ. This variability could have large functional ramifications for the long-standing scientific dogma related to the plant-bacteriome interaction. Water availability also impacts soybean, in part, as a result of water-deficit sensitive nodule diazotrophs. There is a dearth of information on the effects of cultivar and water status on in situ rhizobia and non-rhizobia populations of nodule microbiomes. Therefore, soybean nodule microbiomes, using 16S rRNA and nifH genes, were sampled from nine cultivars treated with different field water regimes. It was hypothesized that the nodule bacteriome, composition, and function among rhizobia and non-rhizobia would differ in response to cultivar and soil water status. RESULTS 16S rRNA and nifH showed dominance by Bradyrhizobiaceae, but a large diversity was observed across phylogenetic groups with < 1% and up to 45% relative abundance in cultivars. Other groups primarily included Pseudomonadaceae and Enterobacteriaceae. Thus, nodule bacteriomes were not only dominated by rhizobia, but also described by high variability and partly dependent on cultivar and water status. Consequently, the function of the nodule bacteriomes differed, especially due to cultivar. Amino acid profiling within nodules, for example, described functional changes due to both cultivar and water status. CONCLUSIONS Overall, these results reveal previously undescribed richness and functional changes in Bradyrhizobiaceae and non-rhizobia within the soybean nodule microbiome. Though the exact role of these atypical bacteria and relative variations in Bradyrhizobium spp. is not clear, there is potential for exploitation of these novel findings of microbiome diversity and function. This diversity needs consideration as part of bacterial-inclusive breeding of soybean to improve traits, such as yield and seed quality, and environmental resilience.
Collapse
Affiliation(s)
- Hazem Sharaf
- Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Richard R Rodrigues
- Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Present address: Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Jinyoung Moon
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Kerri Mills
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Williams
- Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
35
|
Bertrand C, Thibessard A, Bruand C, Lecointe F, Leblond P. Bacterial NHEJ: a never ending story. Mol Microbiol 2019; 111:1139-1151. [PMID: 30746801 DOI: 10.1111/mmi.14218] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 12/30/2022]
Abstract
Double-strand breaks (DSBs) are the most detrimental DNA damage encountered by bacterial cells. DBSs can be repaired by homologous recombination thanks to the availability of an intact DNA template or by Non-Homologous End Joining (NHEJ) when no intact template is available. Bacterial NHEJ is performed by sets of proteins of growing complexity from Bacillus subtilis and Mycobacterium tuberculosis to Streptomyces and Sinorhizobium meliloti. Here, we discuss the contribution of these models to the understanding of the bacterial NHEJ repair mechanism as well as the involvement of NHEJ partners in other DNA repair pathways. The importance of NHEJ and of its complexity is discussed in the perspective of regulation through the biological cycle of the bacteria and in response to environmental stimuli. Finally, we consider the role of NHEJ in genome evolution, notably in horizontal gene transfer.
Collapse
Affiliation(s)
- Claire Bertrand
- Université de Lorraine, INRA, DynAMic, Nancy, F-54000, France
| | | | - Claude Bruand
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - François Lecointe
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Pierre Leblond
- Université de Lorraine, INRA, DynAMic, Nancy, F-54000, France
| |
Collapse
|
36
|
Zeidler S, Müller V. Coping with low water activities and osmotic stress in Acinetobacter baumannii: significance, current status and perspectives. Environ Microbiol 2019; 21:2212-2230. [PMID: 30773801 DOI: 10.1111/1462-2920.14565] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 01/26/2023]
Abstract
Multidrug resistant (MDR) pathogens are one of the most pressing challenges of contemporary health care. Acinetobacter baumannii takes a predominant position, emphasized in 2017 by the World Health Organization. The increasing emergence of MDR strains strengthens the demand for new antimicrobials. Possible targets for such compounds might be proteins involved in resistance against low water activity environments, since A. baumannii is known for its pronounced resistance against desiccation stress. Despite the importance of desiccation resistance for persistence of this pathogen in hospitals, comparable studies and precise data on this topic are rare and the mechanisms involved are largely unknown. This review aims to give an overview of the studies performed so far and the current knowledge on genes and proteins important for desiccation survival. 'Osmotic stress' is not identical to 'desiccation stress', but the two share the response of bacteria to low water activities. Osmotic stress resistance is in general studied much better, and in recent years it turned out that accumulation of compatible solutes in A. baumannii comprises some special features such as the bifunctional enzyme MtlD synthesizing the unusual solute mannitol. Furthermore, the regulatory pathways, as understood today, will be discussed.
Collapse
Affiliation(s)
- Sabine Zeidler
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
37
|
RNA Sequencing-Based Transcriptional Overview of Xerotolerance in Cronobacter sakazakii SP291. Appl Environ Microbiol 2019; 85:AEM.01993-18. [PMID: 30446557 DOI: 10.1128/aem.01993-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/30/2018] [Indexed: 11/20/2022] Open
Abstract
Cronobacter sakazakii is a xerotolerant neonatal pathogen epidemiologically linked to powdered infant food formula, often resulting in high mortality rates. Here, we used transcriptome sequencing (RNA-seq) to provide transcriptional insights into the survival of C. sakazakii in desiccated conditions. Our RNA-seq data show that about 22% of the total C. sakazakii genes were significantly upregulated and 9% were downregulated during desiccation survival. When reverse transcription-quantitative PCR (qRT-PCR) was used to validate the RNA-seq data, we found that the primary desiccation response was gradually downregulated during the tested 4 hours of desiccation, while the secondary response remained constitutively upregulated. The 4-hour desiccation tolerance of C. sakazakii was dependent on the immediate microenvironment surrounding the bacterial cell. The removal of Trypticase soy broth (TSB) salts and the introduction of sterile infant formula residues in the microenvironment enhanced the desiccation survival of C. sakazakii SP291. The trehalose biosynthetic pathway encoded by otsA and otsB, a prominent secondary bacterial desiccation response, was highly upregulated in desiccated C. sakazakii C. sakazakii SP291 ΔotsAB was significantly inhibited compared with the isogenic wild type in an 8-hour desiccation survival assay, confirming the physiological importance of trehalose in desiccation survival. Overall, we provide a comprehensive RNA-seq-based transcriptional overview along with confirmation of the phenotypic importance of trehalose metabolism in Cronobacter sakazakii during desiccation.IMPORTANCE Cronobacter sakazakii is a pathogen of importance to neonatal health and is known to persist in dry food matrices, such as powdered infant formula (PIF) and its associated production environment. When infections are reported in neonates, mortality rates can be high. The success of this bacterium in surviving these low-moisture environments suggests that Cronobacter species can respond to a variety of environmental signals. Therefore, understanding those signals that aid the persistence of this pathogen in these ecological niches is an important step toward the development of strategies to reduce the risk of contamination of PIF. This research led to the identification of candidate genes that play a role in the persistence of this pathogen in desiccated conditions and, thereby, serve as a model target to design future strategies to mitigate PIF-associated survival of C. sakazakii.
Collapse
|
38
|
diCenzo GC, Zamani M, Checcucci A, Fondi M, Griffitts JS, Finan TM, Mengoni A. Multidisciplinary approaches for studying rhizobium–legume symbioses. Can J Microbiol 2019; 65:1-33. [DOI: 10.1139/cjm-2018-0377] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The rhizobium–legume symbiosis is a major source of fixed nitrogen (ammonia) in the biosphere. The potential for this process to increase agricultural yield while reducing the reliance on nitrogen-based fertilizers has generated interest in understanding and manipulating this process. For decades, rhizobium research has benefited from the use of leading techniques from a very broad set of fields, including population genetics, molecular genetics, genomics, and systems biology. In this review, we summarize many of the research strategies that have been employed in the study of rhizobia and the unique knowledge gained from these diverse tools, with a focus on genome- and systems-level approaches. We then describe ongoing synthetic biology approaches aimed at improving existing symbioses or engineering completely new symbiotic interactions. The review concludes with our perspective of the future directions and challenges of the field, with an emphasis on how the application of a multidisciplinary approach and the development of new methods will be necessary to ensure successful biotechnological manipulation of the symbiosis.
Collapse
Affiliation(s)
- George C. diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Maryam Zamani
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alice Checcucci
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
39
|
Strodtman KN, Frank S, Stevenson S, Thelen JJ, Emerich DW. Proteomic Characterization of Bradyrhizobium diazoefficiens Bacteroids Reveals a Post-Symbiotic, Hemibiotrophic-Like Lifestyle of the Bacteria within Senescing Soybean Nodules. Int J Mol Sci 2018; 19:E3947. [PMID: 30544819 PMCID: PMC6320959 DOI: 10.3390/ijms19123947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023] Open
Abstract
The form and physiology of Bradyrhizobium diazoefficiens after the decline of symbiotic nitrogen fixation has been characterized. Proteomic analyses showed that post-symbiotic B. diazoefficiens underwent metabolic remodeling as well-defined groups of proteins declined, increased or remained unchanged from 56 to 119 days after planting, suggesting a transition to a hemibiotrophic-like lifestyle. Enzymatic analysis showed distinct patterns in both the cytoplasm and the periplasm. Similar to the bacteroid, the post-symbiotic bacteria rely on a non-citric acid cycle supply of succinate and, although viable, they did not demonstrate the ability to grow within the senescent nodule.
Collapse
Affiliation(s)
- Kent N Strodtman
- Department of Science, Columbia College, Columbia, MO 65216, USA.
| | - Sooyoung Frank
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | | | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | - David W Emerich
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
40
|
Franck S, Strodtman KN, Qiu J, Emerich DW. Transcriptomic Characterization of Bradyrhizobium diazoefficiens Bacteroids Reveals a Post-Symbiotic, Hemibiotrophic-Like Lifestyle of the Bacteria within Senescing Soybean Nodules. Int J Mol Sci 2018; 19:E3918. [PMID: 30544498 PMCID: PMC6321122 DOI: 10.3390/ijms19123918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/23/2022] Open
Abstract
The transcriptional activity of Bradyrhizobium diazoefficens isolated from soybean nodules was monitored over the period from symbiosis to late plant nodule senescence. The bacteria retained a near constant level of RNA throughout this period, and the variation in genes demonstrating increased, decreased, and/or patterned transcriptional activity indicates that the bacteria are responding to the changing environment within the nodule as the plant cells progress from an organized cellular structure to an unorganized state of internal decay. The transcriptional variation and persistence of the bacteria suggest that the bacteria are adapting to their environment and acting similar to hemibiotrophs, which survive both as saprophytes on live plant tissues and then as necrophytes on decaying plant tissues. The host plant restrictions of symbiosis make B. diazoefficiens a highly specialized, restricted hemibiotroph.
Collapse
Affiliation(s)
- Sooyoung Franck
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Kent N Strodtman
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Jing Qiu
- Applied Economics and Statistics, University of Delaware, Newark, DE 19716, USA.
| | - David W Emerich
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
41
|
Atieno M, Lesueur D. Opportunities for improved legume inoculants: enhanced stress tolerance of rhizobia and benefits to agroecosystems. Symbiosis 2018. [DOI: 10.1007/s13199-018-0585-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Zeidler S, Müller V. The role of compatible solutes in desiccation resistance of Acinetobacter baumannii. Microbiologyopen 2018; 8:e00740. [PMID: 30277310 PMCID: PMC6528591 DOI: 10.1002/mbo3.740] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/03/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen which can persist in the hospital environment not only due to the acquirement of multiple antibiotic resistances, but also because of its exceptional resistance against disinfectants and desiccation. A suitable desiccation assay was established in which A. baumannii ATCC 19606T survived for ca. 1 month. The growth medium slightly influenced survival after subsequent desiccation. A significant effect could be attributed to the growth phase in which bacteria were dried: In exponential phase, cells were much more desiccation sensitive. The main focus of the present study was the elucidation of the role of compatible solutes, which are known to protect many bacteria under low water activity conditions, in desiccation survival of A. baumannii. Exogenous trehalose was shown to efficiently protect A. baumannii on dry surfaces, in contrast to other compatible solutes tested such as mannitol or glycine betaine. To analyze the importance of intracellularly accumulated solutes, a double mutant lacking biosynthesis pathways for mannitol and trehalose was generated. This mutant accumulated glutamate as sole solute in the presence of high NaCl concentrations and showed severe growth defects under osmotic stress conditions. However, no effect on desiccation tolerance could be seen, neither when cells were dried in water nor in the presence of NaCl.
Collapse
Affiliation(s)
- Sabine Zeidler
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
43
|
Maserati A, Lourenco A, Diez-Gonzalez F, Fink RC. iTRAQ-Based Global Proteomic Analysis of Salmonella enterica Serovar Typhimurium in Response to Desiccation, Low Water Activity, and Thermal Treatment. Appl Environ Microbiol 2018; 84:e00393-18. [PMID: 29959250 PMCID: PMC6121987 DOI: 10.1128/aem.00393-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/26/2018] [Indexed: 01/21/2023] Open
Abstract
In this study, the changes in the global proteome of Salmonella in response to desiccation and thermal treatment were investigated by using an iTRAQ multiplex technique. A Salmonella enterica serovar Typhimurium strain was dried, equilibrated at high (1.0) and low (0.11) water activity (aw), and thermally treated at 75°C. The proteomes were characterized after every treatment. The proteomes of the different treatments differed in the expression of 175 proteins. On the basis of their proteomic expression profiles, the samples were clustered into two major groups, namely, "dry" samples and "moist" samples. The groups had different levels of proteins involved in DNA synthesis and transcription and in metabolic reactions, indicating that cells under either of the aw conditions need to strictly control energy metabolism, the rate of replication, and protein synthesis. The proteins with higher expression levels in moist samples were flagellar proteins (FlgEFGH), membrane proteins, and export systems (SecF, SecD, the Bam complex), as well as stress response proteins, suggesting that rehydration can trigger stress responses in moist cells. Dry samples had higher levels of ribosomal proteins, indicating that ribosomal proteins might be important for additional regulation of the cellular response, even when the synthesis of proteins is slowed down. At both aws, no differences in protein expression were observed between the thermally treated samples and the nonheated cells. In conclusion, our study indicates that the preadaptation to a dry condition was linked to increased thermal tolerance, while reversion from a dry state to a moist state induced a significant change in protein expression, possibly linked to the observed loss of thermal tolerance.IMPORTANCESalmonella enterica is able to survive in dry environments for very long periods. While it is well known that the initial exposure to desiccation is fundamental to trigger thermal tolerance in this organism, the specific physiological and molecular processes involved in this cross-protection phenomenon have not been fully characterized. Several studies have focused on the low-aw transcriptome of this pathogen when inoculated in different food matrices or on abiotic surfaces, but proteomic analyses have not been reported in the literature. Our study investigated the changes in proteomic expression in Salmonella enterica serovar Typhimurium during desiccation, exposure to low aw, and thermal treatment. A better knowledge of the systems involved in the response to desiccation and thermal tolerance, as well as a better understanding of their interplay, is fundamental to identify the most effective combination of interventions to prevent Salmonella's contamination of foods.
Collapse
Affiliation(s)
- Alice Maserati
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | - Antonio Lourenco
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | | | - Ryan C Fink
- Department of Biology, Saint Cloud State University, Saint Cloud, Minnesota, USA
| |
Collapse
|
44
|
Torres D, Benavidez I, Donadio F, Mongiardini E, Rosas S, Spaepen S, Vanderleyden J, Pěnčík A, Novák O, Strnad M, Frébortová J, Cassán F. New insights into auxin metabolism in Bradyrhizobium japonicum. Res Microbiol 2018; 169:313-323. [PMID: 29751062 DOI: 10.1016/j.resmic.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 11/28/2022]
Abstract
Bacterial metabolism of phytohormones includes several processes such as biosynthesis, catabolism, conjugation, hydrolysis and homeostatic regulation. However, only biosynthesis and occasionally catabolism are studied in depth in microorganisms. In this work, we evaluated and reconsidered IAA metabolism in Bradyrhizobiumjaponicum E109, one of the most widely used strains for soybean inoculation around the world. The genomic analysis of the strain showed the presence of several genes responsible for IAA biosynthesis, mainly via indole-3-acetonitrile (IAN), indole-3-acetamide (IAM) and tryptamine (TAM) pathways. However; in vitro experiments showed that IAA is not accumulated in the culture medium in significant amounts. On the contrary, a strong degradation activity was observed after exogenous addition of 0.1 mM of IAA, IBA or NAA to the medium. B. japonicum E109 was not able to grow in culture medium containing IAA as a sole carbon source. In YEM medium, the bacteria degraded IAA and hydrolyzed amino acid auxin conjugates with alanine (IAAla), phenylalanine (IAPhe), and leucine (IAPhe), releasing IAA which was quickly degraded. Finally, the presence of exogenous IAA induced physiological changes in the bacteria such as increased biomass and exopolysaccharide production, as well as infection effectiveness and symbiotic behavior in soybean plants.
Collapse
Affiliation(s)
- Daniela Torres
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Departamento de Ciencias Naturales, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Córdoba, Argentina
| | - Iliana Benavidez
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Departamento de Ciencias Naturales, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Córdoba, Argentina
| | - Florencia Donadio
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Departamento de Ciencias Naturales, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Córdoba, Argentina
| | - Elias Mongiardini
- Laboratorio de Interacción Rizobios y Soja, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Susana Rosas
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Departamento de Ciencias Naturales, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Córdoba, Argentina
| | - Stijn Spaepen
- Katholieke Universiteit Leuven, Leuven, Belgium; Max Planck Institute for Plant Breeding Research, Plant Microbe Interactions, Köln, Germany
| | | | - Aleš Pěnčík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Jitka Frébortová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Fabricio Cassán
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-microorganismo, Departamento de Ciencias Naturales, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, Córdoba, Argentina.
| |
Collapse
|
45
|
Tseng CC, Yu PY, Liou JW, Chang KC. Altered susceptibility to air sampling stress by filtration is related to colistin resistance development in Acinetobacter baumannii. INDOOR AIR 2018; 28:732-743. [PMID: 29943860 DOI: 10.1111/ina.12487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
The accurate quantification of antibiotic-resistant bacteria in indoor air has recently attracted increasing attention. Here, we investigated whether the susceptibility of a nosocomial infection-related microbe, Acinetobacter baumannii, to strong sampling stress caused by Nuclepore filter changes as it develops resistance to a drug called colistin. Both colistin-sensitive A. baumannii (CSAB) and colistin-resistant A. baumannii (CRAB) are generally desiccation-resistant strains that can be collected by filter sampling. However, the resistance of CRAB to the three combined stresses (aerosolization, impaction, and desiccation) caused by filter sampling was 1.8 times lower than that of CSAB (P < 0.05). The sampling stresses caused by filter sampling not only reduced the culturability of A. baumannii but also destroyed proteins to result in cellular protein leakage. CRAB released 17%-38% more extracellular protein than did CSAB when they were both subjected to desiccation stress for 240 minutes (P < 0.01). The combination of using a sampling flow rate of 20 L/min and sampling for 60 minutes with a Nuclepore filter with open-face cassettes (OFCs) is recommended for collecting airborne A. baumannii. A Nuclepore filter operated with closed-face cassettes (CFCs) significantly decreased the culturability of CRAB due to desiccation effects.
Collapse
Affiliation(s)
- Chun-Chieh Tseng
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Pei-Ying Yu
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
46
|
Aqueous peat extract exposes rhizobia to sub-lethal stress which may prime cells for improved desiccation tolerance. Appl Microbiol Biotechnol 2018; 102:7521-7539. [DOI: 10.1007/s00253-018-9086-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 01/25/2023]
|
47
|
Madueño L, Coppotelli B, Festa S, Alvarez H, Morelli I. Insights into the mechanisms of desiccation resistance of the Patagonian PAH-degrading strainSphingobiumsp. 22B. J Appl Microbiol 2018; 124:1532-1543. [DOI: 10.1111/jam.13742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 01/05/2023]
Affiliation(s)
- L. Madueño
- Centro de Investigación y Desarrollo en Fermentaciones Industriales; CINDEFI, (UNLP-CCT-La Plata, CONICET); La Plata Buenos Aires Argentina
| | - B.M. Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales; CINDEFI, (UNLP-CCT-La Plata, CONICET); La Plata Buenos Aires Argentina
| | - S. Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales; CINDEFI, (UNLP-CCT-La Plata, CONICET); La Plata Buenos Aires Argentina
| | - H.M. Alvarez
- INBIOP (Instituto de Biociencias de la Patagonia); Consejo Nacional de Investigaciones Científicas y Técnicas; Facultad de Ciencias Naturales; Universidad Nacional de la Patagonia San Juan Bosco; Comodoro Rivadavia Chubut Argentina
| | - I.S. Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales; CINDEFI, (UNLP-CCT-La Plata, CONICET); La Plata Buenos Aires Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA); Buenos Aires Argentina
| |
Collapse
|
48
|
Chen AI, Goulian M. A network of regulators promotes dehydration tolerance in Escherichia coli. Environ Microbiol 2018; 20:1283-1295. [PMID: 29457688 DOI: 10.1111/1462-2920.14074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/13/2018] [Accepted: 02/12/2018] [Indexed: 01/09/2023]
Abstract
The ability to survive conditions of low water activity is critical for the survival of many bacteria in the environment and facilitates disease transmission through food and contaminated surfaces. However, the molecular mechanisms that enable bacteria to withstand this condition remain poorly understood. Here we describe a network of regulators in Escherichia coli that are important for this bacterium to survive dehydration. We found that the transcriptional regulator DksA and the general stress response regulator RpoS play a critical role. From a plasmid genomic library screen, we identified two additional regulators, Crl and ArcZ, that promote dehydration tolerance through modulation of RpoS. We also found that LexA, RecA and ArcA contribute to survival. Our results identify key regulators that enable E. coli to tolerate dehydration and suggest a hierarchical network is involved in protection against cellular damage associated with this stress.
Collapse
Affiliation(s)
- Annie I Chen
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Goulian
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
49
|
Berninger T, González López Ó, Bejarano A, Preininger C, Sessitsch A. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb Biotechnol 2018; 11:277-301. [PMID: 29205959 PMCID: PMC5812248 DOI: 10.1111/1751-7915.12880] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/11/2017] [Accepted: 10/08/2017] [Indexed: 01/20/2023] Open
Abstract
The application of beneficial, plant-associated microorganisms is a sustainable approach to improving crop performance in agriculture. However, microbial inoculants are often susceptible to prolonged periods of storage and deleterious environmental factors, which negatively impact their viability and ultimately limit efficacy in the field. This particularly concerns non-sporulating bacteria. To overcome this challenge, the availability of protective formulations is crucial. Numerous parameters influence the viability of microbial cells, with drying procedures generally being among the most critical ones. Thus, technological advances to attenuate the desiccation stress imposed on living cells are key to successful formulation development. In this review, we discuss the core aspects important to consider when aiming at high cell viability of non-sporulating bacteria to be applied as microbial inoculants in agriculture. We elaborate the suitability of commonly applied drying methods (freeze-drying, vacuum-drying, spray-drying, fluidized bed-drying, air-drying) and potential measures to prevent cell damage from desiccation (externally applied protectants, stress pre-conditioning, triggering of exopolysaccharide secretion, 'helper' strains). Furthermore, we point out methods for assessing bacterial viability, such as colony counting, spectrophotometry, microcalorimetry, flow cytometry and viability qPCR. Choosing appropriate technologies for maintenance of cell viability and evaluation thereof will render formulation development more efficient. This in turn will aid in utilizing the vast potential of promising, plant beneficial bacteria as sustainable alternatives to standard agrochemicals.
Collapse
Affiliation(s)
- Teresa Berninger
- AIT Austrian Institute of Technology GmbHCenter for Health and BioresourcesBioresources UnitKonrad‐Lorenz‐Straße 243430TullnAustria
| | - Óscar González López
- AIT Austrian Institute of Technology GmbHCenter for Health and BioresourcesBioresources UnitKonrad‐Lorenz‐Straße 243430TullnAustria
| | - Ana Bejarano
- AIT Austrian Institute of Technology GmbHCenter for Health and BioresourcesBioresources UnitKonrad‐Lorenz‐Straße 243430TullnAustria
| | - Claudia Preininger
- AIT Austrian Institute of Technology GmbHCenter for Health and BioresourcesBioresources UnitKonrad‐Lorenz‐Straße 243430TullnAustria
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbHCenter for Health and BioresourcesBioresources UnitKonrad‐Lorenz‐Straße 243430TullnAustria
| |
Collapse
|
50
|
Ghedira K, Harigua-Souiai E, Ben Hamda C, Fournier P, Pujic P, Guesmi S, Guizani I, Miotello G, Armengaud J, Normand P, Sghaier H. The PEG-responding desiccome of the alder microsymbiont Frankia alni. Sci Rep 2018; 8:759. [PMID: 29335550 PMCID: PMC5768760 DOI: 10.1038/s41598-017-18839-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/05/2017] [Indexed: 01/22/2023] Open
Abstract
Actinorhizal plants are ecologically and economically important. Symbiosis with nitrogen-fixing bacteria allows these woody dicotyledonous plants to colonise soils under nitrogen deficiency, water-stress or other extreme conditions. However, proteins involved in xerotolerance of symbiotic microorganisms have yet to be identified. Here we characterise the polyethylene glycol (PEG)-responding desiccome from the most geographically widespread Gram-positive nitrogen-fixing plant symbiont, Frankia alni, by next-generation proteomics, taking advantage of a Q-Exactive HF tandem mass spectrometer equipped with an ultra-high-field Orbitrap analyser. A total of 2,052 proteins were detected and quantified. Under osmotic stress, PEG-grown F. alni cells increased the abundance of envelope-associated proteins like ABC transporters, mechano-sensitive ion channels and Clustered Regularly Interspaced Short Palindromic Repeats CRISPR-associated (cas) components. Conjointly, dispensable pathways, like nitrogen fixation, aerobic respiration and homologous recombination, were markedly down-regulated. Molecular modelling and docking simulations suggested that the PEG is acting on Frankia partly by filling the inner part of an up-regulated osmotic-stress large conductance mechanosensitive channel.
Collapse
Affiliation(s)
- Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics - LR16IPT09, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, 1002, Tunisia
| | - Emna Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology - LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, 1002, Tunisia
| | - Cherif Ben Hamda
- Laboratory of Bioinformatics, Biomathematics and Biostatistics - LR16IPT09, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, 1002, Tunisia
- Université de Carthage, Faculté des Sciences de Bizerte, Tunis, 7021, Tunisia
| | - Pascale Fournier
- Université de Lyon, Université Lyon 1, Lyon; CNRS, UMR 5557, Ecologie Microbienne, UMR1418, INRA, 69622 Cedex, Villeurbanne, France
| | - Petar Pujic
- Université de Lyon, Université Lyon 1, Lyon; CNRS, UMR 5557, Ecologie Microbienne, UMR1418, INRA, 69622 Cedex, Villeurbanne, France
| | - Sihem Guesmi
- Laboratory "Energy and Matter for Development of Nuclear Sciences" (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, 2020, Tunisia
- National Agronomy Institute (INAT), Avenue Charles Nicolle, 1082, Tunis, Mahrajène, Tunisia
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology - LR11IPT04, Institut Pasteur de Tunis, Université de Tunis el Manar, Tunis, 1002, Tunisia
| | - Guylaine Miotello
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols sur Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols sur Cèze, France
| | - Philippe Normand
- Université de Lyon, Université Lyon 1, Lyon; CNRS, UMR 5557, Ecologie Microbienne, UMR1418, INRA, 69622 Cedex, Villeurbanne, France.
| | - Haïtham Sghaier
- Laboratory "Energy and Matter for Development of Nuclear Sciences" (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, 2020, Tunisia
- Associated with Laboratory "Biotechnology and Nuclear Technology" (LR16CNSTN01) & Laboratory "Biotechnology and Bio-Geo Resources Valorization" (LR11ES31), Sidi Thabet Technopark, 2020, Tunisia
| |
Collapse
|