1
|
Willett JLE, Dunny GM. Insights into ecology, pathogenesis, and biofilm formation of Enterococcus faecalis from functional genomics. Microbiol Mol Biol Rev 2025; 89:e0008123. [PMID: 39714182 PMCID: PMC11948497 DOI: 10.1128/mmbr.00081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYEnterococcus faecalis is a significant resident of the gastrointestinal tract of most animals, including humans. Although generally non-pathogenic in healthy hosts, this microbe is adept at the exploitation of compromises in host immune functions, resulting in life-threatening opportunistic infections whose treatments are complicated by a high degree of intrinsic and acquired resistance to antimicrobial chemotherapy. Historically, progress in enterococcal research was limited by a lack of experimental models that replicate natural infection pathways and the relevance of in vitro studies to the natural biology of the organism. In this review, we summarize the history of enterococcal research during the 20th and early 21st centuries and describe more recent genetic and genomic tools and screens developed to address challenges in the field. We also describe how the results of recent studies reveal the importance of previously uncharacterized enterococcal genes, and we provide examples of interesting determinants that have emerged as important contributors to enterococcal biology. These factors may also serve as targets for future vaccines and chemotherapeutic agents to combat life-threatening hospital infections.
Collapse
Affiliation(s)
- Julia L. E. Willett
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Gary M. Dunny
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Ho FK, Lam LN, Matysik A, Watts TD, Wong JJ, Chong KKL, Choo PY, Tolar J, Low PM, Chua ZS, Paxman JJ, Heras B, Marsili E, Ajo-Franklin CM, Kline KA. Role of sortase-assembled Ebp pili in Enterococcus faecalis adhesion to iron oxides and its impact on extracellular electron transfer. Microbiol Spectr 2025; 13:e0233724. [PMID: 39902984 PMCID: PMC11878085 DOI: 10.1128/spectrum.02337-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Enterococcus faecalis sortase-assembled endocarditis and biofilm-associated pili (Ebp) are virulence factors implicated in enterococcal biofilm-associated infections and gastrointestinal colonization. We previously showed that E. faecalis biofilm metabolism is influenced by extracellular electron transfer (EET) under iron-rich conditions, raising the question of whether Ebp pili also play a role in EET. Here, we report a novel role of Ebp pili in E. faecalis adhesion to the iron oxides magnetite, goethite, and hematite, where the EbpA tip adhesin contributes to this interaction. Adhesion by Ebp pili is conditionally important for EET to iron oxides, as pilus mutants are attenuated in EET under non-static growth conditions. In alignment with the established role of EET in redox homeostasis, we find that EET to ferricyanide supports E. faecalis anaerobic growth on glycerol. Furthermore, in an antibiotic-treated mouse gastrointestinal colonization model, we show that E. faecalis mutants deficient in EET poorly colonize the intestinal niche. Taken together, our findings suggest that Ebp pili can influence E. faecalis metabolic fitness by promoting EET to iron oxides, raising new questions about how Ebp pili shape E. faecalis interactions with environmental ecosystems. Additionally, the important role of EET in E. faecalis colonization of the dysbiotic gastrointestinal environment highlights the need for further inquiry into how EET contributes to E. faecalis microbial pathogenesis. IMPORTANCE In this study, we explored the interplay between extracellular electron transfer (EET) and an Enterococcus faecalis biofilm factor, the endocarditis and biofilm-associated pili (Ebp). We demonstrate that Ebp pili have a novel role in adhesion to iron oxides, which consequently promotes EET to iron oxides under non-static conditions. Along with our findings that E. faecalis EET can be coupled to anaerobic cell growth, our results point to a potential ecological role of Ebp pili in natural environments, outside of its established function in adhesion to host ligands. We provide the first evidence of the contribution of EET to E. faecalis colonization of the antibiotic-treated murine intestinal niche, which adds to the limited experimental evidence linking EET and microbial pathogenesis, as well as highlights the need for further studies of EET in bacterial pathogens.
Collapse
Affiliation(s)
- Foo Kiong Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ling Ning Lam
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Artur Matysik
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Thomas Dean Watts
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jun Jie Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kelvin Kian Long Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Joe Tolar
- Department of BioSciences, Biomolecular Engineering Rice University, Houston, Texas, USA
| | - Pui Man Low
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zhi Sheng Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Australia
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, Australia
| | - Enrico Marsili
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Caroline M. Ajo-Franklin
- Department of BioSciences, Biomolecular Engineering Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Partipilo G, Bowman EK, Palmer EJ, Gao Y, Ridley RS, Alper HS, Keitz BK. Single-cell phenotyping of extracellular electron transfer via microdroplet encapsulation. Appl Environ Microbiol 2025; 91:e0246524. [PMID: 39807859 PMCID: PMC11784080 DOI: 10.1128/aem.02465-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET. Here, we describe the development of a microdroplet emulsion system to sort and enrich EET-capable organisms from complex populations. We validated our system using the model electrogen Shewanella oneidensis and described the tooling of a benchtop microfluidic system for oxygen-limited conditions. We demonstrated the enrichment of strains exhibiting electroactive phenotypes from mixed wild-type and EET-deficient populations. As a proof-of-concept application, we collected samples from iron sedimentation in Town Lake (Austin, TX) and subjected them to microdroplet enrichment. We measured an increase in electroactive organisms in the sorted population that was distinct compared to a population growing in bulk culture with Fe(III) as the sole electron acceptor. Finally, two bacterial species not previously shown to be EET-capable, Cronobacter sakazakii and Vagococcus fessus, were further cultured and characterized for electroactivity. Our results demonstrate the utility of microdroplet emulsions for isolating and identifying EET-capable bacteria.IMPORTANCEThis work outlines a new high-throughput method for identifying electroactive bacteria from mixed populations. Electroactive bacteria play key roles in iron trafficking, soil remediation, and pollutant degradation. Many existing methods for identifying electroactive bacteria are coupled to microbial growth and fitness-as a result, the contributions from weak or poor-growing electrogens are often muted. However, extracellular electron transfer (EET) has historically been difficult to study in high-throughput in a mixed population since extracellular reduction is challenging to trace back to the parent cell and there are no suitable fluorescent readouts for EET. Our method circumvents these challenges by utilizing an aqueous microdroplet emulsion wherein a single cell is statistically isolated in a pico- to nano-liter-sized droplet. Then, via fluorescence obtained from copper reduction, the mixed population can be fluorescently sorted and gated by performance. Utilizing our technique, we characterize two previously unrecognized weak electrogens Vagococcus fessus and Cronobacter sakazakii.
Collapse
Affiliation(s)
- Gina Partipilo
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Emily K. Bowman
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas, USA
| | - Emma J. Palmer
- Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Yang Gao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Rodney S. Ridley
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Hal S. Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Benjamin K. Keitz
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Lustermans JJM, Sereika M, Burdorf LDW, Albertsen M, Schramm A, Marshall IPG. Extracellular electron transfer genes expressed by candidate flocking bacteria in cable bacteria sediment. mSystems 2025; 10:e0125924. [PMID: 39699221 PMCID: PMC11748539 DOI: 10.1128/msystems.01259-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Cable bacteria, filamentous sulfide oxidizers that live in sulfidic sediments, are at times associated with large flocks of swimming bacteria. It has been proposed that these flocks of bacteria transport electrons extracellularly to cable bacteria via an electron shuttle intermediate, but the identity and activity of these bacteria in freshwater sediment remain mostly uninvestigated. Here, we elucidate the electron exchange capabilities of the bacterial community by coupling metagenomics and metatranscriptomics to 16S rRNA amplicon-based correlations with cable bacteria over 155 days. We identified candidate flocking bacteria as bacteria containing genes for motility and extracellular electron transfer including synthesis genes for potential extracellular electron shuttles: phenazines and flavins. Based on these criteria, 22 MAGs were from candidate flockers, which constituted 21.4% of all 103 MAGs. Of the candidate flocking bacteria, 42.1% expressed extracellular electron transfer genes. The proposed flockers belonged to a large variety of metabolically versatile taxonomic groups: 18 genera spread across nine phyla. Our data suggest that cable bacteria in freshwater sediments engage in electric relationships with diverse exoelectrogenic microbes. This community, found in deeper anoxic sediment layers, is involved in sulfur, carbon, and metal (in particular Fe) cycling and indirectly utilizes oxygen here by extracellularly transferring electrons to cable bacteria. IMPORTANCE Cable bacteria are ubiquitous, filamentous bacteria that couple sulfide oxidation to the reduction of oxygen at up to centimeter distances in sediment. Cable bacterial impact extends beyond sulfide oxidation via interactions with other bacteria that flock around cable bacteria and use them as electron acceptor "shortcut" to oxygen. The exact nature of this interspecies electric interaction remained unknown. With metagenomics and metatranscriptomics, we determined what extracellular electron transport processes co-occur with cable bacteria, demonstrating the identity and metabolic capabilities of these potential flockers. In sediments, microbial activities are sharply divided into anaerobic and aerobic processes, with oxygen reaching only millimeters deep. Cable bacteria extend the influence of oxygen to several centimeters, revealing a new class of anaerobic microbial metabolism with cable bacteria as electron acceptors. This fundamentally changes our understanding of sediment microbial ecology with wide-reaching consequences for sulfur, metal (in particular Fe), and carbon cycling in freshwater and marine sediments.
Collapse
Affiliation(s)
- Jamie J. M. Lustermans
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Microbial Systems Technology Excellence Centre, University of Antwerp, Wilrijk, Belgium
- Department of Biology, Research Group Geobiology, University of Antwerp, Wilrijk, Belgium
| | - Mantas Sereika
- Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Laurine D. W. Burdorf
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Andreas Schramm
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Ian P. G. Marshall
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Su L, Marshall IPG, Teske AP, Yao H, Li J. Genomic characterization of the bacterial phylum Candidatus Effluviviacota, a cosmopolitan member of the global seep microbiome. mBio 2024; 15:e0099224. [PMID: 38980039 PMCID: PMC11323493 DOI: 10.1128/mbio.00992-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
The microbial communities of marine seep sediments contain unexplored physiological and phylogenetic diversity. Here, we examined 30 bacterial metagenome-assembled genomes (MAGs) from cold seeps in the South China Sea, the Indian Ocean, the Scotian Basin, and the Gulf of Mexico, as well as from deep-sea hydrothermal sediments in the Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct phylum-level bacterial lineage, which we propose as a new phylum, Candidatus Effluviviacota, in reference to its preferential occurrence at diverse seep areas. Based on tightly clustered high-quality MAGs, we propose two new genus-level candidatus taxa, Candidatus Effluvivivax and Candidatus Effluvibates. Genomic content analyses indicate that Candidatus Effluviviacota are chemoheterotrophs that harbor the Embden-Meyerhof-Parnas glycolysis pathway. They gain energy by fermenting organic substrates. Additionally, they display potential capabilities for the degradation of cellulose, hemicellulose, starch, xylan, and various peptides. Extracellular anaerobic respiration appears to rely on metals as electron acceptors, with electron transfer primarily mediated by multiheme cytochromes and by a flavin-based extracellular electron transfer (EET) mechanism that involves NADH-quinone oxidoreductase-demethylmenaquinone-synthesizing enzymes, uncharacterized membrane proteins, and flavin-binding proteins, also known as the NUO-DMK-EET-FMN complex. The heterogeneity within the Ca. Effluviviacota phylum suggests varying roles in energy metabolism among different genera. While NUO-DMK-EET-FMN electron transfer has been reported predominantly in Gram-positive bacteria, it is now identified in Ca. Effluviviacota as well. We detected the presence of genes associated with bacterial microcompartments in Ca. Effluviviacota, which can promote specific metabolic processes and protect the cytosol from toxic intermediates. IMPORTANCE The newly discovered bacterial phylum Candidatus Effluviviacota is widespread across diverse seepage ecosystems, marine environments, and freshwater environments, with a notable preference for cold seeps. While maintaining an average abundance of approximately 1% in the global gene catalog of cold seep habitats, it has not hitherto been characterized. The metabolic versatility of Ca. Effluviviacota in anaerobic carbon, hydrogen, and metal cycling aligns with its prevalence in anoxic niches, with a preference for cold seep environments. Variations in metabolic potential between Ca. Effluvivivax and Ca. Effluvibates may contribute to shaping their respective habitat distributions.
Collapse
Affiliation(s)
- Lei Su
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
- Department of Biology, Center for Electromicrobiology (CEM), Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Ian P. G. Marshall
- Department of Biology, Center for Electromicrobiology (CEM), Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Andreas P. Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Huiqiang Yao
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Guangzhou, China
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Brunson DN, Lemos JA. Heme utilization by the enterococci. FEMS MICROBES 2024; 5:xtae019. [PMID: 39070772 PMCID: PMC11282960 DOI: 10.1093/femsmc/xtae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/02/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Heme consists of a tetrapyrrole ring ligating an iron ion and has important roles in biological systems. While well-known as the oxygen-binding molecule within hemoglobin of mammals, heme is also cofactor for several enzymes and a major iron source for bacteria within the host. The enterococci are a diverse group of Gram-positive bacteria that exist primarily within the gastrointestinal tract of animals. However, some species within this genus can transform into formidable opportunistic pathogens, largely owing to their extraordinary adaptability to hostile environments. Although enterococci cannot synthesize heme nor depend on heme to grow, several species within the genus encode proteins that utilize heme as a cofactor, which appears to increase their fitness and ability to thrive in challenging environments. This includes more efficient energy generation via aerobic respiration and protection from reactive oxygen species. Here, we review the significance of heme to enterococci, primarily the major human pathogen Enterococcus faecalis, use bioinformatics to assess the prevalence of hemoproteins throughout the genus, and highlight recent studies that underscore the central role of the heme-E. faecalis relationship in host-pathogen dynamics and interspecies bacterial interactions.
Collapse
Affiliation(s)
- Debra N Brunson
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, United States
| | - José A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, United States
| |
Collapse
|
7
|
Partipilo G, Bowman EK, Palmer EJ, Gao Y, Ridley RS, Alper HS, Keitz BK. Single-Cell Phenotyping of Extracellular Electron Transfer via Microdroplet Encapsulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598847. [PMID: 38915652 PMCID: PMC11195189 DOI: 10.1101/2024.06.13.598847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes. Studying this phenomenon in high-throughput is challenging since extracellular reduction cannot easily be traced back to its cell of origin within a mixed population. Here, we describe the development of a microdroplet emulsion system to enrich EET-capable organisms. We validated our system using the model electroactive organism S. oneidensis and describe the tooling of a benchtop microfluidic system for oxygen-limited processes. We demonstrated enrichment of EET-capable phenotypes from a mixed wild-type and EET-knockout population. As a proof-of-concept application, bacteria were collected from iron sedimentation from Town Lake (Austin, TX) and subjected to microdroplet enrichment. We observed an increase in EET-capable organisms in the sorted population that was distinct when compared to a population enriched in a bulk culture more closely akin to traditional techniques for discovering EET-capable bacteria. Finally, two bacterial species, C. sakazakii and V. fessus not previously shown to be electroactive, were further cultured and characterized for their ability to reduce channel conductance in an organic electrochemical transistor (OECT) and to reduce soluble Fe(III). We characterized two bacterial species not previously shown to exhibit electrogenic behavior. Our results demonstrate the utility of a microdroplet emulsions for identifying putative EET-capable bacteria and how this technology can be leveraged in tandem with existing methods.
Collapse
Affiliation(s)
- Gina Partipilo
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Emily K. Bowman
- Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, TX, 78712
| | - Emma J. Palmer
- Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Yang Gao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Rodney S. Ridley
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Hal S. Alper
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Benjamin K. Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| |
Collapse
|
8
|
Gu L, Zhao S, Tadesse BT, Zhao G, Solem C. Scrutinizing a Lactococcus lactis mutant with enhanced capacity for extracellular electron transfer reveals a unique role for a novel type-II NADH dehydrogenase. Appl Environ Microbiol 2024; 90:e0041424. [PMID: 38563750 PMCID: PMC11107169 DOI: 10.1128/aem.00414-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Lactococcus lactis, a lactic acid bacterium used in food fermentations and commonly found in the human gut, is known to possess a fermentative metabolism. L. lactis, however, has been demonstrated to transfer metabolically generated electrons to external electron acceptors, a process termed extracellular electron transfer (EET). Here, we investigated an L. lactis mutant with an unusually high capacity for EET that was obtained in an adaptive laboratory evolution (ALE) experiment. First, we investigated how global gene expression had changed, and found that amino acid metabolism and nucleotide metabolism had been affected significantly. One of the most significantly upregulated genes encoded the NADH dehydrogenase NoxB. We found that this upregulation was due to a mutation in the promoter region of NoxB, which abolished carbon catabolite repression. A unique role of NoxB in EET could be attributed and it was directly verified, for the first time, that NoxB could support respiration in L. lactis. NoxB, was shown to be a novel type-II NADH dehydrogenase that is widely distributed among gut microorganisms. This work expands our understanding of EET in Gram-positive electroactive microorganisms and the special significance of a novel type-II NADH dehydrogenase in EET.IMPORTANCEElectroactive microorganisms with extracellular electron transfer (EET) ability play important roles in biotechnology and ecosystems. To date, there have been many investigations aiming at elucidating the mechanisms behind EET, and determining the relevance of EET for microorganisms in different niches. However, how EET can be enhanced and harnessed for biotechnological applications has been less explored. Here, we compare the transcriptomes of an EET-enhanced L. lactis mutant with its parent and elucidate the underlying reason for its superior performance. We find that one of the most significantly upregulated genes is the gene encoding the NADH dehydrogenase NoxB, and that upregulation is due to a mutation in the catabolite-responsive element that abolishes carbon catabolite repression. We demonstrate that NoxB has a special role in EET, and furthermore show that it supports respiration to oxygen, which has never been done previously. In addition, a search reveals that this novel NoxB-type NADH dehydrogenase is widely distributed among gut microorganisms.
Collapse
Affiliation(s)
- Liuyan Gu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shuangqing Zhao
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Ge Zhao
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Yamamoto Y. Roles of flavoprotein oxidase and the exogenous heme- and quinone-dependent respiratory chain in lactic acid bacteria. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:183-191. [PMID: 38966056 PMCID: PMC11220326 DOI: 10.12938/bmfh.2024-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Lactic acid bacteria (LAB) are a type of bacteria that convert carbohydrates into lactate through fermentation metabolism. While LAB mainly acquire energy through this anaerobic process, they also have oxygen-consuming systems, one of which is flavoprotein oxidase and the other is exogenous heme- or heme- and quinone-dependent respiratory metabolism. Over the past two decades, research has contributed to the understanding of the roles of these oxidase machineries, confirming their suspected roles and uncovering novel functions. This review presents the roles of these oxidase machineries, which are anticipated to be critical for the future applications of LAB in industry and comprehending the virulence of pathogenic streptococci.
Collapse
Affiliation(s)
- Yuji Yamamoto
- Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, 23-35-1 Higashi, Towada, Aomori 034-8628, Japan
| |
Collapse
|
10
|
Jia B, Wan J, Liu H, Yan B, Zhang L, Su X. DIET-like and MIET-like mutualism of S. oneidensis MR-1 and metal-reducing function microflora boosts Cr(VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133401. [PMID: 38171202 DOI: 10.1016/j.jhazmat.2023.133401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Microbial treatment of Cr(VI) is an environmentally friendly and low-cost approach. However, the mechanism of mutualism and the role of interspecies electron transfer in Cr(VI) reducing microflora are unclear. Herein, we constructed an intersymbiotic microbial association flora to augment interspecies electron transfer via functionalizing electroactive Shewanella oneidensis MR-1 with metal-reducing microflora, and thus the efficiency of Cr(VI) reduction. The findings suggest that the metal-reducing active microflora could converts glucose into lactic acid and riboflavin for S. oneidensis MR-1 to act as a carbon source and electron mediator. Thus, when adding initial 25 mg/L Cr (VI), this microflora exhibited an outstanding Cr (VI) removal efficiency (100%) at 12 h and elevated Cr (III) immobilization efficiency (80%) at 60 h with the assistance of 25 mg/L Cu(II). A series of electrochemical experiments proved this remarkable removal efficiency were ascribed to the improved interspecies electron transfer efficiency through direct interspecies electron transfer and riboflavin through mediated interspecies electron transfer. Furthermore, the metagenomic analysis revealed the expression level of the electron transport pathway was promoted. Intriguing high abundance of genes participating in the bio-reduction and biotransformation of Cr(VI) was also observed in functional microflora. These outcomes give a novel strategy for enhancing the reduction and fixation of harmful heavy metals by coculturing function microflora with electrogenic microorganisms.
Collapse
Affiliation(s)
- Boyu Jia
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Juanjuan Wan
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Hui Liu
- Huadian Coal Industry Group Co., Ltd, Beijing 100035, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lijuan Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
11
|
Stevens ET, Van Beeck W, Blackburn B, Tejedor-Sanz S, Rasmussen ARM, Carter ME, Mevers E, Ajo-Franklin CM, Marco ML. Lactiplantibacillus plantarum uses ecologically relevant, exogenous quinones for extracellular electron transfer. mBio 2023; 14:e0223423. [PMID: 37982640 PMCID: PMC10746273 DOI: 10.1128/mbio.02234-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE While quinones are essential for respiratory microorganisms, their importance for microbes that rely on fermentation metabolism is not understood. This gap in knowledge hinders our understanding of anaerobic microbial habitats, such in mammalian digestive tracts and fermented foods. We show that Lactiplantibacillus plantarum, a model fermentative lactic acid bacteria species abundant in human, animal, and insect microbiomes and fermented foods, uses multiple exogenous, environmental quinones as electron shuttles for a hybrid metabolism involving EET. Interestingly, quinones both stimulate this metabolism as well as cause oxidative stress when extracellular electron acceptors are absent. We also found that quinone-producing, lactic acid bacteria species commonly enriched together with L. plantarum in food fermentations accelerate L. plantarum growth and medium acidification through a mainly quinone- and EET-dependent mechanism. Thus, our work provides evidence of quinone cross-feeding as a key ecological feature of anaerobic microbial habitats.
Collapse
Affiliation(s)
- Eric T. Stevens
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| | - Wannes Van Beeck
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| | - Benjamin Blackburn
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Sara Tejedor-Sanz
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Alycia R. M. Rasmussen
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| | - Mackenzie E. Carter
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| | - Emily Mevers
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Caroline M. Ajo-Franklin
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Biosciences, Rice University, Houston, USA
| | - Maria L. Marco
- Department of Food Science and Technology, University of California‐Davis, Davis, California, USA
| |
Collapse
|
12
|
Tejedor-Sanz S, Li S, Kundu BB, Ajo-Franklin CM. Extracellular electron uptake from a cathode by the lactic acid bacterium Lactiplantibacillus plantarum. Front Microbiol 2023; 14:1298023. [PMID: 38075918 PMCID: PMC10701730 DOI: 10.3389/fmicb.2023.1298023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/03/2023] [Indexed: 01/28/2024] Open
Abstract
A subset of microorganisms that perform respiration can endogenously utilize insoluble electron donors, such as Fe(II) or a cathode, in a process called extracellular electron transfer (EET). However, it is unknown whether similar endogenous EET can be performed by primarily fermentative species like lactic acid bacteria. We report for the first time electron uptake from a cathode by Lactiplantibacillus plantarum, a primarily fermentative bacteria found in the gut of mammals and in fermented foods. L. plantarum consumed electrons from a cathode and coupled this oxidation to the reduction of both an endogenous organic (pyruvate) and an exogenous inorganic electron acceptor (nitrate). This electron uptake from a cathode reroutes glucose fermentation toward lactate degradation and provides cells with a higher viability upon sugar exhaustion. Moreover, the associated genes and cofactors indicate that this activity is mechanistically different from that one employed by lactic acid bacteria to reduce an anode and to perform respiration. Our results expand our knowledge of the diversity of electroactive species and of the metabolic and bioenergetic strategies used by lactic acid bacteria.
Collapse
Affiliation(s)
- Sara Tejedor-Sanz
- Department of BioSciences, Rice University, Houston, TX, United States
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Siliang Li
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Biki Bapi Kundu
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
| | - Caroline M. Ajo-Franklin
- Department of BioSciences, Rice University, Houston, TX, United States
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
13
|
Klein EM, Knoll MT, Gescher J. Microbe-Anode Interactions: Comparing the impact of genetic and material engineering approaches to improve the performance of microbial electrochemical systems (MES). Microb Biotechnol 2023; 16:1179-1202. [PMID: 36808480 PMCID: PMC10221544 DOI: 10.1111/1751-7915.14236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/20/2023] Open
Abstract
Microbial electrochemical systems (MESs) are a highly versatile platform technology with a particular focus on power or energy production. Often, they are used in combination with substrate conversion (e.g., wastewater treatment) and production of value-added compounds via electrode-assisted fermentation. This rapidly evolving field has seen great improvements both technically and biologically, but this interdisciplinarity sometimes hampers overseeing strategies to increase process efficiency. In this review, we first briefly summarize the terminology of the technology and outline the biological background that is essential for understanding and thus improving MES technology. Thereafter, recent research on improvements at the biofilm-electrode interface will be summarized and discussed, distinguishing between biotic and abiotic approaches. The two approaches are then compared, and resulting future directions are discussed. This mini-review therefore provides basic knowledge of MES technology and the underlying microbiology in general and reviews recent improvements at the bacteria-electrode interface.
Collapse
Affiliation(s)
- Edina M. Klein
- Institute of Technical MicrobiologyUniversity of Technology HamburgHamburgGermany
| | - Melanie T. Knoll
- Institute of Technical MicrobiologyUniversity of Technology HamburgHamburgGermany
| | - Johannes Gescher
- Institute of Technical MicrobiologyUniversity of Technology HamburgHamburgGermany
| |
Collapse
|
14
|
Verma M, Singh V, Mishra V. Moving towards the enhancement of extracellular electron transfer in electrogens. World J Microbiol Biotechnol 2023; 39:130. [PMID: 36959310 DOI: 10.1007/s11274-023-03582-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Electrogens are very common in nature and becoming a contemporary theme for research as they can be exploited for extracellular electron transfer. Extracellular electron transfer is the key mechanism behind bioelectricity generation and bioremediation of pollutants via microbes. Extracellular electron transfer mechanisms for electrogens other than Shewanella and Geobacter are less explored. An efficient extracellular electron transfer system is crucial for the sustainable future of bioelectrochemical systems. At present, the poor extracellular electron transfer efficiency remains a decisive factor in limiting the development of efficient bioelectrochemical systems. In this review article, the EET mechanisms in different electrogens (bacteria and yeast) have been focused. Apart from the well-known electron transfer mechanisms of Shewanella oneidensis and Geobacter metallireducens, a brief introduction of the EET pathway in Rhodopseudomonas palustris TIE-1, Sideroxydans lithotrophicus ES-1, Thermincola potens JR, Lysinibacillus varians GY32, Carboxydothermus ferrireducens, Enterococcus faecalis and Saccharomyces cerevisiae have been included. In addition to this, the article discusses the several approaches to anode modification and genetic engineering that may be used in order to increase the rate of extracellular electron transfer. In the side lines, this review includes the engagement of the electrogens for different applications followed by the future perspective of efficient extracellular electron transfer.
Collapse
Affiliation(s)
- Manisha Verma
- School of Biochemical Engineering, IIT (BHU), 221005, Varanasi, India
| | - Vishal Singh
- School of Biochemical Engineering, IIT (BHU), 221005, Varanasi, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT (BHU), 221005, Varanasi, India.
| |
Collapse
|
15
|
Gu L, Xiao X, Zhao G, Kempen P, Zhao S, Liu J, Lee SY, Solem C. Rewiring the respiratory pathway of Lactococcus lactis to enhance extracellular electron transfer. Microb Biotechnol 2023; 16:1277-1292. [PMID: 36860178 DOI: 10.1111/1751-7915.14229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/22/2023] [Indexed: 03/03/2023] Open
Abstract
Lactococcus lactis, a lactic acid bacterium with a typical fermentative metabolism, can also use oxygen as an extracellular electron acceptor. Here we demonstrate, for the first time, that L. lactis blocked in NAD+ regeneration can use the alternative electron acceptor ferricyanide to support growth. By electrochemical analysis and characterization of strains carrying mutations in the respiratory chain, we pinpoint the essential role of the NADH dehydrogenase and 2-amino-3-carboxy-1,4-naphtoquinone in extracellular electron transfer (EET) and uncover the underlying pathway systematically. Ferricyanide respiration has unexpected effects on L. lactis, e.g., we find that morphology is altered from the normal coccoid to a more rod shaped appearance, and that acid resistance is increased. Using adaptive laboratory evolution (ALE), we successfully enhance the capacity for EET. Whole-genome sequencing reveals the underlying reason for the observed enhanced EET capacity to be a late-stage blocking of menaquinone biosynthesis. The perspectives of the study are numerous, especially within food fermentation and microbiome engineering, where EET can help relieve oxidative stress, promote growth of oxygen sensitive microorganisms and play critical roles in shaping microbial communities.
Collapse
Affiliation(s)
- Liuyan Gu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Ge Zhao
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Paul Kempen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.,National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shuangqing Zhao
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jianming Liu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
16
|
Rivera-Lugo R, Huang S, Lee F, Méheust R, Iavarone AT, Sidebottom AM, Oldfield E, Portnoy DA, Light SH. Distinct Energy-Coupling Factor Transporter Subunits Enable Flavin Acquisition and Extracytosolic Trafficking for Extracellular Electron Transfer in Listeria monocytogenes. mBio 2023; 14:e0308522. [PMID: 36744898 PMCID: PMC9973259 DOI: 10.1128/mbio.03085-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 02/07/2023] Open
Abstract
A variety of electron transfer mechanisms link bacterial cytosolic electron pools with functionally diverse redox activities in the cell envelope and extracellular space. In Listeria monocytogenes, the ApbE-like enzyme FmnB catalyzes extracytosolic protein flavinylation, covalently linking a flavin cofactor to proteins that transfer electrons to extracellular acceptors. L. monocytogenes uses an energy-coupling factor (ECF) transporter complex that contains distinct substrate-binding, transmembrane, ATPase A, and ATPase A' subunits (RibU, EcfT, EcfA, and EcfA') to import environmental flavins, but the basis of extracytosolic flavin trafficking for FmnB flavinylation remains poorly defined. In this study, we show that the EetB and FmnA proteins are related to ECF transporter substrate-binding and transmembrane subunits, respectively, and are essential for exporting flavins from the cytosol for flavinylation. Comparisons of the flavin import versus export capabilities of L. monocytogenes strains lacking different ECF transporter subunits demonstrate a strict directionality of substrate-binding subunit transport but partial functional redundancy of transmembrane and ATPase subunits. Based on these results, we propose that ECF transporter complexes with different subunit compositions execute directional flavin import/export through a broadly conserved mechanism. Finally, we present genomic context analyses that show that related ECF exporter genes are distributed across members of the phylum Firmicutes and frequently colocalize with genes encoding flavinylated extracytosolic proteins. These findings clarify the basis of ECF transporter export and extracytosolic flavin cofactor trafficking in Firmicutes. IMPORTANCE Bacteria import vitamins and other essential compounds from their surroundings but also traffic related compounds from the cytosol to the cell envelope where they serve various functions. Studying the foodborne pathogen Listeria monocytogenes, we find that the modular use of subunits from a prominent class of bacterial transporters enables the import of environmental vitamin B2 cofactors and the extracytosolic trafficking of a vitamin B2-derived cofactor that facilitates redox reactions in the cell envelope. These studies clarify the basis of bidirectional small-molecule transport across the cytoplasmic membrane and the assembly of redox-active proteins within the cell envelope and extracellular space.
Collapse
Affiliation(s)
- Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Shuo Huang
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Frank Lee
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Raphaël Méheust
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Anthony T. Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, California, USA
| | | | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Samuel H. Light
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
17
|
The Differing Roles of Flavins and Quinones in Extracellular Electron Transfer in Lactiplantibacillus plantarum. Appl Environ Microbiol 2023; 89:e0131322. [PMID: 36533923 PMCID: PMC9888254 DOI: 10.1128/aem.01313-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lactiplantibacillus plantarum is a lactic acid bacterium that is commonly found in the human gut and fermented food products. Despite its overwhelmingly fermentative metabolism, this microbe can perform extracellular electron transfer (EET) when provided with an exogenous quinone, 1,4-dihydroxy-2-naphthoic acid (DHNA), and riboflavin. However, the separate roles of DHNA and riboflavin in EET in L. plantarum have remained unclear. Here, we seek to understand the role of quinones and flavins in EET by monitoring iron and anode reduction in the presence and absence of these small molecules. We found that addition of either DHNA or riboflavin can support robust iron reduction, indicating electron transfer to extracellular iron occurs through both flavin-dependent and DHNA-dependent routes. Using genetic mutants of L. plantarum, we found that flavin-dependent iron reduction requires Ndh2 and EetA, while DHNA-dependent iron reduction largely relies on Ndh2 and PplA. In contrast to iron reduction, DHNA-containing medium supported more robust anode reduction than riboflavin-containing medium, suggesting electron transfer to an anode proceeds most efficiently through the DHNA-dependent pathway. Furthermore, we found that flavin-dependent anode reduction requires EetA, Ndh2, and PplA, while DHNA-dependent anode reduction requires Ndh2 and PplA. Taken together, we identify multiple EET routes utilized by L. plantarum and show that the EET route depends on access to environmental biomolecules and on the electron acceptor. This work expands our molecular-level understanding of EET in Gram-positive microbes and provides additional opportunities to manipulate EET for biotechnology. IMPORTANCE Lactic acid bacteria are named because of their nearly exclusive fermentative metabolism. Thus, the recent observation of EET activity-typically associated with anaerobic respiration-in this class of organisms has forced researchers to rethink the rules governing microbial metabolic strategies. Our identification of multiple routes for EET in L. plantarum that depend on two different redox active small molecules expands our understanding of how microbes metabolically adapt to different environments to gain an energetic edge and how these processes can be manipulated for biotechnological uses. Understanding the role of EET in lactic acid bacteria is of great importance due to the significance of lactic acid bacteria in agriculture, bioremediation, food production, and gut health. Furthermore, the maintenance of multiple EET routes speaks to the importance of this process to function under a variety of environmental conditions.
Collapse
|
18
|
The Extracellular Electron Transport Pathway Reduces Copper for Sensing by the CopRS Two-Component System under Anaerobic Conditions in Listeria monocytogenes. J Bacteriol 2023; 205:e0039122. [PMID: 36622231 PMCID: PMC9879103 DOI: 10.1128/jb.00391-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The renowned antimicrobial activity of copper stems in part from its ability to undergo redox cycling between Cu1+/2+ oxidation states. Bacteria counter copper toxicity with a network of sensors that often include two-component signaling systems to direct transcriptional responses. As in typical two-component systems, ligand binding by the extracellular domain of the membrane bound copper sensor component leads to phosphorylation and activation of the cognate response regulator transcription factor. In Listeria monocytogenes, the plasmid-borne CopRS two-component system upregulates both copper resistance and lipoprotein remodeling genes upon copper challenge, but the oxidation state of copper bound by CopS is unknown. Herein, we show CopS utilizes a triad of key residues (His-His-Phe) that are predicted to be at the dimerization interface and that are analogous with the Escherichia coli CusS copper sensor to specifically bind Cu1+/Ag1+ and activate CopR transcription. We demonstrate Cu2+ only induces CopRS if first reduced by electron transport systems, as strains lacking menaquinone carriers were unable to respond to Cu2+. The flavin-dependent extracellular electron transport system (EET) was the main mechanism for metal reduction, capable of either generating inducing ligand (Cu2+ to Cu1+) or removing it by precipitation (Ag1+ to Ag0). We show that EET flux is directly proportional to the rate of Cu2+ reduction and that since EET activity is low under oxygenated conditions when a competing respiratory chain is operating, CopRS signaling in turn is activated only under anaerobic conditions. EET metal reduction thus sensitizes cells to copper while providing resistance to silver under anaerobic growth. IMPORTANCE Two-component extracellular copper sensing from the periplasm of Gram-negative bacteria has been well studied, but copper detection at the cell surface of the Gram-positive L. monocytogenes is less understood. Collectively, our results show that EET is most active under anaerobic conditions and reduces Cu2+ and Ag1+ to, respectively, generate or remove the monovalent ligands that directly bind to CopS and lead to the induction of lipoprotein remodeling genes. This reducing activity regulates CopRS signaling and links the upregulation of copper resistance genes with increasing EET flux. Our studies provide insight into how a two-component copper sensing system is integrated into a model monoderm Firmicute to take cues from the electron transport chain activity.
Collapse
|
19
|
Hederstedt L. Enterococcus faecalis NADH Peroxidase-Defective Mutants Stain Falsely in Colony Zymogram Assay for Extracellular Electron Transfer to Ferric Ions. Microorganisms 2022; 11:106. [PMID: 36677398 PMCID: PMC9864754 DOI: 10.3390/microorganisms11010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Enterococcus faecalis cells can reduce ferric ions and other electron acceptors by extracellular electron transfer (EET). To find mutants with enhanced or defective EET, strain OG1RF with random transposon insertions in the chromosome was screened for ferric reductase activity by colony zymogram staining using the chromogenic ferrous-chelating compound Ferrozine. The screen revealed npr, eetB, and ndh3 mutants. The aberrant ferric reductase phenotype of Npr (NADH peroxidase)-defective mutants was found to be a property of colonies and not apparent with washed cells grown in liquid culture. EetB- and Ndh3-defective mutants, in contrast, consistently showed low ferric reductase activity. It is concluded that colony zymogram staining for ferric reductase activity using Ferrozine can be misleading, especially through false negative results. It is suggested that hydrogen peroxide produced in the colony quenches the zymogram staining. In addition, it is demonstrated that the negative effect of heme on EET to ferric ion in E. faecalis is relieved by cytochrome bd deficiency. The findings can help to identify bacteria with EET ability and contribute to our understanding of EET in Gram-positive bacteria and the physiology of E. faecalis.
Collapse
Affiliation(s)
- Lars Hederstedt
- The Microbiology Group, Department of Biology, Lund University, Sölvegatan 21, SE 223 62 Lund, Sweden
| |
Collapse
|
20
|
Ch'ng JH, Muthu M, Chong KKL, Wong JJ, Tan CAZ, Koh ZJS, Lopez D, Matysik A, Nair ZJ, Barkham T, Wang Y, Kline KA. Heme cross-feeding can augment Staphylococcus aureus and Enterococcus faecalis dual species biofilms. THE ISME JOURNAL 2022; 16:2015-2026. [PMID: 35589966 PMCID: PMC9296619 DOI: 10.1038/s41396-022-01248-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022]
Abstract
The contribution of biofilms to virulence and as a barrier to treatment is well-established for Staphylococcus aureus and Enterococcus faecalis, both nosocomial pathogens frequently isolated from biofilm-associated infections. Despite frequent co-isolation, their interactions in biofilms have not been well-characterized. We report that in combination, these two species can give rise to augmented biofilms biomass that is dependent on the activation of E. faecalis aerobic respiration. In E. faecalis, respiration requires both exogenous heme to activate the cydAB-encoded heme-dependent cytochrome bd, and the availability of O2. We determined that the ABC transporter encoded by cydDC contributes to heme import. In dual species biofilms, S. aureus provides the heme to activate E. faecalis respiration. S. aureus mutants deficient in heme biosynthesis were unable to augment biofilms whereas heme alone is sufficient to augment E. faecalis mono-species biofilms. Our results demonstrate that S. aureus-derived heme, likely in the form of released hemoproteins, promotes E. faecalis biofilm formation, and that E. faecalis gelatinase activity facilitates heme extraction from hemoproteins. This interspecies interaction and metabolic cross-feeding may explain the frequent co-occurrence of these microbes in biofilm-associated infections.
Collapse
Affiliation(s)
- Jun-Hong Ch'ng
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore. .,Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Infectious Disease Translational Research Program, National University Health System, Singapore, Singapore. .,Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore.
| | - Mugil Muthu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kelvin K L Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Nanyang Technological University Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Jun Jie Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore, Singapore
| | - Casandra A Z Tan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore, Singapore
| | - Zachary J S Koh
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Daniel Lopez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Artur Matysik
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zeus J Nair
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Timothy Barkham
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.,Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Nanyang, Singapore
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
21
|
Electron transfer in Gram-positive bacteria: enhancement strategies for bioelectrochemical applications. World J Microbiol Biotechnol 2022; 38:83. [DOI: 10.1007/s11274-022-03255-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 12/30/2022]
|
22
|
Tejedor-Sanz S, Stevens ET, Li S, Finnegan P, Nelson J, Knoesen A, Light SH, Ajo-Franklin CM, Marco ML. Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism. eLife 2022; 11:e70684. [PMID: 35147079 PMCID: PMC8837199 DOI: 10.7554/elife.70684] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Energy conservation in microorganisms is classically categorized into respiration and fermentation; however, recent work shows some species can use mixed or alternative bioenergetic strategies. We explored the use of extracellular electron transfer for energy conservation in diverse lactic acid bacteria (LAB), microorganisms that mainly rely on fermentative metabolism and are important in food fermentations. The LAB Lactiplantibacillus plantarum uses extracellular electron transfer to increase its NAD+/NADH ratio, generate more ATP through substrate-level phosphorylation, and accumulate biomass more rapidly. This novel, hybrid metabolism is dependent on a type-II NADH dehydrogenase (Ndh2) and conditionally requires a flavin-binding extracellular lipoprotein (PplA) under laboratory conditions. It confers increased fermentation product yield, metabolic flux, and environmental acidification in laboratory media and during kale juice fermentation. The discovery of a single pathway that simultaneously blends features of fermentation and respiration in a primarily fermentative microorganism expands our knowledge of energy conservation and provides immediate biotechnology applications.
Collapse
Affiliation(s)
- Sara Tejedor-Sanz
- Department of BioSciences, Rice UniversityHoustonUnited States
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Eric T Stevens
- Department of Food Science & Technology, University of California‐DavisDavisUnited States
| | - Siliang Li
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - Peter Finnegan
- Department of Food Science & Technology, University of California‐DavisDavisUnited States
| | - James Nelson
- Department of Electrical and Computer Engineering, University of California‐DavisDavisUnited States
| | - Andre Knoesen
- Department of Electrical and Computer Engineering, University of California‐DavisDavisUnited States
| | - Samuel H Light
- Department of Microbiology, University of ChicagoChicagoUnited States
| | - Caroline M Ajo-Franklin
- Department of BioSciences, Rice UniversityHoustonUnited States
- Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Maria L Marco
- Department of Food Science & Technology, University of California‐DavisDavisUnited States
| |
Collapse
|
23
|
Abstract
Lactic acid bacteria (LAB) are an industrial important group of organisms that are notable for their inability to respire without growth supplements. Recently described bioelectroanalytical detectors that can specifically detect and enumerate microorganisms depend on a phenomenon known as extracellular electron transport (EET) for effective detection. EET is often described as a type of microbial respiration, which logically excludes LAB from such a detection platform. However, members of the LAB have recently been described as electroactive with the ability to carry out EET, providing a timely impetus to revisit the utility of bioelectroanalytical detectors in LAB detection. Here, we show that an LAB, Enterococcus faecalis, is easily detected bioelectroanalytically using the defined substrate resorufin-β-d-galactopyranoside. Detection is rapid, ranging from 34 to 235 min for inoculum sizes between 107 and 104 CFU mL−1, respectively. We show that, although the signal achieved by Enterococcus faecalis is comparable to systems that rely on the respiratory EET strategies of target bacteria, E. faecalis is not dependent on the electrode for energy, and it is only necessary to capture small amounts of an organism’s metabolic energy to, in this case 1.6%, to achieve good detection. The results pave the way for new means of detecting an industrially important group of organisms, particularly in the food industry.
Collapse
|
24
|
Daisley BA, Koenig D, Engelbrecht K, Doney L, Hards K, Al KF, Reid G, Burton JP. Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Rep 2021; 37:110087. [PMID: 34879270 DOI: 10.1016/j.celrep.2021.110087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The conventional viewpoint of single-celled microbial metabolism fails to adequately depict energy flow at the systems level in host-adapted microbial communities. Emerging paradigms instead support that distinct microbiomes develop interconnected and interdependent electron transport chains that rely on cooperative production and sharing of bioenergetic machinery (i.e., directly involved in generating ATP) in the extracellular space. These communal resources represent an important subset of the microbial metabolome, designated here as the "pantryome" (i.e., pantry or external storage compartment), that critically supports microbiome function and can exert multifunctional effects on host physiology. We review these interactions as they relate to human health by detailing the genomic-based sharing potential of gut-derived bacterial and archaeal reference strains. Aromatic amino acids, metabolic cofactors (B vitamins), menaquinones (vitamin K2), hemes, and short-chain fatty acids (with specific emphasis on acetate as a central regulator of symbiosis) are discussed in depth regarding their role in microbiome-related metabolic diseases.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - David Koenig
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kathleen Engelbrecht
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Liz Doney
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
| | - Kait F Al
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - Gregor Reid
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada
| | - Jeremy P Burton
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada.
| |
Collapse
|
25
|
Bird LJ, Kundu BB, Tschirhart T, Corts AD, Su L, Gralnick JA, Ajo-Franklin CM, Glaven SM. Engineering Wired Life: Synthetic Biology for Electroactive Bacteria. ACS Synth Biol 2021; 10:2808-2823. [PMID: 34637280 DOI: 10.1021/acssynbio.1c00335] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electroactive bacteria produce or consume electrical current by moving electrons to and from extracellular acceptors and donors. This specialized process, known as extracellular electron transfer, relies on pathways composed of redox active proteins and biomolecules and has enabled technologies ranging from harvesting energy on the sea floor, to chemical sensing, to carbon capture. Harnessing and controlling extracellular electron transfer pathways using bioengineering and synthetic biology promises to heighten the limits of established technologies and open doors to new possibilities. In this review, we provide an overview of recent advancements in genetic tools for manipulating native electroactive bacteria to control extracellular electron transfer. After reviewing electron transfer pathways in natively electroactive organisms, we examine lessons learned from the introduction of extracellular electron transfer pathways into Escherichia coli. We conclude by presenting challenges to future efforts and give examples of opportunities to bioengineer microbes for electrochemical applications.
Collapse
Affiliation(s)
- Lina J. Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Biki B. Kundu
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77005, United States
| | - Tanya Tschirhart
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Anna D. Corts
- Joyn Bio, Boston, Massachusetts 02210, United States
| | - Lin Su
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, People’s Republic of China
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Jeffrey A. Gralnick
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | | | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
26
|
Aiyer K, Doyle LE. Capturing the signal of weak electricigens: a worthy endeavour. Trends Biotechnol 2021; 40:564-575. [PMID: 34696916 DOI: 10.1016/j.tibtech.2021.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022]
Abstract
Recently several non-traditional electroactive microorganisms have been discovered. These can be considered weak electricigens; microorganisms that typically rely on soluble electron acceptors and donors in their lifecycle but are also capable of extracellular electron transfer (EET), resulting in either a low, unreliable, or otherwise unexpected current. These unanticipated electroactive microorganisms represent a new chapter in electromicrobiology and have important medical, environmental, and biotechnological relevance. As such, it is essential to continue the momentum of their discovery. However, their study poses unique challenges due to their low current output. Capturing their signal necessitates novel approaches including unconventional electrode choice, the use of sensitive electrochemical techniques, and modifications of conventional experiments that use bioelectrochemical systems (BES).
Collapse
Affiliation(s)
- Kartik Aiyer
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, G5WV+9H9, Hauz Khas, New Delhi, Delhi 110016, India
| | - Lucinda E Doyle
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, G5WV+9H9, Hauz Khas, New Delhi, Delhi 110016, India.
| |
Collapse
|
27
|
Lovley DR, Holmes DE. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat Rev Microbiol 2021; 20:5-19. [PMID: 34316046 DOI: 10.1038/s41579-021-00597-6] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/03/2023]
Abstract
Electroactive microorganisms markedly affect many environments in which they establish outer-surface electrical contacts with other cells and minerals or reduce soluble extracellular redox-active molecules such as flavins and humic substances. A growing body of research emphasizes their broad phylogenetic diversity and shows that these microorganisms have key roles in multiple biogeochemical cycles, as well as the microbiome of the gut, anaerobic waste digesters and metal corrosion. Diverse bacteria and archaea have independently evolved cytochrome-based strategies for electron exchange between the outer cell surface and the cell interior, but cytochrome-free mechanisms are also prevalent. Electrically conductive protein filaments, soluble electron shuttles and non-biological conductive materials can substantially extend the electronic reach of microorganisms beyond the surface of the cell. The growing appreciation of the diversity of electroactive microorganisms and their unique electronic capabilities is leading to a broad range of applications.
Collapse
Affiliation(s)
- Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China. .,Department of Microbiology, University of Massachusetts, Amherst, MA, USA. .,Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.
| | - Dawn E Holmes
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA.,Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.,Department of Physical and Biological Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
28
|
Botta A, Barra NG, Lam NH, Chow S, Pantopoulos K, Schertzer JD, Sweeney G. Iron Reshapes the Gut Microbiome and Host Metabolism. J Lipid Atheroscler 2021; 10:160-183. [PMID: 34095010 PMCID: PMC8159756 DOI: 10.12997/jla.2021.10.2.160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
Compelling studies have established that the gut microbiome is a modifier of metabolic health. Changes in the composition of the gut microbiome are influenced by genetics and the environment, including diet. Iron is a potential node of crosstalk between the host-microbe relationship and metabolic disease. Although iron is well characterized as a frequent traveling companion of metabolic disease, the role of iron is underappreciated because the mechanisms of iron's influence on host metabolism are poorly characterized. Both iron deficiency and excessive amounts leading to iron overload can have detrimental effects on cardiometabolic health. Optimal iron homeostasis is critical for regulation of host immunity and metabolism in addition to regulation of commensal and pathogenic enteric bacteria. In this article we review evidence to support the notion that altering composition of the gut microbiome may be an important route via which iron impacts cardiometabolic health. We discuss reshaping of the microbiome by iron, the physiological significance and the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Amy Botta
- Department of Biology, York University, Toronto, ON, Canada
| | - Nicole G. Barra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Nhat Hung Lam
- Department of Biology, York University, Toronto, ON, Canada
| | - Samantha Chow
- Department of Biology, York University, Toronto, ON, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, Canada
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
29
|
Sheik CS, Badalamenti JP, Telling J, Hsu D, Alexander SC, Bond DR, Gralnick JA, Lollar BS, Toner BM. Novel Microbial Groups Drive Productivity in an Archean Iron Formation. Front Microbiol 2021; 12:627595. [PMID: 33859627 PMCID: PMC8042283 DOI: 10.3389/fmicb.2021.627595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/01/2021] [Indexed: 12/23/2022] Open
Abstract
Deep subsurface environments are decoupled from Earth's surface processes yet diverse, active, and abundant microbial communities thrive in these isolated environments. Microbes inhabiting the deep biosphere face unique challenges such as electron donor/acceptor limitations, pore space/fracture network limitations, and isolation from other microbes within the formation. Of the few systems that have been characterized, it is apparent that nutrient limitations likely facilitate diverse microbe-microbe interactions (i.e., syntrophic, symbiotic, or parasitic) and that these interactions drive biogeochemical cycling of major elements. Here we describe microbial communities living in low temperature, chemically reduced brines at the Soudan Underground Mine State Park, United States. The Soudan Iron mine intersects a massive hematite formation at the southern extent of the Canadian Shield. Fractured rock aquifer brines continuously flow from exploratory boreholes drilled circa 1960 and are enriched in deuterium compared to the global meteoric values, indicating brines have had little contact with surface derived waters, and continually degas low molecular weight hydrocarbons C1-C4. Microbial enrichments suggest that once brines exit the boreholes, oxidation of the hydrocarbons occur. Amplicon sequencing show these borehole communities are low in diversity and dominated by Firmicute and Proteobacteria phyla. From the metagenome assemblies, we recovered approximately thirty genomes with estimated completion over 50%. Analysis of genome taxonomy generally followed the amplicon data, and highlights that several of the genomes represent novel families and genera. Metabolic reconstruction shows two carbon-fixation pathways were dominant, the Wood-Ljungdahl (acetogenesis) and Calvin-Benson-Bassham (via RuBisCo), indicating that inorganic carbon likely enters into the microbial foodweb with differing carbon fractionation potentials. Interestingly, methanogenesis is likely driven by Methanolobus and suggests cycling of methylated compounds and not H2/CO2 or acetate. Furthermore, the abundance of sulfate in brines suggests cryptic sulfur cycling may occur, as we detect possible sulfate reducing and thiosulfate oxidizing microorganisms. Finally, a majority of the microorganisms identified contain genes that would allow them to participate in several element cycles, highlighting that in these deep isolated systems metabolic flexibility may be an important life history trait.
Collapse
Affiliation(s)
- Cody S. Sheik
- Department of Biology and the Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, United States
| | - Jonathan P. Badalamenti
- University of Minnesota Genomics Center, University of Minnesota Twin Cities, Minneapolis, MN, United States
- Biotechnology Institute, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Jon Telling
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Hsu
- Biotechnology Institute, University of Minnesota Twin Cities, Saint Paul, MN, United States
- Plant and Microbial Biology, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Scott C. Alexander
- Department of Earth and Environmental Sciences, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Daniel R. Bond
- Biotechnology Institute, University of Minnesota Twin Cities, Saint Paul, MN, United States
- Plant and Microbial Biology, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Jeffrey A. Gralnick
- Biotechnology Institute, University of Minnesota Twin Cities, Saint Paul, MN, United States
- Plant and Microbial Biology, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | | | - Brandy M. Toner
- Department of Earth and Environmental Sciences, University of Minnesota Twin Cities, Minneapolis, MN, United States
- Department of Soil, Water, and Climate, University of Minnesota Twin Cities, Saint Paul, MN, United States
| |
Collapse
|
30
|
Long-distance electron transfer in a filamentous Gram-positive bacterium. Nat Commun 2021; 12:1709. [PMID: 33731718 PMCID: PMC7969598 DOI: 10.1038/s41467-021-21709-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Long-distance extracellular electron transfer has been observed in Gram-negative bacteria and plays roles in both natural and engineering processes. The electron transfer can be mediated by conductive protein appendages (in short unicellular bacteria such as Geobacter species) or by conductive cell envelopes (in filamentous multicellular cable bacteria). Here we show that Lysinibacillus varians GY32, a filamentous unicellular Gram-positive bacterium, is capable of bidirectional extracellular electron transfer. In microbial fuel cells, L. varians can form centimetre-range conductive cellular networks and, when grown on graphite electrodes, the cells can reach a remarkable length of 1.08 mm. Atomic force microscopy and microelectrode analyses suggest that the conductivity is linked to pili-like protein appendages. Our results show that long-distance electron transfer is not limited to Gram-negative bacteria.
Collapse
|
31
|
Zhao J, Li F, Cao Y, Zhang X, Chen T, Song H, Wang Z. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnol Adv 2020; 53:107682. [PMID: 33326817 DOI: 10.1016/j.biotechadv.2020.107682] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/04/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022]
Abstract
Electroactive microorganisms (EAMs) are ubiquitous in nature and have attracted considerable attention as they can be used for energy recovery and environmental remediation via their extracellular electron transfer (EET) capabilities. Although the EET mechanisms of Shewanella and Geobacter have been rigorously investigated and are well characterized, much less is known about the EET mechanisms of other microorganisms. For EAMs, efficient EET is crucial for the sustainable economic development of bioelectrochemical systems (BESs). Currently, the low efficiency of EET remains a key factor in limiting the development of BESs. In this review, we focus on the EET mechanisms of different microorganisms, (i.e., bacteria, fungi, and archaea). In addition, we describe in detail three engineering strategies for improving the EET ability of EAMs: (1) enhancing transmembrane electron transport via cytochrome protein channels; (2) accelerating electron transport via electron shuttle synthesis and transmission; and (3) promoting the microbe-electrode interface reaction via regulating biofilm formation. At the end of this review, we look to the future, with an emphasis on the cross-disciplinary integration of systems biology and synthetic biology to build high-performance EAM systems.
Collapse
Affiliation(s)
- Juntao Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBioResearch Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|
32
|
Paquete CM. Electroactivity across the cell wall of Gram-positive bacteria. Comput Struct Biotechnol J 2020; 18:3796-3802. [PMID: 33335679 PMCID: PMC7720022 DOI: 10.1016/j.csbj.2020.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The growing interest on sustainable biotechnological processes for the production of energy and industrial relevant organic compounds have increased the discovery of electroactive organisms (i.e. organisms that are able to exchange electrons with an electrode) and the characterization of their extracellular electron transfer mechanisms. While most of the knowledge on extracellular electron transfer processes came from studies on Gram-negative bacteria, less is known about the processes performed by Gram-positive bacteria. In contrast to Gram-negative bacteria, Gram-positive bacteria lack an outer-membrane and contain a thick cell wall, which were thought to prevent extracellular electron transfer. However, in the last decade, an increased number of Gram-positive bacteria have been found to perform extracellular electron transfer, and exchange electrons with an electrode. In this mini-review the current knowledge on the extracellular electron transfer processes performed by Gram-positive bacteria is introduced, emphasising their electroactive role in bioelectrochemical systems. Also, the existent information of the molecular processes by which these bacteria exchange electrons with an electrode is highlighted. This understanding is fundamental to advance the implementation of these organisms in sustainable biotechnological processes, either through modification of the systems or through genetic engineering, where the organisms can be optimized to become better catalysts.
Collapse
Affiliation(s)
- Catarina M. Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal
| |
Collapse
|
33
|
Tahernia M, Plotkin-Kaye E, Mohammadifar M, Gao Y, Oefelein MR, Cook LC, Choi S. Characterization of Electrogenic Gut Bacteria. ACS OMEGA 2020; 5:29439-29446. [PMID: 33225175 PMCID: PMC7676329 DOI: 10.1021/acsomega.0c04362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/29/2020] [Indexed: 05/13/2023]
Abstract
While electrogenic, or electricity-producing, Gram-negative bacteria predominantly found in anaerobic habitats have been intensively explored, the potential of Gram-positive microbial electrogenic capability residing in a similar anoxic environment has not been considered. Because Gram-positive bacteria contain a thick non-conductive cell wall, they were previously believed to be very weak exoelectrogens. However, with the recent discovery of electrogenicity by Gram-positive pathogens and elucidation of their electron-transfer pathways, significant and accelerated attention has been given to the discovery and characterization of these pathways in the members of gut microbiota. The discovery of electrogenic bacteria present in the human gut and the understanding of their electrogenic capacity opens up possibilities of bacterial powered implantable batteries and provide a novel biosensing platform to monitor human gastrointestinal health. In this work, we characterized microbial extracellular electron-transfer capabilities and capacities of five gut bacteria: Staphylococcus aureus, Enterococcus faecalis, Streptococcus agalactiae, Lactobacillus reuteri, and Lactobacillus rhamnosus. A 21-well paper-based microbial fuel cell array with enhanced sensitivity was developed as a powerful yet simple screening method to accurately and simultaneously characterize bacterial electrogenicity. S. aureus, E. faecalis, and S. agalactiae exhibited distinct electrogenic capabilities, and their power generations were comparable to that of the well-known Gram-negative exoelectrogen, Shewanella oneidensis. Importantly, this system was used to begin a large-scale transposon screen to examine the genes involved in electrogenicity by the human pathobiont S. aureus.
Collapse
Affiliation(s)
- Mehdi Tahernia
- Bioelectronics
& Microsystems Laboratory, Department of Electrical & Computer
Engineering, State University of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Ellie Plotkin-Kaye
- Department
of Biological Science, State University
of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Maedeh Mohammadifar
- Bioelectronics
& Microsystems Laboratory, Department of Electrical & Computer
Engineering, State University of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Yang Gao
- Bioelectronics
& Microsystems Laboratory, Department of Electrical & Computer
Engineering, State University of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Melissa R. Oefelein
- Department
of Biological Science, State University
of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Laura C. Cook
- Department
of Biological Science, State University
of New York-Binghamton, Binghamton, New York 13902-6000, United States
| | - Seokheun Choi
- Bioelectronics
& Microsystems Laboratory, Department of Electrical & Computer
Engineering, State University of New York-Binghamton, Binghamton, New York 13902-6000, United States
| |
Collapse
|
34
|
A Hybrid Extracellular Electron Transfer Pathway Enhances the Survival of Vibrio natriegens. Appl Environ Microbiol 2020; 86:AEM.01253-20. [PMID: 32737131 DOI: 10.1128/aem.01253-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Vibrio natriegens is the fastest-growing microorganism discovered to date, making it a useful model for biotechnology and basic research. While it is recognized for its rapid aerobic metabolism, less is known about anaerobic adaptations in V. natriegens or how the organism survives when oxygen is limited. Here, we describe and characterize extracellular electron transfer (EET) in V. natriegens, a metabolism that requires movement of electrons across protective cellular barriers to reach the extracellular space. V. natriegens performs extracellular electron transfer under fermentative conditions with gluconate, glucosamine, and pyruvate. We characterized a pathway in V. natriegens that requires CymA, PdsA, and MtrCAB for Fe(III) citrate and Fe(III) oxide reduction, which represents a hybrid of strategies previously discovered in Shewanella and Aeromonas Expression of these V. natriegens genes functionally complemented Shewanella oneidensis mutants. Phylogenetic analysis of the inner membrane quinol dehydrogenases CymA and NapC in gammaproteobacteria suggests that CymA from Shewanella diverged from Vibrionaceae CymA and NapC. Analysis of sequenced Vibrionaceae revealed that the genetic potential to perform EET is conserved in some members of the Harveyi and Vulnificus clades but is more variable in other clades. We provide evidence that EET enhances anaerobic survival of V. natriegens, which may be the primary physiological function for EET in Vibrionaceae IMPORTANCE Bacteria from the genus Vibrio occupy a variety of marine and brackish niches with fluctuating nutrient and energy sources. When oxygen is limited, fermentation or alternative respiration pathways must be used to conserve energy. In sedimentary environments, insoluble oxide minerals (primarily iron and manganese) are able to serve as electron acceptors for anaerobic respiration by microorganisms capable of extracellular electron transfer, a metabolism that enables the use of these insoluble substrates. Here, we identify the mechanism for extracellular electron transfer in Vibrio natriegens, which uses a combination of strategies previously identified in Shewanella and Aeromonas We show that extracellular electron transfer enhanced survival of V. natriegens under fermentative conditions, which may be a generalized strategy among Vibrio spp. predicted to have this metabolism.
Collapse
|
35
|
Abstract
Exoelectrogens are able to transfer electrons extracellularly, enabling them to respire on insoluble terminal electron acceptors. Extensively studied exoelectrogens, such as Geobacter sulfurreducens and Shewanella oneidensis, are Gram negative. More recently, it has been reported that Gram-positive bacteria, such as Listeria monocytogenes and Enterococcus faecalis, also exhibit the ability to transfer electrons extracellularly, although it is still unclear whether this has a function in respiration or in redox control of the environment, for instance, by reducing ferric iron for iron uptake. In this issue of Journal of Bacteriology, Hederstedt and colleagues report on experiments that directly compare extracellular electron transfer (EET) pathways for ferric iron reduction and respiration and find a clear difference (L. Hederstedt, L. Gorton, and G. Pankratova, J Bacteriol 202:e00725-19, 2020, https://doi.org/10.1128/JB.00725-19), providing further insights and new questions into the function and metabolic pathways of EET in Gram-positive bacteria.
Collapse
|