1
|
Mongruel ACB, Medici EP, Canena AC, Cordova ASA, Freitas das Neves L, Franco EDO, Machado RZ, André MR. Molecular survey of vector-borne agents in lowland tapirs (Tapirus terrestris) from Brazil reveals a new Anaplasma genotype. Acta Trop 2024; 260:107476. [PMID: 39608660 DOI: 10.1016/j.actatropica.2024.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/01/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Although vector-borne agents have been detected in different species of wild animals, studies involving tapirs (Tapirus terrestris), the largest land mammals in Brazil, are scarce. The aim of the present study was to investigate the occurrence and molecular identity of Anaplasmataceae agents, Coxiella burnetii and Hepatozoon spp. in blood samples of wild T. terrestris from two biomes (Cerrado and Pantanal) in Brazil. A total of 122 blood samples from 99 tapirs were analyzed. Sixty-one tapirs were sampled in Pantanal, whereas 38 were from Cerrado biome. DNA was extracted from blood samples and subjected to conventional and/or quantitative PCR assays for molecular screening and characterization of DNA from Anaplasmataceae agents (Anaplasma, Ehrlichia, and Neorickettsia), C. burnetii and Hepatozoon spp. None of the samples were positive for Ehrlichia, C. burnetii or Hepatozoon spp. Twenty-two samples (22/122; 18%) amplified fragments from the expected size for the Anaplasma 16S rRNA fragment tested herein. Out of these samples, 2 (9.1%) presented amplification for the Anaplasma ITS 23S-5S. Nine positive samples for the 16S rRNA assay were selected for cloning and sequencing. Phylogenetically, distance and haplotype analyses based on large fragments (>1,200 bp) of the 16S rRNA suggest that tapir-related Anaplasma and Anaplasma odocoilei are genetically similar species. Moreover, 31 (25.4%) samples were positive for Neorickettsia based on amplification of partial 16S rRNA. Phylogenetic assessment of the three obtained sequences demonstrated relatedness to Neorickettsia risticii, the causative of Potomac fever in horses. This is the first report of Neorickettsia sp. and description of a new Anaplasma genotype in tapirs.
Collapse
Affiliation(s)
- Anna Claudia Baumel Mongruel
- Vector-Borne Bioagents Laboratory (VBBL), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) - Jaboticabal, São Paulo, Brazil
| | - Emília Patrícia Medici
- Iniciativa Nacional para Conservação da Anta Brasileira (INCAB), Instituto de, Pesquisas Ecológicas (IPÊ) - Campo Grande, Mato Grosso do Sul, Brazil; Escola Superior de Conservação Ambiental e Sustentabilidade (ESCAS/IPÊ) - Nazaré, Paulista, São Paulo, Brazil; Tapir Specialist Group (TSG), International Union for Conservation of Nature (IUCN, SSC) - Campo Grande, Mato Grosso do Sul, Brazil
| | - Ariel Costa Canena
- Iniciativa Nacional para Conservação da Anta Brasileira (INCAB), Instituto de, Pesquisas Ecológicas (IPÊ) - Campo Grande, Mato Grosso do Sul, Brazil
| | - Amir Salvador Alabi Cordova
- Vector-Borne Bioagents Laboratory (VBBL), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) - Jaboticabal, São Paulo, Brazil
| | - Lorena Freitas das Neves
- Vector-Borne Bioagents Laboratory (VBBL), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) - Jaboticabal, São Paulo, Brazil
| | - Eliz de Oliveira Franco
- Vector-Borne Bioagents Laboratory (VBBL), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) - Jaboticabal, São Paulo, Brazil
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) - Jaboticabal, São Paulo, Brazil
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) - Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
2
|
Budachetri K, Lin M, Yan Q, Chien RC, Hostnik LD, Haanen G, Leclère M, Waybright W, Baird JD, Arroyo LG, Rikihisa Y. Real-Time PCR Differential Detection of Neorickettsia findlayensis and N. risticii in Cases of Potomac Horse Fever. J Clin Microbiol 2022; 60:e0025022. [PMID: 35695520 PMCID: PMC9297838 DOI: 10.1128/jcm.00250-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/18/2022] [Indexed: 12/03/2022] Open
Abstract
Potomac horse fever (PHF) is an acute and potentially fatal enterotyphlocolitis of horses with clinical signs that include anorexia, fever, diarrhea, and laminitis. Its incidence is increasing despite a commercially available vaccine. PHF is caused by Neorickettsia risticii, and the recently rediscovered and classified N. findlayensis. PHF diagnosis is currently accomplished using serology or nested PCR. However, both methods cannot distinguish the two Neorickettsia species that cause PHF. Further, the current N. risticii real-time PCR test fails to detect N. findlayensis. Thus, in this study, two Neorickettsia species-specific real-time PCR assays based on Neorickettsia ssa2 and a Neorickettsia genus-specific real-time PCR assay based on Neorickettsia 16S rRNA gene were developed. The ssa2 real-time PCR tests differentiated N. findlayensis from N. risticii in the field samples for which infection with either species had been verified using multiple other molecular tests and culture isolation, and the 16S rRNA gene real-time PCR detected both Neorickettsia species in the samples. These tests were applied to new field culture isolates from three Canadian provinces (Alberta, Quebec, Ontario) and Ohio as well as archival DNA samples from suspected PHF cases to estimate the prevalence of N. findlayensis in different geographic regions. The results suggest that N. findlayensis frequently causes PHF in horses in Alberta and Quebec. The development of these tests will allow rapid, sensitive, and specific diagnosis of horses presenting with clinical signs of PHF. These tests will also enable rapid and targeted treatment and help develop broad-spectrum vaccines for PHF.
Collapse
Affiliation(s)
- Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Mingqun Lin
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Qi Yan
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Rory C. Chien
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Laura D. Hostnik
- Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Gillian Haanen
- Moore Equine Veterinary Centre, Rocky View County, Alberta, Canada
| | - Mathilde Leclère
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montréal, St. Hyacinthe, Québec, Canada
| | | | - John D. Baird
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Luis G. Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Sun Y, Xu B, Zhuge X, Tang F, Wang X, Gong Q, Chen R, Xue F, Dai J. Factor H Is Bound by Outer Membrane-Displayed Carbohydrate Metabolism Enzymes of Extraintestinal Pathogenic Escherichia coli and Contributes to Opsonophagocytosis Resistance in Bacteria. Front Cell Infect Microbiol 2021; 10:592906. [PMID: 33569353 PMCID: PMC7868385 DOI: 10.3389/fcimb.2020.592906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/11/2020] [Indexed: 01/15/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) causes bloodstream infections in humans and animals. Complement escape is a prerequisite for bacteria to survive in the bloodstream. Factor H (FH) is an important regulatory protein of the complement system. In this study, ExPEC was found to bind FH from serum. However, the mechanisms of ExPEC binding to FH and then resistance to complement-mediated attacks remain unclear. Here, a method that combined desthiobiotin pull-down and liquid chromatography-tandem mass spectrometry was used to identify the FH-binding membrane proteins of ExPEC. Seven identified proteins, which all were carbohydrate metabolic enzymes (CMEs), including acetate kinase, fructose-bisphosphate aldolase, fumarate reductase flavoprotein subunit, L-lactate dehydrogenase, dihydrolipoamide dehydrogenase, phosphoenolpyruvate synthase, and pyruvate dehydrogenase, were verified to recruit FH from serum using GST pull-down and ELISA plate binding assay. The ELISA plate binding assay determined that these seven proteins bind to FH in a dose-dependent manner. Magnetic beads coupled with any one of seven proteins significantly reduced the FH recruitment of ExPEC (p < 0.05) Subsequently, immunofluorescence, colony blotting, and Western blotting targeting outer membrane proteins determined that these seven CMEs were located on the outer membrane of ExPEC. Furthermore, the FH recruitment levels and C3b deposition levels on bacteria were significantly increased and decreased in an FH-concentration-dependent manner, respectively (p < 0.05). The FH recruitment significantly enhanced the ability of ExPEC to resist the opsonophagocytosis of human macrophage THP-1 in an FH-concentration-dependent manner (p < 0.05), which revealed a new mechanism for ExPEC to escape complement-mediated killing. The identification of novel outer membrane-displayed CMEs which played a role in the FH recruitment contributes to the elucidation of the molecular mechanism of ExPEC pathogenicity.
Collapse
Affiliation(s)
- Yu Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Bin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.,National Research Center of Veterinary Biologicals Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiangkai Zhuge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xuhang Wang
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Qianwen Gong
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Rui Chen
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Abstract
Despite the detection of Neorickettsia species DNA sequences in various trematode species and their hosts, only three Neorickettsia species have been cell culture isolated and whole-genome sequenced and are known to infect mammals and/or cause disease. The molecular mechanisms that enable the obligatory intracellular bacterium Neorickettsia to colonize trematodes and to horizontally transmit from trematodes to mammals, as well as the virulence factors associated with specific mammalian hosts, are unknown. Potomac horse fever (PHF) is a severe and acute systemic infectious disease of horses, with clinical signs that include diarrhea. Neorickettsia risticii is the only known bacterial species that causes PHF. Ingestion of insects harboring N. risticii-infected trematodes by horses leads to PHF. Our discovery of a new Neorickettsia species that causes PHF and whole-genome sequence analysis of this bacterium will improve laboratory diagnosis and vaccine development for PHF and will contribute to our understanding of Neorickettsia ecology, pathogenesis, and biology. Potomac horse fever (PHF), a severe and frequently fatal febrile diarrheal disease, has been known to be caused only by Neorickettsia risticii, an endosymbiont of digenean trematodes. Here, we report the cell culture isolation of a new Neorickettsia species found in two locations in eastern Ontario, Canada, in 2016 and 2017 (in addition to 10 variable strains of N. risticii) from N. risticii PCR-negative horses with clinical signs of PHF. Gene sequences of 16S rRNA and the major surface antigen P51 of this new Neorickettsia species were distinct from those of all previously characterized N. risticii strains and Neorickettsia species, except for those from an uncharacterized Neorickettsia species culture isolate from a horse with PHF in northern Ohio in 1991. The new Neorickettsia species nonetheless had the characteristic intramolecular repeats within strain-specific antigen 3 (Ssa3), which were found in all sequenced Ssa3s of N. risticii strains. Experimental inoculation of two naive ponies with the new Neorickettsia species produced severe and subclinical PHF, respectively, and the bacteria were reisolated from both of them, fulfilling Koch’s postulates. Serological assay titers against the new Neorickettsia species were higher than those against N. risticii. Whole-genome sequence analysis of the new Neorickettsia species revealed unique features of this bacterium compared with N. risticii. We propose to classify this new bacterium as Neorickettsia finleia sp. nov. This finding will improve the laboratory diagnosis of and vaccine for PHF, environmental risk assessment of PHF, and understanding of PHF pathogenesis and Neorickettsia biology in general.
Collapse
|
5
|
Monteiro R, Chafsey I, Leroy S, Chambon C, Hébraud M, Livrelli V, Pizza M, Pezzicoli A, Desvaux M. Differential biotin labelling of the cell envelope proteins in lipopolysaccharidic diderm bacteria: Exploring the proteosurfaceome of Escherichia coli using sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin. J Proteomics 2018; 181:16-23. [PMID: 29609094 DOI: 10.1016/j.jprot.2018.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/15/2018] [Accepted: 03/23/2018] [Indexed: 12/28/2022]
Abstract
Surface proteins are the major factor for the interaction between bacteria and its environment, playing an important role in infection, colonisation, virulence and adaptation. However, the study of surface proteins has proven difficult mainly due to their hydrophobicity and/or relatively low abundance compared with cytoplasmic proteins. To overcome these issues new proteomic strategies have been developed, such as cell-surface protein labelling using biotinylation reagents. Sulfo-NHS-SS-biotin is the most commonly used reagent to investigate the proteins expressed at the cell surface of various organisms but its use in lipopolysaccharidic diderm bacteria (archetypical Gram-negative bacteria) remains limited to a handful of species. While generally pass over in silence, some periplasmic proteins, but also some inner membrane lipoproteins, integral membrane proteins and cytoplasmic proteins (cytoproteins) are systematically identified following this approach. To limit cell lysis and diffusion of the sulfo-NHS-SS-biotin through the outer membrane, biotin labelling was tested over short incubation times and proved to be as efficient for 1 min at room temperature. To further limit labelling of protein located below the outer membrane, the use of high-molecular weight sulfo-NHS-PEG4-bismannose-SS-biotin appeared to recover differentially cell-envelope proteins compared to low-molecular weight sulfo-NHS-SS-biotin. Actually, the sulfo-NHS-SS-biotin recovers at a higher extent the proteins completely or partly exposed in the periplasm than sulfo-NHS-PEG4-bismannose-SS-biotin, namely periplasmic and integral membrane proteins as well as inner membrane and outer membrane lipoproteins. These results highlight that protein labelling using biotinylation reagents of different sizes provides a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria. SIGNIFICANCE While generally pass over in silence, some periplasmic proteins, inner membrane lipoproteins (IMLs), integral membrane proteins (IMPs) and cytoplasmic proteins (cytoproteins) are systematically identified following cell-surface biotin labelling in lipopolysaccharidic diderm bacteria (archetypal Gram-negative bacteria). The use of biotinylation molecules of different sizes, namely sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin, was demonstrated to provide a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria.
Collapse
Affiliation(s)
- Ricardo Monteiro
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France; GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Ingrid Chafsey
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France
| | - Sabine Leroy
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France
| | - Christophe Chambon
- INRA, Plate-Forme d'Exploration du Métabolisme, F-63122 Saint-Genès Champanelle, France
| | - Michel Hébraud
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France; INRA, Plate-Forme d'Exploration du Métabolisme, F-63122 Saint-Genès Champanelle, France
| | - Valérie Livrelli
- Centre de Recherche en Nutrition Humaine Auvergne, UMR UCA INSERM U1071, USC-INRA 2018, Clermont Université - Université d'Auvergne, Faculté de Pharmacie, CHU Clermont-Ferrand, Service Bactériologie Mycologie Parasitologie, Clermont-Ferrand, France
| | | | | | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
6
|
Lin M, Bachman K, Cheng Z, Daugherty SC, Nagaraj S, Sengamalay N, Ott S, Godinez A, Tallon LJ, Sadzewicz L, Fraser C, Dunning Hotopp JC, Rikihisa Y. Analysis of complete genome sequence and major surface antigens of Neorickettsia helminthoeca, causative agent of salmon poisoning disease. Microb Biotechnol 2017; 10:933-957. [PMID: 28585301 PMCID: PMC5481527 DOI: 10.1111/1751-7915.12731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/09/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022] Open
Abstract
Neorickettsia helminthoeca, a type species of the genus Neorickettsia, is an endosymbiont of digenetic trematodes of veterinary importance. Upon ingestion of salmonid fish parasitized with infected trematodes, canids develop salmon poisoning disease (SPD), an acute febrile illness that is particularly severe and often fatal in dogs without adequate treatment. We determined and analysed the complete genome sequence of N. helminthoeca: a single small circular chromosome of 884 232 bp encoding 774 potential proteins. N. helminthoeca is unable to synthesize lipopolysaccharides and most amino acids, but is capable of synthesizing vitamins, cofactors, nucleotides and bacterioferritin. N. helminthoeca is, however, distinct from majority of the family Anaplasmataceae to which it belongs, as it encodes nearly all enzymes required for peptidoglycan biosynthesis, suggesting its structural hardiness and inflammatory potential. Using sera from dogs that were experimentally infected by feeding with parasitized fish or naturally infected in southern California, Western blot analysis revealed that among five predicted N. helminthoeca outer membrane proteins, P51 and strain-variable surface antigen were uniformly recognized. Our finding will help understanding pathogenesis, prevalence of N. helminthoeca infection among trematodes, canids and potentially other animals in nature to develop effective SPD diagnostic and preventive measures. Recent progresses in large-scale genome sequencing have been uncovering broad distribution of Neorickettsia spp., the comparative genomics will facilitate understanding of biology and the natural history of these elusive environmental bacteria.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Katherine Bachman
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Zhihui Cheng
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Sean C Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sushma Nagaraj
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Naomi Sengamalay
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sandra Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Al Godinez
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Luke J Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Claire Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| |
Collapse
|
7
|
McNulty SN, Tort JF, Rinaldi G, Fischer K, Rosa BA, Smircich P, Fontenla S, Choi YJ, Tyagi R, Hallsworth-Pepin K, Mann VH, Kammili L, Latham PS, Dell’Oca N, Dominguez F, Carmona C, Fischer PU, Brindley PJ, Mitreva M. Genomes of Fasciola hepatica from the Americas Reveal Colonization with Neorickettsia Endobacteria Related to the Agents of Potomac Horse and Human Sennetsu Fevers. PLoS Genet 2017; 13:e1006537. [PMID: 28060841 PMCID: PMC5257007 DOI: 10.1371/journal.pgen.1006537] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 01/23/2017] [Accepted: 12/15/2016] [Indexed: 12/30/2022] Open
Abstract
Food borne trematodes (FBTs) are an assemblage of platyhelminth parasites transmitted through the food chain, four of which are recognized as neglected tropical diseases (NTDs). Fascioliasis stands out among the other NTDs due to its broad and significant impact on both human and animal health, as Fasciola sp., are also considered major pathogens of domesticated ruminants. Here we present a reference genome sequence of the common liver fluke, Fasciola hepatica isolated from sheep, complementing previously reported isolate from cattle. A total of 14,642 genes were predicted from the 1.14 GB genome of the liver fluke. Comparative genomics indicated that F. hepatica Oregon and related food-borne trematodes are metabolically less constrained than schistosomes and cestodes, taking advantage of the richer millieux offered by the hepatobiliary organs. Protease families differentially expanded between diverse trematodes may facilitate migration and survival within the heterogeneous environments and niches within the mammalian host. Surprisingly, the sequencing of Oregon and Uruguay F. hepatica isolates led to the first discovery of an endobacteria in this species. Two contigs from the F. hepatica Oregon assembly were joined to complete the 859,205 bp genome of a novel Neorickettsia endobacterium (nFh) closely related to the etiological agents of human Sennetsu and Potomac horse fevers. Immunohistochemical studies targeting a Neorickettsia surface protein found nFh in specific organs and tissues of the adult trematode including the female reproductive tract, eggs, the Mehlis' gland, seminal vesicle, and oral suckers, suggesting putative routes for fluke-to-fluke and fluke-to-host transmission. The genomes of F. hepatica and nFh will serve as a resource for further exploration of the biology of F. hepatica, and specifically its newly discovered trans-kingdom interaction with nFh and the impact of both species on disease in ruminants and humans.
Collapse
Affiliation(s)
- Samantha N. McNulty
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Jose F. Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Gabriel Rinaldi
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Kerstin Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruce A. Rosa
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Pablo Smircich
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Young-Jun Choi
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Rahul Tyagi
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | | | - Victoria H. Mann
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Lakshmi Kammili
- Department of Pathology, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Patricia S. Latham
- Department of Pathology, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Nicolas Dell’Oca
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Fernanda Dominguez
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Carlos Carmona
- Unidad de Biología Parasitaria, Instituto de Biología, Facultad de Ciencias, Instituto de Higiene, Montevideo, Uruguay
| | - Peter U. Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Makedonka Mitreva
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
8
|
Wang W, Jeffery CJ. An analysis of surface proteomics results reveals novel candidates for intracellular/surface moonlighting proteins in bacteria. MOLECULAR BIOSYSTEMS 2016; 12:1420-31. [DOI: 10.1039/c5mb00550g] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dozens of intracellular proteins have a second function on the cell surface, referred to as “intracellular/surface moonlighting proteins”. An analysis of the results of 22 cell surface proteomics studies was performed to address whether the hundreds of intracellular proteins found on the cell surface could be candidates for being additional intracellular/surface moonlighting proteins.
Collapse
Affiliation(s)
- Wangfei Wang
- Department of Bioengineering
- University of Illinois at Chicago
- Chicago
- USA
| | - Constance J. Jeffery
- Department of Bioengineering
- University of Illinois at Chicago
- Chicago
- USA
- Department of Biological Sciences
| |
Collapse
|
9
|
Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 2014; 39:47-80. [PMID: 25168200 DOI: 10.1111/1574-6976.12084] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial 'life on the inside'.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Simran J Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Khandra T Sears
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Nuñez PA, Moretta R, Ruybal P, Wilkowsky S, Farber MD. Immunogenicity of Hypothetical Highly Conserved Proteins as Novel Antigens in Anaplasma marginale. Curr Microbiol 2013; 68:269-77. [DOI: 10.1007/s00284-013-0475-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/04/2013] [Indexed: 12/19/2022]
|
11
|
Russell TM, Johnson BJB. Lyme disease spirochaetes possess an aggrecan-binding protease with aggrecanase activity. Mol Microbiol 2013; 90:228-40. [PMID: 23710801 DOI: 10.1111/mmi.12276] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2013] [Indexed: 11/30/2022]
Abstract
Connective tissues are the most common area of colonization for the Lyme disease spirochaete Borrelia burgdorferi. Colonization is aided by the interaction between numerous bacterial adhesins with components of the extracellular matrix (ECM). Here we describe a novel interaction between B. burgdorferi and the major ECM proteoglycan found in joints, aggrecan. Using affinity chromatography and mass spectrometry we identify two borrelial aggrecan-binding proteins: the known ECM ligand Bgp (BB0588) and an uncharacterized protease BbHtrA (BB0104). Proteinase K studies demonstrate that BbHtrA is surface exposed. Immunoblots using sera from patients with both early and late Lyme disease establish that BbHtrA is expressed during human disease, immunogenic, and conserved in the three major Lyme disease spirochaete species. Consequences of the interaction between aggrecan and BbHtrA were examined by proteolysis assays. BbHtrA cleaves aggrecan at a site known to destroy aggrecan function and which has been previously observed in the synovial fluid of patients with Lyme arthritis. These data demonstrate that B. burgdorferi possess aggrecan-binding proteins which may provide the organism with additional capability to colonize connective tissues. Moreover, our studies provide the first evidence that B. burgdorferi possess proteolytic activity which may contribute to the pathogenesis of Lyme arthritis.
Collapse
Affiliation(s)
- Theresa M Russell
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | | |
Collapse
|
12
|
Voigt B, Hieu CX, Hempel K, Becher D, Schlüter R, Teeling H, Glöckner FO, Amann R, Hecker M, Schweder T. Cell surface proteome of the marine planctomycete Rhodopirellula baltica. Proteomics 2012; 12:1781-91. [PMID: 22623273 DOI: 10.1002/pmic.201100512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The surface proteome (surfaceome) of the marine planctomycete Rhodopirellula baltica SH1(T) was studied using a biotinylation and a proteinase K approach combined with SDS-PAGE and mass spectrometry. 52 of the proteins identified in both approaches could be assigned to the group of potential surface proteins. Among them are some high molecular weight proteins, potentially involved in cell-cell attachment, that contain domains shown before to be typical for surface proteins like cadherin/dockerin domains, a bacterial adhesion domain or the fasciclin domain. The identification of proteins with enzymatic functions in the R. baltica surfaceome provides further clues for the suggestion that some degradative enzymes may be anchored onto the cell surface. YTV proteins, which have been earlier supposed to be components of the proteinaceous cell wall of R. baltica, were detected in the surface proteome. Additionally, 8 proteins with a novel protein structure combining a conserved type IV pilin/N-methylation domain and a planctomycete-typical DUF1559 domain were identified.
Collapse
Affiliation(s)
- Birgit Voigt
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sears KT, Ceraul SM, Gillespie JJ, Allen ED, Popov VL, Ammerman NC, Rahman MS, Azad AF. Surface proteome analysis and characterization of surface cell antigen (Sca) or autotransporter family of Rickettsia typhi. PLoS Pathog 2012; 8:e1002856. [PMID: 22912578 PMCID: PMC3415449 DOI: 10.1371/journal.ppat.1002856] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 06/26/2012] [Indexed: 11/20/2022] Open
Abstract
Surface proteins of the obligate intracellular bacterium Rickettsia typhi, the agent of murine or endemic typhus fever, comprise an important interface for host-pathogen interactions including adherence, invasion and survival in the host cytoplasm. In this report, we present analyses of the surface exposed proteins of R. typhi based on a suite of predictive algorithms complemented by experimental surface-labeling with thiol-cleavable sulfo-NHS-SS-biotin and identification of labeled peptides by LC MS/MS. Further, we focus on proteins belonging to the surface cell antigen (Sca) autotransporter (AT) family which are known to be involved in rickettsial infection of mammalian cells. Each species of Rickettsia has a different complement of sca genes in various states; R. typhi, has genes sca1 thru sca5. In silico analyses indicate divergence of the Sca paralogs across the four Rickettsia groups and concur with previous evidence of positive selection. Transcripts for each sca were detected during infection of L929 cells and four of the five Sca proteins were detected in the surface proteome analysis. We observed that each R. typhi Sca protein is expressed during in vitro infections and selected Sca proteins were expressed during in vivo infections. Using biotin-affinity pull down assays, negative staining electron microscopy, and flow cytometry, we demonstrate that the Sca proteins in R. typhi are localized to the surface of the bacteria. All Scas were detected during infection of L929 cells by immunogold electron microscopy. Immunofluorescence assays demonstrate that Scas 1–3 and 5 are expressed in the spleens of infected Sprague-Dawley rats and Scas 3, 4 and 5 are expressed in cat fleas (Ctenocephalides felis). Sca proteins may be crucial in the recognition and invasion of different host cell types. In short, continuous expression of all Scas may ensure that rickettsiae are primed i) to infect mammalian cells should the flea bite a host, ii) to remain infectious when extracellular and iii) to infect the flea midgut when ingested with a blood meal. Each Sca protein may be important for survival of R. typhi and the lack of host restricted expression may indicate a strategy of preparedness for infection of a new host. Rickettsia typhi, a member of the typhus group (TG) rickettsia, is the agent of murine or endemic typhus fever – a disease exhibiting mild to severe flu-like symptoms resulting in significant morbidity. It is maintained in a flearodent transmission cycle in urban and suburban environments. The obligate intracellular lifestyle of rickettsiae makes genetic manipulation difficult and impedes progress towards identification of virulence factors. All five Scas were detected on the surface of R.. typhi using a combination of a biotin-labeled affinity assay, negative stain electron microscopy and flow cytometry. Sca proteins are members of the autotransporter (AT) family or type V secretion system (TVSS). We employed detailed bioinformatic analyses and evaluated their transcript abundance in an in vitro infection model where sca transcripts are detected at varying levels over the course of a 5 day in vitro infection. We also observe expression of selected Sca proteins during infection of fleas and rats. Our study provides a proteomic analysis of the bacterial surface and an initial characterization of the Sca family as it exists in R. typhi.
Collapse
Affiliation(s)
- Khandra T Sears
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Vaughan JA, Tkach VV, Greiman SE. Neorickettsial endosymbionts of the digenea: diversity, transmission and distribution. ADVANCES IN PARASITOLOGY 2012; 79:253-97. [PMID: 22726644 DOI: 10.1016/b978-0-12-398457-9.00003-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Digeneans are endoparasitic flatworms with complex life cycles and distinct life stages that parasitize different host species. Some digenean species harbour bacterial endosymbionts known as Neorickettsia (Order Rickettsiales, Family Anaplasmataceae). Neorickettsia occur in all life stages and are maintained by vertical transmission. Far from benign however, Neorickettsia may also be transmitted horizontally by digenean parasites to their vertebrate definitive hosts. Once inside, Neorickettsia can infect macrophages and other cell types. In some vertebrate species (e.g. dogs, horses and humans), neorickettsial infections cause severe disease. Taken from a mostly parasitological perspective, this article summarizes our current knowledge on the transmission ecology of neorickettsiae, both for pathogenic species and for neorickettsiae of unknown pathogenicity. In addition, we discuss the diversity, phylogeny and geographical distribution of neorickettsiae, as well as their possible evolutionary associations with various groups of digeneans. Our understanding of neorickettsiae is at an early stage and there are undoubtedly many more neorickettsial endosymbioses with digeneans waiting to be discovered. Because neorickettsiae can infect vertebrates, it is particularly important to examine digenean species that regularly infect humans. Rapid advances in molecular tools and their application towards bacterial identification bode well for our future progress in understanding the biology of Neorickettsia.
Collapse
|
15
|
Gibson KE, Pastenkos G, Moesta S, Rikihisa Y. Neorickettsia risticii surface-exposed proteins: proteomics identification, recognition by naturally-infected horses, and strain variations. Vet Res 2011; 42:71. [PMID: 21635728 PMCID: PMC3127766 DOI: 10.1186/1297-9716-42-71] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/02/2011] [Indexed: 11/16/2022] Open
Abstract
Neorickettsia risticii is the Gram-negative, obligate, and intracellular bacterial pathogen responsible for Potomac horse fever (PHF): an important acute systemic disease of horses. N. risticii surface proteins, critical for immune recognition, have not been thoroughly characterized. In this paper, we identified the 51-kDa antigen (P51) as a major surface-exposed outer membrane protein of older and contemporary strains of N. risticii through mass spectrometry of streptavidin-purified biotinylated surface-labeled proteins. Western blot analysis of sera from naturally-infected horses demonstrated universal and strong recognition of recombinant P51 over other Neorickettsia recombinant proteins. Comparisons of amino acid sequences for predicted secondary structures of P51, as well as Neorickettsia surface proteins 2 (Nsp2) and 3 (Nsp3) among N. risticii strains from horses with PHF during a 26-year period throughout the United States revealed that the majority of variations among strains were concentrated in regions predicted to be external loops of their β-barrel structures. Large insertions or deletions occurred within a tandem-repeat region in Ssa3. These data demonstrate patterns of geographical association for P51 and temporal associations for Nsp2, Nsp3, and Ssa3, indicating evolutionary trends for these Neorickettsia surface antigen genes. This study showed N. risticii surface protein population dynamics, providing groundwork for designing immunodiagnostic targets for PHF.
Collapse
Affiliation(s)
- Kathryn E Gibson
- Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, 1925 Coffey Rd, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|