1
|
Mycobacterial resistance to zinc poisoning requires assembly of P-ATPase-containing membrane metal efflux platforms. Nat Commun 2022; 13:4731. [PMID: 35961955 PMCID: PMC9374683 DOI: 10.1038/s41467-022-32085-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis requires a P1B-ATPase metal exporter, CtpC (Rv3270), for resistance to zinc poisoning. Here, we show that zinc resistance also depends on a chaperone-like protein, PacL1 (Rv3269). PacL1 contains a transmembrane domain, a cytoplasmic region with glutamine/alanine repeats and a C-terminal metal-binding motif (MBM). PacL1 binds Zn2+, but the MBM is required only at high zinc concentrations. PacL1 co-localizes with CtpC in dynamic foci in the mycobacterial plasma membrane, and the two proteins form high molecular weight complexes. Foci formation does not require flotillin nor the PacL1 MBM. However, deletion of the PacL1 Glu/Ala repeats leads to loss of CtpC and sensitivity to zinc. Genes pacL1 and ctpC appear to be in the same operon, and homologous gene pairs are found in the genomes of other bacteria. Furthermore, PacL1 colocalizes and functions redundantly with other PacL orthologs in M. tuberculosis. Overall, our results indicate that PacL proteins may act as scaffolds that assemble P-ATPase-containing metal efflux platforms mediating bacterial resistance to metal poisoning. The human pathogen Mycobacterium tuberculosis requires a metal exporter, CtpC, for resistance to zinc poisoning. Here, the authors show that zinc resistance also depends on a chaperone-like protein that binds zinc ions, forms high-molecular-weight complexes with CtpC in the cytoplasmic membrane, and is required for CtpC function.
Collapse
|
2
|
Abstract
Zinc homeostasis is crucial for bacterial cells, since imbalances affect viability. However, in mycobacteria, knowledge of zinc metabolism is incomplete. Mycobacterium smegmatis (MSMEG) is an environmental, nonpathogenic Mycobacterium that is widely used as a model organism to study mycobacterial metabolism and pathogenicity. How MSMEG maintains zinc homeostasis is largely unknown. SmtB and Zur are important regulators of bacterial zinc metabolism. In mycobacteria, these regulators are encoded by an operon, whereas in other bacterial species, SmtB and Zur are encoded on separate loci. Here, we show that the smtB-zur operon is consistently present within the genus Mycobacterium but otherwise found only in Nocardia, Saccharothrix, and Corynebacterium diphtheriae By RNA deep sequencing, we determined the Zur and SmtB regulons of MSMEG and compared them with transcriptional responses after zinc starvation or excess. We found an exceptional genomic clustering of genes whose expression was strongly induced by zur deletion and zinc starvation. These genes encoded zinc importers such as ZnuABC and three additional putative zinc transporters, including the porin MspD, as well as alternative ribosomal proteins. In contrast, only a few genes were affected by deletion of smtB and zinc excess. The zinc exporter ZitA was most prominently regulated by SmtB. Moreover, transcriptional analyses in combination with promoter and chromatin immunoprecipitation assays revealed a special regulation of the smtB-zur operon itself: an apparently zinc-independent, constitutive expression of smtB-zur resulted from sensitive coregulation by both SmtB and Zur. Overall, our data revealed yet unknown peculiarities of mycobacterial zinc homeostasis.IMPORTANCE Zinc is crucial for many biological processes, as it is an essential cofactor of enzymes and a structural component of regulatory and DNA binding proteins. Hence, all living cells require zinc to maintain constant intracellular levels. However, in excess, zinc is toxic. Therefore, cellular zinc homeostasis needs to be tightly controlled. In bacteria, this is achieved by transcriptional regulators whose activity is mediated via zinc-dependent conformational changes promoting or preventing their binding to DNA. SmtB and Zur are important antagonistically acting bacterial regulators in mycobacteria. They sense changes in zinc concentrations in the femtomolar range and regulate transcription of genes for zinc acquisition, storage, and export. Here, we analyzed the role of SmtB and Zur in zinc homeostasis in Mycobacterium smegmatis Our results revealed novel insights into the transcriptional processes of zinc homeostasis in mycobacteria and their regulation.
Collapse
|
3
|
Salusso A, Raimunda D. Defining the Roles of the Cation Diffusion Facilitators in Fe 2+/Zn 2+ Homeostasis and Establishment of Their Participation in Virulence in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2017; 7:84. [PMID: 28373967 PMCID: PMC5357649 DOI: 10.3389/fcimb.2017.00084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
Transporters of the cation diffusion facilitator (CDF) family form dimers that export transition metals from the cytosol. The opportunistic pathogen Pseudomonas aeruginosa encodes three homologous CDF genes, czcD (PA0397), aitP (PA1297), and yiiP (PA3963). The three proteins are required for virulence in a plant host model. Disruption of the aitP gene leads to higher Fe2+ and Co2+ sensitivity together with an intracellular accumulation of these ions and to a decreased survival in presence of H2O2. Strains lacking czcD and yiiP showed low Zn2+ sensitivity. However, in iron-rich media and in the presence of Zn2+ these strains secreted higher levels of the iron chelator pyoverdine. Disruption of czcD and yiiP in a non-pyoverdine producer strain and lacking the Zn2+-transporting ATPase, increased the Zn2+ sensitivity and the accumulation of this ion. Most importantly, independent of the pyoverdine production strains lacking CzcD or YiiP, presented lower resistance to imipenem, ciprofloxacin, chloramphenicol, and gentamicin. These observations correlated with a lower survival rate upon EDTA-lysozyme treatment and overexpression of OprN and OprD porins. We hypothesize that while AitP is an Fe2+/Co2+ efflux transporter required for Fe2+ homeostasis, and ultimately redox stress handling, CzcD, and YiiP export Zn2+ to the periplasm for proper Zn2+-dependent signaling regulating outer membrane stability and therefore antibiotic tolerance.
Collapse
Affiliation(s)
- Agostina Salusso
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Universidad Nacional de Córdoba Córdoba, Argentina
| | - Daniel Raimunda
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Universidad Nacional de Córdoba Córdoba, Argentina
| |
Collapse
|
4
|
Subramanian Vignesh K, Deepe GS. Immunological orchestration of zinc homeostasis: The battle between host mechanisms and pathogen defenses. Arch Biochem Biophys 2016; 611:66-78. [PMID: 26921502 PMCID: PMC4996772 DOI: 10.1016/j.abb.2016.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 12/13/2022]
Abstract
The importance of Zn ions (Zn) in regulating development and functions of the immune system is well established. However, recent years have witnessed a surge in our knowledge of how immune cells choreograph Zn regulatory mechanisms to combat the persistence of pathogenic microbes. Myeloid and lymphoid populations manipulate intracellular and extracellular Zn metabolism via Zn binding proteins and transporters in response to immunological signals and infection. Rapid as well as delayed changes in readily exchangeable Zn, also known as free Zn and the Zn proteome are crucial in determining activation of immune cells, cytokine responses, signaling and nutritional immunity. Recent studies have unearthed distinctive Zn modulatory mechanisms employed by specialized immune cells and necessitate an understanding of the Zn handling behavior in immune responses to infection. The focus of this review, therefore, stems from novel revelations of Zn intoxication, sequestration and signaling roles deployed by different immune cells, with an emphasis on innate immunity, to challenge microbial parasitization and cope with pathogen insult.
Collapse
Affiliation(s)
| | - George S Deepe
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Veterans Affairs Hospital, Cincinnati, OH 45220, USA.
| |
Collapse
|
5
|
Djouadi LN, Levasseur A, Khalil JB, Blanc-Taileur C, Asmar S, Ghiloubi W, Natèche F, Drancourt M. Mycobacterium icosiumassiliensis sp. nov., a New Member in the Mycobacterium terrae Complex Isolated from Surface Water in Algeria. Curr Microbiol 2016; 73:255-64. [PMID: 27154465 DOI: 10.1007/s00284-016-1062-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
An acid-fast, rapidly growing, rod-shaped microorganism designated 8WA6 was isolated from a lake in Algiers, Algeria. The lake water was characterized by a temperature of 18 °C, a pH of 7.82, a copper concentration of 8.6 µg/L, and a cadmium concentration of 0.6 µg/L. First-line molecular identification confirmed the 8WA6 isolate to be a member of the Mycobacterium terrae complex, sharing 99.4 % 16S rRNA gene sequence similarity with M. arupense AR-30097, 98.2 % partial hsp65 gene sequence similarity with M. terrae 28K766, and 97.1 % partial rpoB gene sequence similarity with Mycobacterium sp. FI-05396. Its 4.89-Mb genome exhibits a 66.8 GC % and an average nucleotide identity of 64.5 % with M. tuberculosis, 70.5 % with M. arupense, and 75 % with M. asiaticum. In the M. terrae complex, Mycobacterium 8WA6 was unique in exhibiting growth at 42 °C, negative reaction for nitrate reduction, urease activity and Tween 80 hydrolysis, and a positive reaction for α-glucosidase and β-glucosidase. Its protein profile determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry revealed a unique spectrum similar to M. arupense and M. terrae, exhibiting eleven specific peaks at 3787.791, 4578.019, 6349.630, 6855.638, 7202.310, 8149.608, 8775.257, 10,224.588, 10,484.116, 12,226.379, and 12,636.871 m/z. Minimal inhibitory concentrations (MIC) for antibiotics, determined by microdilution, indicated a broad spectrum resistance, except for rifabutin (MIC, 0.5 g/L) and cefoxitin (MIC, 16 g/L). We concluded that the 8WA6 isolate is a representative isolate of a previously undescribed species in the M. terrae complex, which was named M. icosiumassiliensis sp. nov. with strain 8WA6 (Collection de Souches de l'Unité des Rickettsies, CSUR P1561, Deutsche Sammlung von Mikroorganismen und Zellkulturen, DSM 100711) as the type strain.
Collapse
Affiliation(s)
- Lydia N Djouadi
- Laboratoire de Biologie Cellulaire et Moléculaire, Equipe de Microbiologie, Faculté des Sciences Biologiques, USTHB, BP n°32, Bab ezzouar, Alger, Algerie
| | - Anthony Levasseur
- URMITE, Faculté de Médecine, UMR CNRS 7278, IRD 198, INSERM 1095, Aix Marseille Université, Marseille, 13005, France
| | - Jacques Bou Khalil
- URMITE, Faculté de Médecine, UMR CNRS 7278, IRD 198, INSERM 1095, Aix Marseille Université, Marseille, 13005, France
| | - Caroline Blanc-Taileur
- URMITE, Faculté de Médecine, UMR CNRS 7278, IRD 198, INSERM 1095, Aix Marseille Université, Marseille, 13005, France
| | - Shady Asmar
- URMITE, Faculté de Médecine, UMR CNRS 7278, IRD 198, INSERM 1095, Aix Marseille Université, Marseille, 13005, France
| | - Wassila Ghiloubi
- Laboratoire de Physico-Chimie, Institut National de Criminalistique et de Criminologie (INCC), Alger, Algerie
| | - Farida Natèche
- Laboratoire de Biologie Cellulaire et Moléculaire, Equipe de Microbiologie, Faculté des Sciences Biologiques, USTHB, BP n°32, Bab ezzouar, Alger, Algerie
| | - Michel Drancourt
- URMITE, Faculté de Médecine, UMR CNRS 7278, IRD 198, INSERM 1095, Aix Marseille Université, Marseille, 13005, France. .,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Faculté de Médecine, Aix Marseille Université, 27, Boulevard Jean Moulin, 13385, Marseille Cedex 5, France.
| |
Collapse
|
6
|
Kushwaha AK, Deochand DK, Grove A. A moonlighting function of Mycobacterium smegmatis Ku in zinc homeostasis? Protein Sci 2014; 24:253-63. [PMID: 25450225 DOI: 10.1002/pro.2612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/25/2014] [Indexed: 01/14/2023]
Abstract
Ku protein participates in DNA double-strand break repair via the nonhomologous end-joining pathway. The three-dimensional structure of eukaryotic Ku reveals a central core consisting of a β-barrel domain and pillar and bridge regions that combine to form a ring-like structure that encircles DNA. Homologs of Ku are encoded by a subset of bacterial species, and they are predicted to conserve this core domain. In addition, the bridge region of Ku from some bacteria is predicted from homology modeling and sequence analyses to contain a conventional HxxC and CxxC (where x is any residue) zinc-binding motif. These potential zinc-binding sites have either deteriorated or been entirely lost in Ku from other organisms. Using an in vitro metal binding assay, we show that Mycobacterium smegmatis Ku binds two zinc ions. Zinc binding modestly stabilizes the Ku protein (by ∼3°C) and prevents cysteine oxidation, but it has little effect on DNA binding. In vivo, zinc induces significant upregulation of the gene encoding Ku (∼sixfold) as well as a divergently oriented gene encoding a predicted zinc-dependent MarR family transcription factor. Notably, overexpression of Ku confers zinc tolerance on Escherichia coli. We speculate that zinc-binding sites in Ku proteins from M. smegmatis and other mycobacterial species have been evolutionarily retained to provide protection against zinc toxicity without compromising the function of Ku in DNA double-strand break repair.
Collapse
Affiliation(s)
- Ambuj K Kushwaha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | | | | |
Collapse
|
7
|
Srivastav R, Kumar D, Grover A, Singh A, Manjasetty BA, Sharma R, Taneja B. Unique subunit packing in mycobacterial nanoRNase leads to alternate substrate recognitions in DHH phosphodiesterases. Nucleic Acids Res 2014; 42:7894-910. [PMID: 24878921 PMCID: PMC4081065 DOI: 10.1093/nar/gku425] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DHH superfamily includes RecJ, nanoRNases (NrnA), cyclic nucleotide phosphodiesterases and pyrophosphatases. In this study, we have carried out in vitro and in vivo investigations on the bifunctional NrnA-homolog from Mycobacterium smegmatis, MSMEG_2630. The crystal structure of MSMEG_2630 was determined to 2.2-Å resolution and reveals a dimer consisting of two identical subunits with each subunit folding into an N-terminal DHH domain and a C-terminal DHHA1 domain. The overall structure and fold of the individual domains is similar to other members of DHH superfamily. However, MSMEG_2630 exhibits a distinct quaternary structure in contrast to other DHH phosphodiesterases. This novel mode of subunit packing and variations in the linker region that enlarge the domain interface are responsible for alternate recognitions of substrates in the bifunctional nanoRNases. MSMEG_2630 exhibits bifunctional 3′-5′ exonuclease [on both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) substrates] as well as CysQ-like phosphatase activity (on pAp) in vitro with a preference for nanoRNA substrates over single-stranded DNA of equivalent lengths. A transposon disruption of MSMEG_2630 in M. smegmatis causes growth impairment in the presence of various DNA-damaging agents. Further phylogenetic analysis and genome organization reveals clustering of bacterial nanoRNases into two distinct subfamilies with possible role in transcriptional and translational events during stress.
Collapse
Affiliation(s)
- Rajpal Srivastav
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| | - Dilip Kumar
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| | - Amit Grover
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| | - Ajit Singh
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| | - Babu A Manjasetty
- European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, Grenoble 38042, France Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, Grenoble 38042, France
| | - Rakesh Sharma
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| | - Bhupesh Taneja
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| |
Collapse
|
8
|
Cubillas C, Vinuesa P, Tabche ML, García-de los Santos A. Phylogenomic analysis of Cation Diffusion Facilitator proteins uncovers Ni2+/Co2+ transporters. Metallomics 2013; 5:1634-43. [PMID: 24077251 DOI: 10.1039/c3mt00204g] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ubiquitous Cation Diffusion Facilitator proteins (CDF) play a key role in maintaining the cellular homeostasis of essential metal ions. Previous neighbor-joining phylogenetic analysis classified CDF proteins into three substrate-defined groups: Zn(2+), Fe(2+)/Zn(2+) and Mn(2+). These studies were unable to discern substrate-defined clades for Ni(2+), Co(2+), Cd(2+) and Cu(2+) transporters, despite their existence in this family. In this study we improved the accuracy of this previous functional classification using a phylogenomic approach based on a thorough maximum-likelihood phylogeny and the inclusion of recently characterized CDF transporters. The inference of CDF protein function predicted novel clades for Zn(2+), Fe(2+), Cd(2+) and Mn(2+). The Ni(2+)/Co(2+) and Co(2+) substrate specificities of two clades containing uncharacterized proteins were defined through the functional characterization of nepA and cepA metal inducible genes which independently conferred Ni(2+) and Co(2+) resistances to Rhizobium etli CFN42 and increased, respectively, Ni(2+)/Co(2+) and Co(2+) resistances to Escherichia coli. Neither NepA nor CepA confer Zn(2+), Fe(2+) and Mn(2+) resistances. The ability of NepA to confer Ni(2+)/Co(2+) resistance is dependent on clade-specific residues Asn(88) and Arg(197) whose mutations produce a non-functional protein.
Collapse
Affiliation(s)
- Ciro Cubillas
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, México.
| | | | | | | |
Collapse
|
9
|
Schuessler DL, Cortes T, Fivian-Hughes AS, Lougheed KEA, Harvey E, Buxton RS, Davis EO, Young DB. Induced ectopic expression of HigB toxin in Mycobacterium tuberculosis results in growth inhibition, reduced abundance of a subset of mRNAs and cleavage of tmRNA. Mol Microbiol 2013; 90:195-207. [PMID: 23927792 PMCID: PMC3912914 DOI: 10.1111/mmi.12358] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2013] [Indexed: 01/20/2023]
Abstract
In Mycobacterium tuberculosis, the genes Rv1954A-Rv1957 form an operon that includes Rv1955 and Rv1956 which encode the HigB toxin and the HigA antitoxin respectively. We are interested in the role and regulation of this operon, since toxin-antitoxin systems have been suggested to play a part in the formation of persister cells in mycobacteria. To investigate the function of the higBA locus, effects of toxin expression on mycobacterial growth and transcript levels were assessed in M. tuberculosis H37Rv wild type and in an operon deletion background. We show that expression of HigB toxin in the absence of HigA antitoxin arrests growth and causes cell death in M. tuberculosis. We demonstrate HigB expression to reduce the abundance of IdeR and Zur regulated mRNAs and to cleave tmRNA in M. tuberculosis, Escherichia coli and Mycobacterium smegmatis. This study provides the first identification of possible target transcripts of HigB in M. tuberculosis.
Collapse
Affiliation(s)
- Dorothée L Schuessler
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ahmed W, Bhat AG, Leelaram MN, Menon S, Nagaraja V. Carboxyl terminal domain basic amino acids of mycobacterial topoisomerase I bind DNA to promote strand passage. Nucleic Acids Res 2013; 41:7462-71. [PMID: 23771144 PMCID: PMC3753633 DOI: 10.1093/nar/gkt506] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacterial DNA topoisomerase I (topoI) carries out relaxation of negatively supercoiled DNA through a series of orchestrated steps, DNA binding, cleavage, strand passage and religation. The N-terminal domain (NTD) of the type IA topoisomerases harbor DNA cleavage and religation activities, but the carboxyl terminal domain (CTD) is highly diverse. Most of these enzymes contain a varied number of Zn(2+) finger motifs in the CTD. The Zn(2+) finger motifs were found to be essential in Escherichia coli topoI but dispensable in the Thermotoga maritima enzyme. Although, the CTD of mycobacterial topoI lacks Zn(2+) fingers, it is indispensable for the DNA relaxation activity of the enzyme. The divergent CTD harbors three stretches of basic amino acids needed for the strand passage step of the reaction as demonstrated by a new assay. We also show that the basic amino acids constitute an independent DNA-binding site apart from the NTD and assist the simultaneous binding of two molecules of DNA to the enzyme, as required during the catalytic step. Although the NTD binds to DNA in a site-specific fashion to carry out DNA cleavage and religation, the basic residues in CTD bind to non-scissile DNA in a sequence-independent manner to promote the crucial strand passage step during DNA relaxation. The loss of Zn(2+) fingers from the mycobacterial topoI could be associated with Zn(2+) export and homeostasis.
Collapse
Affiliation(s)
- Wareed Ahmed
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India and Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | | | | | | | | |
Collapse
|
11
|
Padilla-Benavides T, Long JE, Raimunda D, Sassetti CM, Argüello JM. A novel P(1B)-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria. J Biol Chem 2013; 288:11334-47. [PMID: 23482562 DOI: 10.1074/jbc.m112.448175] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transition metals are central for bacterial virulence and host defense. P(1B)-ATPases are responsible for cytoplasmic metal efflux and play roles either in limiting cytosolic metal concentrations or in the maturation of secreted metalloproteins. The P(1B)-ATPase, CtpC, is required for Mycobacterium tuberculosis survival in a mouse model (Sassetti, C. M., and Rubin, E. J. (2003) Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. U.S.A. 100, 12989-12994). CtpC prevents Zn(2+) toxicity, suggesting a role in Zn(2+) export from the cytosol (Botella, H., Peyron, P., Levillain, F., Poincloux, R., Poquet, Y., Brandli, I., Wang, C., Tailleux, L., Tilleul, S., Charriere, G. M., Waddell, S. J., Foti, M., Lugo-Villarino, G., Gao, Q., Maridonneau-Parini, I., Butcher, P. D., Castagnoli, P. R., Gicquel, B., de Chastellièr, C., and Neyrolles, O. (2011) Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10, 248-259). However, key metal-coordinating residues and the overall structure of CtpC are distinct from Zn(2+)-ATPases. We found that isolated CtpC has metal-dependent ATPase activity with a strong preference for Mn(2+) over Zn(2+). In vivo, CtpC is unable to complement Escherichia coli lacking a functional Zn(2+)-ATPase. Deletion of M. tuberculosis or Mycobacterium smegmatis ctpC leads to cytosolic Mn(2+) accumulation but no alterations in other metals levels. Whereas ctpC-deficient M. tuberculosis is sensitive to extracellular Zn(2+), the M. smegmatis mutant is not. Both ctpC mutants are sensitive to oxidative stress, which might explain the Zn(2+)-sensitive phenotype of the M. tuberculosis ctpC mutant. CtpC is a high affinity/slow turnover ATPase, suggesting a role in protein metallation. Consistent with this hypothesis, mutation of CtpC leads to a decrease of Mn(2+) bound to secreted proteins and of the activity of secreted Fe/Mn-superoxide dismutase, particularly in M. smegmatis. Alterations in the assembly of metalloenzymes involved in redox stress response might explain the sensitivity of M. tuberculosis ctpC mutants to oxidative stress and growth and persistence defects in mice infection models.
Collapse
Affiliation(s)
- Teresita Padilla-Benavides
- Department of Chemistry and Biochemistry Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | | | | | | | | |
Collapse
|
12
|
Raimunda D, Long JE, Sassetti CM, Argüello JM. Role in metal homeostasis of CtpD, a Co²⁺ transporting P(1B4)-ATPase of Mycobacterium smegmatis. Mol Microbiol 2012; 84:1139-49. [PMID: 22591178 DOI: 10.1111/j.1365-2958.2012.08082.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genetic studies in the tuberculosis mouse model have suggested that mycobacterial metal efflux systems, such as the P(1B4)-ATPase CtpD, are important for pathogenesis. The specificity for substrate metals largely determines the function of these ATPases; however, various substrates have been reported for bacterial and plant P(1B4)-ATPases leaving their function uncertain. Here we describe the functional role of the CtpD protein of Mycobacterium smegmatis. An M. smegmatis mutant strain lacking the ctpD gene was hypersensitive to Co²⁺ and Ni²⁺ and accumulated these metals in the cytoplasm. ctpD transcription was induced by both Co²⁺ and superoxide stress. Biochemical characterization of heterologously expressed, affinity-purified CtpD showed that this ATPase is activated by Co²⁺, Ni²⁺ and to a lesser extend Zn²⁺ (20% of maximum activity). The protein was also able to bind one Co²⁺, Ni²⁺ or Zn²⁺ to its transmembrane transport site. These observations indicate that CtpD is important for Co²⁺ and Ni²⁺ homeostasis in M. smegmatis, and that M. tuberculosis CtpD orthologue could be involved in metal detoxification and resisting cellular oxidative stress by modulating the intracellular concentration of these metals.
Collapse
Affiliation(s)
- Daniel Raimunda
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | | | | |
Collapse
|
13
|
Trost E, Ott L, Schneider J, Schröder J, Jaenicke S, Goesmann A, Husemann P, Stoye J, Dorella FA, Rocha FS, Soares SDC, D'Afonseca V, Miyoshi A, Ruiz J, Silva A, Azevedo V, Burkovski A, Guiso N, Join-Lambert OF, Kayal S, Tauch A. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics 2010; 11:728. [PMID: 21192786 PMCID: PMC3022926 DOI: 10.1186/1471-2164-11-728] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corynebacterium pseudotuberculosis is generally regarded as an important animal pathogen that rarely infects humans. Clinical strains are occasionally recovered from human cases of lymphadenitis, such as C. pseudotuberculosis FRC41 that was isolated from the inguinal lymph node of a 12-year-old girl with necrotizing lymphadenitis. To detect potential virulence factors and corresponding gene-regulatory networks in this human isolate, the genome sequence of C. pseudotuberculosis FCR41 was determined by pyrosequencing and functionally annotated. RESULTS Sequencing and assembly of the C. pseudotuberculosis FRC41 genome yielded a circular chromosome with a size of 2,337,913 bp and a mean G+C content of 52.2%. Specific gene sets associated with iron and zinc homeostasis were detected among the 2,110 predicted protein-coding regions and integrated into a gene-regulatory network that is linked with both the central metabolism and the oxidative stress response of FRC41. Two gene clusters encode proteins involved in the sortase-mediated polymerization of adhesive pili that can probably mediate the adherence to host tissue to facilitate additional ligand-receptor interactions and the delivery of virulence factors. The prominent virulence factors phospholipase D (Pld) and corynebacterial protease CP40 are encoded in the genome of this human isolate. The genome annotation revealed additional serine proteases, neuraminidase H, nitric oxide reductase, an invasion-associated protein, and acyl-CoA carboxylase subunits involved in mycolic acid biosynthesis as potential virulence factors. The cAMP-sensing transcription regulator GlxR plays a key role in controlling the expression of several genes contributing to virulence. CONCLUSION The functional data deduced from the genome sequencing and the extended knowledge of virulence factors indicate that the human isolate C. pseudotuberculosis FRC41 is equipped with a distinct gene set promoting its survival under unfavorable environmental conditions encountered in the mammalian host.
Collapse
Affiliation(s)
- Eva Trost
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|