1
|
Marreddy RKR, Phelps GA, Churion K, Picker J, Powell R, Cherian PT, Bowling JJ, Stephan CC, Lee RE, Hurdle JG. Chemical genetic analysis of enoxolone inhibition of Clostridioides difficile toxin production reveals adenine deaminase and ATP synthase as antivirulence targets. J Biol Chem 2024; 300:107839. [PMID: 39343002 PMCID: PMC11566853 DOI: 10.1016/j.jbc.2024.107839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Toxins TcdA and TcdB are the main virulence factors of Clostridioides difficile, a leading cause of hospital-acquired diarrhea. Despite their importance, there is a significant knowledge gap of druggable targets for inhibiting toxin production. To address this, we screened nonantibiotic phytochemicals to identify potential chemical genetic probes to discover antivirulence drug targets. This led to the identification of 18β-glycyrrhetinic acid (enoxolone), a licorice metabolite, as an inhibitor of TcdA and TcdB biosynthesis. Using affinity-based proteomics, potential targets were identified as ATP synthase subunit alpha (AtpA) and adenine deaminase (Ade, which catalyzes conversion of adenine to hypoxanthine in the purine salvage pathway). To validate these targets, a multifaceted approach was adopted. Gene silencing of ade and atpA inhibited toxin biosynthesis, while surface plasmon resonance and isothermal titration calorimetry molecular interaction analyses revealed direct binding of enoxolone to Ade. Metabolomics demonstrated enoxolone induced the accumulation of adenosine, while depleting hypoxanthine and ATP in C. difficile. Transcriptomics further revealed enoxolone dysregulated phosphate uptake genes, which correlated with reduced cellular phosphate levels. These findings suggest that enoxolone's cellular action is multitargeted. Accordingly, supplementation with both hypoxanthine and triethyl phosphate, a phosphate source, was required to fully restore toxin production in the presence of enoxolone. In conclusion, through the characterization of enoxolone, we identified promising antivirulence targets that interfere with nucleotide salvage and ATP synthesis, which may also block toxin biosynthesis.
Collapse
Affiliation(s)
- Ravi K R Marreddy
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Gregory A Phelps
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kelly Churion
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Jonathan Picker
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Reid Powell
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Philip T Cherian
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John J Bowling
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Clifford C Stephan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Julian G Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA.
| |
Collapse
|
2
|
Janezic S, Garneau JR, Monot M. Comparative Genomics of Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:199-218. [PMID: 38175477 DOI: 10.1007/978-3-031-42108-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile, a Gram-positive spore-forming anaerobic bacterium, has rapidly emerged as the leading cause of nosocomial diarrhoea in hospitals. The availability of large numbers of genome sequences, mainly due to the use of next-generation sequencing methods, has undoubtedly shown their immense advantages in the determination of C. difficile population structure. The implementation of fine-scale comparative genomic approaches has paved the way for global transmission and recurrence studies, as well as more targeted studies, such as the PaLoc or CRISPR/Cas systems. In this chapter, we provide an overview of recent and significant findings on C. difficile using comparative genomic studies with implications for epidemiology, infection control and understanding of the evolution of C. difficile.
Collapse
Affiliation(s)
- Sandra Janezic
- National Laboratory for Health, Environment and Food (NLZOH), Maribor, Slovenia.
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | - Julian R Garneau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Paris, France
| |
Collapse
|
3
|
Couturier J, Davies K, Barbut F. Ribotypes and New Virulent Strains Across Europe. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:151-168. [PMID: 38175475 DOI: 10.1007/978-3-031-42108-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides (formerly Clostridium) difficile is a major bacterial cause of post-antibiotic diarrhoea. The epidemiology of C. difficile infections (CDIs) has dramatically changed since the early 2000s, with an increasing incidence and severity across Europe. This trend is partly due to the emergence and rapid worldwide spread of the hypervirulent and epidemic PCR ribotype 027. Profiles of patients with CDI have also evolved, with description of community-acquired (CA) infections in patients with no traditional risk factors for CDI. However, epidemiological studies indicated that some European countries have successfully controlled the dissemination of the 027 clone whereas other countries reported the emergence of other virulent or unusual strains. The aims of this review are to summarize the current European CDI epidemiology and to describe the new virulent C. difficile strains circulating in Europe, as well as other potential emerging strains described elsewhere. Standardized typing methods and surveillance programmes are mandatory for a better understanding and monitoring of CDI in Europe.
Collapse
Affiliation(s)
- Jeanne Couturier
- National Reference Laboratory for C. difficile, Hôpital Saint-Antoine, Paris, France.
- Université Paris Cité, UMR INSERM 1139, Paris, France.
| | - Kerrie Davies
- Healthcare Associated Infections Research Group, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) study group for Clostridioides difficile (ESGCD), Basel, Switzerland
| | - Frédéric Barbut
- National Reference Laboratory for C. difficile, Hôpital Saint-Antoine, Paris, France
- Université Paris Cité, UMR INSERM 1139, Paris, France
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) study group for Clostridioides difficile (ESGCD), Basel, Switzerland
| |
Collapse
|
4
|
Olaitan AO, Dureja C, Youngblom MA, Topf MA, Shen WJ, Gonzales-Luna AJ, Deshpande A, Hevener KE, Freeman J, Wilcox MH, Palmer KL, Garey KW, Pepperell CS, Hurdle JG. Decoding a cryptic mechanism of metronidazole resistance among globally disseminated fluoroquinolone-resistant Clostridioides difficile. Nat Commun 2023; 14:4130. [PMID: 37438331 DOI: 10.1038/s41467-023-39429-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
Severe outbreaks and deaths have been linked to the emergence and global spread of fluoroquinolone-resistant Clostridioides difficile over the past two decades. At the same time, metronidazole, a nitro-containing antibiotic, has shown decreasing clinical efficacy in treating C. difficile infection (CDI). Most metronidazole-resistant C. difficile exhibit an unusual resistance phenotype that can only be detected in susceptibility tests using molecularly intact heme. Here, we describe the mechanism underlying this trait. We find that most metronidazole-resistant C. difficile strains carry a T-to-G mutation (which we term PnimBG) in the promoter of gene nimB, resulting in constitutive transcription. Silencing or deleting nimB eliminates metronidazole resistance. NimB is related to Nim proteins that are known to confer resistance to nitroimidazoles. We show that NimB is a heme-dependent flavin enzyme that degrades nitroimidazoles to amines lacking antimicrobial activity. Furthermore, occurrence of the PnimBG mutation is associated with a Thr82Ile substitution in DNA gyrase that confers fluoroquinolone resistance in epidemic strains. Our findings suggest that the pandemic of fluoroquinolone-resistant C. difficile occurring over the past few decades has also been characterized by widespread resistance to metronidazole.
Collapse
Affiliation(s)
- Abiola O Olaitan
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Chetna Dureja
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Madison A Youngblom
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Madeline A Topf
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Wan-Jou Shen
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Anne J Gonzales-Luna
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Aditi Deshpande
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Kirk E Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jane Freeman
- Department of Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK
- Healthcare Associated Infection Research Group, School of Medicine, University of Leeds, Leeds, UK
| | - Mark H Wilcox
- Department of Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK
- Healthcare Associated Infection Research Group, School of Medicine, University of Leeds, Leeds, UK
| | - Kelli L Palmer
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Caitlin S Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI, USA.
| | - Julian G Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA.
| |
Collapse
|
5
|
Aktories K. From signal transduction to protein toxins-a narrative review about milestones on the research route of C. difficile toxins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:173-190. [PMID: 36203094 PMCID: PMC9831965 DOI: 10.1007/s00210-022-02300-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023]
Abstract
Selected findings about Clostridioides difficile (formerly Clostridium difficile) toxins are presented in a narrative review. Starting with a personal view on research about G proteins, adenylyl cyclase, and ADP-ribosylating toxins in the laboratory of Günter Schultz in Heidelberg, milestones of C. difficile toxin research are presented with the focus on toxin B (TcdB), covering toxin structure, receptor binding, toxin up-take and refolding, the intracellular actions of TcdB, and the treatment of C. difficile infection.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| |
Collapse
|
6
|
Mitchell M, Nguyen SV, Macori G, Bolton D, McMullan G, Drudy D, Fanning S. Clostridioides difficile as a Potential Pathogen of Importance to One Health: A Review. Foodborne Pathog Dis 2022; 19:806-816. [PMID: 36516404 DOI: 10.1089/fpd.2022.0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile (basonym Clostridium) is a bacterial enteropathogen associated with cases of C. difficile infection that can result in pseudomembranous colitis, rapid fluid loss, and death. For decades following its isolation, C. difficile was thought to be a solely nosocomial pathogen, being isolated from individuals undergoing antimicrobial therapy and largely affecting elderly populations. More recently, C. difficile spores have been identified in the broader environment, including in food-producing animals, soil, and food matrices, in both ready-to-eat foods and meat products. Furthermore, evidence has emerged of hypervirulent ribotypes (RTs), such as RT078, similar to those cultured in asymptomatic carriers, also being identified in these environments. This finding may reflect on adaptations arising in these bacteria following selection pressures encountered in these niches, and which occurs due to an increase in antimicrobial usage in both clinical and veterinary settings. As C. difficile continues to adapt to new ecological niches, the taxonomy of this genus has also been evolving. To help understand the transmission and virulence potential of these bacteria of importance to veterinary public health, strategies applying multi-omics-based technologies may prove useful. These approaches may extend our current understanding of this recognized nosocomial pathogen, perhaps redefining it as a zoonotic bacterium. In this review, a brief background on the epidemiological presentation of C. difficile will be highlighted, followed by a review of C. difficile in food-producing animals and food products. The current state of C. difficile taxonomy will provide evidence of Clade 5 (ST11/RT078) delineation, as well as background on the genomic elements linked to C. difficile virulence and ongoing speciation. Recent studies applying second- and third-generation sequencing technologies will be highlighted, and which will further strengthen the argument made by many throughout the world regarding this pathogen and its consideration within a One Health dimension.
Collapse
Affiliation(s)
- Molly Mitchell
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland
| | - Scott V Nguyen
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland.,District of Columbia Department of Forensic Sciences, Public Health Laboratory, Washington, District of Columbia, USA
| | - Guerrino Macori
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland
| | | | - Geoff McMullan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | | | - Séamus Fanning
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
7
|
Marcos P, Whyte P, Burgess C, Ekhlas D, Bolton D. Detection and Genomic Characterisation of Clostridioides difficile from Spinach Fields. Pathogens 2022; 11:1310. [PMID: 36365061 PMCID: PMC9695345 DOI: 10.3390/pathogens11111310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 10/29/2023] Open
Abstract
Despite an increased incidence of Clostridioides difficile infections, data on the reservoirs and dissemination routes of this bacterium are limited. This study examined the prevalence and characteristics of C. difficile isolates in spinach fields. C. difficile was detected in 2/60 (3.3%) of spinach and 6/60 (10%) of soil samples using culture-based techniques. Whole genome sequencing (WGS) analysis identified the spinach isolates as belonging to the hypervirulent clade 5, sequence type (ST) 11, ribotypes (RT) 078 and 126 and carried the genes encoding toxins A, B and CDT. The soil isolates belonged to clade 1 with different toxigenic ST/RT (ST19/RT614, ST12/RT003, ST46/RT087, ST16/RT050, ST49/RT014/0) strains and one non-toxigenic ST79/RT511 strain. Antimicrobial resistance to erythromycin (one spinach isolate), rifampicin (two soil isolates), clindamycin (one soil isolate), both moxifloxacin and rifampicin (one soil isolate), and multi-drug resistance to erythromycin, vancomycin and rifampicin (two soil isolates) were observed using the E test, although a broader range of resistance genes were detected using WGS. Although the sample size was limited, our results demonstrate the presence of C. difficile in horticulture and provide further evidence that there are multiple sources and dissemination routes for these bacteria.
Collapse
Affiliation(s)
- Pilar Marcos
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | | | - Daniel Ekhlas
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland
| |
Collapse
|
8
|
Schnizlein MK, Young VB. Capturing the environment of the Clostridioides difficile infection cycle. Nat Rev Gastroenterol Hepatol 2022; 19:508-520. [PMID: 35468953 DOI: 10.1038/s41575-022-00610-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile) infection is a substantial health and economic burden worldwide. Great strides have been made over the past several years in characterizing the physiology of C. difficile infection, particularly regarding how gut microorganisms and their host work together to provide colonization resistance. As mammalian hosts and their indigenous gut microbiota have co-evolved, they have formed a complex yet stable relationship that prevents invading microorganisms from establishing themselves. In this Review, we discuss the latest advances in our understanding of C. difficile physiology that have contributed to its success as a pathogen, including its versatile survival factors and ability to adapt to unique niches. Using discoveries regarding microorganism-host and microorganism-microorganism interactions that constitute colonization resistance, we place C. difficile within the fiercely competitive gut environment. A comprehensive understanding of these relationships is required to continue the development of precision medicine-based treatments for C. difficile infection.
Collapse
Affiliation(s)
- Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Luo J, Yang Q, Zhang X, Zhang Y, Wan L, Zhan X, Zhou Y, He L, Li D, Jin D, Zhen Y, Huang J, Li Y, Tao L. TFPI is a colonic crypt receptor for TcdB from hypervirulent clade 2 C. difficile. Cell 2022; 185:980-994.e15. [PMID: 35303428 DOI: 10.1016/j.cell.2022.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
The emergence of hypervirulent clade 2 Clostridioides difficile is associated with severe symptoms and accounts for >20% of global infections. TcdB is a dominant virulence factor of C. difficile, and clade 2 strains exclusively express two TcdB variants (TcdB2 and TcdB4) that use unknown receptors distinct from the classic TcdB. Here, we performed CRISPR/Cas9 screens for TcdB4 and identified tissue factor pathway inhibitor (TFPI) as its receptor. Using cryo-EM, we determined a complex structure of the full-length TcdB4 with TFPI, defining a common receptor-binding region for TcdB. Residue variations within this region divide major TcdB variants into 2 classes: one recognizes Frizzled (FZD), and the other recognizes TFPI. TFPI is highly expressed in the intestinal glands, and recombinant TFPI protects the colonic epithelium from TcdB2/4. These findings establish TFPI as a colonic crypt receptor for TcdB from clade 2 C. difficile and reveal new mechanisms for CDI pathogenesis.
Collapse
Affiliation(s)
- Jianhua Luo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Qi Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiaofeng Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuanyuan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Food Science and Biotechnology Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Li Wan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yao Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Liuqing He
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Danyang Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Dazhi Jin
- Center of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ying Zhen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yanyan Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| | - Liang Tao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
10
|
Seth-Smith HMB, Biggel M, Roloff T, Hinic V, Bodmer T, Risch M, Casanova C, Widmer A, Sommerstein R, Marschall J, Tschudin-Sutter S, Egli A. Transition From PCR-Ribotyping to Whole Genome Sequencing Based Typing of Clostridioides difficile. Front Cell Infect Microbiol 2021; 11:681518. [PMID: 34141631 PMCID: PMC8204696 DOI: 10.3389/fcimb.2021.681518] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile causes nosocomial outbreaks which can lead to severe and even life-threatening colitis. Rapid molecular diagnostic tests allow the identification of toxin-producing, potentially hypervirulent strains, which is critical for patient management and infection control. PCR-ribotyping has been used for decades as the reference standard to investigate transmission in suspected outbreaks. However, the introduction of whole genome sequencing (WGS) for molecular epidemiology provides a realistic alternative to PCR-ribotyping. In this transition phase it is crucial to understand the strengths and weaknesses of the two technologies, and to assess their correlation. We aimed to investigate ribotype prediction from WGS data, and options for analysis at different levels of analytical granularity. Ribotypes cannot be directly determined from short read Illumina sequence data as the rRNA operons including the ribotype-defining ISR fragments collapse in genome assemblies, and comparison with traditional PCR-ribotyping results becomes impossible. Ribotype extraction from long read Oxford nanopore data also requires optimization. We have compared WGS-based typing with PCR-ribotyping in nearly 300 clinical and environmental isolates from Switzerland, and in addition from the Enterobase database (n=1778). Our results show that while multi-locus sequence type (MLST) often correlates with a specific ribotype, the agreement is not complete, and for some ribotypes the resolution is insufficient. Using core genome MLST (cgMLST) analysis, there is an improved resolution and ribotypes can often be predicted within clusters, using cutoffs of 30-50 allele differences. The exceptions are ribotypes within known ribotype complexes such as RT078/RT106, where the genome differences in cgMLST do not reflect the ribotype segregation. We show that different ribotype clusters display different degrees of diversity, which could be important for the definition of ribotype cluster specific cutoffs. WGS-based analysis offers the ultimate resolution to the SNP level, enabling exploration of patient-to-patient transmission. PCR-ribotyping does not sufficiently discriminate to prove nosocomial transmission with certainty. We discuss the associated challenges and opportunities in a switch to WGS from conventional ribotyping for C. difficile.
Collapse
Affiliation(s)
- Helena M B Seth-Smith
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland.,Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tim Roloff
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland.,Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Vladimira Hinic
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Thomas Bodmer
- Clinical Microbiology, Labormedizinisches Zentrum Dr Risch, Liebefeld, Switzerland
| | - Martin Risch
- Clinical Microbiology, Labormedizinisches Zentrum Dr Risch, Liebefeld, Switzerland
| | - Carlo Casanova
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Andreas Widmer
- Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Rami Sommerstein
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland.,Infectious Diseases, Hirslanden Central Switzerland, Lucerne, Switzerland
| | - Jonas Marschall
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Sarah Tschudin-Sutter
- Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Badilla-Lobo A, Rodríguez C. Microbiological features, epidemiology, and clinical presentation of Clostridioidesdifficile strains from MLST Clade 2: A narrative review. Anaerobe 2021; 69:102355. [PMID: 33711422 DOI: 10.1016/j.anaerobe.2021.102355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Clostridioides difficile is an emerging One Health pathogen and a common etiologic agent of diarrhea, both in healthcare settings and the community. This bacterial species is highly diverse, and its global population has been classified in eight clades by multilocus sequence typing (MLST). The C. difficile MLST Clade 2 includes the NAP1/RT027/ST01 strain, which is highly recognized due to its epidemicity and association with severe disease presentation and mortality. By contrast, the remaining 83 sequence types (STs) that compose this clade have received much less attention. In response to this shortcoming, we reviewed articles published in English between 1999 and 2020 and collected information for 27 Clade 2 STs, with an emphasis on STs 01, 67, 41 and 188/231/365. Our analysis provides evidence of large phenotypic differences that preclude support of the rather widespread notion that ST01 and Clade 2 strains are "hypervirulent". Moreover, it revealed a profound lack of (meta)data for nearly 70% of the Clade 2 STs that have been identified in surveillance efforts. Targeted studies aiming to relate wet-lab and bioinformatics results to patient and clinical parameters should be performed to gain a more in-depth insight into the biology of this intriguing group of C. difficile isolates.
Collapse
Affiliation(s)
- Adriana Badilla-Lobo
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, and Master's Program in Microbiology, Parasitology, Clinical Chemistry and Immunology, Universidad de Costa Rica, Costa Rica
| | - César Rodríguez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, and Master's Program in Microbiology, Parasitology, Clinical Chemistry and Immunology, Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
12
|
Weese JS, Slovis N, Rousseau J. Clostridioides (Clostridium) difficile in neonatal foals and mares at a referral hospital. J Vet Intern Med 2021; 35:1140-1146. [PMID: 33656757 PMCID: PMC7995440 DOI: 10.1111/jvim.16094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Understanding the epidemiology of Clostridium difficile is important for the development and assessment of infection prevention and control practices, as well as surveillance methods and interpretation of diagnostic testing results. OBJECTIVE Our objective was to longitudinally evaluate C. difficile shedding in neonatal foals and mares admitted to a referral hospital neonatal intensive care unit. ANIMALS Foals admitted to a neonatal intensive care unit, along with their dams. METHODS Rectal swabs were collected from mares and foals at admission, and then approximately every 3 days, when possible. Selective culture for C. difficile was performed and isolates were characterized by toxin gene PCR and ribotyping. RESULTS Clostridium difficile was isolated from 103/409 (25%) samples; 65/208 (31%) from foals and 38/201 (19%) from mares. Cumulatively, C. difficile was isolated from at least 1 sample from 50/113 (44%) foals and 30/97 (31%) mares. No association was found between hospitalization day and isolation of C. difficile (P = .13). Twenty-three different ribotypes were identified, with ribotype 078 predominating. Fifteen foals had 2 positive samples during hospitalization. In only 6/15 (40%) foals was the same strain identified both times (5 ribotype 078 and 1 ribotype 012). CONCLUSIONS AND CLINICAL IMPORTANCE Clostridium difficile is an important pathogen in adult horses and foals, and our findings highlight the complexity surrounding the epidemiology of this opportunistic pathogen. It can be found commonly, transiently, and cluster within a facility in the absence of identifiable disease occurrences or clusters.
Collapse
Affiliation(s)
- Jeffrey Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Nathan Slovis
- McGee Medical Center, Hagyard Equine Medical Institute, Lexington, Kentucky, USA
| | - Joyce Rousseau
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Phylogenomics of 8,839 Clostridioides difficile genomes reveals recombination-driven evolution and diversification of toxin A and B. PLoS Pathog 2020; 16:e1009181. [PMID: 33370413 PMCID: PMC7853461 DOI: 10.1371/journal.ppat.1009181] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/02/2021] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile is the major worldwide cause of antibiotic-associated gastrointestinal infection. A pathogenicity locus (PaLoc) encoding one or two homologous toxins, toxin A (TcdA) and toxin B (TcdB), is essential for C. difficile pathogenicity. However, toxin sequence variation poses major challenges for the development of diagnostic assays, therapeutics, and vaccines. Here, we present a comprehensive phylogenomic analysis of 8,839 C. difficile strains and their toxins including 6,492 genomes that we assembled from the NCBI short read archive. A total of 5,175 tcdA and 8,022 tcdB genes clustered into 7 (A1-A7) and 12 (B1-B12) distinct subtypes, which form the basis of a new method for toxin-based subtyping of C. difficile. We developed a haplotype coloring algorithm to visualize amino acid variation across all toxin sequences, which revealed that TcdB has diversified through extensive homologous recombination throughout its entire sequence, and formed new subtypes through distinct recombination events. In contrast, TcdA varies mainly in the number of repeats in its C-terminal repetitive region, suggesting that recombination-mediated diversification of TcdB provides a selective advantage in C. difficile evolution. The application of toxin subtyping is then validated by classifying 351 C. difficile clinical isolates from Brigham and Women's Hospital in Boston, demonstrating its clinical utility. Subtyping partitions TcdB into binary functional and antigenic groups generated by intragenic recombinations, including two distinct cell-rounding phenotypes, whether recognizing frizzled proteins as receptors, and whether it can be efficiently neutralized by monoclonal antibody bezlotoxumab, the only FDA-approved therapeutic antibody. Our analysis also identifies eight universally conserved surface patches across the TcdB structure, representing ideal targets for developing broad-spectrum therapeutics. Finally, we established an open online database (DiffBase) as a central hub for collection and classification of C. difficile toxins, which will help clinicians decide on therapeutic strategies targeting specific toxin variants, and allow researchers to monitor the ongoing evolution and diversification of C. difficile.
Collapse
|
14
|
Roxas BAP, Roxas JL, Claus-Walker R, Harishankar A, Mansoor A, Anwar F, Jillella S, Williams A, Lindsey J, Elliott SP, Shehab KW, Viswanathan VK, Vedantam G. Phylogenomic analysis of Clostridioides difficile ribotype 106 strains reveals novel genetic islands and emergent phenotypes. Sci Rep 2020; 10:22135. [PMID: 33335199 PMCID: PMC7747571 DOI: 10.1038/s41598-020-79123-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a major healthcare-associated diarrheal disease. Consistent with trends across the United States, C. difficile RT106 was the second-most prevalent molecular type in our surveillance in Arizona from 2015 to 2018. A representative RT106 strain displayed robust virulence and 100% lethality in the hamster model of acute CDI. We identified a unique 46 KB genomic island (GI1) in all RT106 strains sequenced to date, including those in public databases. GI1 was not found in its entirety in any other C. difficile clade, or indeed, in any other microbial genome; however, smaller segments were detected in Enterococcus faecium strains. Molecular clock analyses suggested that GI1 was horizontally acquired and sequentially assembled over time. GI1 encodes homologs of VanZ and a SrtB-anchored collagen-binding adhesin, and correspondingly, all tested RT106 strains had increased teicoplanin resistance, and a majority displayed collagen-dependent biofilm formation. Two additional genomic islands (GI2 and GI3) were also present in a subset of RT106 strains. All three islands are predicted to encode mobile genetic elements as well as virulence factors. Emergent phenotypes associated with these genetic islands may have contributed to the relatively rapid expansion of RT106 in US healthcare and community settings.
Collapse
Affiliation(s)
- Bryan Angelo P Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Rachel Claus-Walker
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Anusha Harishankar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Asad Mansoor
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Farhan Anwar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Shobitha Jillella
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Alison Williams
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jason Lindsey
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Sean P Elliott
- Department of Pediatrics, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Kareem W Shehab
- Department of Pediatrics, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - V K Viswanathan
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA.,Department of Immunobiology, The University of Arizona, Tucson, AZ, USA.,Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA. .,Department of Immunobiology, The University of Arizona, Tucson, AZ, USA. .,Bio5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, USA. .,Southern Arizona VA Health Care System, Tucson, AZ, USA. .,School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E Lowell St, Bldg. 90, Room 227, Tucson, AZ, 85721, USA.
| |
Collapse
|
15
|
Soutourina O, Dubois T, Monot M, Shelyakin PV, Saujet L, Boudry P, Gelfand MS, Dupuy B, Martin-Verstraete I. Genome-Wide Transcription Start Site Mapping and Promoter Assignments to a Sigma Factor in the Human Enteropathogen Clostridioides difficile. Front Microbiol 2020; 11:1939. [PMID: 32903654 PMCID: PMC7438776 DOI: 10.3389/fmicb.2020.01939] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
The emerging human enteropathogen Clostridioides difficile is the main cause of diarrhea associated with antibiotherapy. Regulatory pathways underlying the adaptive responses remain understudied and the global view of C. difficile promoter structure is still missing. In the genome of C. difficile 630, 22 genes encoding sigma factors are present suggesting a complex pattern of transcription in this bacterium. We present here the first transcriptional map of the C. difficile genome resulting from the identification of transcriptional start sites (TSS), promoter motifs and operon structures. By 5′-end RNA-seq approach, we mapped more than 1000 TSS upstream of genes. In addition to these primary TSS, this analysis revealed complex structure of transcriptional units such as alternative and internal promoters, potential RNA processing events and 5′ untranslated regions. By following an in silico iterative strategy that used as an input previously published consensus sequences and transcriptomic analysis, we identified candidate promoters upstream of most of protein-coding and non-coding RNAs genes. This strategy also led to refine consensus sequences of promoters recognized by major sigma factors of C. difficile. Detailed analysis focuses on the transcription in the pathogenicity locus and regulatory genes, as well as regulons of transition phase and sporulation sigma factors as important components of C. difficile regulatory network governing toxin gene expression and spore formation. Among the still uncharacterized regulons of the major sigma factors of C. difficile, we defined the SigL regulon by combining transcriptome and in silico analyses. We showed that the SigL regulon is largely involved in amino-acid degradation, a metabolism crucial for C. difficile gut colonization. Finally, we combined our TSS mapping, in silico identification of promoters and RNA-seq data to improve gene annotation and to suggest operon organization in C. difficile. These data will considerably improve our knowledge of global regulatory circuits controlling gene expression in C. difficile and will serve as a useful rich resource for scientific community both for the detailed analysis of specific genes and systems biology studies.
Collapse
Affiliation(s)
- Olga Soutourina
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France.,Institut Universitaire de France, Paris, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Thomas Dubois
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Marc Monot
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | | | - Laure Saujet
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Pierre Boudry
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems, Moscow, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Bruno Dupuy
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
16
|
Shen E, Zhu K, Li D, Pan Z, Luo Y, Bian Q, He L, Song X, Zhen Y, Jin D, Tao L. Subtyping analysis reveals new variants and accelerated evolution of Clostridioides difficile toxin B. Commun Biol 2020; 3:347. [PMID: 32620855 PMCID: PMC7335066 DOI: 10.1038/s42003-020-1078-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile toxins (TcdA and TcdB) are major exotoxins responsible for C. difficile infection (CDI) associated diseases. The previously reported TcdB variants showed distinct biological features, immunoactivities, and potential pathogenicity in disease progression. Here, we performed global comparisons of amino acid sequences of both TcdA and TcdB from 3,269 C. difficile genomes and clustered them according to the evolutionary relatedness. We found that TcdB was much diverse and could be divided into eight subtypes, of which four were first described. Further analysis indicates that the tcdB gene undergoes accelerated evolution to maximize diversity. By tracing TcdB subtypes back to their original isolates, we found that the distribution of TcdB subtypes was not completely aligned with the phylogeny of C. difficile. These findings suggest that the tcdB genes not only frequently mutate, but also continuously transfer and exchange among C. difficile strains. Shen et al. compare the amino acid sequences of bacterial toxins TcdA and TcdB from 3,269 Clostridioides difficile genomes to identify four new TcdB subtypes. They find that TcdB was more diverse in amino acid sequence than TcdA. This study suggests that the tcdB genes not only frequently mutate, but they also continuously transfer and exchange among C. difficile strains.
Collapse
Affiliation(s)
- Enhui Shen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Kangli Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Danyang Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Zhenrui Pan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yun Luo
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Qiao Bian
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Liuqing He
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Xiaojun Song
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ying Zhen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Dazhi Jin
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China
| | - Liang Tao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China. .,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
17
|
Ma KGL, Lertpiriyapong K, Piersigilli A, Dobtsis I, Wipf JRK, Littmann ER, Leiner I, Pamer EG, Ricart Arbona RJ, Lipman NS. Outbreaks of Typhlocolitis Caused by Hypervirulent Group ST1 Clostridioides difficile in Highly Immunocompromised Strains of Mice. Comp Med 2020; 70:277-290. [PMID: 32404234 PMCID: PMC7287380 DOI: 10.30802/aalas-cm-19-000109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/15/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
Abstract
Clostridioides difficile is an enteric pathogen that can cause significant clinical disease in both humans and animals. However, clinical disease arises most commonly after treatment with broad-spectrum antibiotics. The organism's ability to cause naturally occurring disease in mice is rare, and little is known about its clinical significance in highly immunocompromised mice. We report on 2 outbreaks of diarrhea associated with C. difficile in mice. In outbreak 1, 182 of approximately 2, 400 NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) and related strains of mice became clinically ill after cessation of a 14-d course of 0.12% amoxicillin feed to control an increase in clinical signs associated with Corynebacterium bovis infection. Most mice had been engrafted with human tumors; the remainder were experimentally naïve. Affected animals exhibited 1 of 3 clinical syndromes: 1) peracute death; 2) severe diarrhea leading to euthanasia or death; or 3) mild to moderate diarrhea followed by recovery. A given cage could contain both affected and unaffected mice. Outbreak 2 involved a small breeding colony (approximately 50 mice) of NOD. CB17-Prkdcscid/NCrCrl (NOD-scid) mice that had not received antibiotics or experimental manipulations. In both outbreaks, C. difficile was isolated, and toxins A and B were detected in intestinal content or feces. Histopathologic lesions highly suggestive of C. difficile enterotoxemia included fibrinonecrotizing and neutrophilic typhlocolitis with characteristic 'volcano' erosions or pseudomembrane formation. Genomic analysis of 4 isolates (3 from outbreak 1 and 1 from outbreak 2) revealed that these isolates were closely related to a pathogenic human isolate, CD 196. To our knowledge, this report is the first to describe naturally occurring outbreaks of C. difficile-associated typhlocolitis with significant morbidity and mortality in highly immunocompromised strains of mice.
Collapse
Affiliation(s)
- Kathleen G L Ma
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York
| | - Kvin Lertpiriyapong
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center for Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medicine, New York, New York
| | - Alessandra Piersigilli
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center for Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medicine, New York, New York; Laboratory for Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, and The Rockefeller University, New York, New York
| | - Irina Dobtsis
- Laboratory for Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, and The Rockefeller University, New York, New York
| | - Juliette R K Wipf
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center for Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medicine, New York, New York; Laboratory for Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, and The Rockefeller University, New York, New York
| | - Eric R Littmann
- Infectious Diseases Service, Department of Medicine, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Ingrid Leiner
- Infectious Diseases Service, Department of Medicine, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Eric G Pamer
- Infectious Diseases Service, Department of Medicine, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Rodolfo J Ricart Arbona
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center for Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medicine, New York, New York
| | - Neil S Lipman
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center for Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medicine, New York, New York;,
| |
Collapse
|
18
|
Abstract
Clostridium (Clostridioides) difficile is a gram-positive, spore-forming bacterium that is an important cause of disease in people, a variably important cause of disease in some animal species, and an apparently harmless commensal in others. Regardless of whether it is a known pathogen in a particular species, it can also be found in healthy individuals, sometimes at high prevalences and typically with higher rates of carriage in young individuals. As it is investigated in more animal species, it is apparent that this bacterium is widely disseminated in a diverse range of domestic and wild animal species. Although it can be found in most species in which investigations have been performed, there are pronounced intra- and inter-species differences in prevalence and clinical relevance. A wide range of strains can be identified, some that appear to be animal associated and others that are found in humans and animals. A large percentage of strains that cause disease in people can at least sporadically be found in animals. It is a potentially important zoonotic pathogen, but there is limited direct evidence of animal-human transmission. Although C. difficile has been studied extensively over the past few decades, it remains an enigmatic organism in many ways.
Collapse
Affiliation(s)
- J Scott Weese
- Department of Pathobiology and Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada (Weese)
| |
Collapse
|
19
|
Mileto S, Das A, Lyras D. Enterotoxic Clostridia: Clostridioides difficile Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0015-2018. [PMID: 31124432 PMCID: PMC11026080 DOI: 10.1128/microbiolspec.gpp3-0015-2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is a Gram-positive, anaerobic, spore forming pathogen of both humans and animals and is the most common identifiable infectious agent of nosocomial antibiotic-associated diarrhea. Infection can occur following the ingestion and germination of spores, often concurrently with a disruption to the gastrointestinal microbiota, with the resulting disease presenting as a spectrum, ranging from mild and self-limiting diarrhea to severe diarrhea that may progress to life-threating syndromes that include toxic megacolon and pseudomembranous colitis. Disease is induced through the activity of the C. difficile toxins TcdA and TcdB, both of which disrupt the Rho family of GTPases in host cells, causing cell rounding and death and leading to fluid loss and diarrhea. These toxins, despite their functional and structural similarity, do not contribute to disease equally. C. difficile infection (CDI) is made more complex by a high level of strain diversity and the emergence of epidemic strains, including ribotype 027-strains which induce more severe disease in patients. With the changing epidemiology of CDI, our understanding of C. difficile disease, diagnosis, and pathogenesis continues to evolve. This article provides an overview of the current diagnostic tests available for CDI, strain typing, the major toxins C. difficile produces and their mode of action, the host immune response to each toxin and during infection, animal models of disease, and the current treatment and prevention strategies for CDI.
Collapse
Affiliation(s)
- S Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| | - A Das
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| | - D Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| |
Collapse
|
20
|
Kamuju V, Kumar S, Khan WH, Vivekanandan P. Hypervirulent Clostridium difficile ribotypes are CpG depleted. Virulence 2019; 9:1422-1425. [PMID: 30176154 PMCID: PMC6141142 DOI: 10.1080/21505594.2018.1509669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Vinay Kamuju
- a Department of Biochemical Engineering and Biotechnology , Indian Institute of Technology Delhi , New Delhi , India
| | - Santosh Kumar
- a Department of Biochemical Engineering and Biotechnology , Indian Institute of Technology Delhi , New Delhi , India
| | - Wajihul Hasan Khan
- b Kusuma School of Biological Sciences , Indian Institute of Technology Delhi , New Delhi , India
| | - Perumal Vivekanandan
- b Kusuma School of Biological Sciences , Indian Institute of Technology Delhi , New Delhi , India
| |
Collapse
|
21
|
Numberger D, Riedel T, McEwen G, Nübel U, Frentrup M, Schober I, Bunk B, Spröer C, Overmann J, Grossart HP, Greenwood AD. Genomic analysis of three Clostridioides difficile isolates from urban water sources. Anaerobe 2019; 56:22-26. [DOI: 10.1016/j.anaerobe.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/05/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023]
|
22
|
PCR based detection of tcdCΔ117 in Clostridium difficile infection identifies patients at risk for recurrence - A hospital-based prospective observational study. Anaerobe 2019; 57:39-44. [PMID: 30878603 DOI: 10.1016/j.anaerobe.2019.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Increasing incidence and severity of Clostridium difficile infection (CDI) in the last decades has been attributed to the emergence of hypervirulent C. difficile strain PCR-ribotype 027 (RT027). Commercial multiplex real-time PCR tests allow the presumptive identification of RT027 by detecting a single-base deletion at nt117 in the tcdC gene (tcdCΔ117). The clinical usefulness of the detection of tcdCΔ117 is unclear. Therefore, we evaluated test performance and clinical association of the detection of tcdCΔ117 in patients with CDI in a prospective observational study conducted in a tertiary care hospital in Germany. METHODS From June to October 2015, stool from all patients with suspected CDI was tested for C. difficile according to ESCMID guidelines. C. difficile was cultured from positive samples and ribotyping was performed. Clinical data were collected prospectively from all C. difficile positive patients. RESULTS From 1121 tested stool samples 107 patients with CDI were included in the study. TcdCΔ117 was detected in 18 (16.8%) of these patients. Multivariable logistic regression analysis revealed an independent association of detection of tcdCΔ117 with a further episode of CDI (OR 14.6; 95% CI 3.6-58.3; p < 0.001) and death within 30 days of the positive test (OR 5.1; 95% CI 1.0-25.7; p = 0.046). As follow up data are limited, it remains unclear, whether the further episode of CDI was due to tcdCΔ117 (recurrence) or another type. CONCLUSION In our setting, PCR-based detection of tcdCΔ117 identified patients at risk for recurrent CDI and increased mortality and thus may guide therapeutic choices in CDI patients at the time of diagnosis.
Collapse
|
23
|
Murillo T, Ramírez-Vargas G, Riedel T, Overmann J, Andersen JM, Guzmán-Verri C, Chaves-Olarte E, Rodríguez C. Two Groups of Cocirculating, Epidemic Clostridiodes difficile Strains Microdiversify through Different Mechanisms. Genome Biol Evol 2018; 10:982-998. [PMID: 29617810 PMCID: PMC5888409 DOI: 10.1093/gbe/evy059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2018] [Indexed: 02/04/2023] Open
Abstract
Clostridiodes difficile strains from the NAPCR1/ST54 and NAP1/ST01 types have caused outbreaks despite of their notable differences in genome diversity. By comparing whole genome sequences of 32 NAPCR1/ST54 isolates and 17 NAP1/ST01 recovered from patients infected with C. difficile we assessed whether mutation, homologous recombination (r) or nonhomologous recombination (NHR) through lateral gene transfer (LGT) have differentially shaped the microdiversification of these strains. The average number of single nucleotide polymorphisms (SNPs) in coding sequences (NAPCR1/ST54 = 24; NAP1/ST01 = 19) and SNP densities (NAPCR1/ST54 = 0.54/kb; NAP1/ST01 = 0.46/kb) in the NAPCR1/ST54 and NAP1/ST01 isolates was comparable. However, the NAP1/ST01 isolates showed 3× higher average dN/dS rates (8.35) that the NAPCR1/ST54 isolates (2.62). Regarding r, whereas 31 of the NAPCR1/ST54 isolates showed 1 recombination block (3,301–8,226 bp), the NAP1/ST01 isolates showed no bases in recombination. As to NHR, the pangenome of the NAPCR1/ST54 isolates was larger (4,802 gene clusters, 26% noncore genes) and more heterogeneous (644 ± 33 gene content changes) than that of the NAP1/ST01 isolates (3,829 gene clusters, ca. 6% noncore genes, 129 ± 37 gene content changes). Nearly 55% of the gene content changes seen among the NAPCR1/ST54 isolates (355 ± 31) were traced back to MGEs with putative genes for antimicrobial resistance and virulence factors that were only detected in single isolates or isolate clusters. Congruently, the LGT/SNP rate calculated for the NAPCR1/ST54 isolates (26.8 ± 2.8) was 4× higher than the one obtained for the NAP1/ST1 isolates (6.8 ± 2.0). We conclude that NHR-LGT has had a greater role in the microdiversification of the NAPCR1/ST54 strains, opposite to the NAP1/ST01 strains, where mutation is known to play a more prominent role.
Collapse
Affiliation(s)
- Tatiana Murillo
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Gabriel Ramírez-Vargas
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Joakim M Andersen
- Department of Food, Processing and Nutritional Sciences, North Carolina State University
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Esteban Chaves-Olarte
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - César Rodríguez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
24
|
Thanissery R, Zeng D, Doyle RG, Theriot CM. A Small Molecule-Screening Pipeline to Evaluate the Therapeutic Potential of 2-Aminoimidazole Molecules Against Clostridium difficile. Front Microbiol 2018; 9:1206. [PMID: 29928268 PMCID: PMC5997789 DOI: 10.3389/fmicb.2018.01206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/17/2018] [Indexed: 12/19/2022] Open
Abstract
Antibiotics are considered to be the first line of treatment for mild to moderately severe Clostridium difficile infection (CDI) in humans. However, antibiotics are also risk factors for CDI as they decrease colonization resistance against C. difficile by altering the gut microbiota and metabolome. Finding compounds that selectively inhibit different stages of the C. difficile life cycle, while sparing the indigenous gut microbiota is important for the development of alternatives to standard antibiotic treatment. 2-aminoimidazole (2-AI) molecules are known to disrupt bacterial protection mechanisms in antibiotic resistant bacteria such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus, but are yet to be evaluated against C. difficile. A comprehensive small molecule-screening pipeline was developed to investigate how novel small molecules affect different stages of the C. difficile life cycle (growth, toxin, and sporulation) in vitro, and a library of commensal bacteria that are associated with colonization resistance against C. difficile. The initial screening tested the efficacy of eleven 2-AI molecules (compound 1 through 11) against C. difficile R20291 compared to a vancomycin (2 μg/ml) control. Molecules were selected for their ability to inhibit C. difficile growth, toxin activity, and sporulation. Further testing included growth inhibition of other C. difficile strains (CD196, M68, CF5, 630, BI9, M120) belonging to distinct PCR ribotypes, and a commensal panel (Bacteroides fragilis, B. thetaiotaomicron, C. scindens, C. hylemonae, Lactobacillus acidophilus, L. gasseri, Escherichia coli, B. longum subsp. infantis). Three molecules compound 1 and 2, and 3 were microbicidal, whereas compounds 4, 7, 9, and 11 inhibited toxin activity without affecting the growth of C. difficile strains and the commensal microbiota. The antimicrobial and anti-toxin effects of 2-AI molecules need to be further characterized for mode of action and validated in a mouse model of CDI.
Collapse
Affiliation(s)
- Rajani Thanissery
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Daina Zeng
- Agile Sciences, Inc., Raleigh, NC, United States
| | - Raul G Doyle
- Agile Sciences, Inc., Raleigh, NC, United States
| | - Casey M Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
25
|
Type IV Pili Promote Clostridium difficile Adherence and Persistence in a Mouse Model of Infection. Infect Immun 2018; 86:IAI.00943-17. [PMID: 29483294 DOI: 10.1128/iai.00943-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/21/2018] [Indexed: 12/16/2022] Open
Abstract
Cyclic diguanylate (c-di-GMP) is a second messenger that regulates the transition from motile to sessile lifestyles in numerous bacteria and controls virulence factor production in a variety of pathogens. In Clostridium difficile, c-di-GMP negatively regulates flagellum biosynthesis and swimming motility and promotes the production of type IV pili (TFP), biofilm formation, and surface motility in vitro Flagella have been identified as colonization factors in C. difficile, but the role of TFP in adherence to host cells and in colonization of the mammalian gut is unknown. Here we show that c-di-GMP promotes adherence to epithelial cells in vitro, which can be partly attributed to the loss of flagella. Using TFP-null mutants, we demonstrate that adherence to epithelial cells is partially mediated by TFP and that this TFP-mediated adherence requires c-di-GMP regulation. In a mouse model of colonization, the TFP-null mutants initially colonized the intestine as well as the parental strain but were cleared more quickly. Moreover, compared to the parent strain, C. difficile strains lacking TFP were particularly deficient in association with the cecal mucosa. Together these data indicate that TFP and their positive regulation by c-di-GMP promote attachment of C. difficile to the intestinal epithelium and contribute to persistence of C. difficile in the host intestine.
Collapse
|
26
|
Brouwer MSM, Mullany P, Allan E, Roberts AP. Investigating Transfer of Large Chromosomal Regions Containing the Pathogenicity Locus Between Clostridium difficile Strains. Methods Mol Biol 2018; 1476:215-22. [PMID: 27507344 DOI: 10.1007/978-1-4939-6361-4_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The genomes of all sequenced Clostridium difficile isolates contain multiple mobile genetic elements. The chromosomally located pathogenicity locus (PaLoc), encoding the cytotoxins TcdA and TcdB, was previously hypothesized to be a mobile genetic element; however, mobility was not demonstrated. Here we describe the methods used to facilitate and detect the transfer of the PaLoc from a toxigenic strain into non-toxigenic strains of C. difficile. Although the precise mechanism of transfer has not yet been elucidated, a number of controls are described which indicate transfer occurs via a cell-to-cell-mediated conjugation-like transfer mechanism. Importantly, transfer of the PaLoc was shown to occur on large chromosomal fragments of variable sizes, indicating that homologous recombination is likely to be responsible for the insertion events.
Collapse
Affiliation(s)
- Michael S M Brouwer
- Department of Bacteriology and Epidemiology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Peter Mullany
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | - Elaine Allan
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK
| | - Adam P Roberts
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK.
| |
Collapse
|
27
|
Comparative Genomics of Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:59-75. [PMID: 29383664 DOI: 10.1007/978-3-319-72799-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Clostridium difficile, a gram-positive spore-forming anaerobic bacterium, has rapidly emerged as the leading cause of nosocomial diarrhoea in hospitals. The availability of genome sequences in large numbers, mainly due to the use of next-generation sequencing methods, have undoubtedly shown their immense advantages in the determination of the C. difficile population structure. The implementation of fine-scale comparative genomic approaches have paved the way to global transmission and recurrence studies, but also more targeted studies such as the PaLoc or the CRISPR/Cas systems. In this chapter, we provide an overview of the recent and significant findings on C. difficile using comparative genomics studies with implication for the epidemiology, infection control and understanding of the evolution of C. difficile.
Collapse
|
28
|
Couturier J, Davies K, Gateau C, Barbut F. Ribotypes and New Virulent Strains Across Europe. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:45-58. [PMID: 29383663 DOI: 10.1007/978-3-319-72799-8_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridium difficile is a major bacterial cause of post-antibiotic diarrhoea. The epidemiology of C. difficile infections (CDI) has dramatically changed since the early 2000s, with an increasing incidence and severity across Europe. This trend is partly due to the emergence and rapid worldwide spread of the hypervirulent and epidemic PCR ribotype 027. Profiles of patients with CDI have also evolved, with description of community-acquired (CA) infections in patients with no traditional risk factors for CDI. However, recent epidemiological studies indicated that some European countries have successfully controlled the dissemination of the 027 clone whereas other countries recently reported the emergence of other virulent or unusual strains. The aims of this review are to summarize the current European CDI epidemiology and to describe the new virulent C. difficile strains circulating in Europe, as well as other potential emerging strains described elsewhere. Standardized typing methods and surveillance programmes are mandatory for a better understanding and monitoring of CDI in Europe.
Collapse
Affiliation(s)
- Jeanne Couturier
- National Reference Laboratory for C. difficile, Hôpital Saint-Antoine, Paris, France. .,Université Paris Descartes, Faculté de Pharmacie, Paris, France.
| | - Kerrie Davies
- Healthcare Associated Infections Research Group, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK
| | - Cécile Gateau
- National Reference Laboratory for C. difficile, Hôpital Saint-Antoine, Paris, France
| | - Frédéric Barbut
- National Reference Laboratory for C. difficile, Hôpital Saint-Antoine, Paris, France.,Université Paris Descartes, Faculté de Pharmacie, Paris, France
| |
Collapse
|
29
|
Inactivation of the dnaK gene in Clostridium difficile 630 Δerm yields a temperature-sensitive phenotype and increases biofilm-forming ability. Sci Rep 2017; 7:17522. [PMID: 29235503 PMCID: PMC5727486 DOI: 10.1038/s41598-017-17583-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile infection is a growing problem in healthcare settings worldwide and results in a considerable socioeconomic impact. New hypervirulent strains and acquisition of antibiotic resistance exacerbates pathogenesis; however, the survival strategy of C. difficile in the challenging gut environment still remains incompletely understood. We previously reported that clinically relevant heat-stress (37-41 °C) resulted in a classical heat-stress response with up-regulation of cellular chaperones. We used ClosTron to construct an insertional mutation in the dnaK gene of C. difficile 630 Δerm. The dnaK mutant exhibited temperature sensitivity, grew more slowly than C. difficile 630 Δerm and was less thermotolerant. Furthermore, the mutant was non-motile, had 4-fold lower expression of the fliC gene and lacked flagella on the cell surface. Mutant cells were some 50% longer than parental strain cells, and at optimal growth temperatures, they exhibited a 4-fold increase in the expression of class I chaperone genes including GroEL and GroES. Increased chaperone expression, in addition to the non-flagellated phenotype of the mutant, may account for the increased biofilm formation observed. Overall, the phenotype resulting from dnaK disruption is more akin to that observed in Escherichia coli dnaK mutants, rather than those in the Gram-positive model organism Bacillus subtilis.
Collapse
|
30
|
PCR-ribotype distribution of Clostridium difficile in Irish pigs. Anaerobe 2017; 48:237-241. [DOI: 10.1016/j.anaerobe.2017.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/25/2017] [Accepted: 10/07/2017] [Indexed: 01/05/2023]
|
31
|
Couturier J, Eckert C, Barbut F. Spatio-temporal variability of the epidemic 027 Clostridium difficile strains in France based on MLVA typing. Anaerobe 2017; 48:179-183. [DOI: 10.1016/j.anaerobe.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 11/15/2022]
|
32
|
Immunoprotective potential of BamA, the outer membrane protein assembly factor, against MDR Acinetobacter baumannii. Sci Rep 2017; 7:12411. [PMID: 28963492 PMCID: PMC5622086 DOI: 10.1038/s41598-017-12789-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
Acinetobacter baumannii infections are responsible for major health problems in immunocompromised patients particularly in intensive care units. Due to rapid acquisition of and also inherent drug resistance, a vaccine is an effective treatment option against this pathogen. BamA, an outer membrane β-barrel assembly protein, was identified in A. baumannii as potential vaccine candidate by in silico analysis. The immunoprotective efficacy of this highly conserved protein was investigated against a virulent multidrug resistant clinical isolate using murine pneumonia model. Recombinant BamA elicited a high IgG antibody titer (160000) in mice. Opsonophagocytic killing assay showed non-neutrilizing, opsonizing antibodies with combinatorial bactericidal activity of antibodies and complement components. Active and passive immunization protected 80 and 60% mice respectively against intranasal challenge with lethal dose (109 CFU) of virulent A. baumannii along with efficient clearance of bacteria in mice lungs and reduction in levels of pro-inflammatory cytokines viz. TNF-α, IL-6 and IL-1β in sera and lung tissue homogenate. Increase in levels of IL-10, an anti-inflammatory cytokine and reduction of neutrophils in lungs facilitated the control of infection. This study demonstrates the potential of BamA as effective vaccine candidate and a promising target for antibody-based therapy to protect against MDR A. baumannii infections.
Collapse
|
33
|
Dresler J, Krutova M, Fucikova A, Klimentova J, Hruzova V, Duracova M, Houdkova K, Salovska B, Matejkova J, Hubalek M, Pajer P, Pisa L, Nyc O. Analysis of proteomes released from in vitro cultured eight Clostridium difficile PCR ribotypes revealed specific expression in PCR ribotypes 027 and 176 confirming their genetic relatedness and clinical importance at the proteomic level. Gut Pathog 2017; 9:45. [PMID: 28814976 PMCID: PMC5556371 DOI: 10.1186/s13099-017-0194-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/28/2017] [Indexed: 01/22/2023] Open
Abstract
Background Clostridium difficile is the causative agent of C. difficile infection (CDI) that could be manifested by diarrhea, pseudomembranous colitis or life-threatening toxic megacolon. The spread of certain strains represents a significant economic burden for health-care. The epidemic successful strains are also associated with severe clinical features of CDI. Therefore, a proteomic study has been conducted that comprises proteomes released from in vitro cultured panel of eight different PCR ribotypes (RTs) and employs the combination of shotgun proteomics and label-free quantification (LFQ) approach. Results The comparative semi-quantitative analyses enabled investigation of a total of 662 proteins. Both hierarchical clustering and principal component analysis (PCA) created eight distinctive groups. From these quantifiable proteins, 27 were significantly increased in functional annotations. Among them, several known factors connected with virulence were identified, such as toxin A, B, binary toxin, flagellar proteins, and proteins associated with Pro–Pro endopeptidase (PPEP-1) functional complex. Comparative analysis of protein expression showed a higher expression or unique expression of proteins linked to pathogenicity or iron metabolism in RTs 027 and 176 supporting their genetic relatedness and clinical importance at the proteomic level. Moreover, the absence of putative nitroreductase and the abundance of the Abc-type fe3+ transport system protein were observed as biomarkers for the RTs possessing binary toxin genes (027, 176 and 078). Higher expression of selected flagellar proteins clearly distinguished RTs 027, 176, 005 and 012, confirming the pathogenic role of the assembly in CDI. Finally, the histidine synthesis pathway regulating protein complex HisG/HisZ was observed only in isolates possessing the genes for toxin A and B. Conclusions This study showed the applicability of the LFQ approach and provided the first semi-quantitative insight into the proteomes released from in vitro cultured panel of eight RTs. The observed differences pointed to a new direction for studies focused on the elucidation of the mechanisms underlining the CDI nature. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0194-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiri Dresler
- Military Health Institute, Military Medical Agency, Tychonova 1, Prague, Czech Republic
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Alena Fucikova
- Faculty of Military Health Sciences, UoD, Hradec Kralove, Czech Republic
| | - Jana Klimentova
- Faculty of Military Health Sciences, UoD, Hradec Kralove, Czech Republic
| | - Veronika Hruzova
- Military Health Institute, Military Medical Agency, Tychonova 1, Prague, Czech Republic
| | - Miloslava Duracova
- Faculty of Military Health Sciences, UoD, Hradec Kralove, Czech Republic
| | - Katerina Houdkova
- Military Health Institute, Military Medical Agency, Tychonova 1, Prague, Czech Republic
| | - Barbora Salovska
- Military Health Institute, Military Medical Agency, Tychonova 1, Prague, Czech Republic
| | - Jana Matejkova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Martin Hubalek
- Institute of Organic Chemistry and Biochemistry, Academy of Science, Prague, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Tychonova 1, Prague, Czech Republic
| | - Libor Pisa
- Military Health Institute, Military Medical Agency, Tychonova 1, Prague, Czech Republic
| | - Otakar Nyc
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
34
|
Hutton ML, Cunningham BA, Mackin KE, Lyon SA, James ML, Rood JI, Lyras D. Bovine antibodies targeting primary and recurrent Clostridium difficile disease are a potent antibiotic alternative. Sci Rep 2017. [PMID: 28623367 PMCID: PMC5473923 DOI: 10.1038/s41598-017-03982-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The increased incidence of antibiotic resistant 'superbugs' has amplified the use of broad spectrum antibiotics worldwide. An unintended consequence of antimicrobial treatment is disruption of the gastrointestinal microbiota, resulting in susceptibility to opportunistic pathogens, such as Clostridium difficile. Paradoxically, treatment of C. difficile infections (CDI) also involves antibiotic use, leaving patients susceptible to re-infection. This serious health threat has led to an urgent call for the development of new therapeutics to reduce or replace the use of antibiotics to treat bacterial infections. To address this need, we have developed colostrum-derived antibodies for the prevention and treatment of CDI. Pregnant cows were immunised to generate hyperimmune bovine colostrum (HBC) containing antibodies that target essential C. difficile virulence components, specifically, spores, vegetative cells and toxin B (TcdB). Mouse infection and relapse models were used to compare the capacity of HBC to prevent or treat primary CDI as well as prevent recurrence. Administration of TcdB-specific colostrum alone, or in combination with spore or vegetative cell-targeted colostrum, prevents and treats C. difficile disease in mice and reduces disease recurrence by 67%. C. difficile-specific colostrum should be re-considered as an immunotherapeutic for the prevention or treatment of primary or recurrent CDI.
Collapse
Affiliation(s)
- Melanie L Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Bliss A Cunningham
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Kate E Mackin
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Shelley A Lyon
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Meagan L James
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
35
|
Elliott B, Androga GO, Knight DR, Riley TV. Clostridium difficile infection: Evolution, phylogeny and molecular epidemiology. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 49:1-11. [PMID: 28012982 DOI: 10.1016/j.meegid.2016.12.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023]
Abstract
Over the recent decades, Clostridium difficile infection (CDI) has emerged as a global public health threat. Despite growing attention, C. difficile remains a poorly understood pathogen, however, the exquisite sensitivity offered by next generation sequencing (NGS) technology has enabled analysis of the genome of C. difficile, giving us access to massive genomic data on factors such as virulence, evolution, and genetic relatedness within C. difficile groups. NGS has also demonstrated excellence in investigations of outbreaks and disease transmission, in both small and large-scale applications. This review summarizes the molecular epidemiology, evolution, and phylogeny of C. difficile, one of the most important pathogens worldwide in the current antibiotic resistance era.
Collapse
Affiliation(s)
- Briony Elliott
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Grace O Androga
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia
| | - Daniel R Knight
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia
| | - Thomas V Riley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia; School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia; School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia; Department of Microbiology, PathWest Laboratory Medicine, Perth, Australia.
| |
Collapse
|
36
|
Muñoz M, Ríos-Chaparro DI, Patarroyo MA, Ramírez JD. Determining Clostridium difficile intra-taxa diversity by mining multilocus sequence typing databases. BMC Microbiol 2017; 17:62. [PMID: 28288567 PMCID: PMC5348806 DOI: 10.1186/s12866-017-0969-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/03/2017] [Indexed: 12/18/2022] Open
Abstract
Background Multilocus sequence typing (MLST) is a highly discriminatory typing strategy; it is reproducible and scalable. There is a MLST scheme for Clostridium difficile (CD), a gram positive bacillus causing different pathologies of the gastrointestinal tract. This work was aimed at describing the frequency of sequence types (STs) and Clades (C) reported and evalute the intra-taxa diversity in the CD MLST database (CD-MLST-db) using an MLSA approach. Results Analysis of 1778 available isolates showed that clade 1 (C1) was the most frequent worldwide (57.7%), followed by C2 (29.1%). Regarding sequence types (STs), it was found that ST-1, belonging to C2, was the most frequent. The isolates analysed came from 17 countries, mostly from the United Kingdom (UK) (1541 STs, 87.0%). The diversity of the seven housekeeping genes in the MLST scheme was evaluated, and alleles from the profiles (STs), for identifying CD population structure. It was found that adk and atpA are conserved genes allowing a limited amount of clusters to be discriminated; however, different genes such as drx, glyA and particularly sodA showed high diversity indexes and grouped CD populations in many clusters, suggesting that these genes’ contribution to CD typing should be revised. It was identified that CD STs reported to date have a mostly clonal population structure with foreseen events of recombination; however, one group of STs was not assigned to a clade being highly different containing at least nine well-supported clusters, suggesting a greater amount of clades for CD. Conclusions This study shows the usefulness of CD-MLST-db as a tool for studying CD distribution and population structure, identifying the need for reviewing the usefulness of sodA as housekeeping gene within the MLST scheme and suggesting the existence of a greater amount of CD clades. The study also shows the plausible exchange of genetic material between STs, contributing towards intra-taxa genetic diversity. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0969-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 24 # 63C - 69, Bogotá, Colombia.,Posgrado Interfacultades Doctorado en Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Dora Inés Ríos-Chaparro
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 24 # 63C - 69, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 24 # 63C - 69, Bogotá, Colombia.
| |
Collapse
|
37
|
Anjuwon-Foster BR, Tamayo R. A genetic switch controls the production of flagella and toxins in Clostridium difficile. PLoS Genet 2017; 13:e1006701. [PMID: 28346491 PMCID: PMC5386303 DOI: 10.1371/journal.pgen.1006701] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 04/10/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
In the human intestinal pathogen Clostridium difficile, flagella promote adherence to intestinal epithelial cells. Flagellar gene expression also indirectly impacts production of the glucosylating toxins, which are essential to diarrheal disease development. Thus, factors that regulate the expression of the flgB operon will likely impact toxin production in addition to flagellar motility. Here, we report the identification a "flagellar switch" that controls the phase variable production of flagella and glucosylating toxins. The flagellar switch, located upstream of the flgB operon containing the early stage flagellar genes, is a 154 bp invertible sequence flanked by 21 bp inverted repeats. Bacteria with the sequence in one orientation expressed flagellum and toxin genes, produced flagella, and secreted the toxins ("flg phase ON"). Bacteria with the sequence in the inverse orientation were attenuated for flagellar and toxin gene expression, were aflagellate, and showed decreased toxin secretion ("flg phase OFF"). The orientation of the flagellar switch is reversible during growth in vitro. We provide evidence that gene regulation via the flagellar switch occurs post-transcription initiation and requires a C. difficile-specific regulatory factor to destabilize or degrade the early flagellar gene mRNA when the flagellar switch is in the OFF orientation. Lastly, through mutagenesis and characterization of flagellar phase locked isolates, we determined that the tyrosine recombinase RecV, which catalyzes inversion at the cwpV switch, is also responsible for inversion at the flagellar switch in both directions. Phase variable flagellar motility and toxin production suggests that these important virulence factors have both advantageous and detrimental effects during the course of infection.
Collapse
Affiliation(s)
- Brandon R. Anjuwon-Foster
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
38
|
Zhang W, Cheng Y, Du P, Zhang Y, Jia H, Li X, Wang J, Han N, Qiang Y, Chen C, Lu J. Genomic study of the Type IVC secretion system in Clostridium difficile: understanding C. difficile evolution via horizontal gene transfer. Genome 2017; 60:8-16. [DOI: 10.1139/gen-2016-0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Clostridium difficile, the etiological agent of Clostridium difficile infection (CDI), is a gram-positive, spore-forming bacillus that is responsible for ∼20% of antibiotic-related cases of diarrhea and nearly all cases of pseudomembranous colitis. Previous data have shown that a substantial proportion (11%) of the C. difficile genome consists of mobile genetic elements, including seven conjugative transposons. However, the mechanism underlying the formation of a mosaic genome in C. difficile is unknown. The type-IV secretion system (T4SS) is the only secretion system known to transfer DNA segments among bacteria. We searched genome databases to identify a candidate T4SS in C. difficile that could transfer DNA among different C. difficile strains. All T4SS gene clusters in C. difficile are located within genomic islands (GIs), which have variable lengths and structures and are all conjugative transposons. During the horizontal-transfer process of T4SS GIs within the C. difficile population, the excision sites were altered, resulting in different short-tandem repeat sequences among the T4SS GIs, as well as different chromosomal insertion sites and additional regions in the GIs.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Ying Cheng
- Key Laboratory of Surveillance and Early-warning on Infectious Disease, Division of Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Pengcheng Du
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100011, China
| | - Yuanyuan Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100011, China
| | - Hongbing Jia
- Department of clinical laboratory, China–Japan Friendship Hospital, Beijing 100029, China
| | - Xianping Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Jing Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Na Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Yujun Qiang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Chen Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100011, China
| | - Jinxing Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
39
|
Li B. A New Lab Developed Real Time PCR Assay for Direct Detection of C. Difficle from Stool Sample without DNA Extraction. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2016; 12:83-88. [PMID: 27829823 PMCID: PMC5080412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Clostridium difficile is a major cause of nosocomial antibiotic-associated infectious diarrhea and pseudomembranous colitis. Detection of C. difficile by anaerobic bacterial culture and/or cytotoxicity assays has been largely replaced by rapid enzyme immunoassays (EIA). However, due to the lack of sensitivity of stool EIA, we developed a multiplex real-time PCR assay targeting the C. difficile toxin genes tcdB. stool samples from hospitalized pediatric patients suspected of having C. difficile-associated disease were prospectively collected. Three testing modalities were evaluated, including enriched culture, cepheid Xpert and real-time Pcr (tcdB) on stool samples performed with tcdB gene-specific primers and hydrolysis probes. A total of 150 de-identified clinical specimen were analyzed. The sensitivities of stool real-time Pcr were 95% against cepheid Xpert C. difficile and 93% against enriched culture respectively, with a specificity of 97% and 94%. The lower limit of detection of the stool real-time PCR was 0.5 cFU/ml of per reaction for tcdB. Direct detection of C. difficile toxin genes in stool samples by real-time Pcr showed performance comparable to enriched culture. Real-time PCR of DNA from stool samples is a rapid and cost-effective diagnostic modality for patients that should facilitate appropriate patient management.
Collapse
|
40
|
Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol 2016; 14:609-20. [PMID: 27573580 DOI: 10.1038/nrmicro.2016.108] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clostridium difficile is a major cause of intestinal infection and diarrhoea in individuals following antibiotic treatment. Recent studies have begun to elucidate the mechanisms that induce spore formation and germination and have determined the roles of C. difficile toxins in disease pathogenesis. Exciting progress has also been made in defining the role of the microbiome, specific commensal bacterial species and host immunity in defence against infection with C. difficile. This Review will summarize the recent discoveries and developments in our understanding of C. difficile infection and pathogenesis.
Collapse
Affiliation(s)
- Michael C Abt
- Immunology Program, Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Peter T McKenney
- Immunology Program, Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Eric G Pamer
- Immunology Program, Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|
41
|
CdtR Regulates TcdA and TcdB Production in Clostridium difficile. PLoS Pathog 2016; 12:e1005758. [PMID: 27414650 PMCID: PMC4944984 DOI: 10.1371/journal.ppat.1005758] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/18/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a global health burden and the leading cause of antibiotic-associated diarrhoea worldwide, causing severe gastrointestinal disease and death. Three well characterised toxins are encoded by this bacterium in two genetic loci, specifically, TcdB (toxin B) and TcdA (toxin A) in the Pathogenicity Locus (PaLoc) and binary toxin (CDT) in the genomically distinct CDT locus (CdtLoc). Toxin production is controlled by regulators specific to each locus. The orphan response regulator, CdtR, encoded within the CdtLoc, up-regulates CDT production. Until now there has been no suggestion that CdtR influences TcdA and TcdB production since it is not carried by all PaLoc-containing strains and CdtLoc is not linked genetically to PaLoc. Here we show that, in addition to CDT, CdtR regulates TcdA and TcdB production but that this effect is strain dependent. Of clinical relevance, CdtR increased the production of TcdA, TcdB and CDT in two epidemic ribotype 027 human strains, modulating their virulence in a mouse infection model. Strains traditionally from animal lineages, notably ribotype 078 strains, are increasingly being isolated from humans and their genetic and phenotypic analysis is critical for future studies on this important pathogen. Here we show that CdtR-mediated toxin regulation did not occur in other strain backgrounds, including a ribotype 078 animal strain. The finding that toxin gene regulation is strain dependent highlights the regulatory diversity between C. difficile isolates and the importance of studying virulence regulation in diverse lineages and clinically relevant strains. Our work provides the first evidence that TcdA, TcdB and CDT production is linked by a common regulatory mechanism and that CdtR may act as a global regulator of virulence in epidemic 027 strains. Clostridium difficile is the leading cause of antibiotic-associated diarrhoea. The TcdB, TcdA and binary toxins produced by C. difficile are encoded in two genomically distinct loci: TcdB and TcdA in the Pathogenicity Locus (PaLoc) and binary toxin (CDT) in the CDT locus (CdtLoc). Toxin production is primarily controlled by regulators specific to each locus. Because the presence of these loci varies amongst different strains of C. difficile, no rational link for their co-regulation has ever been proposed. Here we have shown that the regulator of CDT production, CdtR, also regulates production of TcdA and TcdB in a strain dependent manner. These results represent the first evidence that TcdA and TcdB production is linked to the production of CDT by a common regulatory mechanism. Collectively, our results establish CdtR as an important virulence regulator in two clinically important, epidemic strains of C. difficile, and further highlights the need to investigate regulatory mechanisms of important virulence factors in diverse strain backgrounds.
Collapse
|
42
|
Characterization of Clostridium difficile Strains in British Columbia, Canada: A Shift from NAP1 Majority (2008) to Novel Strain Types (2013) in One Region. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2016; 2016:8207418. [PMID: 27366181 PMCID: PMC4904575 DOI: 10.1155/2016/8207418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022]
Abstract
Background. Clostridium difficile is a major cause of gastrointestinal illness. Epidemic NAP1 strains contain toxins A and B, a deletion in repressor tcdC, and a binary toxin. Objectives. To determine the molecular epidemiology of C. difficile in British Columbia and compare between two time points in one region. Methods. C. difficile isolates from hospital and community laboratories (2008) and one Island Health hospital laboratory (2013) were characterized by pulsed-field gel electrophoresis, PCR-ribotyping, toxin possession, tcdC genotype, and antimicrobial susceptibility. Results. In 2008, 42.7% of isolates had NAP1 designation. Hospital-collected isolates were associated with older patients and more NAP1 types. Unlike other isolates, most NAP1 isolates possessed binary toxin and a 19 bp loss in tcdC. All isolates were susceptible to metronidazole and vancomycin. A 2013 follow-up revealed a 28.9% decrease in NAP1 isolates and 20.0% increase in isolates without NAP designation in one region. Then, community-associated cases were seen in younger patients, while NAP types were evenly distributed. Isolates without NAP designation did not cluster with a PFGE pattern or ribotype. Conclusions. Evaluation of C. difficile infections within British Columbia revealed demographic associations, epidemiological shifts, and characteristics of strain types. Continuous surveillance of C. difficile will enable detection of emerging strains.
Collapse
|
43
|
Janoir C. Virulence factors of Clostridium difficile and their role during infection. Anaerobe 2016; 37:13-24. [DOI: 10.1016/j.anaerobe.2015.10.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 02/08/2023]
|
44
|
Luo Y, Huang C, Ye J, Fang W, Gu W, Chen Z, Li H, Wang X, Jin D. Genome Sequence and Analysis of Peptoclostridium difficile Strain ZJCDC-S82. Evol Bioinform Online 2016; 12:41-9. [PMID: 26823648 PMCID: PMC4727486 DOI: 10.4137/ebo.s32476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/18/2022] Open
Abstract
Peptoclostridium difficile (Clostridium difficile) is the major pathogen associated with infectious diarrhea in humans. Concomitant with the increased incidence of C. difficile infection worldwide, there is an increasing concern regarding this infection type. This study reports a draft assembly and detailed sequence analysis of C. difficile strain ZJCDC-S82. The de novo assembled genome was 4.19 Mb in size, which includes 4,013 protein-coding genes, 41 rRNA genes, and 84 tRNA genes. Along with the nuclear genome, we also assembled sequencing information for a single plasmid consisting of 11,930 nucleotides. Comparative genomic analysis of C. difficile ZJCDC-S82 and two other previously published strains, such as M120 and CD630, showed extensive similarity. Phylogenetic analysis revealed that genetic diversity among C. difficile strains was not influenced by geographic location. Evolutionary analysis suggested that four genes encoding surface proteins exhibited positive selection in C. difficile ZJCDC-S82. Codon usage analysis indicated that C. difficile ZJCDC-S82 had high codon usage bias toward A/U-ended codons. Furthermore, codon usage patterns in C. difficile ZJCDC-S82 were predominantly affected by mutation pressure. Our results provide detailed information pertaining to the C. difficile genome associated with a strain from mainland China. This analysis will facilitate the understanding of genomic diversity and evolution of C. difficile strains in this region.
Collapse
Affiliation(s)
- Yun Luo
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Chen Huang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Julian Ye
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wanjun Gu
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu, China
| | - Zhiping Chen
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Hui Li
- Shanghai Huirui Biotechnology Co., Ltd., Shanghai, China
| | - XianJun Wang
- Department of Laboratory Medicine, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Dazhi Jin
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| |
Collapse
|
45
|
Abstract
Clostridium difficile infection (CDI) is the leading cause of antimicrobial and health care-associated diarrhea in humans, presenting a significant burden to global health care systems. In the last 2 decades, PCR- and sequence-based techniques, particularly whole-genome sequencing (WGS), have significantly furthered our knowledge of the genetic diversity, evolution, epidemiology, and pathogenicity of this once enigmatic pathogen. C. difficile is taxonomically distinct from many other well-known clostridia, with a diverse population structure comprising hundreds of strain types spread across at least 6 phylogenetic clades. The C. difficile species is defined by a large diverse pangenome with extreme levels of evolutionary plasticity that has been shaped over long time periods by gene flux and recombination, often between divergent lineages. These evolutionary events are in response to environmental and anthropogenic activities and have led to the rapid emergence and worldwide dissemination of virulent clonal lineages. Moreover, genome analysis of large clinically relevant data sets has improved our understanding of CDI outbreaks, transmission, and recurrence. The epidemiology of CDI has changed dramatically over the last 15 years, and CDI may have a foodborne or zoonotic etiology. The WGS era promises to continue to redefine our view of this significant pathogen.
Collapse
|
46
|
Chen S, Sun C, Wang H, Wang J. The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins. Toxins (Basel) 2015; 7:5254-67. [PMID: 26633511 PMCID: PMC4690124 DOI: 10.3390/toxins7124874] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile (C. difficile) is the main cause of antibiotic-associated diarrhea prevailing in hospital settings. In the past decade, the morbidity and mortality of C. difficile infection (CDI) has increased significantly due to the emergence of hypervirulent strains. Toxin A (TcdA) and toxin B (TcdB), the two exotoxins of C. difficile, are the major virulence factors of CDI. The common mode of action of TcdA and TcdB is elicited by specific glucosylation of Rho-GTPase proteins in the host cytosol using UDP-glucose as a co-substrate, resulting in the inactivation of Rho proteins. Rho proteins are the key members in many biological processes and signaling pathways, inactivation of which leads to cytopathic and cytotoxic effects and immune responses of the host cells. It is supposed that Rho GTPases play an important role in the toxicity of C. difficile toxins. This review focuses on recent progresses in the understanding of functional consequences of Rho GTPases glucosylation induced by C. difficile toxins and the role of Rho GTPases in the toxicity of TcdA and TcdB.
Collapse
Affiliation(s)
- Shuyi Chen
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou 510006, China.
| | - Chunli Sun
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou 510006, China.
| | - Haiying Wang
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou 510006, China.
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology (SCUT), Guangzhou 510006, China.
| |
Collapse
|
47
|
Monot M, Eckert C, Lemire A, Hamiot A, Dubois T, Tessier C, Dumoulard B, Hamel B, Petit A, Lalande V, Ma L, Bouchier C, Barbut F, Dupuy B. Clostridium difficile: New Insights into the Evolution of the Pathogenicity Locus. Sci Rep 2015; 5:15023. [PMID: 26446480 PMCID: PMC4597214 DOI: 10.1038/srep15023] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/16/2015] [Indexed: 12/13/2022] Open
Abstract
The major virulence factors of Clostridium difficile are toxins A and B. These toxins are encoded by tcdA and tcdB genes, which form a pathogenicity locus (PaLoc) together with three additional genes that have been implicated in regulation (tcdR and tcdC) and secretion (tcdE). To date, the PaLoc has always been found in the same location and is replaced in non-toxigenic strains by a highly conserved 75/115 bp non-coding region. Here, we show new types of C. difficile pathogenicity loci through the genome analysis of three atypical clinical strains and describe for the first time a variant strain producing only toxin A (A+B−). Importantly, we found that the PaLoc integration sites of these three strains are located in the genome far from the usual single known PaLoc integration site. These findings allowed us to propose a new model of PaLoc evolution in which two “Mono-Toxin PaLoc” sites are merged to generate a single “Bi-Toxin PaLoc”.
Collapse
Affiliation(s)
- Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Catherine Eckert
- AP-HP, Hôpital Saint Antoine National Reference Laboratory for C. difficile, Paris, France.,UPMC Univ Paris 06, GRC n°2, Epidiff, Paris, France
| | - Astrid Lemire
- AP-HP, Hôpital Saint Antoine National Reference Laboratory for C. difficile, Paris, France.,UPMC Univ Paris 06, GRC n°2, Epidiff, Paris, France
| | - Audrey Hamiot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Thomas Dubois
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Carine Tessier
- AP-HP, Hôpital Saint Antoine National Reference Laboratory for C. difficile, Paris, France.,UPMC Univ Paris 06, GRC n°2, Epidiff, Paris, France
| | | | - Benjamin Hamel
- Hôpital de Villefranche-sur-Saône, Villefranche-sur-Saône, France
| | - Amandine Petit
- AP-HP, Hôpital Saint Antoine National Reference Laboratory for C. difficile, Paris, France.,UPMC Univ Paris 06, GRC n°2, Epidiff, Paris, France
| | - Valérie Lalande
- AP-HP, Hôpital Saint Antoine National Reference Laboratory for C. difficile, Paris, France.,UPMC Univ Paris 06, GRC n°2, Epidiff, Paris, France
| | - Laurence Ma
- Plate-forme Génomique, Institut Pasteur, Paris, France
| | | | - Frédéric Barbut
- AP-HP, Hôpital Saint Antoine National Reference Laboratory for C. difficile, Paris, France.,UPMC Univ Paris 06, GRC n°2, Epidiff, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| |
Collapse
|
48
|
Sekulovic O, Ospina Bedoya M, Fivian-Hughes AS, Fairweather NF, Fortier LC. The Clostridium difficile cell wall protein CwpV confers phase-variable phage resistance. Mol Microbiol 2015; 98:329-42. [PMID: 26179020 PMCID: PMC4737114 DOI: 10.1111/mmi.13121] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 01/21/2023]
Abstract
Bacteriophages are present in virtually all ecosystems, and bacteria have developed multiple antiphage strategies to counter their attacks. Clostridium difficile is an important pathogen causing severe intestinal infections in humans and animals. Here we show that the conserved cell-surface protein CwpV provides antiphage protection in C. difficile. This protein, for which the expression is phase-variable, is classified into five types, each differing in their repeat-containing C-terminal domain. When expressed constitutively from a plasmid or the chromosome of locked 'ON' cells of C. difficile R20291, CwpV conferred antiphage protection. Differences in the level of phage protection were observed depending on the phage morphological group, siphophages being the most sensitive with efficiency of plaquing (EOP) values of < 5 × 10(-7) for phages ϕCD38-2, ϕCD111 and ϕCD146. Protection against the myophages ϕMMP01 and ϕCD52 was weaker, with EOP values between 9.0 × 10(-3) and 1.1 × 10(-1). The C-terminal domain of CwpV carries the antiphage activity and its deletion, or part of it, significantly reduced the antiphage protection. CwpV does not affect phage adsorption, but phage DNA replication is prevented, suggesting a mechanism reminiscent of superinfection exclusion systems normally encoded on prophages. CwpV thus represents a novel ubiquitous host-encoded and phase-variable antiphage system in C. difficile.
Collapse
Affiliation(s)
- Ognjen Sekulovic
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Maicol Ospina Bedoya
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Amanda S Fivian-Hughes
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Neil F Fairweather
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Louis-Charles Fortier
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
49
|
Hargreaves KR, Otieno JR, Thanki A, Blades MJ, Millard AD, Browne HP, Lawley TD, Clokie MRJ. As Clear as Mud? Determining the Diversity and Prevalence of Prophages in the Draft Genomes of Estuarine Isolates of Clostridium difficile. Genome Biol Evol 2015; 7:1842-55. [PMID: 26019165 PMCID: PMC4524475 DOI: 10.1093/gbe/evv094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The bacterium Clostridium difficile is a significant cause of nosocomial infections worldwide. The pathogenic success of this organism can be attributed to its flexible genome which is characterized by the exchange of mobile genetic elements, and by ongoing genome evolution. Despite its pathogenic status, C. difficile can also be carried asymptomatically, and has been isolated from natural environments such as water and sediments where multiple strain types (ribotypes) are found in close proximity. These include ribotypes which are associated with disease, as well as those that are less commonly isolated from patients. Little is known about the genomic content of strains in such reservoirs in the natural environment. In this study, draft genomes have been generated for 13 C. difficile isolates from estuarine sediments including clinically relevant and environmental associated types. To identify the genetic diversity within this strain collection, whole-genome comparisons were performed using the assemblies. The strains are highly genetically diverse with regards to the C. difficile “mobilome,” which includes transposons and prophage elements. We identified a novel transposon-like element in two R078 isolates. Multiple, related and unrelated, prophages were detected in isolates across ribotype groups, including two novel prophage elements and those related to the transducing phage φC2. The susceptibility of these isolates to lytic phage infection was tested using a panel of characterized phages found from the same locality. In conclusion, estuarine sediments are a source of genetically diverse C. difficile strains with a complex network of prophages, which could contribute to the emergence of new strains in clinics.
Collapse
Affiliation(s)
- Katherine R Hargreaves
- Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom Department of Ecology and Evolutionary Biology, University of Arizona
| | - James R Otieno
- Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Anisha Thanki
- Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | - Matthew J Blades
- Bioinformatics and Biostatistics Analysis Support Hub (BBASH), Core Biotechnology Services, University of Leicester, United Kingdom
| | - Andrew D Millard
- Microbiology & Infection, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Hilary P Browne
- Microbial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Trevor D Lawley
- Microbial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Martha R J Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| |
Collapse
|
50
|
Genomic diversity of Clostridium difficile strains. Res Microbiol 2015; 166:353-60. [DOI: 10.1016/j.resmic.2015.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/15/2015] [Accepted: 02/04/2015] [Indexed: 02/04/2023]
|