1
|
Bukowski M, Banasik M, Chlebicka K, Bednarczyk K, Bonar E, Sokołowska D, Żądło T, Dubin G, Władyka B. Analysis of co-occurrence of type II toxin-antitoxin systems and antibiotic resistance determinants in Staphylococcus aureus. mSystems 2025; 10:e0095724. [PMID: 40013794 PMCID: PMC11915791 DOI: 10.1128/msystems.00957-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Toxin-antitoxin (TA) systems consist of toxic proteins and their inhibitors, and were originally shown to ensure plasmid maintenance in bacterial populations. Over time, however, TA systems have also been identified on bacterial chromosomes, raising questions about their roles unrelated to plasmid stability. Among the eight currently recognized types of TA systems, type II has been the most extensively investigated. Type II systems are often found in pathogenic bacterial species, including staphylococci. Staphylococcus aureus, a notorious human pathogen, harbors multiple type II TA systems, both plasmid- and chromosome-encoded, while their potential relation to virulence remains to be addressed. Here, we investigate the co-occurrence of TA systems and antibiotic resistance (AR) determinants in S. aureus, focusing on the potential negative impact of type II toxin RNases on antibiotic resistance. We considered both well-characterized and newly characterized TA loci of S. aureus. Our findings demonstrate a relationship between TA systems and AR determinants, wherein TA systems negatively affect antibiotic resistance. Due to substantial selective pressure, the migration of TA systems from plasmids to chromosomes results in their inactivation. This observation may be an important factor shaping the spread and evolution of both TA systems and AR determinants in bacteria. We exemplify this phenomenon in detail using the well-known PemIK-Sa1 system and a newly identified SCCmec-related PemIK-Sa6 system characterized in this study. IMPORTANCE Toxin-antitoxin (TA) systems are entities unique to bacteria. They are involved in the maintenance of mobile genetic elements (MGEs), regulation of gene expression and bacterial virulence. Staphylococcus aureus is a dangerous human pathogen with increasing antibiotic resistance (AR). The maintenance and dissemination of AR determinants is often driven by MGEs, which link AR and TA systems. Our study identified a negative correlation between TA systems and AR determinants in S. aureus. Furthermore, we have shown that the expression of a toxic component of an exemplary TA system negatively affects antibiotic resistance. We argue that in particular strains, a selective pressure maintains either the TA system or AR determinant. Alternatively, TA systems are inactivated by mutations when present together with AR determinants to maintain the functionality of the latter. Our observations uncover an important factor shaping the spread and evolution of both TA systems and AR determinants in bacteria, which is especially relevant to pathogenic species.
Collapse
Affiliation(s)
- Michał Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Michał Banasik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kinga Chlebicka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Katarzyna Bednarczyk
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dominika Sokołowska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Tomasz Żądło
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
2
|
Kato F, Bandou R, Yamaguchi Y, Inouye K, Inouye M. Characterization of a membrane toxin-antitoxin system, tsaAT, from Staphylococcus aureus. FEBS J 2024; 291:5015-5036. [PMID: 39356479 DOI: 10.1111/febs.17289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Bacterial toxin-antitoxin (TA) systems consist of a toxin that inhibits essential cellular processes, such as DNA replication, transcription, translation, or ATP synthesis, and an antitoxin neutralizing their cognate toxin. These systems have roles in programmed cell death, defense against phage, and the formation of persister cells. Here, we characterized the previously identified Staphylococcus aureus TA system, tsaAT, which consists of two putative membrane proteins: TsaT and TsaA. Expression of the TsaT toxin caused cell death and disrupted membrane integrity, whereas TsaA did not show any toxicity and neutralized the toxicity of TsaT. Furthermore, subcellular fractionation analysis demonstrated that both TsaA and TsaT localized to the cytoplasmic membrane of S. aureus expressing either or both 3xFLAG-tagged TsaA and 3xFLAG-tagged TsaT. Taken together, these results demonstrate that the TsaAT TA system consists of two membrane proteins, TsaA and TsaT, where TsaT disrupts membrane integrity, ultimately leading to cell death. Although sequence analyses showed that the tsaA and tsaT genes were conserved among Staphylococcus species, amino acid substitutions between TsaT orthologs highlighted the critical role of the 6th residue for its toxicity. Further amino acid substitutions indicated that the glutamic acid residue at position 63 in the TsaA antitoxin and the cluster of five lysine residues in the TsaT toxin are involved in TsaA's neutralization reaction. This study is the first to describe a bacterial TA system wherein both toxin and antitoxin are membrane proteins. These findings contribute to our understanding of S. aureus TA systems and, more generally, give new insight into highly diverse bacterial TA systems.
Collapse
Affiliation(s)
- Fuminori Kato
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Risa Bandou
- Faculty of Dentistry, Hiroshima University, Japan
| | - Yoshihiro Yamaguchi
- Department of Biology, Graduate School of Sciences, Osaka Metropolitan University, Japan
| | - Keiko Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Masayori Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
3
|
Xu J, Wang Y, Liu F, Duan G, Yang H. Genome mining reveals the prevalence and extensive diversity of toxin-antitoxin systems in Staphylococcus aureus. Front Microbiol 2023; 14:1165981. [PMID: 37293231 PMCID: PMC10244574 DOI: 10.3389/fmicb.2023.1165981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Staphylococcus aureus (S. aureus) is a highly pathogenic and adaptable Gram-positive bacterium that exhibits persistence in various environments. The toxin-antitoxin (TA) system plays a crucial role in the defense mechanism of bacterial pathogens, allowing them to survive in stressful conditions. While TA systems in clinical pathogens have been extensively studied, there is limited knowledge regarding the diversity and evolutionary complexities of TA systems in S. aureus. Methods We conducted a comprehensive in silico survey using 621 publicly available S. aureus isolates. We employed bioinformatic search and prediction tools, including SLING, TADB2.0, and TASmania, to identify TA systems within the genomes of S. aureus. Results Our analysis revealed a median of seven TA systems per genome, with three type II TA groups (HD, HD_3, and YoeB) being present in over 80% of the strains. Additionally, we observed that TA genes were predominantly encoded in the chromosomal DNA, with some TA systems also found within the Staphylococcal Cassette Chromosomal mec (SCCmec) genomic islands. Discussion This study provides a comprehensive overview of the diversity and prevalence of TA systems in S. aureus. The findings enhance our understanding of these putative TA genes and their potential implications in S. aureus ecology and disease management. Moreover, this knowledge could guide the development of novel antimicrobial strategies.
Collapse
Affiliation(s)
| | | | | | | | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Kato F, Yamaguchi Y, Inouye K, Matsuo K, Ishida Y, Inouye M. A novel gyrase inhibitor from toxin-antitoxin system expressed by Staphylococcus aureus. FEBS J 2023; 290:1502-1518. [PMID: 36148483 DOI: 10.1111/febs.16634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
Toxin-antitoxin (TA) systems consist of a toxin inhibiting essential cellular functions (such as DNA, RNA and protein synthesis), and its cognate antitoxin neutralizing the toxicity. Recently, we identified a TA system termed TsbA/TsbT in the Staphylococcus aureus genome. The induction of the tsbT gene in Escherichia coli halted both DNA and RNA synthesis, reduced supercoiled plasmid and resulted in increasingly relaxed DNA. These results suggested that DNA gyrase was the target of TsbT. In addition, TsbT inhibited both E. coli and S. aureus DNA gyrase activity and induced linearization of plasmid DNA in vitro. Taken together, these results demonstrate that the TsbT toxin targets DNA gyrase in vivo. Site-directed mutagenesis experiments showed that the E27 and D37 residues in TsbT are critical for toxicity. Secondary structure prediction combining the analysis of vacuum-ultraviolet circular-dichroism spectroscopy and neural network method demonstrated that the 22nd-32nd residues of TsbT form an α-helix structure, and that the E27 residue is located around the centre of the α-helix segment. These findings give new insights not only into S. aureus TA systems, but also into bacterial toxins targeting DNA topoisomerases.
Collapse
Affiliation(s)
- Fuminori Kato
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yoshihiro Yamaguchi
- Department of Biology and Geosciences, Graduate School of Sciences, Osaka City University, Japan
| | - Keiko Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yojiro Ishida
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Masayori Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
5
|
Kim DH, Kang SM, Baek SM, Yoon HJ, Jang DM, Kim H, Lee S, Lee BJ. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2319-2333. [PMID: 35141752 PMCID: PMC8887465 DOI: 10.1093/nar/gkab1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is a notorious and globally distributed pathogenic bacterium. New strategies to develop novel antibiotics based on intrinsic bacterial toxin–antitoxin (TA) systems have been recently reported. Because TA systems are present only in bacteria and not in humans, these distinctive systems are attractive targets for developing antibiotics with new modes of action. S. aureus PemIK is a type II TA system, comprising the toxin protein PemK and the labile antitoxin protein PemI. Here, we determined the crystal structures of both PemK and the PemIK complex, in which PemK is neutralized by PemI. Our biochemical approaches, including fluorescence quenching and polarization assays, identified Glu20, Arg25, Thr48, Thr49, and Arg84 of PemK as being important for RNase function. Our study indicates that the active site and RNA-binding residues of PemK are covered by PemI, leading to unique conformational changes in PemK accompanied by repositioning of the loop between β1 and β2. These changes can interfere with RNA binding by PemK. Overall, PemK adopts particular open and closed forms for precise neutralization by PemI. This structural and functional information on PemIK will contribute to the discovery and development of novel antibiotics in the form of peptides or small molecules inhibiting direct binding between PemI and PemK.
Collapse
Affiliation(s)
| | | | - Sung-Min Baek
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Man Jang
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Hyoun Sook Kim
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Sang Jae Lee
- Correspondence may also be addressed to Sang Jae Lee. Tel: +82 54 279 1490;
| | - Bong-Jin Lee
- To whom correspondence should be addressed. Tel: +82 2 880 7869;
| |
Collapse
|
6
|
Xue L, Khan MH, Yue J, Zhu Z, Niu L. The two paralogous copies of the YoeB-YefM toxin-antitoxin module in Staphylococcus aureus differ in DNA binding and recognition patterns. J Biol Chem 2022; 298:101457. [PMID: 34861238 PMCID: PMC8717551 DOI: 10.1016/j.jbc.2021.101457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous regulatory modules for bacterial growth and cell survival following stress. YefM-YoeB, the most prevalent type II TA system, is present in a variety of bacterial species. In Staphylococcus aureus, the YefM-YoeB system exists as two independent paralogous copies. Our previous research resolved crystal structures of the two oligomeric states (heterotetramer and heterohexamer-DNA ternary complex) of the first paralog as well as the molecular mechanism of transcriptional autoregulation of this module. However, structural details reflecting molecular diversity in both paralogs have been relatively unexplored. To understand the molecular mechanism of how Sa2YoeB and Sa2YefM regulate their own transcription and how each paralog functions independently, we solved a series of crystal structures of the Sa2YoeB-Sa2YefM. Our structural and biochemical data demonstrated that both paralogous copies adopt similar mechanisms of transcriptional autoregulation. In addition, structural analysis suggested that molecular diversity between the two paralogs might be reflected in the interaction profile of YefM and YoeB and the recognition pattern of promoter DNA by YefM. Interaction analysis revealed unique conformational and activating force effected by the interface between Sa2YoeB and Sa2YefM. In addition, the recognition pattern analysis demonstrated that residues Thr7 and Tyr14 of Sa2YefM specifically recognizes the flanking sequences (G and C) of the promoter DNA. Together, these results provide the structural insights into the molecular diversity and independent function of the paralogous copies of the YoeB-YefM TA system.
Collapse
Affiliation(s)
- Lu Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Muhammad Hidayatullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Yue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongliang Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei, Anhui, China; Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
7
|
Ju Y, An Q, Zhang Y, Sun K, Bai L, Luo Y. Recent advances in Clp protease modulation to address virulence, resistance and persistence of MRSA infection. Drug Discov Today 2021; 26:2190-2197. [PMID: 34048895 DOI: 10.1016/j.drudis.2021.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/17/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023]
Abstract
The Clp protease is an AAA+ protease that executes abnormally folded or malfunctioning proteins, and has an important role in producing virulence factors, forming biofilms or persisters and developing methicillin-resistant Staphylococcus aureus (MRSA). Recent studies showed that Clp protease controls virulence via agr signaling and degrades antitoxins of the toxin-antitoxin system to modulate the formation of persisters and biofilms. In this review, we focus on recent developments concerning the virulence and persistence regulatory pathways and resistance-related mechanism of Clp protease in S. aureus, with an overview of the Clp modulators developed to treat MRSA infection.
Collapse
Affiliation(s)
- Yuan Ju
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China; Sichuan University Library, Sichuan University, Chengdu 610041, China
| | - Qi An
- Public Health Clinical Center of Chengdu, Chengdu 610041, China
| | - Yiwen Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ke Sun
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Lang Bai
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Ma D, Gu H, Shi Y, Huang H, Sun D, Hu Y. Edwardsiella piscicida YefM-YoeB: A Type II Toxin-Antitoxin System That Is Related to Antibiotic Resistance, Biofilm Formation, Serum Survival, and Host Infection. Front Microbiol 2021; 12:646299. [PMID: 33732226 PMCID: PMC7957083 DOI: 10.3389/fmicb.2021.646299] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
The emergence of drug resistant bacteria is a tricky and confronted problem in modern medicine, and one of important reasons is the widespread of toxin-antitoxin (TA) systems in pathogenic bacteria. Edwardsiella piscicida (also known as E. tarda) is the leading pathogen threatening worldwide fresh and seawater aquaculture industries and has been considered as a model organism for studying intracellular and systemic infections. However, the role of type II TA systems are completely unknown in aquatic pathogenic bacteria. In this study, we identified and characterized a type II TA system, YefM-YoeB, of E. piscicida, where YefM is the antitoxin and YoeB is the toxin. yefM and yoeB are co-expressed in a bicistronic operon. When expressed in E. coli, YoeB cause bacterial growth arrest, which was restored by the addition of YefM. To investigate the biological role of the TA system, two markerless yoeB and yefM-yoeB in-frame mutant strains, TX01ΔyoeB and TX01ΔyefM-yoeB, were constructed, respectively. Compared to the wild strain TX01, TX01ΔyefM-yoeB exhibited markedly reduced resistance against oxidative stress and antibiotic, and markedly reduced ability to form persistent bacteria. The deletion of yefM-yoeB enhanced the bacterial ability of high temperature tolerance, biofilm formation, and host serum resistance, which is the first study about the relationship between type II TA system and serum resistance. In vitro infection experiment showed that the inactivation of yefM-yoeB greatly enhanced bacterial capability of adhesion in host cells. Consistently, in vivo experiment suggested that the yefM-yoeB mutation had an obvious positive effect on bacteria dissemination of fish tissues and general virulence. Introduction of a trans-expressed yefM-yoeB restored the virulence of TX01ΔyefM-yoeB. These findings suggest that YefM-YoeB is involved in responding adverse circumstance and pathogenicity of E. piscicida. In addition, we found that YefM-YoeB negatively autoregulated the expression of yefM-yoeB and YefM could directly bind with own promoter. This study provides first insights into the biological activity of type II TA system YefM-YoeB in aquatic pathogenic bacteria and contributes to understand the pathogenesis of E. piscicida.
Collapse
Affiliation(s)
- Dongmei Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| | - Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| | - Yanjie Shi
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| | - Huiqin Huang
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China
| | - Dongmei Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, China
| |
Collapse
|
9
|
Srivastava A, Pati S, Kaushik H, Singh S, Garg LC. Toxin-antitoxin systems and their medical applications: current status and future perspective. Appl Microbiol Biotechnol 2021; 105:1803-1821. [PMID: 33582835 DOI: 10.1007/s00253-021-11134-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Almost all bacteria synthesize two types of toxins-one for its survival by regulating different cellular processes and another as a strategy to interact with host cells for pathogenesis. Usually, "bacterial toxins" are contemplated as virulence factors that harm the host organism. However, toxins produced by bacteria, as a survival strategy against the host, also hamper its cellular processes. To overcome this, the bacteria have evolved with the production of a molecule, referred to as antitoxin, to negate the deleterious effect of the toxin against itself. The toxin and antitoxins are encoded by a two-component toxin-antitoxin (TA) system. The antitoxin, a protein or RNA, sequesters the toxins of the TA system for neutralization within the bacterial cell. In this review, we have described different TA systems of bacteria and their potential medical and biotechnological applications. It is of interest to note that while bacterial toxin-antitoxin systems have been well studied, the TA system in unicellular eukaryotes, though predicted by the investigators, have never been paid the desired attention. In the present review, we have also touched upon the TA system of eukaryotes identified to date. KEY POINTS: Bacterial toxins harm the host and also affect the bacterial cellular processes. The antitoxin produced by bacteria protect it from the toxin's harmful effects. The toxin-antitoxin systems can be targeted for various medical applications.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Soumya Pati
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Himani Kaushik
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
10
|
Sizikov S, Burgsdorf I, Handley KM, Lahyani M, Haber M, Steindler L. Characterization of sponge-associated Verrucomicrobia: microcompartment-based sugar utilization and enhanced toxin-antitoxin modules as features of host-associated Opitutales. Environ Microbiol 2020; 22:4669-4688. [PMID: 32840024 DOI: 10.1111/1462-2920.15210] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Bacteria of the phylum Verrucomicrobia are ubiquitous in marine environments and can be found as free-living organisms or as symbionts of eukaryotic hosts. Little is known about host-associated Verrucomicrobia in the marine environment. Here we reconstructed two genomes of symbiotic Verrucomicrobia from bacterial metagenomes derived from the Atlanto-Mediterranean sponge Petrosia ficiformis and three genomes from strains that we isolated from offshore seawater of the Eastern Mediterranean Sea. Phylogenomic analysis of these five strains indicated that they are all members of Verrucomicrobia subdivision 4, order Opitutales. We compared these novel sponge-associated and seawater-isolated genomes to closely related Verrucomicrobia. Genomic analysis revealed that Planctomycetes-Verrucomicrobia microcompartment gene clusters are enriched in the genomes of symbiotic Opitutales including sponge symbionts but not in free-living ones. We hypothesize that in sponge symbionts these microcompartments are used for degradation of l-fucose and l-rhamnose, which are components of algal and bacterial cell walls and therefore may be found at high concentrations in the sponge tissue. Furthermore, we observed an enrichment of toxin-antitoxin modules in symbiotic Opitutales. We suggest that, in sponges, verrucomicrobial symbionts utilize these modules as a defence mechanism against antimicrobial activity deriving from the abundant microbial community co-inhabiting the host.
Collapse
Affiliation(s)
- Sofia Sizikov
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Kim Marie Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Matan Lahyani
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
11
|
Janczak M, Hyz K, Bukowski M, Lyzen R, Hydzik M, Wegrzyn G, Szalewska-Palasz A, Grudnik P, Dubin G, Wladyka B. Chromosomal localization of PemIK toxin-antitoxin system results in the loss of toxicity - Characterization of pemIK Sa1-Sp from Staphylococcus pseudintermedius. Microbiol Res 2020; 240:126529. [PMID: 32622987 DOI: 10.1016/j.micres.2020.126529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/20/2022]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and on numerous occasions have been postulated to play a role in virulence of pathogens. Some Staphylococcus aureus strains carry a plasmid, which encodes the highly toxic PemIKSa TA system involved in maintenance of the plasmid but also implicated in modulation of gene expression. Here we showed that pemIKSa1-Sp TA system, homologous to the plasmid-encoded PemIKSa, is present in virtually each chromosome of S. pseudintermedius strain, however exhibits sequence heterogeneity. This results in two length variants of the PemKSa1-Sp toxin. The shorter (96 aa), C-terminally truncated toxin is enzymatically inactive, whereas the full length (112 aa) variant is an RNase, though nontoxic to the host cells. The lack of toxicity of the active PemKSa-Sp2 toxin is explained by increased substrate specificity. The pemISa1-Sp antitoxin gene seems pseudogenized, however, the whole pemIKSa1-Sp system is transcriptionally active. When production of N-terminally truncated antitoxins using alternative start codons is assumed, there are five possible length variants. Here we showed that even substantially truncated antitoxins are able to interact with PemKSa-Sp2 toxin and inhibit its RNase activity. Moreover, the antitoxins can rescue bacterial cells from toxic effects of overexpression of plasmid-encoded PemKSa toxin. Collectively, our data indicates that, contrary to the toxic plasmid-encoded PemIKSa TA system, location of pemIKSa1-Sp in the chromosome of S. pseudintermedius results in the loss of its toxicity. Interestingly, the retained RNase activity of PemKSa1-Sp2 toxin and functionality of the putative, N-terminally truncated antitoxins suggest the existence of evolutionary pressure for alleviation/mitigation of the toxin's toxicity and retention of the inhibitory activity of the antitoxin, respectively.
Collapse
Affiliation(s)
- Monika Janczak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Hyz
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Lyzen
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Gdansk, Poland
| | - Marcin Hydzik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Przemyslaw Grudnik
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
12
|
Eun HJ, Lee KY, Kim DG, Im D, Lee BJ. Crystal structure of the YoeB Sa1-YefM Sa1 complex from Staphylococcus aureus. Biochem Biophys Res Commun 2020; 527:264-269. [PMID: 32446378 DOI: 10.1016/j.bbrc.2020.04.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022]
Abstract
Toxin-antitoxin (TA) systems are ubiquitously found in bacteria and are related to cell maintenance and survival under environmental stresses such as heat shock, nutrient starvation, and antibiotic treatment. Here, we report for the first time the crystal structure of the Staphylococcus aureus TA complex YoeBSa1-YefMSa1 at a resolution of 1.7 Å. This structure reveals a heterotetramer with a 2:2 stoichiometry between YoeBSa1 and YefMSa1. The N-terminal regions of the YefMSa1 antitoxin form a homodimer characteristic of a hydrophobic core, and the C-terminal extended region of each YefMSa1 protomer makes contact with each YoeBSa1 monomer. The binding stoichiometry of YoeBSa1 and YefMSa1 is different from that of YoeB and YefM of E. coli (YoeBEc and YefMEc), which is the only structural homologue among YoeB-YefM families; however, the structures of individual YoeBSa1 and YefMSa1 subunits in the complex are highly similar to the corresponding structures in E. coli. In addition, docking simulation with a minimal RNA substrate provides structural insight into the guanosine specificity of YoeBSa1 for cleavage in the active site, which is distinct from the specificity of YoeBEc for adenosine rather than guanosine. Given the previous finding that YoeBSa1 exhibits fatal toxicity without inducing persister cells, the structure of the YoeBSa1-YefMSa1 complex will contribute to the design of a new category of anti-staphylococcal agents that disrupt the YoeBSa1-YefMSa1 complex and increase YoeBSa1 toxicity.
Collapse
Affiliation(s)
- Hyun-Jong Eun
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki-Young Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Gyun Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daseul Im
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Bong-Jin Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
13
|
Cross-Regulations between Bacterial Toxin-Antitoxin Systems: Evidence of an Interconnected Regulatory Network? Trends Microbiol 2020; 28:851-866. [PMID: 32540313 DOI: 10.1016/j.tim.2020.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous among bacteria and include stable toxins whose toxicity can be counteracted by RNA or protein antitoxins. They are involved in multiple functions that range from stability maintenance for mobile genetic elements to stress adaptation. Bacterial chromosomes frequently have multiple homologues of TA system loci, and it is unclear why there are so many of them. In this review we focus on cross-regulations between TA systems, which occur between both homologous and nonhomologous systems, from similar or distinct types, whether encoded from plasmids or chromosomes. In addition to being able to modulate RNA expression levels, cross-regulations between these systems can also influence their toxicity. This suggests the idea that they are involved in an interconnected regulatory network.
Collapse
|
14
|
Ames JR, McGillick J, Murphy T, Reddem E, Bourne CR. Identifying a Molecular Mechanism That Imparts Species-Specific Toxicity to YoeB Toxins. Front Microbiol 2020; 11:959. [PMID: 32528435 PMCID: PMC7256200 DOI: 10.3389/fmicb.2020.00959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 11/24/2022] Open
Abstract
The ribosome-dependent E. coli (Ec) mRNase toxin YoeB has been demonstrated to protect cells during thermal stress. Agrobacterium tumefaciens (At), a plant pathogen, also encodes a YoeB toxin. Initial studies indicated that AtYoeB does not impact the growth of Ec, but its expression is toxic to the native host At. The current work examines this species-specific effect. We establish the highly similar structure and function of Ec and AtYoeB toxins, including the ability of the AtYoeB toxin to inhibit Ec ribosomes in vitro. Comparison of YoeB sequences and structures highlights a four-residue helix between β-strands 2 and 3 that interacts with mRNA bases within the ribosome. This helix sequence is varied among YoeB toxins, and this variation correlates with bacterial classes of proteobacteria. When the four amino acid sequence of this helix is transplanted from EcYoeB onto AtYoeB, the resulting chimera gains toxicity to Ec cells and lessens toxicity to At cells. The reverse is also true, such that EcYoeB with the AtYoeB helix sequence is less toxic to Ec and gains toxicity to At cultures. We suggest this helix sequence directs mRNA sequence-specific degradation, which varies among proteobacterial classes, and thus controls growth inhibition and YoeB toxicity.
Collapse
Affiliation(s)
- Jessica R Ames
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Julia McGillick
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Tamiko Murphy
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Eswar Reddem
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
15
|
Germain-Amiot N, Augagneur Y, Camberlein E, Nicolas I, Lecureur V, Rouillon A, Felden B. A novel Staphylococcus aureus cis-trans type I toxin-antitoxin module with dual effects on bacteria and host cells. Nucleic Acids Res 2019; 47:1759-1773. [PMID: 30544243 PMCID: PMC6393315 DOI: 10.1093/nar/gky1257] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Bacterial type I toxin–antitoxin (TA) systems are widespread, and consist of a stable toxic peptide whose expression is monitored by a labile RNA antitoxin. We characterized Staphylococcus aureus SprA2/SprA2AS module, which shares nucleotide similarities with the SprA1/SprA1AS TA system. We demonstrated that SprA2/SprA2AS encodes a functional type I TA system, with the cis-encoded SprA2AS antitoxin acting in trans to prevent ribosomal loading onto SprA2 RNA. We proved that both TA systems are distinct, with no cross-regulation between the antitoxins in vitro or in vivo. SprA2 expresses PepA2, a toxic peptide which internally triggers bacterial death. Conversely, although PepA2 does not affect bacteria when it is present in the extracellular medium, it is highly toxic to other host cells such as polymorphonuclear neutrophils and erythrocytes. Finally, we showed that SprA2AS expression is lowered during osmotic shock and stringent response, which indicates that the system responds to specific triggers. Therefore, the SprA2/SprA2AS module is not redundant with SprA1/SprA1AS, and its PepA2 peptide exhibits an original dual mode of action against bacteria and host cells. This suggests an altruistic behavior for S. aureus in which clones producing PepA2 in vivo shall die as they induce cytotoxicity, thereby promoting the success of the community.
Collapse
Affiliation(s)
- Noëlla Germain-Amiot
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Yoann Augagneur
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Emilie Camberlein
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Irène Nicolas
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Valérie Lecureur
- Université de Rennes 1, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, 35000 Rennes, France
| | - Astrid Rouillon
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Brice Felden
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| |
Collapse
|
16
|
Riffaud C, Pinel-Marie ML, Pascreau G, Felden B. Functionality and cross-regulation of the four SprG/SprF type I toxin-antitoxin systems in Staphylococcus aureus. Nucleic Acids Res 2019; 47:1740-1758. [PMID: 30551143 PMCID: PMC6393307 DOI: 10.1093/nar/gky1256] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 01/21/2023] Open
Abstract
Toxin–antitoxin (TA) systems are ubiquitous among bacteria, frequently expressed in multiple copies, and important for functions such as antibiotic resistance and persistence. Type I TA systems are composed of a stable toxic peptide whose expression is repressed by an unstable RNA antitoxin. Here, we investigated the functionalities, regulation, and possible cross-talk between three core genome copies of the pathogenicity island-encoded ‘sprG1/sprF1’ type I TA system in the human pathogen Staphylococcus aureus. Except for SprG4, all RNA from these pairs, sprG2/sprF2, sprG3/sprF3, sprG4/sprF4, are expressed in the HG003 strain. SprG2 and SprG3 RNAs encode toxic peptides whose overexpression triggers bacteriostasis, which is counteracted at the RNA level by the overexpression of SprF2 and SprF3 antitoxins. Complex formation between each toxin and its cognate antitoxin involves their overlapping 3′ ends, and each SprF antitoxin specifically neutralizes the toxicity of its cognate SprG toxin without cross-talk. However, overexpression studies suggest cross-regulations occur at the RNA level between the SprG/SprF TA systems during growth. When subjected to H2O2-induced oxidative stress, almost all antitoxin levels dropped, while only SprG1 and SprF1 were reduced during phagocytosis-induced oxidative stress. SprG1, SprF1, SprF2, SprG3 and SprF3 levels also decrease during hyperosmotic stress. This suggests that novel SprG/SprF TA systems are involved in S. aureus persistence.
Collapse
Affiliation(s)
- Camille Riffaud
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Marie-Laure Pinel-Marie
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Gaëtan Pascreau
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| | - Brice Felden
- Université de Rennes 1, Inserm, BRM (Bacterial Regulatory RNAs and Medicine) UMR_S 1230, 35000 Rennes, France
| |
Collapse
|
17
|
Bukowski M, Piwowarczyk R, Madry A, Zagorski-Przybylo R, Hydzik M, Wladyka B. Prevalence of Antibiotic and Heavy Metal Resistance Determinants and Virulence-Related Genetic Elements in Plasmids of Staphylococcus aureus. Front Microbiol 2019; 10:805. [PMID: 31068910 PMCID: PMC6491766 DOI: 10.3389/fmicb.2019.00805] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022] Open
Abstract
The use of antibiotics on a mass scale, particularly in farming, and their release into the environment has led to a rapid emergence of resistant bacteria. Once emerged, resistance determinants are spread by horizontal gene transfer among strains of the same as well as disparate bacterial species. Their accumulation in free-living as well as livestock and community-associated strains results in the widespread multiple-drug resistance among clinically relevant species posing an increasingly pressing problem in healthcare. One of these clinically relevant species is Staphylococcus aureus, a common cause of hospital and community outbreaks. Among the rich diversity of mobile genetic elements regularly occurring in S. aureus such as phages, pathogenicity islands, and staphylococcal cassette chromosomes, plasmids are the major mean for dissemination of resistance determinants and virulence factors. Unfortunately, a vast number of whole-genome sequencing projects does not aim for complete sequence determination, which results in a disproportionately low number of known complete plasmid sequences. To address this problem we determined complete plasmid sequences derived from 18 poultry S. aureus strains and analyzed the prevalence of antibiotic and heavy metal resistance determinants, genes of virulence factors, as well as genetic elements relevant for their maintenance. Some of the plasmids have been reported before and are being found in clinical isolates of strains typical for humans or human ones of livestock origin. This shows that livestock-associated staphylococci are a significant reservoir of resistance determinants and virulence factors. Nevertheless, nearly half of the plasmids were unknown to date. In this group we found a potentially mobilizable plasmid pPA3 being a unique example of accumulation of resistance determinants and virulence factors likely stabilized by a presence of a toxin–antitoxin system.
Collapse
Affiliation(s)
- Michal Bukowski
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Rafal Piwowarczyk
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Madry
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Rafal Zagorski-Przybylo
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marcin Hydzik
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
18
|
Xu J, Zhang N, Cao M, Ren S, Zeng T, Qin M, Zhao X, Yuan F, Chen H, Bei W. Identification of Three Type II Toxin-Antitoxin Systems in Streptococcus suis Serotype 2. Toxins (Basel) 2018; 10:toxins10110467. [PMID: 30428568 PMCID: PMC6266264 DOI: 10.3390/toxins10110467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
Type II toxin-antitoxin (TA) systems are highly prevalent in bacterial genomes and have been extensively studied. These modules involve in the formation of persistence cells, the biofilm formation, and stress resistance, which might play key roles in pathogen virulence. SezAT and yefM-yoeB TA modules in Streptococcus suis serotype 2 (S. suis 2) have been studied, although the other TA systems have not been identified. In this study, we investigated nine putative type II TA systems in the genome of S. suis 2 strain SC84 by bioinformatics analysis and identified three of them (two relBE loci and one parDE locus) that function as typical type II TA systems. Interestingly, we found that the introduction of the two RelBE TA systems into Escherichia coli or the induction of the ParE toxin led to cell filamentation. Promoter activity assays indicated that RelB1, RelB2, ParD, and ParDE negatively autoregulated the transcriptions of their respective TA operons, while RelBE2 positively autoregulated its TA operon transcription. Collectively, we identified three TA systems in S. suis 2, and our findings have laid an important foundation for further functional studies on these TA systems.
Collapse
Affiliation(s)
- Jiali Xu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Nian Zhang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Manman Cao
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Sujing Ren
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ting Zeng
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Minglu Qin
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xigong Zhao
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
19
|
Sierra R, Viollier P, Renzoni A. Linking toxin-antitoxin systems with phenotypes: A Staphylococcus aureus viewpoint. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:742-751. [PMID: 30056132 DOI: 10.1016/j.bbagrm.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/04/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Toxin-antitoxin systems (TAS) are genetic modules controlling different aspects of bacterial physiology. They operate with versatility in an incredibly wide range of mechanisms. New TA modules with unexpected functions are continuously emerging from genome sequencing projects. Their discovery and functional studies have shed light on different characteristics of bacterial metabolism that are now applied to understanding clinically relevant questions and even proposed as antimicrobial treatment. Our main source of knowledge of TA systems derives from Gram-negative bacterial studies, but studies in Gram-positives are becoming more prevalent and provide new insights to TA functional mechanisms. In this review, we present an overview of the present knowledge of TA systems in the clinical pathogen Staphylococcus aureus, their implications in bacterial physiology and discuss relevant aspects that are driving TAS research. "This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier".
Collapse
Affiliation(s)
- Roberto Sierra
- Geneva University Hospital, Service of Infectious Diseases, Geneva, Switzerland; Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Patrick Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Adriana Renzoni
- Geneva University Hospital, Service of Infectious Diseases, Geneva, Switzerland.
| |
Collapse
|
20
|
Zheng C, Zhao X, Zeng T, Cao M, Xu J, Shi G, Li J, Chen H, Bei W. Identification of four type II toxin-antitoxin systems in Actinobacillus pleuropneumoniae. FEMS Microbiol Lett 2018. [PMID: 28637172 DOI: 10.1093/femsle/fnx126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic elements that are widely prevalent in the genomes of bacteria and archaea. These modules have been identified in various bacteria and proposed to play an important role in bacterial physiology and virulence. However, their presence in the genomes of Actinobacillus species has received no attention. In this study, we describe the identification of four type II TA systems in Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia. Reverse transcription PCR analysis revealed that the genes encoding the toxin and antitoxin are co-transcribed. Overexpression of each toxin inhibited the growth of Escherichia coli, and the toxic effect could be counteracted by its cognate antitoxin. The pull-down experiments demonstrated that each toxin interacts with its cognate antitoxin in vivo. The promoter activity assays showed that each antitoxin could autoregulate either positively or negatively the TA operon transcription. In addition, the APJL_0660/0659 TA system is present in half of the detected serovars of A. pleuropneumoniae, while the others are present in all. Collectively, we identified four type II TA systems in A. pleuropneumoniae, and this study has laid the foundation for further functional study of these TA systems.
Collapse
Affiliation(s)
- Chengkun Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xigong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Manman Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiali Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Guolin Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinquan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Identification of novel mazEF/pemIK family toxin-antitoxin loci and their distribution in the Staphylococcus genus. Sci Rep 2017; 7:13462. [PMID: 29044211 PMCID: PMC5647390 DOI: 10.1038/s41598-017-13857-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/02/2017] [Indexed: 11/15/2022] Open
Abstract
The versatile roles of toxin-antitoxin (TA) systems in bacterial physiology and pathogenesis have been investigated for more than three decades. Diverse TA loci in Bacteria and Archaea have been identified in genome-wide studies. The advent of massive parallel sequencing has substantially expanded the number of known bacterial genomic sequences over the last 5 years. In staphylococci, this has translated into an impressive increase from a few tens to a several thousands of available genomes, which has allowed us for the re-evalution of prior conclusions. In this study, we analysed the distribution of mazEF/pemIK family TA system operons in available staphylococcal genomes and their prevalence in mobile genetic elements. 10 novel mazEF/pemIK homologues were identified, each with a corresponding toxin that plays a potentially different and undetermined physiological role. A detailed characterisation of these TA systems would be exceptionally useful. Of particular interest are those associated with an SCCmec mobile genetic element (responsible for multidrug resistance transmission) or representing the joint horizontal transfer of TA systems and determinants of vancomycin resistance from enterococci. The involvement of TA systems in maintaining mobile genetic elements and the associations between novel mazEF/pemIK loci and those which carry drug resistance genes highlight their potential medical importance.
Collapse
|
22
|
Choi W, Yamaguchi Y, Lee JW, Jang KM, Inouye M, Kim SG, Yoon MH, Park JH. Translation-dependent mRNA cleavage by YhaV in Escherichia coli. FEBS Lett 2017; 591:1853-1861. [PMID: 28573789 DOI: 10.1002/1873-3468.12705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 11/08/2022]
Abstract
Many bacteria have toxin-antitoxin (TA) systems, where toxin gene expression inhibits their own cell growth. mRNA is one of the well-known targets of the toxins in the type II toxin-antitoxin systems. Here, we examined the ribosome dependency of the endoribonuclease activity of YhaV, one of the toxins in type II TA systems, on mRNA in vitro and in vivo. A polysome profiling assay revealed that YhaV is bound to the 70S ribosomes and 50S ribosomal subunits. Moreover, we found that while YhaV cleaves ompF and lpp mRNAs in a translation-dependent manner, they did not cleave the 5' untranslated region in primer extension experiments. From these results, we conclude that YhaV is a ribosome-dependent toxin that cleaves mRNA in a translation-dependent manner.
Collapse
Affiliation(s)
- Wonho Choi
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea.,Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, South Korea
| | - Yoshihiro Yamaguchi
- OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Japan
| | - Jae-Woo Lee
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea.,Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, South Korea
| | - Kyung-Min Jang
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Masayori Inouye
- Department of Biochemistry, Rutgers-Robert Wood Johnson Medical School and Center for Advanced Biotechnology and Medicine, Piscataway, NJ, USA
| | - Sung-Gun Kim
- Department of Biomedical Sicience, U1 University, Youngdong, South Korea
| | - Min-Ho Yoon
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, South Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| |
Collapse
|
23
|
Masuda H, Inouye M. Toxins of Prokaryotic Toxin-Antitoxin Systems with Sequence-Specific Endoribonuclease Activity. Toxins (Basel) 2017; 9:toxins9040140. [PMID: 28420090 PMCID: PMC5408214 DOI: 10.3390/toxins9040140] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023] Open
Abstract
Protein translation is the most common target of toxin-antitoxin system (TA) toxins. Sequence-specific endoribonucleases digest RNA in a sequence-specific manner, thereby blocking translation. While past studies mainly focused on the digestion of mRNA, recent analysis revealed that toxins can also digest tRNA, rRNA and tmRNA. Purified toxins can digest single-stranded portions of RNA containing recognition sequences in the absence of ribosome in vitro. However, increasing evidence suggests that in vivo digestion may occur in association with ribosomes. Despite the prevalence of recognition sequences in many mRNA, preferential digestion seems to occur at specific positions within mRNA and also in certain reading frames. In this review, a variety of tools utilized to study the nuclease activities of toxins over the past 15 years will be reviewed. A recent adaptation of an RNA-seq-based technique to analyze entire sets of cellular RNA will be introduced with an emphasis on its strength in identifying novel targets and redefining recognition sequences. The differences in biochemical properties and postulated physiological roles will also be discussed.
Collapse
Affiliation(s)
- Hisako Masuda
- School of Sciences, Indiana University Kokomo, Kokomo, IN 46902, USA.
| | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08854, USA.
| |
Collapse
|
24
|
Kato F, Yabuno Y, Yamaguchi Y, Sugai M, Inouye M. Deletion of mazF increases Staphylococcus aureus biofilm formation in an ica-dependent manner. Pathog Dis 2017; 75:3063887. [DOI: 10.1093/femspd/ftx026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/07/2017] [Indexed: 11/12/2022] Open
|
25
|
Toxin-Antitoxin Systems in Clinical Pathogens. Toxins (Basel) 2016; 8:toxins8070227. [PMID: 27447671 PMCID: PMC4963858 DOI: 10.3390/toxins8070227] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/07/2016] [Indexed: 12/17/2022] Open
Abstract
Toxin-antitoxin (TA) systems are prevalent in bacteria and archaea. Although not essential for normal cell growth, TA systems are implicated in multiple cellular functions associated with survival under stress conditions. Clinical strains of bacteria are currently causing major human health problems as a result of their multidrug resistance, persistence and strong pathogenicity. Here, we present a review of the TA systems described to date and their biological role in human pathogens belonging to the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and others of clinical relevance (Escherichia coli, Burkholderia spp., Streptococcus spp. and Mycobacterium tuberculosis). Better understanding of the mechanisms of action of TA systems will enable the development of new lines of treatment for infections caused by the above-mentioned pathogens.
Collapse
|
26
|
Springer MT, Singh VK, Cheung AL, Donegan NP, Chamberlain NR. Effect of clpP and clpC deletion on persister cell number in Staphylococcus aureus. J Med Microbiol 2016; 65:848-857. [PMID: 27375177 DOI: 10.1099/jmm.0.000304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Staphylococcus aureus is responsible for a wide variety of infections that include superficial skin and soft tissue infections, septicaemia, central nervous system infections, endocarditis, osteomyelitis and pneumonia. Others have demonstrated the importance of toxin-antitoxin (TA) modules in the formation of persisters and the role of the Clp proteolytic system in the regulation of these TA modules. This study was conducted to determine the effect of clpP and clpC deletion on S. aureus persister cell numbers following antibiotic treatment. Deletion of clpP resulted in a significant decrease in persister cells following treatment with oxacillin and erythromycin but not with levofloxacin and daptomycin. Deletion of clpC resulted in a decrease in persister cells following treatment with oxacillin. These differences were dependent on the antibiotic class and the CFU ml-1 in which the cells were treated. Persister revival assays for all the bacterial strains in these studies demonstrated a significant delay in resumption of growth characteristic of persister cells, indicating that the surviving organisms in this study were not likely due to spontaneous antibiotic resistance. Based on our results, ClpP and possibly ClpC play a role in persister cell formation or maintenance, and this effect is dependent on antibiotic class and the CFU ml-1 or the growth phase of the cells.
Collapse
Affiliation(s)
- Matthew T Springer
- Department of Microbiology/Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA
| | - Vineet K Singh
- Department of Microbiology/Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA
| | - Ambrose L Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Niles P Donegan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Neal R Chamberlain
- Department of Microbiology/Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA
| |
Collapse
|
27
|
Schuster CF, Bertram R. Toxin-Antitoxin Systems of Staphylococcus aureus. Toxins (Basel) 2016; 8:E140. [PMID: 27164142 PMCID: PMC4885055 DOI: 10.3390/toxins8050140] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 01/02/2023] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic elements found in the majority of prokaryotes. They encode toxin proteins that interfere with vital cellular functions and are counteracted by antitoxins. Dependent on the chemical nature of the antitoxins (protein or RNA) and how they control the activity of the toxin, TA systems are currently divided into six different types. Genes comprising the TA types I, II and III have been identified in Staphylococcus aureus. MazF, the toxin of the mazEF locus is a sequence-specific RNase that cleaves a number of transcripts, including those encoding pathogenicity factors. Two yefM-yoeB paralogs represent two independent, but auto-regulated TA systems that give rise to ribosome-dependent RNases. In addition, omega/epsilon/zeta constitutes a tripartite TA system that supposedly plays a role in the stabilization of resistance factors. The SprA1/SprA1AS and SprF1/SprG1 systems are post-transcriptionally regulated by RNA antitoxins and encode small membrane damaging proteins. TA systems controlled by interaction between toxin protein and antitoxin RNA have been identified in S. aureus in silico, but not yet experimentally proven. A closer inspection of possible links between TA systems and S. aureus pathophysiology will reveal, if these genetic loci may represent druggable targets. The modification of a staphylococcal TA toxin to a cyclopeptide antibiotic highlights the potential of TA systems as rather untapped sources of drug discovery.
Collapse
Affiliation(s)
- Christopher F Schuster
- Section of Microbiology & MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK.
| | - Ralph Bertram
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Lehrbereich Mikrobielle Genetik, University of Tübingen, 72076 Tübingen, Germany.
- Klinikum Nürnberg Medical School GmbH, Research Department, Paracelsus Medical University, 90419 Nuremberg, Germany.
| |
Collapse
|
28
|
Chan WT, Espinosa M, Yeo CC. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems. Front Mol Biosci 2016; 3:9. [PMID: 27047942 PMCID: PMC4803016 DOI: 10.3389/fmolb.2016.00009] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022] Open
Abstract
In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I–VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
Collapse
Affiliation(s)
- Wai Ting Chan
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Espinosa
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Chew Chieng Yeo
- Faculty of Medicine, Biomedical Research Centre, Universiti Sultan Zainal Abidin Kuala Terengganu, Malaysia
| |
Collapse
|
29
|
Sandvik EL, Fazen CH, Henry TC, Mok WWK, Brynildsen MP. Non-Monotonic Survival of Staphylococcus aureus with Respect to Ciprofloxacin Concentration Arises from Prophage-Dependent Killing of Persisters. Pharmaceuticals (Basel) 2015; 8:778-92. [PMID: 26593926 PMCID: PMC4695809 DOI: 10.3390/ph8040778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus is a notorious pathogen with a propensity to cause chronic, non-healing wounds. Bacterial persisters have been implicated in the recalcitrance of S. aureus infections, and this motivated us to examine the persistence of S. aureus to ciprofloxacin, a quinolone antibiotic. Upon treatment of exponential phase S. aureus with ciprofloxacin, we observed that survival was a non-monotonic function of ciprofloxacin concentration. Maximal killing occurred at 1 µg/mL ciprofloxacin, which corresponded to survival that was up to ~40-fold lower than that obtained with concentrations ≥ 5 µg/mL. Investigation of this phenomenon revealed that the non-monotonic response was associated with prophage induction, which facilitated killing of S. aureus persisters. Elimination of prophage induction with tetracycline was found to prevent cell lysis and persister killing. We anticipate that these findings may be useful for the design of quinolone treatments.
Collapse
Affiliation(s)
- Elizabeth L Sandvik
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Christopher H Fazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Theresa C Henry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Wendy W K Mok
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
30
|
Defining the mRNA recognition signature of a bacterial toxin protein. Proc Natl Acad Sci U S A 2015; 112:13862-7. [PMID: 26508639 DOI: 10.1073/pnas.1512959112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria contain multiple type II toxins that selectively degrade mRNAs bound to the ribosome to regulate translation and growth and facilitate survival during the stringent response. Ribosome-dependent toxins recognize a variety of three-nucleotide codons within the aminoacyl (A) site, but how these endonucleases achieve substrate specificity remains poorly understood. Here, we identify the critical features for how the host inhibition of growth B (HigB) toxin recognizes each of the three A-site nucleotides for cleavage. X-ray crystal structures of HigB bound to two different codons on the ribosome illustrate how HigB uses a microbial RNase-like nucleotide recognition loop to recognize either cytosine or adenosine at the second A-site position. Strikingly, a single HigB residue and 16S rRNA residue C1054 form an adenosine-specific pocket at the third A-site nucleotide, in contrast to how tRNAs decode mRNA. Our results demonstrate that the most important determinant for mRNA cleavage by ribosome-dependent toxins is interaction with the third A-site nucleotide.
Collapse
|
31
|
Identification and characterization of the chromosomal yefM-yoeB toxin-antitoxin system of Streptococcus suis. Sci Rep 2015; 5:13125. [PMID: 26272287 PMCID: PMC4536659 DOI: 10.1038/srep13125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/20/2015] [Indexed: 01/06/2023] Open
Abstract
Toxin-antitoxin (TA) systems are widely prevalent in the genomes of bacteria and archaea. These modules have been identified in Escherichia coli and various other bacteria. However, their presence in the genome of Streptococcus suis, an important zoonotic pathogen, has received little attention. In this study, we describe the identification and characterization of a type II TA system, comprising the chromosomal yefM-yoeB locus of S. suis. The yefM-yoeB locus is present in the genome of most serotypes of S. suis. Overproduction of S. suis YoeB toxin inhibited the growth of E. coli, and the toxicity of S. suis YoeB could be alleviated by the antitoxin YefM from S. suis and Streptococcus pneumoniae, but not by E. coli YefM. More importantly, introduction of the S. suis yefM-yoeB system into E. coli could affect cell growth. In a murine infection model, deletion of the yefM-yoeB locus had no effect on the virulence of S. suis serotype 2. Collectively, our data suggested that the yefM-yoeB locus of S. suis is an active TA system without the involvement of virulence.
Collapse
|
32
|
Janssen BD, Garza-Sánchez F, Hayes CS. YoeB toxin is activated during thermal stress. Microbiologyopen 2015; 4:682-97. [PMID: 26147890 PMCID: PMC4554461 DOI: 10.1002/mbo3.272] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/27/2015] [Indexed: 11/07/2022] Open
Abstract
Type II toxin-antitoxin (TA) modules are thought to mediate stress-responses by temporarily suppressing protein synthesis while cells redirect transcription to adapt to environmental change. Here, we show that YoeB, a ribosome-dependent mRNase toxin, is activated in Escherichia coli cells grown at elevated temperatures. YoeB activation is dependent on Lon protease, suggesting that thermal stress promotes increased degradation of the YefM antitoxin. Though YefM is efficiently degraded in response to Lon overproduction, we find that Lon antigen levels do not increase during heat shock, indicating that another mechanism accounts for temperature-induced YefM proteolysis. These observations suggest that YefM/YoeB functions in adaptation to temperature stress. However, this response is distinct from previously described models of TA function. First, YoeB mRNase activity is maintained over several hours of culture at 42°C, indicating that thermal activation is not transient. Moreover, heat-activated YoeB does not induce growth arrest nor does it suppress global protein synthesis. In fact, E. coli cells proliferate more rapidly at elevated temperatures and instantaneously accelerate their growth rate in response to acute heat shock. We propose that heat-activated YoeB may serve a quality control function, facilitating the recycling of stalled translation complexes through ribosome rescue pathways.
Collapse
Affiliation(s)
- Brian D Janssen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California
| |
Collapse
|
33
|
A novel point mutation promotes growth phase-dependent daptomycin tolerance in Staphylococcus aureus. Antimicrob Agents Chemother 2015; 59:5366-76. [PMID: 26100694 DOI: 10.1128/aac.00643-15] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/11/2015] [Indexed: 12/30/2022] Open
Abstract
Recalcitrance of genetically susceptible bacteria to antibiotic killing is a hallmark of bacterial drug tolerance. This phenomenon is prevalent in biofilms, persisters, and also planktonic cells and is associated with chronic or relapsing infections with pathogens such as Staphylococcus aureus. Here we report the in vitro evolution of an S. aureus strain that exhibits a high degree of nonsusceptibility to daptomycin as a result of cyclic challenges with bactericidal concentrations of the drug. This phenotype was attributed to stationary growth phase-dependent drug tolerance and was clearly distinguished from resistance. The underlying genetic basis was revealed to be an adaptive point mutation in the putative inorganic phosphate (Pi) transporter gene pitA. Drug tolerance caused by this allele, termed pitA6, was abrogated when the upstream gene pitR was inactivated. Enhanced tolerance toward daptomycin, as well as the acyldepsipeptide antibiotic ADEP4 and various combinations of other drugs, was accompanied by elevated intracellular concentrations of Pi and polyphosphate, which may reversibly interfere with critical cellular functions. The evolved strain displayed increased rates of survival within human endothelial cells, demonstrating the correlation of intracellular persistence and drug tolerance. These findings will be useful for further investigations of S. aureus drug tolerance, toward the development of additional antipersister compounds and strategies.
Collapse
|
34
|
Schuster CF, Mechler L, Nolle N, Krismer B, Zelder ME, Götz F, Bertram R. The MazEF Toxin-Antitoxin System Alters the β-Lactam Susceptibility of Staphylococcus aureus. PLoS One 2015; 10:e0126118. [PMID: 25965381 PMCID: PMC4428803 DOI: 10.1371/journal.pone.0126118] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/30/2015] [Indexed: 12/21/2022] Open
Abstract
Toxin-antitoxin (TA) systems are genetic elements of prokaryotes which encode a stable toxin and an unstable antitoxin that can counteract toxicity. TA systems residing on plasmids are often involved in episomal maintenance whereas those on chromosomes can have multiple functions. The opportunistic pathogen Staphylococcus aureus possesses at least four different families of TA systems but their physiological roles are elusive. The chromosomal mazEF system encodes the RNase toxin MazF and the antitoxin MazE. In the light of ambiguity regarding the cleavage activity, we here verify that MazF specifically targets UACAU sequences in S. aureus in vivo. In a native strain background and under non-stress conditions, cleavage was observed in the absence or presence of mazE. Transcripts of spa (staphylococcal protein A) and rsbW (anti-σB factor) were cut, but translational reporter fusions indicated that protein levels of the encoded products were unaffected. Despite a comparable growth rate as the wild-type, an S. aureus mazEF deletion mutant was more susceptible to β-lactam antibiotics, which suggests that further genes, putatively involved in the antibiotic stress response or cell wall synthesis or turnover, are controlled by this TA system.
Collapse
Affiliation(s)
- Christopher F. Schuster
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Lukas Mechler
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Nicoletta Nolle
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Bernhard Krismer
- Cellular and Molecular Microbiology, IMIT, University of Tübingen, German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Marc-Eric Zelder
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Friedrich Götz
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Ralph Bertram
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
35
|
Krügel H, Klimina KM, Mrotzek G, Tretyakov A, Schöfl G, Saluz HP, Brantl S, Poluektova EU, Danilenko VN. Expression of the toxin-antitoxin genes yefM(Lrh), yoeB(Lrh) in human Lactobacillus rhamnosus isolates. J Basic Microbiol 2015; 55:982-91. [PMID: 25832734 DOI: 10.1002/jobm.201400904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/13/2015] [Indexed: 11/07/2022]
Abstract
Lactobacilli are important microorganisms in various activities, for example, diary products, meat ripening, bread and pickles, but, moreover, are associated directly with human skin and cavities (e.g., mouth, gut, or vagina). Some of them are used as probiotics. Therefore, the molecular biological investigation of these bacteria is important. Earlier we described several toxin antitoxin systems (type II) in lactobacilli. Here, we describe the structure and transcriptional regulation of genes, encoding TA system YefM-YoeB(Lrh) in three strains of Lactobacillus rhamnosus comparing stationary and exponential growth phases, the influence of stress factors and mRNA stability. The same TA system is responding to physiological and stress conditions differently in related strains. Using primer extension and RLM-RACE methods we determined three transcription start sites of RNAs in the operon. The promoter region of the operon is preceded by a conserved BOX element occurring at multiple positions in the genomes of L. rhamnosus strains. Downstream of and partially overlapping with the 3' end of the yoeB(Lrh) toxin gene, a divergently transcribed unexpected RNA was detected.
Collapse
Affiliation(s)
- Hans Krügel
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Ksenia M Klimina
- Department of Post-genomic Biotechnology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Grit Mrotzek
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Alexander Tretyakov
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Gerhard Schöfl
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Hans-Peter Saluz
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany.,Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Elena U Poluektova
- Department of Post-genomic Biotechnology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Valery N Danilenko
- Department of Post-genomic Biotechnology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
36
|
Lechner S, Prax M, Lange B, Huber C, Eisenreich W, Herbig A, Nieselt K, Bertram R. Metabolic and transcriptional activities of Staphylococcus aureus challenged with high-doses of daptomycin. Int J Med Microbiol 2014; 304:931-40. [PMID: 24980509 DOI: 10.1016/j.ijmm.2014.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022] Open
Abstract
Treatment of stationary growth phase Staphylococcus aureus SA113 with 100-fold of the MIC of the lipopeptide antibiotic daptomycin leaves alive a small fraction of drug tolerant albeit genetically susceptible bacteria. This study shows that cells of this subpopulation exhibit active metabolism even hours after the onset of the drug challenge. Isotopologue profiling using fully (13)C-labeled glucose revealed de novo biosynthesis of the amino acids Ala, Asp, Glu, Ser, Gly and His. The isotopologue composition in Asp and Glu suggested an increased activity of the TCA cycle under daptomycin treatment compared to unaffected stationary growth phase cells. Microarray analysis showed differential expression of specific genes 10 min and 3 h after addition of the drug. Besides factors involved in drug response, a number of metabolic genes appear to shape the signature of daptomycin-tolerant S. aureus cells. These observations will be useful toward the development of new strategies against persisters and related forms of bacterial cells with downshifted physiology.
Collapse
Affiliation(s)
- Sabrina Lechner
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Lehrbereich Mikrobielle Genetik, Waldhäuser Str. 70/8, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Marcel Prax
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Lehrbereich Mikrobielle Genetik, Waldhäuser Str. 70/8, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Birgit Lange
- Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Claudia Huber
- Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Alexander Herbig
- Zentrum für Bioinformatik, Forschungsgruppe Integrative Transkriptomik, Eberhard Karls Universität Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Kay Nieselt
- Zentrum für Bioinformatik, Forschungsgruppe Integrative Transkriptomik, Eberhard Karls Universität Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Ralph Bertram
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Lehrbereich Mikrobielle Genetik, Waldhäuser Str. 70/8, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
37
|
Bertram R, Schuster CF. Post-transcriptional regulation of gene expression in bacterial pathogens by toxin-antitoxin systems. Front Cell Infect Microbiol 2014; 4:6. [PMID: 24524029 PMCID: PMC3905216 DOI: 10.3389/fcimb.2014.00006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/13/2014] [Indexed: 01/27/2023] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic elements ubiquitous in prokaryotic genomes that encode toxic proteins targeting various vital cellular functions. Typically, toxin activity is controlled by adjacently encoded protein or RNA antitoxins and unleashed as a consequence of genetic fluctuations or stressful conditions. Whereas some TA systems interfere with replication or cell wall synthesis, most of them influence transcriptional and post-transcriptional gene regulation. Antitoxin proteins often act as DNA binding transcriptional regulators and many TA toxins exhibit endoribonuclease activity to selectively degrade different RNA species and thus alter gene expression patterns. Some TA RNases cleave tRNA, tmRNAs or rRNAs, whereas most commonly mRNAs either in association with the ribosome or as free transcripts, are targeted. Examples are provided on how TA toxins differentially shape gene expression in bacterial pathogens by creating specialized ribosomes or by altering the transcriptome and how this may be tied in the control of pathogenicity factors.
Collapse
Affiliation(s)
- Ralph Bertram
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen Tübingen, Germany
| | - Christopher F Schuster
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen Tübingen, Germany
| |
Collapse
|
38
|
Larson AS, Hergenrother PJ. Light activation of Staphylococcus aureus toxin YoeBSa1 reveals guanosine-specific endoribonuclease activity. Biochemistry 2013; 53:188-201. [PMID: 24279911 DOI: 10.1021/bi4008098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Staphylococcus aureus chromosome harbors two homologues of the YefM-YoeB toxin-antitoxin (TA) system. The toxins YoeBSa1 and YoeBSa2 possess ribosome-dependent ribonuclease (RNase) activity in Escherichia coli. This activity is similar to that of the E. coli toxin YoeBEc, an enzyme that, in addition to ribosome-dependent RNase activity, possesses ribosome-independent RNase activity in vitro. To investigate whether YoeBSa1 is also a ribosome-independent RNase, we expressed YoeBSa1 using a novel strategy and characterized its in vitro RNase activity, sequence specificity, and kinetics. Y88 of YoeBSa1 was critical for in vitro activity and cell culture toxicity. This residue was mutated to o-nitrobenzyl tyrosine (ONBY) via unnatural amino acid mutagenesis. YoeBSa1-Y88ONBY could be expressed in the absence of the antitoxin YefMSa1 in E. coli. Photocaged YoeBSa1-Y88ONBY displayed UV light-dependent RNase activity toward free mRNA in vitro. The in vitro ribosome-independent RNase activity of YoeBSa1-Y88ONBY, YoeBSa1-Y88F, and YoeBSa1-Y88TAG was significantly reduced or abolished. In contrast to YoeBEc, which cleaves RNA at both adenosine and guanosine with a preference for adenosine, YoeBSa1 cleaved mRNA specifically at guanosine. Using this information, a fluorometric assay was developed and used to determine the kinetic parameters for ribosome-independent RNA cleavage by YoeBSa1.
Collapse
Affiliation(s)
- Amy S Larson
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | |
Collapse
|
39
|
Połom D, Boss L, Węgrzyn G, Hayes F, Kędzierska B. Amino acid residues crucial for specificity of toxin-antitoxin interactions in the homologous Axe-Txe and YefM-YoeB complexes. FEBS J 2013; 280:5906-18. [PMID: 24028219 DOI: 10.1111/febs.12517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 11/29/2022]
Abstract
Toxin-antitoxin complexes are ubiquitous in bacteria. The specificity of interactions between toxins and antitoxins from homologous but non-interacting systems was investigated. Based on molecular modeling, selected amino acid residues were changed to assess which positions were crucial in the specificity of toxin-antitoxin interaction in the related Axe-Txe and YefM-YoeB complexes. No cross-interactions between wild-type proteins were detected. However, a single amino acid substitution that converts a Txe-specific residue to a YoeB-specific residue reduced, but did not abolish, Txe interaction with the Axe antitoxin. Interestingly, this alteration (Txe-Asp83Tyr) promoted functional interactions between Txe and the YefM antitoxin. The interactions between Txe-Asp83Tyr and YefM were sufficiently strong to abolish Txe toxicity and to allow effective corepression by YefM-Txe-Asp83Tyr of the promoter from which yefM-yoeB is expressed. We conclude that Asp83 in Txe is crucial for the specificity of toxin-antitoxin interactions in the Axe-Txe complex and that swapping this residue for the equivalent residue in YoeB relaxes the specificity of the toxin-antitoxin interaction.
Collapse
Affiliation(s)
- Dorota Połom
- Department of Molecular Biology, University of Gdańsk, Poland
| | | | | | | | | |
Collapse
|
40
|
Feng S, Chen Y, Kamada K, Wang H, Tang K, Wang M, Gao YG. YoeB-ribosome structure: a canonical RNase that requires the ribosome for its specific activity. Nucleic Acids Res 2013; 41:9549-56. [PMID: 23945936 PMCID: PMC3814384 DOI: 10.1093/nar/gkt742] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As a typical endoribonuclease, YoeB mediates cellular adaptation in diverse bacteria by degrading mRNAs on its activation. Although the catalytic core of YoeB is thought to be identical to well-studied nucleases, this enzyme specifically targets mRNA substrates that are associated with ribosomes in vivo. However, the molecular mechanism of mRNA recognition and cleavage by YoeB, and the requirement of ribosome for its optimal activity, largely remain elusive. Here, we report the structure of YoeB bound to 70S ribosome in pre-cleavage state, revealing that both the 30S and 50S subunits participate in YoeB binding. The mRNA is recognized by the catalytic core of YoeB, of which the general base/acid (Glu46/His83) are within hydrogen-bonding distance to their reaction atoms, demonstrating an active conformation of YoeB on ribosome. Also, the mRNA orientation involves the universally conserved A1493 and G530 of 16S rRNA. In addition, mass spectrometry data indicated that YoeB cleaves mRNA following the second position at the A-site codon, resulting in a final product with a 3′–phosphate at the newly formed 3′ end. Our results demonstrate a classical acid-base catalysis for YoeB-mediated RNA hydrolysis and provide insight into how the ribosome is essential for its specific activity.
Collapse
Affiliation(s)
- Shu Feng
- School of Biological Science, Nanyang Technological University, 637551 Singapore, RIKEN Advanced Science Institute, Saitama 351-0198, Japan, Swiss Light Source, Paul Scherrer Institut, CH-5232, Switzerland and Institute of Molecular and Cell Biology, A-STAR, 138673, Singapore
| | | | | | | | | | | | | |
Collapse
|
41
|
Nolle N, Schuster CF, Bertram R. Two paralogous yefM-yoeB loci from Staphylococcus equorum encode functional toxin-antitoxin systems. MICROBIOLOGY-SGM 2013; 159:1575-1585. [PMID: 23832005 DOI: 10.1099/mic.0.068049-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Toxin-antitoxin (TA) systems are small genetic elements of prokaryotes associated with persister cell formation, phage defence, stress regulation and programmed cell arrest. In this study, we characterized two paralogues of the ribosome-dependent RNase YefM-YoeB TA system from the Gram-positive organism Staphylococcus equorum SE3. 5' Rapid amplification of cDNA ends confirmed transcriptional activity in the exponential growth phase and revealed an extended 5' untranslated region upstream of the yefM-seq1 gene. Inducible expression of the putative yoeB-seq1/2 toxins led to growth defects of Escherichia coli, which were counteracted by simultaneous induction of the cognate yefM-seq1/2 antitoxin candidates in a strictly pairwise manner. Bacterial two-hybrid assays revealed interaction between YoeB-seq1 and YefM-seq1 but not YoeB-seq1 and YefM-seq2, also indicating two independent systems. In vivo primer extensions demonstrated specific RNA cleavage adjacent to the start codons by YoeB-seq proteins, and YoeB-seq2 activity could be neutralized by the corresponding antitoxin YefM-seq2. Together, these results indicate that the two yefM-yoeB-seq1/2 paralogues from S. equorum encode functional TA systems.
Collapse
Affiliation(s)
- Nicoletta Nolle
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin (IMIT), Lehrbereich Mikrobielle Genetik, Waldhäuser Str. 70/8, Eberhard Karls Universität Tübingen, Germany
| | - Christopher F Schuster
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin (IMIT), Lehrbereich Mikrobielle Genetik, Waldhäuser Str. 70/8, Eberhard Karls Universität Tübingen, Germany
| | - Ralph Bertram
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin (IMIT), Lehrbereich Mikrobielle Genetik, Waldhäuser Str. 70/8, Eberhard Karls Universität Tübingen, Germany
| |
Collapse
|
42
|
Characterization of a mazEF toxin-antitoxin homologue from Staphylococcus equorum. J Bacteriol 2012; 195:115-25. [PMID: 23104807 DOI: 10.1128/jb.00400-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems encoded in prokaryotic genomes fall into five types, typically composed of two distinct small molecules, an endotoxic protein and a cis-encoded antitoxin of ribonucleic or proteinaceous nature. In silico analysis revealed seven putative type I and three putative type II TA systems in the genome of the nonpathogenic species strain Staphylococcus equorum SE3. Among these, a MazEF system orthologue termed MazEF(seq) was further characterized. 5' rapid amplification of cDNA ends (RACE) revealed the expression and the transcriptional start site of mazE(seq), indicating an immediately upstream promoter. Heterologous expression of the putative toxin-encoding mazF(seq) gene imposed growth cessation but not cell death on Escherichia coli. In vivo and in vitro, MazF(seq) was shown to cleave at UACAU motifs, which are remarkably abundant in a number of putative metabolic and regulatory S. equorum gene transcripts. Specific interaction between MazF(seq) and the putative cognate antitoxin MazE(seq) was demonstrated by bacterial two-hybrid analyses. These data strongly suggest that MazEF(seq) represents the first characterized TA system in a nonpathogenic Staphylococcus species and indicate that MazEF modules in staphylococci may also control processes beyond pathogenicity.
Collapse
|
43
|
Abstract
Most prokaryotic chromosomes contain a number of toxin-antitoxin (TA) modules consisting of a pair of genes that encode 2 components, a stable toxin and its cognate labile antitoxin. TA systems are also known as addiction modules, since the cells become "addicted" to the short-lived antitoxin product (the unstable antitoxin is degraded faster than the more stable toxin) because its de novo synthesis is essential for their survival. While toxins are always proteins, antitoxins are either RNAs (type I, type III) or proteins (type II). Type II TA systems are widely distributed throughout the chromosomes of almost all free-living bacteria and archaea. The vast majority of type II toxins are mRNA-specific endonucleases arresting cell growth through the mechanism of RNA cleavage, thus preventing the translation process. The physiological role of chromosomal type II TA systems still remains the subject of debate. This review describes the currently known type II toxins and their characteristics. The different hypotheses that have been proposed to explain their role in bacterial physiology are also discussed.
Collapse
Affiliation(s)
- Mohammad Adnan Syed
- Dental Research Institute, Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
| | | |
Collapse
|
44
|
Reiß S, Pané-Farré J, Fuchs S, François P, Liebeke M, Schrenzel J, Lindequist U, Lalk M, Wolz C, Hecker M, Engelmann S. Global analysis of the Staphylococcus aureus response to mupirocin. Antimicrob Agents Chemother 2012; 56:787-804. [PMID: 22106209 PMCID: PMC3264241 DOI: 10.1128/aac.05363-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 10/30/2011] [Indexed: 01/21/2023] Open
Abstract
In the present study, we analyzed the response of S. aureus to mupirocin, the drug of choice for nasal decolonization. Mupirocin selectively inhibits the bacterial isoleucyl-tRNA synthetase (IleRS), leading to the accumulation of uncharged isoleucyl-tRNA and eventually the synthesis of (p)ppGpp. The alarmone (p)ppGpp induces the stringent response, an important global transcriptional and translational control mechanism that allows bacteria to adapt to nutritional deprivation. To identify proteins with an altered synthesis pattern in response to mupirocin treatment, we used the highly sensitive 2-dimensional gel electrophoresis technique in combination with mass spectrometry. The results were complemented by DNA microarray, Northern blot, and metabolome analyses. Whereas expression of genes involved in nucleotide biosynthesis, DNA metabolism, energy metabolism, and translation was significantly downregulated, expression of isoleucyl-tRNA synthetase, the branched-chain amino acid pathway, and genes with functions in oxidative-stress resistance (ahpC and katA) and putative roles in stress protection (the yvyD homologue SACOL0815 and SACOL1759 and SACOL2131) and transport processes was increased. A comparison of the regulated genes to known regulons suggests the involvement of the global regulators CodY and SigB in shaping the response of S. aureus to mupirocin. Of particular interest was the induced transcription of genes encoding virulence-associated regulators (i.e., arlRS, saeRS, sarA, sarR, sarS, and sigB), as well as genes directly involved in the virulence of S. aureus (i.e., fnbA, epiE, epiG, and seb).
Collapse
Affiliation(s)
- Swantje Reiß
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Jan Pané-Farré
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Stephan Fuchs
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Patrice François
- Service of Infectious Diseases, University Hospital of Geneva, Department of Internal Medicine, Geneva, Switzerland
| | - Manuel Liebeke
- Institut für Pharmazie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Jacques Schrenzel
- Service of Infectious Diseases, University Hospital of Geneva, Department of Internal Medicine, Geneva, Switzerland
| | - Ulrike Lindequist
- Institut für Pharmazie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Michael Lalk
- Institut für Pharmazie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Christiane Wolz
- Institut für Medizinische Mikrobiologie und Hygiene, Eberhard-Karls-Universität, Tübingen, Germany
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Susanne Engelmann
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| |
Collapse
|
45
|
Hayes F, Van Melderen L. Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol 2011; 46:386-408. [PMID: 21819231 DOI: 10.3109/10409238.2011.600437] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genes for toxin-antitoxin (TA) complexes are widespread in prokaryote genomes, and species frequently possess tens of plasmid and chromosomal TA loci. The complexes are categorized into three types based on genetic organization and mode of action. The toxins universally are proteins directed against specific intracellular targets, whereas the antitoxins are either proteins or small RNAs that neutralize the toxin or inhibit toxin synthesis. Within the three types of complex, there has been extensive evolutionary shuffling of toxin and antitoxin genes leading to considerable diversity in TA combinations. The intracellular targets of the protein toxins similarly are varied. Numerous toxins, many of which are sequence-specific endoribonucleases, dampen protein synthesis levels in response to a range of stress and nutritional stimuli. Key resources are conserved as a result ensuring the survival of individual cells and therefore the bacterial population. The toxin effects generally are transient and reversible permitting a set of dynamic, tunable responses that reflect environmental conditions. Moreover, by harboring multiple toxins that intercede in protein synthesis in response to different physiological cues, bacteria potentially sense an assortment of metabolic perturbations that are channeled through different TA complexes. Other toxins interfere with the action of topoisomersases, cell wall assembly, or cytoskeletal structures. TAs also play important roles in bacterial persistence, biofilm formation and multidrug tolerance, and have considerable potential both as new components of the genetic toolbox and as targets for novel antibacterial drugs.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, UK.
| | | |
Collapse
|
46
|
Halvorsen EM, Williams JJ, Bhimani AJ, Billings EA, Hergenrother PJ. Txe, an endoribonuclease of the enterococcal Axe-Txe toxin-antitoxin system, cleaves mRNA and inhibits protein synthesis. MICROBIOLOGY-SGM 2010; 157:387-397. [PMID: 21030436 PMCID: PMC3090131 DOI: 10.1099/mic.0.045492-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The axe-txe operon encodes a toxin-antitoxin (TA) pair, Axe-Txe, that was initially identified on the multidrug-resistance plasmid pRUM in Enterococcus faecium. In Escherichia coli, expression of the Txe toxin is known to inhibit cell growth, and co-expression of the antitoxin, Axe, counteracts the toxic effect of Txe. Here, we report the nucleotide sequence of pS177, a 39 kb multidrug-resistant plasmid isolated from vancomycin-resistant Ent. faecium, which harbours the axe-txe operon and the vanA gene cluster. RT-PCR analysis revealed that the axe-txe transcript is produced by strain S177 as well as by other vancomycin-resistant enteroccoci. Moreover, we determine the mechanism by which the Txe protein exerts its toxic activity. Txe inhibits protein synthesis in E. coli without affecting DNA or RNA synthesis, and inhibits protein synthesis in a cell-free system. Using in vivo primer extension analysis, we demonstrate that Txe preferentially cleaves single-stranded mRNA at the first base after an AUG start codon. We conclude that Txe is an endoribonuclease which cleaves mRNA and inhibits protein synthesis.
Collapse
Affiliation(s)
- Elizabeth M Halvorsen
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Julia J Williams
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Azra J Bhimani
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Emily A Billings
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA.,Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| |
Collapse
|
47
|
|
48
|
Proteolytic regulation of toxin-antitoxin systems by ClpPC in Staphylococcus aureus. J Bacteriol 2009; 192:1416-22. [PMID: 20038589 DOI: 10.1128/jb.00233-09] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) systems typically consist of a small, labile antitoxin that inactivates a specific longer-lived toxin. In Escherichia coli, such antitoxins are proteolytically regulated by the ATP-dependent proteases Lon and ClpP. Under normal conditions, antitoxin synthesis is sufficient to replace this loss from proteolysis, and the bacterium remains protected from the toxin. However, if TA production is interrupted, antitoxin levels decrease, and the cognate toxin is free to inhibit the specific cellular component, such as mRNA, DnaB, or gyrase. To date, antitoxin degradation has been studied only in E. coli, so it remains unclear whether similar mechanisms of regulation exist in other organisms. To address this, we followed antitoxin levels over time for the three known TA systems of the major human pathogen Staphylococcus aureus, mazEF, axe1-txe1, and axe2-txe2. We observed that the antitoxins of these systems, MazE(sa), Axe1, and Axe2, respectively, were all degraded rapidly (half-life [t(1/2)], approximately 18 min) at rates notably higher than those of their E. coli counterparts, such as MazE (t(1/2), approximately 30 to 60 min). Furthermore, when S. aureus strains deficient for various proteolytic systems were examined for changes in the half-lives of these antitoxins, only strains with clpC or clpP deletions showed increased stability of the molecules. From these studies, we concluded that ClpPC serves as the functional unit for the degradation of all known antitoxins in S. aureus.
Collapse
|
49
|
Mao L, Vaiphei ST, Shimazu T, Schneider WM, Tang Y, Mani R, Roth MJ, Montelione GT, Inouye M. The E. coli single protein production system for production and structural analysis of membrane proteins. ACTA ACUST UNITED AC 2009; 11:81-4. [PMID: 19830594 DOI: 10.1007/s10969-009-9070-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
Abstract
At present, only 0.9% of PDB-deposited structures are of membrane proteins in spite of the fact that membrane proteins constitute approximately 30% of total proteins in most genomes from bacteria to humans. Here we address some of the major bottlenecks in the structural studies of membrane proteins and discuss the ability of the new technology, the Single-Protein Production system, to help solve these bottlenecks.
Collapse
Affiliation(s)
- Lili Mao
- Center for Advanced Technology and Medicine, UMDNJ-Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|