1
|
Son J, Park AK, Shin SC, Kim D, Kim HW. Structural insights into the role of NahX from Pseudomonas sp. MC1 in the naphthalene degradation pathway. Biochem Biophys Res Commun 2025; 742:151120. [PMID: 39647457 DOI: 10.1016/j.bbrc.2024.151120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most widespread organic pollutants known for their carcinogenic and mutagenic properties. There is a growing interest in understanding the degradation and detoxification processes of these substances using biological approaches. The bacterium Pseudomonas sp. MC1 contains a metabolic plasmid (81 kb) that encodes enzymes involved in the conversion of naphthalene (the simplest and most soluble PAH) to salicylate. Therein, nahX is a part of the lower naphthalene degradation operon and encodes a 140-amino acid protein. However, the function of NahX remains unclear. To understand its function more clearly, we first determined the three-dimensional structure of NahX. It has a fold similar to that of HbpS, which acts as a sensory component in response to oxidative stress. Biochemical studies have also shown that NahX and HbpS exhibit heme degradation activity and bind to iron ions. Heme degradation and iron-sequestering activity protect bacteria against oxidative stress. Previous studies have shown that oxidative stress occurs during naphthalene degradation. Therefore, we postulate that NahX has a defense mechanism against the oxidative stress that may occur during naphthalene metabolism.
Collapse
Affiliation(s)
- Jonghyeon Son
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea; New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, South Korea
| | - Ae Kyung Park
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea; Division of Bacterial Diseases, Department of Laboratory Diagnosis and Analysis, Korea Disease Control and Prevention Agency, Cheongju-si, 28159, South Korea
| | - Seung Chul Shin
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Dockyu Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea; Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea
| | - Han-Woo Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea; Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea.
| |
Collapse
|
2
|
Wu P, Ong A, O’Brian MR. Bradyrhizobium japonicum HmuP is an RNA-binding protein that positively controls hmuR operon expression by suppression of a negative regulatory RNA element in the 5' untranslated region. Mol Microbiol 2024; 121:1217-1227. [PMID: 38725184 PMCID: PMC11176003 DOI: 10.1111/mmi.15274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/14/2024]
Abstract
The hmuR operon encodes proteins for the uptake and utilization of heme as a nutritional iron source in Bradyrhizobium japonicum. The hmuR operon is transcriptionally activated by the Irr protein and is also positively controlled by HmuP by an unknown mechanism. An hmuP mutant does not express the hmuR operon genes nor does it grow on heme. Here, we show that hmuR expression from a heterologous promoter still requires hmuP, suggesting that HmuP does not regulate at the transcriptional level. Replacement of the 5' untranslated region (5'UTR) of an HmuP-independent gene with the hmuR 5'UTR conferred HmuP-dependent expression on that gene. Recombinant HmuP bound an HmuP-responsive RNA element (HPRE) within the hmuR 5'UTR. A 2 nt substitution predicted to destabilize the secondary structure of the HPRE abolished both HmuP binding activity in vitro and hmuR expression in cells. However, deletion of the HPRE partially restored hmuR expression in an hmuP mutant, and it rescued growth of the hmuP mutant on heme. These findings suggest that the HPRE is a negative regulatory RNA element that is suppressed when bound by HmuP to express the hmuR operon.
Collapse
Affiliation(s)
- Peipei Wu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Suite 4102, Buffalo, New York 14203 USA
| | - Alasteir Ong
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Suite 4102, Buffalo, New York 14203 USA
| | - Mark R. O’Brian
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Suite 4102, Buffalo, New York 14203 USA
| |
Collapse
|
3
|
Huo H, Zong L, Liu Y, Chen W, Chen J, Wei G. Rhizobial HmuS pSym as a heme-binding factor is required for optimal symbiosis between Mesorhizobium amorphae CCNWGS0123 and Robinia pseudoacacia. PLANT, CELL & ENVIRONMENT 2022; 45:2191-2210. [PMID: 35419804 DOI: 10.1111/pce.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/15/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen-fixing root nodules are formed by symbiotic association of legume hosts with rhizobia in nitrogen-deprived soils. Successful symbiosis is regulated by signals from both legume hosts and their rhizobial partners. HmuS is a heme degrading factor widely distributed in bacteria, but little is known about the role of rhizobial hmuS in symbiosis with legumes. Here, we found that inactivation of hmuSpSym in the symbiotic plasmid of Mesorhizobium amorphae CCNWGS0123 disrupted rhizobial infection, primordium formation, and nitrogen fixation in symbiosis with Robinia pseudoacacia. Although there was no difference in bacteroids differentiation, infected plant cells were shrunken and bacteroids were disintegrated in nodules of plants infected by the ΔhmuSpSym mutant strain. The balance of defence reaction was also impaired in ΔhmuSpSym strain-infected root nodules. hmuSpSym was strongly expressed in the nitrogen-fixation zone of mature nodules. Furthermore, the HmuSpSym protein could bind to heme but not degrade it. Inactivation of hmuSpSym led to significantly decreased expression levels of oxygen-sensing related genes in nodules. In summary, hmuSpSym of M. amorphae CCNWGS0123 plays an essential role in nodule development and maintenance of bacteroid survival within R. pseudoacacia cells, possibly through heme-binding in symbiosis.
Collapse
Affiliation(s)
- Haibo Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Le Zong
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
de Lima VM, Batista BB, da Silva Neto JF. The Regulatory Protein ChuP Connects Heme and Siderophore-Mediated Iron Acquisition Systems Required for Chromobacterium violaceum Virulence. Front Cell Infect Microbiol 2022; 12:873536. [PMID: 35646721 PMCID: PMC9131926 DOI: 10.3389/fcimb.2022.873536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
Chromobacterium violaceum is an environmental Gram-negative beta-proteobacterium that causes systemic infections in humans. C. violaceum uses siderophore-based iron acquisition systems to overcome the host-imposed iron limitation, but its capacity to use other iron sources is unknown. In this work, we characterized ChuPRSTUV as a heme utilization system employed by C. violaceum to explore an important iron reservoir in mammalian hosts, free heme and hemoproteins. We demonstrate that the chuPRSTUV genes comprise a Fur-repressed operon that is expressed under iron limitation. The chu operon potentially encodes a small regulatory protein (ChuP), an outer membrane TonB-dependent receptor (ChuR), a heme degradation enzyme (ChuS), and an inner membrane ABC transporter (ChuTUV). Our nutrition growth experiments using C. violaceum chu deletion mutants revealed that, with the exception of chuS, all genes of the chu operon are required for heme and hemoglobin utilization in C. violaceum. The mutant strains without chuP displayed increased siderophore halos on CAS plate assays. Significantly, we demonstrate that ChuP connects heme and siderophore utilization by acting as a positive regulator of chuR and vbuA, which encode the TonB-dependent receptors for the uptake of heme (ChuR) and the siderophore viobactin (VbuA). Our data favor a model of ChuP as a heme-binding post-transcriptional regulator. Moreover, our virulence data in a mice model of acute infection demonstrate that C. violaceum uses both heme and siderophore for iron acquisition during infection, with a preference for siderophores over the Chu heme utilization system.
Collapse
|
5
|
Abreu I, Mihelj P, Raimunda D. Transition metal transporters in rhizobia: tuning the inorganic micronutrient requirements to different living styles. Metallomics 2020; 11:735-755. [PMID: 30734808 DOI: 10.1039/c8mt00372f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A group of bacteria known as rhizobia are key players in symbiotic nitrogen fixation (SNF) in partnership with legumes. After a molecular exchange, the bacteria end surrounded by a plant membrane forming symbiosomes, organelle-like structures, where they differentiate to bacteroids and fix nitrogen. This symbiotic process is highly dependent on dynamic nutrient exchanges between the partners. Among these are transition metals (TM) participating as inorganic and organic cofactors of fundamental enzymes. While the understanding of how plant transporters facilitate TMs to the very near environment of the bacteroid is expanding, our knowledge on how bacteroid transporters integrate to TM homeostasis mechanisms in the plant host is still limited. This is significantly relevant considering the low solubility and scarcity of TMs in soils, and the in crescendo gradient of TM bioavailability rhizobia faces during the infection and bacteroid differentiation processes. In the present work, we review the main metal transporter families found in rhizobia, their role in free-living conditions and, when known, in symbiosis. We focus on discussing those transporters which could play a significant role in TM-dependent biochemical and physiological processes in the bacteroid, thus paving the way towards an optimized SNF.
Collapse
Affiliation(s)
- Isidro Abreu
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | |
Collapse
|
6
|
Ganley JG, D'Ambrosio HK, Shieh M, Derbyshire ER. Coculturing of Mosquito-Microbiome Bacteria Promotes Heme Degradation in Elizabethkingia anophelis. Chembiochem 2020; 21:1279-1284. [PMID: 31845464 DOI: 10.1002/cbic.201900675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 12/31/2022]
Abstract
Anopheles mosquito microbiomes are intriguing ecological niches. Within the gut, microbes adapt to oxidative stress due to heme and iron after blood meals. Although metagenomic sequencing has illuminated spatial and temporal fluxes of microbiome populations, limited data exist on microbial growth dynamics. Here, we analyze growth interactions between a dominant microbiome species, Elizabethkingia anophelis, and other Anopheles-associated bacteria. We find E. anophelis inhibits a Pseudomonas sp. via an antimicrobial-independent mechanism and observe biliverdins, heme degradation products, upregulated in cocultures. Purification and characterization of E. anophelis HemS demonstrates heme degradation, and we observe hemS expression is upregulated when cocultured with Pseudomonas sp. This study reveals a competitive microbial interaction between mosquito-associated bacteria and characterizes the stimulation of heme degradation in E. anophelis when grown with Pseudomonas sp.
Collapse
Affiliation(s)
- Jack G Ganley
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Hannah K D'Ambrosio
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Meg Shieh
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC, 27710, USA
| |
Collapse
|
7
|
Thakuri B, Graves AB, Chao A, Johansen SL, Goulding CW, Liptak MD. The affinity of MhuD for heme is consistent with a heme degrading function in vivo. Metallomics 2019; 10:1560-1563. [PMID: 30239544 DOI: 10.1039/c8mt00238j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MhuD is a protein found in mycobacteria that can bind up to two heme molecules per protein monomer and catalyze the degradation of heme to mycobilin in vitro. Here the Kd1 for heme dissociation from heme-bound MhuD was determined to be 7.6 ± 0.8 nM and the Kd2 for heme dissocation from diheme-bound MhuD was determined to be 3.3 ± 1.1 μM. These data strongly suggest that MhuD is a competent heme oxygenase in vivo.
Collapse
Affiliation(s)
- Biswash Thakuri
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Richard KL, Kelley BR, Johnson JG. Heme Uptake and Utilization by Gram-Negative Bacterial Pathogens. Front Cell Infect Microbiol 2019; 9:81. [PMID: 30984629 PMCID: PMC6449446 DOI: 10.3389/fcimb.2019.00081] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is a transition metal utilized by nearly all forms of life for essential cellular processes, such as DNA synthesis and cellular respiration. During infection by bacterial pathogens, the host utilizes various strategies to sequester iron in a process termed, nutritional immunity. To circumvent these defenses, Gram-negative pathogens have evolved numerous mechanisms to obtain iron from heme. In this review we outline the systems that exist in several Gram-negative pathogens that are associated with heme transport and utilization, beginning with hemolysis and concluding with heme degradation. In addition, Gram-negative pathogens must also closely regulate the intracellular concentrations of iron and heme, since high levels of iron can lead to the generation of toxic reactive oxygen species. As such, we also provide several examples of regulatory pathways that control heme utilization, showing that co-regulation with other cellular processes is complex and often not completely understood.
Collapse
Affiliation(s)
- Kaylie L Richard
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
9
|
Pokorzynski ND, Thompson CC, Carabeo RA. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia. Front Cell Infect Microbiol 2017; 7:394. [PMID: 28951853 PMCID: PMC5599777 DOI: 10.3389/fcimb.2017.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed "persistence." This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| | - Christopher C Thompson
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary's HospitalLondon, United Kingdom
| | - Rey A Carabeo
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| |
Collapse
|
10
|
Lojek LJ, Farrand AJ, Wisecaver JH, Blaby-Haas CE, Michel BW, Merchant SS, Rokas A, Skaar EP. Chlamydomonas reinhardtii LFO1 Is an IsdG Family Heme Oxygenase. mSphere 2017; 2:e00176-17. [PMID: 28815214 PMCID: PMC5557675 DOI: 10.1128/msphere.00176-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/27/2017] [Indexed: 01/13/2023] Open
Abstract
Heme is essential for respiration across all domains of life. However, heme accumulation can lead to toxicity if cells are unable to either degrade or export heme or its toxic by-products. Under aerobic conditions, heme degradation is performed by heme oxygenases, enzymes which utilize oxygen to cleave the tetrapyrrole ring of heme. The HO-1 family of heme oxygenases has been identified in both bacterial and eukaryotic cells, whereas the IsdG family has thus far been described only in bacteria. We identified a hypothetical protein in the eukaryotic green alga Chlamydomonas reinhardtii, which encodes a protein containing an antibiotic biosynthesis monooxygenase (ABM) domain consistent with those associated with IsdG family members. This protein, which we have named LFO1, degrades heme, contains similarities in predicted secondary structures to IsdG family members, and retains the functionally conserved catalytic residues found in all IsdG family heme oxygenases. These data establish LFO1 as an IsdG family member and extend our knowledge of the distribution of IsdG family members beyond bacteria. To gain further insight into the distribution of the IsdG family, we used the LFO1 sequence to identify 866 IsdG family members, including representatives from all domains of life. These results indicate that the distribution of IsdG family heme oxygenases is more expansive than previously appreciated, underscoring the broad relevance of this enzyme family. IMPORTANCE This work establishes a protein in the freshwater alga Chlamydomonas reinhardtii as an IsdG family heme oxygenase. This protein, LFO1, exhibits predicted secondary structure and catalytic residues conserved in IsdG family members, in addition to a chloroplast localization sequence. Additionally, the catabolite that results from the degradation of heme by LFO1 is distinct from that of other heme degradation products. Using LFO1 as a seed, we performed phylogenetic analysis, revealing that the IsdG family is conserved in all domains of life. Additionally, C. reinhardtii contains two previously identified HO-1 family heme oxygenases, making C. reinhardtii the first organism shown to contain two families of heme oxygenases. These data indicate that C. reinhardtii may have unique mechanisms for regulating iron homeostasis within the chloroplast.
Collapse
Affiliation(s)
- Lisa J. Lojek
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Graduate Program in Microbiology & Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Allison J. Farrand
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Crysten E. Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Brian W. Michel
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Brewitz HH, Hagelueken G, Imhof D. Structural and functional diversity of transient heme binding to bacterial proteins. Biochim Biophys Acta Gen Subj 2017; 1861:683-697. [DOI: 10.1016/j.bbagen.2016.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 11/27/2022]
|
12
|
Sachla AJ, Ouattara M, Romero E, Agniswamy J, Weber IT, Gadda G, Eichenbaum Z. In vitro heme biotransformation by the HupZ enzyme from Group A streptococcus. Biometals 2016; 29:593-609. [PMID: 27154580 DOI: 10.1007/s10534-016-9937-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/01/2016] [Indexed: 01/14/2023]
Abstract
In Group A streptococcus (GAS), the metallorepressor MtsR regulates iron homeostasis. Here we describe a new MtsR-repressed gene, which we named hupZ (heme utilization protein). A recombinant HupZ protein was purified bound to heme from Escherichia coli grown in the presence of 5-aminolevulinic acid and iron. HupZ specifically binds heme with stoichiometry of 1:1. The addition of NADPH to heme-bound HupZ (in the presence of cytochrome P450 reductase, NADPH-regeneration system and catalase) triggered progressive decrease of the HupZ Soret band and the appearance of an absorption peak at 660 nm that was resistance to hydrolytic conditions. No spectral changes were observed when ferredoxin and ferredoxin reductase were used as redox partners. Differential spectroscopy with myoglobin or with the ferrous chelator, ferrozine, confirmed that carbon monoxide and free iron are produced during the reaction. ApoHupZ was crystallized as a homodimer with a split β-barrel conformation in each monomer comprising six β strands and three α helices. This structure resembles the split β-barrel domain shared by the members of a recently described family of heme degrading enzymes. However, HupZ is smaller and lacks key residues found in the proteins of the latter group. Phylogenetic analysis places HupZ on a clade separated from those for previously described heme oxygenases. In summary, we have identified a new GAS enzyme-containing split β-barrel and capable of heme biotransformation in vitro; to the best of our knowledge, this is the first enzyme among Streptococcus species with such activity.
Collapse
Affiliation(s)
- Ankita J Sachla
- Department of Biology, College of Arts and Sciences, Georgia State University, P.O. Box 4010, Atlanta, GA, 30302-4010, USA
| | - Mahamoudou Ouattara
- Department of Biology, College of Arts and Sciences, Georgia State University, P.O. Box 4010, Atlanta, GA, 30302-4010, USA
| | - Elvira Romero
- Department of Chemistry, College of Arts and Sciences, Georgia State University, Atlanta, GA, 30302-3965, USA
| | - Johnson Agniswamy
- Department of Biology, College of Arts and Sciences, Georgia State University, P.O. Box 4010, Atlanta, GA, 30302-4010, USA
| | - Irene T Weber
- Department of Biology, College of Arts and Sciences, Georgia State University, P.O. Box 4010, Atlanta, GA, 30302-4010, USA.,Department of Chemistry, College of Arts and Sciences, Georgia State University, Atlanta, GA, 30302-3965, USA.,Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, 30303, USA
| | - Giovanni Gadda
- Department of Biology, College of Arts and Sciences, Georgia State University, P.O. Box 4010, Atlanta, GA, 30302-4010, USA.,Department of Chemistry, College of Arts and Sciences, Georgia State University, Atlanta, GA, 30302-3965, USA.,Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, 30303, USA.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Zehava Eichenbaum
- Department of Biology, College of Arts and Sciences, Georgia State University, P.O. Box 4010, Atlanta, GA, 30302-4010, USA.
| |
Collapse
|
13
|
HmuS and HmuQ of Ensifer/Sinorhizobium meliloti degrade heme in vitro and participate in heme metabolism in vivo. Biometals 2016; 29:333-47. [DOI: 10.1007/s10534-016-9919-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/20/2022]
|
14
|
Abstract
Iron is an essential nutrient, but it can also be toxic. Therefore, iron homeostasis must be strictly regulated. Transcriptional control of iron-dependent gene expression in the rhizobia and other taxa of the Alphaproteobacteria is fundamentally different from the Fur paradigm in Escherichia coli and other model systems. Rather than sense iron directly, the rhizobia employ the iron response regulator (Irr) to monitor and respond to the status of an iron-dependent process, namely, heme biosynthesis. This novel control mechanism allows iron homeostasis to be integrated with other cellular processes, and it permits differential control of iron regulon genes in a manner not readily achieved by Fur. Moreover, studies of Irr have defined a role for heme in conditional protein stability that has been subsequently described in eukaryotes. Finally, Irr-mediated control of iron metabolism may reflect a cellular strategy that accommodates a greater reliance on manganese.
Collapse
Affiliation(s)
- Mark R O'Brian
- Department of Biochemistry, State University of New York at Buffalo, New York 14214;
| |
Collapse
|
15
|
Sachla AJ, Le Breton Y, Akhter F, McIver KS, Eichenbaum Z. The crimson conundrum: heme toxicity and tolerance in GAS. Front Cell Infect Microbiol 2014; 4:159. [PMID: 25414836 PMCID: PMC4220732 DOI: 10.3389/fcimb.2014.00159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/17/2014] [Indexed: 01/16/2023] Open
Abstract
The massive erythrocyte lysis caused by the Group A Streptococcus (GAS) suggests that the β-hemolytic pathogen is likely to encounter free heme during the course of infection. In this study, we investigated GAS mechanisms for heme sensing and tolerance. We compared the minimal inhibitory concentration of heme among several isolates and established that excess heme is bacteriostatic and exposure to sub-lethal concentrations of heme resulted in noticeable damage to membrane lipids and proteins. Pre-exposure of the bacteria to 0.1 μM heme shortened the extended lag period that is otherwise observed when naive cells are inoculated into heme-containing medium, implying that GAS is able to adapt. The global response to heme exposure was determined using microarray analysis revealing a significant transcriptome shift that included 79 up regulated and 84 down regulated genes. Among other changes, the induction of stress-related chaperones and proteases, including groEL/ES (8x), the stress regulators spxA2 (5x) and ctsR (3x), as well as redox active enzymes were prominent. The heme stimulon also encompassed a number of regulatory proteins and two-component systems that are important for virulence. A three-gene cluster that is homologous to the pefRCD system of the Group B Streptococcus was also induced by heme. PefR, a MarR-like regulator, specifically binds heme with stoichiometry of 1:2 and protoporphyrin IX (PPIX) with stoichiometry of 1:1, implicating it is one of the GAS mediators to heme response. In summary, here we provide evidence that heme induces a broad stress response in GAS, and that its success as a pathogen relies on mechanisms for heme sensing, detoxification, and repair.
Collapse
Affiliation(s)
- Ankita J Sachla
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| | - Yoann Le Breton
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Fahmina Akhter
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Zehava Eichenbaum
- Department of Biology, College of Arts and Sciences, Georgia State University Atlanta, GA, USA
| |
Collapse
|
16
|
Sankari S, O'Brian MR. A bacterial iron exporter for maintenance of iron homeostasis. J Biol Chem 2014; 289:16498-507. [PMID: 24782310 DOI: 10.1074/jbc.m114.571562] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nutritional iron acquisition by bacteria is well described, but almost nothing is known about bacterial iron export even though it is likely to be an important homeostatic mechanism. Here, we show that Bradyrhizobium japonicum MbfA (Blr7895) is an inner membrane protein expressed in cells specifically under high iron conditions. MbfA contains an N-terminal ferritin-like domain (FLD) and a C-terminal domain homologous to the eukaryotic vacuolar membrane Fe(2+)/Mn(2+) transporter CCC1. An mbfA deletion mutant is severely defective in iron export activity, contains >2-fold more intracellular iron than the parent strain, and displays an aberrant iron-dependent gene expression phenotype. B. japonicum is highly resistant to iron and H2O2 stresses, and MbfA contributes substantially to this as determined by phenotypes of the mbfA mutant strain. The N-terminal FLD was localized to the cytoplasmic side of the inner membrane. Substitution mutations in the putative iron-binding amino acid residues E20A and E107A within the N-terminal FLD abrogate iron export activity and stress response function. Purified soluble FLD oxidizes ferrous iron (Fe(2+)) to incorporate ferric iron (Fe(3+)) in a 2:1 iron:protein ratio, which does not occur in the E20A/E107A mutant. The FLD fragment is a dimer in solution, implying that the MbfA exporter functions as a dimer. MbfA belongs to a protein family found in numerous prokaryotic genera. The findings strongly suggest that iron export plays an important role in bacterial iron homeostasis.
Collapse
Affiliation(s)
- Siva Sankari
- From the Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14214
| | - Mark R O'Brian
- From the Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14214
| |
Collapse
|
17
|
Duong T, Park K, Kim T, Kang SW, Hahn MJ, Hwang HY, Kim KK. Structural and functional characterization of an Isd-type haem-degradation enzyme fromListeria monocytogenes. ACTA ACUST UNITED AC 2014; 70:615-26. [DOI: 10.1107/s1399004713030794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/08/2013] [Indexed: 11/10/2022]
Abstract
Bacterial pathogens have evolved diverse types of efficient machinery to acquire haem, the most abundant source of iron in the human body, and degrade it for the utilization of iron. Gram-positive bacteria commonly encode IsdG-family proteins as haem-degrading monooxygenases.Listeria monocytogenesis predicted to possess an IsdG-type protein (Lmo2213), but the residues involved in haem monooxygenase activity are not well conserved and there is an extra N-terminal domain in Lmo2213. Therefore, its function and mechanism of action cannot be predicted. In this study, the crystal structure of Lmo2213 was determined at 1.75 Å resolution and its haem-binding and haem-degradation activities were confirmed. Structure-based mutational and functional assays of this protein, designated as an Isd-typeL. monocytogeneshaem-degrading enzyme (Isd-LmHde), identified that Glu71, Tyr87 and Trp129 play important roles in haem degradation and that the N-terminal domain is also critical for its haem-degrading activity. The haem-degradation product of Isd-LmHde is verified to be biliverdin, which is also known to be the degradation product of other bacterial haem oxygenases. This study, the first structural and functional report of the haem-degradation system inL. monocytogenes, sheds light on the concealed haem-utilization system in this life-threatening human pathogen.
Collapse
|
18
|
Nambu S, Matsui T, Goulding CW, Takahashi S, Ikeda-Saito M. A new way to degrade heme: the Mycobacterium tuberculosis enzyme MhuD catalyzes heme degradation without generating CO. J Biol Chem 2013; 288:10101-10109. [PMID: 23420845 DOI: 10.1074/jbc.m112.448399] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MhuD is an oxygen-dependent heme-degrading enzyme from Mycobacterium tuberculosis with high sequence similarity (∼45%) to Staphylococcus aureus IsdG and IsdI. Spectroscopic and mutagenesis studies indicate that the catalytically active 1:1 heme-MhuD complex has an active site structure similar to those of IsdG and IsdI, including the nonplanarity (ruffling) of the heme group bound to the enzyme. Distinct from the canonical heme degradation, we have found that the MhuD catalysis does not generate CO. Product analyses by electrospray ionization-MS and NMR show that MhuD cleaves heme at the α-meso position but retains the meso-carbon atom at the cleavage site, which is removed by canonical heme oxygenases. The novel tetrapyrrole product of MhuD, termed "mycobilin," has an aldehyde group at the cleavage site and a carbonyl group at either the β-meso or the δ-meso position. Consequently, MhuD catalysis does not involve verdoheme, the key intermediate of ring cleavage by canonical heme oxygenase enzymes. Ruffled heme is apparently responsible for the heme degradation mechanism unique to MhuD. In addition, MhuD heme degradation without CO liberation is biologically significant as one of the signals of M. tuberculosis transition to dormancy is mediated by the production of host CO.
Collapse
Affiliation(s)
- Shusuke Nambu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697; Department of Pharmaceutical Sciences, University of California, Irvine, California 92697
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Masao Ikeda-Saito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan.
| |
Collapse
|
19
|
Abstract
All but a few bacterial species have an absolute need for heme, and most are able to synthesize it via a pathway that is highly conserved among all life domains. Because heme is a rich source for iron, many pathogenic bacteria have also evolved processes for sequestering heme from their hosts. The heme biosynthesis pathways are well understood at the genetic and structural biology levels. In comparison, much less is known about the heme acquisition, trafficking, and degradation processes in bacteria. Gram-positive and Gram-negative bacteria have evolved similar strategies but different tactics for importing and degrading heme, likely as a consequence of their different cellular architectures. The differences are manifested in distinct structures for molecules that perform similar functions. Consequently, the aim of this chapter is to provide an overview of the structural biology of proteins and protein-protein interactions that enable Gram-positive and Gram-negative bacteria to sequester heme from the extracellular milieu, import it to the cytosol, and degrade it to mine iron.
Collapse
Affiliation(s)
- David R Benson
- Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS, 66047, USA,
| | | |
Collapse
|
20
|
Zappa S, Bauer CE. Iron homeostasis in the Rhodobacter genus. ADVANCES IN BOTANICAL RESEARCH 2013; 66:10.1016/B978-0-12-397923-0.00010-2. [PMID: 24382933 PMCID: PMC3875232 DOI: 10.1016/b978-0-12-397923-0.00010-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Metals are utilized for a variety of critical cellular functions and are essential for survival. However cells are faced with the conundrum of needing metals coupled with e fact that some metals, iron in particular are toxic if present in excess. Maintaining metal homeostasis is therefore of critical importance to cells. In this review we have systematically analyzed sequenced genomes of three members of the Rhodobacter genus, R. capsulatus SB1003, R. sphaeroides 2.4.1 and R. ferroxidans SW2 to determine how these species undertake iron homeostasis. We focused our analysis on elemental ferrous and ferric iron uptake genes as well as genes involved in the utilization of iron from heme. We also discuss how Rhodobacter species manage iron toxicity through export and sequestration of iron. Finally we discuss the various putative strategies set up by these Rhodobacter species to regulate iron homeostasis and the potential novel means of regulation. Overall, this genomic analysis highlights surprisingly diverse features involved in iron homeostasis in the Rhodobacter genus.
Collapse
Affiliation(s)
- Sébastien Zappa
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| | - Carl E. Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| |
Collapse
|
21
|
Tavares AFN, Nobre LS, Saraiva LM. A role for reactive oxygen species in the antibacterial properties of carbon monoxide-releasing molecules. FEMS Microbiol Lett 2012; 336:1-10. [PMID: 22774863 DOI: 10.1111/j.1574-6968.2012.02633.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 12/24/2022] Open
Abstract
Carbon monoxide-releasing molecules (CO-RMs) are, in general, transition metal carbonyl complexes that liberate controlled amounts of CO. In animal models, CO-RMs have been shown to reduce myocardial ischaemia, inflammation and vascular dysfunction, and to provide a protective effect in organ transplantation. Moreover, CO-RMs are bactericides that kill both Gram-positive and Gram-negative bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa. Herein are reviewed the microbial genetic and biochemical responses associated with CO-RM-mediated cell death. Particular emphasis is given to the data revealing that CO-RMs induce the generation of reactive oxygen species (ROS), which contribute to the antibacterial activity of these compounds.
Collapse
Affiliation(s)
- Ana Filipa N Tavares
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | |
Collapse
|
22
|
Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 2012; 10:525-37. [PMID: 22796883 DOI: 10.1038/nrmicro2836] [Citation(s) in RCA: 1121] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transition metals occupy an essential niche in biological systems. Their electrostatic properties stabilize substrates or reaction intermediates in the active sites of enzymes, and their heightened reactivity is harnessed for catalysis. However, this heightened activity also renders transition metals toxic at high concentrations. Bacteria, like all living organisms, must regulate their intracellular levels of these elements to satisfy their physiological needs while avoiding harm. It is therefore not surprising that the host capitalizes on both the essentiality and toxicity of transition metals to defend against bacterial invaders. This Review discusses established and emerging paradigms in nutrient metal homeostasis at the pathogen-host interface.
Collapse
|
23
|
Liu M, Boulouis HJ, Biville F. Heme degrading protein HemS is involved in oxidative stress response of Bartonella henselae. PLoS One 2012; 7:e37630. [PMID: 22701524 PMCID: PMC3365110 DOI: 10.1371/journal.pone.0037630] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/26/2012] [Indexed: 01/24/2023] Open
Abstract
Bartonellae are hemotropic bacteria, agents of emerging zoonoses. These bacteria are heme auxotroph Alphaproteobacteria which must import heme for supporting their growth, as they cannot synthesize it. Therefore, Bartonella genome encodes for a complete heme uptake system allowing the transportation of this compound across the outer membrane, the periplasm and the inner membranes. Heme has been proposed to be used as an iron source for Bartonella since these bacteria do not synthesize a complete system required for iron Fe3+uptake. Similarly to other bacteria which use heme as an iron source, Bartonellae must transport this compound into the cytoplasm and degrade it to allow the release of iron from the tetrapyrrole ring. For Bartonella, the gene cluster devoted to the synthesis of the complete heme uptake system also contains a gene encoding for a polypeptide that shares homologies with heme trafficking or degrading enzymes. Using complementation of an E. coli mutant strain impaired in heme degradation, we demonstrated that HemS from Bartonella henselae expressed in E. coli allows the release of iron from heme. Purified HemS from B. henselae binds heme and can degrade it in the presence of a suitable electron donor, ascorbate or NADPH-cytochrome P450 reductase. Knocking down the expression of HemS in B. henselae reduces its ability to face H2O2 induced oxidative stress.
Collapse
Affiliation(s)
- MaFeng Liu
- Université Paris-Est, Ecole nationale vétérinaire d'Alfort, UMR BIPAR INRA-Anses-UPEC-ENVA, Maisons-Alfort, France
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
| | - Henri-Jean Boulouis
- Université Paris-Est, Ecole nationale vétérinaire d'Alfort, UMR BIPAR INRA-Anses-UPEC-ENVA, Maisons-Alfort, France
| | - Francis Biville
- Université Paris-Est, Ecole nationale vétérinaire d'Alfort, UMR BIPAR INRA-Anses-UPEC-ENVA, Maisons-Alfort, France
- Département de Microbiologie, Pasteur Institute, Paris, France
- * E-mail:
| |
Collapse
|
24
|
Abstract
Similar to other bacteria, Brucella strains require several biologically essential metals for their survival in vitro and in vivo. Acquiring sufficient levels of some of these metals, particularly iron, manganese and zinc, is especially challenging in the mammalian host, where sequestration of these micronutrients is a well-documented component of both the innate and acquired immune responses. This review describes the Brucella metal transporters that have been shown to play critical roles in the virulence of these bacteria in experimental and natural hosts.
Collapse
|
25
|
The bhuQ gene encodes a heme oxygenase that contributes to the ability of Brucella abortus 2308 to use heme as an iron source and is regulated by Irr. J Bacteriol 2012; 194:4052-8. [PMID: 22636783 DOI: 10.1128/jb.00367-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Brucella BhuQ protein is a homolog of the Bradyrhizobium japonicum heme oxygenases HmuD and HmuQ. To determine if this protein plays a role in the ability of Brucella abortus 2308 to use heme as an iron source, an isogenic bhuQ mutant was constructed and its phenotype evaluated. Although the Brucella abortus bhuQ mutant DCO1 did not exhibit a defect in its capacity to use heme as an iron source or evidence of increased heme toxicity in vitro, this mutant produced increased levels of siderophore in response to iron deprivation compared to 2308. Introduction of a bhuQ mutation into the B. abortus dhbC mutant BHB2 (which cannot produce siderophores) resulted in a severe growth defect in the dhbC bhuQ double mutant JFO1 during cultivation under iron-restricted conditions, which could be rescued by the addition of FeCl(3), but not heme, to the growth medium. The bhuQ gene is cotranscribed with the gene encoding the iron-responsive regulator RirA, and both of these genes are repressed by the other major iron-responsive regulator in the alphaproteobacteria, Irr. The results of these studies suggest that B. abortus 2308 has at least one other heme oxygenase that works in concert with BhuQ to allow this strain to efficiently use heme as an iron source. The genetic organization of the rirA-bhuQ operon also provides the basis for the proposition that BhuQ may perform a previously unrecognized function by allowing the transcriptional regulator RirA to recognize heme as an iron source.
Collapse
|
26
|
HmuP is a coactivator of Irr-dependent expression of heme utilization genes in Bradyrhizobium japonicum. J Bacteriol 2012; 194:3137-43. [PMID: 22505680 DOI: 10.1128/jb.00071-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Utilization of heme as an iron source by Bradyrhizobium japonicum involves induction of the outer membrane heme receptor gene hmuR and other genes within the heme utilization locus. Here, we discovered the hmuP gene located upstream of hmuR and transcribed divergently from it along with hmuTUV. hmuP encodes a small protein that accumulated under iron limitation and is transcriptionally controlled by the global iron-responsive regulator Irr, as were all genes within the heme utilization locus. Cross-linking and immunoprecipitation experiments showed that Irr occupies the hmuR-hmuP promoter in vivo. An hmuP mutant did not grow on heme as an iron source, but retained the ability to use ferric chloride. Correspondingly, induction of hmuR mRNA under iron limitation was severely diminished in an hmuP strain, but other genes within the Irr regulon were unaffected. HmuP occupied the hmuR-hmuP promoter, and thus it plays a direct regulatory role in gene expression. HmuP was not required for Irr occupancy, nor was ectopic expression of hmuP from an Irr-independent promoter sufficient to induce the hmuR gene. Thus, both HmuP and Irr occupancy are necessary for hmuR induction. We suggest that HmuP is a coactivator of Irr-dependent expression of hmuR.
Collapse
|
27
|
Haley KP, Skaar EP. A battle for iron: host sequestration and Staphylococcus aureus acquisition. Microbes Infect 2011; 14:217-27. [PMID: 22123296 DOI: 10.1016/j.micinf.2011.11.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 12/21/2022]
Abstract
The use of iron as an enzymatic cofactor is pervasive in biological systems. Consequently most living organisms, including pathogenic bacteria, require iron to survive and replicate. To combat infection vertebrates have evolved sophisticated iron sequestration systems against which, pathogenic bacteria have concomitantly evolved equally elaborate iron acquisition mechanisms.
Collapse
Affiliation(s)
- Kathryn P Haley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, 1161 21st Ave., South, A5102 MCN, Nashville, TN 37232-2363, USA
| | | |
Collapse
|
28
|
Gaballa A, Helmann JD. Bacillus subtilis Fur represses one of two paralogous haem-degrading monooxygenases. MICROBIOLOGY-SGM 2011; 157:3221-3231. [PMID: 21873409 DOI: 10.1099/mic.0.053579-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identification of genes regulated by the ferric uptake regulator (Fur) protein has provided insights into the diverse mechanisms of adaptation to iron limitation. In the soil bacterium Bacillus subtilis, Fur senses iron sufficiency and represses genes that enable iron uptake, including biosynthetic and transport genes for the siderophore bacillibactin and uptake systems for siderophores produced by other organisms. We here demonstrate that Fur regulates hmoA (formerly yetG), which encodes a haem monooxygenase. HmoA is the first characterized member of a divergent group of putative monooxygenases that cluster separately from the well-characterized IsdG family. B. subtilis also encodes an IsdG family protein designated HmoB (formerly YhgC). Unlike hmoA, hmoB is constitutively expressed and not under Fur control. HmoA and HmoB both bind haemin in vitro with approximately 1 : 1 stoichiometry and degrade haemin in the presence of an electron donor. Mutational and spectroscopic analyses indicate that HmoA and HmoB have distinct active site architectures and interact differently with haem. We further show that B. subtilis can use haem as an iron source, but that this ability is independent of HmoA and HmoB.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| |
Collapse
|
29
|
Abstract
Staphylococcus lugdunensis is often found as part of the normal flora of human skin but has the potential to cause serious infections even in healthy individuals. It remains unclear what factors enable S. lugdunensis to transition from a skin commensal to an invasive pathogen. Analysis of the complete genome reveals a putative iron-regulated surface determinant (Isd) system encoded within S. lugdunensis. In other bacteria, the Isd system permits the utilization of host heme as a source of nutrient iron to facilitate bacterial growth during infection. In this study, we establish that S. lugdunensis expresses an iron-regulated IsdG-family heme oxygenase that binds and degrades heme. Heme degradation by IsdG results in the release of free iron and the production of the chromophore staphylobilin. IsdG-mediated heme catabolism enables the use of heme as a sole source of iron, establishing IsdG as a pathophysiologically relevant heme oxygenase in S. lugdunensis. Together these findings offer insight into how S. lugdunensis fulfills its nutritional requirements while invading host tissues and establish the S. lugdunensis Isd system as being involved in heme-iron utilization.
Collapse
|
30
|
Almirón MA, Ugalde RA. Iron homeostasis in Brucella abortus: the role of bacterioferritin. J Microbiol 2010; 48:668-73. [PMID: 21046346 DOI: 10.1007/s12275-010-0145-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/24/2010] [Indexed: 11/29/2022]
Abstract
Brucella abortus is the etiological agent of bovine brucellosis, an infectious disease of humans and cattle. Its pathogenesis is mainly based on its ability to survive and multiply inside macrophages. It has been demonstrated that if B. abortus ferrochelatase cannot incorporate iron into protoporphyrin IX to synthesize heme, the intracellular replication and virulence in mice is highly attenuated. Therefore, it can be hypothesized that the unavailability of iron could lead to the same attenuation in B. abortus pathogenicity. Thus, the purpose of this work was to obtain a B. abortus derivative unable to keep an internal iron pool and test its ability to replicate under iron limitation. To achieve this, we searched for iron-storage proteins in the genome of brucellae and found bacterioferritin (Bfr) as the sole ferritin encoded. Then, a B. abortus bfr mutant was built up and its capacity to store iron and replicate under iron limitation was investigated. Results indicated that B. abortus Bfr accounts for 70% of the intracellular iron content. Under iron limitation, the bfr mutant suffered from enhanced iron restriction with respect to wild type according to its growth retardation pattern, enhanced sensitivity to oxidative stress, accelerated production of siderophores, and altered expression of membrane proteins. Nonetheless, the bfr mutant was able to adapt and replicate even inside eukaryotic cells, indicating that B. abortus responds to internal iron starvation before sensing external iron availability. This suggests an active role of Bfr in controlling iron homeostasis through the availability of Bfr-bound iron.
Collapse
Affiliation(s)
- Marta A Almirón
- Instituto de Investigaciones Biotecnológicas, INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín CONICET, Buenos Aires 1650, Argentina.
| | | |
Collapse
|
31
|
Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect Immun 2010; 78:4977-89. [PMID: 20679437 DOI: 10.1128/iai.00613-10] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Virtually all bacterial pathogens require iron to infect vertebrates. The most abundant source of iron within vertebrates is in the form of heme as a cofactor of hemoproteins. Many bacterial pathogens have elegant systems dedicated to the acquisition of heme from host hemoproteins. Once internalized, heme is either degraded to release free iron or used intact as a cofactor in catalases, cytochromes, and other bacterial hemoproteins. Paradoxically, the high redox potential of heme makes it a liability, as heme is toxic at high concentrations. Although a variety of mechanisms have been proposed to explain heme toxicity, the mechanisms by which heme kills bacteria are not well understood. Nonetheless, bacteria employ various strategies to protect against and eliminate heme toxicity. Factors involved in heme acquisition and detoxification have been found to contribute to virulence, underscoring the physiological relevance of heme stress during pathogenesis. Herein we describe the current understanding of the mechanisms of heme toxicity and how bacterial pathogens overcome the heme paradox during infection.
Collapse
|
32
|
Li M, Noll S, Beatty JT. Bacteriophytochrome-dependent regulation of light-harvesting complexes in Rhodopseudomonas palustris anaerobic cultures. Curr Microbiol 2010; 61:429-34. [PMID: 20369239 DOI: 10.1007/s00284-010-9634-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 03/19/2010] [Indexed: 11/25/2022]
Abstract
Bacteriophytochromes (Bphs) are photoreceptors that help bacteria sense changes in light wavelength and intensity. Bphs contain a linear tetrapyrrole chromophore that, upon absorption of red or far-red light, undergoes a cis-trans isomerization that leads to a conformational change in the holoprotein. The conformation and type of Bph affects the expression of genes. The linear tetrapyrrole bound by Bphs is thought to come from O(2)-dependent cleavage of heme by a heme oxygenase. We have discovered that the absence of O(2) does not inhibit the normal function of two Bphs in the regulation of Rhodopseudomonas palustris light-harvesting complexes. These observations imply that: (i) a linear tetrapyrrole can be made anaerobically, either through anaerobic heme cleavage by a novel enzyme or directly from the heme precursor hydroxymethylbilane without ring cleavage; or (ii) that Bph-dependent signal transduction does not require a chromophore.
Collapse
Affiliation(s)
- Meng Li
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
33
|
Reniere ML, Ukpabi GN, Harry SR, Stec DF, Krull R, Wright DW, Bachmann BO, Murphy ME, Skaar EP. The IsdG-family of haem oxygenases degrades haem to a novel chromophore. Mol Microbiol 2010; 75:1529-38. [PMID: 20180905 DOI: 10.1111/j.1365-2958.2010.07076.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzymatic haem catabolism by haem oxygenases is conserved from bacteria to humans and proceeds through a common mechanism leading to the formation of iron, carbon monoxide and biliverdin. The first members of a novel class of haem oxygenases were recently identified in Staphylococcus aureus (IsdG and IsdI) and were termed the IsdG-family of haem oxygenases. Enzymes of the IsdG-family form tertiary structures distinct from those of the canonical haem oxygenase family, suggesting that IsdG-family members degrade haem via a unique reaction mechanism. Herein we report that the IsdG-family of haem oxygenases degrade haem to the oxo-bilirubin chromophore staphylobilin. We also present the crystal structure of haem-bound IsdI in which haem ruffling and constrained binding of oxygen is consistent with cleavage of the porphyrin ring at the beta- or delta-meso carbons. Combined, these data establish that the IsdG-family of haem oxygenases degrades haem to a novel chromophore distinct from biliverdin.
Collapse
Affiliation(s)
- Michelle L Reniere
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yilmaz M, Kang I, Beale SI. Heme oxygenase 2 of the cyanobacterium Synechocystis sp. PCC 6803 is induced under a microaerobic atmosphere and is required for microaerobic growth at high light intensity. PHOTOSYNTHESIS RESEARCH 2010; 103:47-59. [PMID: 19937118 DOI: 10.1007/s11120-009-9506-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 11/04/2009] [Indexed: 05/28/2023]
Abstract
Cyanobacteria, red algae, and cryptomonad algae utilize phycobilin chromophores that are attached to phycobiliproteins to harvest solar energy. Heme oxygenase (HO) in these organisms catalyzes the first step in phycobilin formation through the conversion of heme to biliverdin IXalpha, CO, and iron. The Synechocystis sp. PCC 6803 genome contains two open reading frames, ho1 (sll1184) and ho2 (sll1875), whose products have in vitro HO activity. We report that HO2, the protein encoded by ho2, was induced in the cells growing under a microaerobic atmosphere [0.2% (v/v) O(2)], whereas HO1 was constitutively expressed under both aerobic and microaerobic atmospheres. Light intensity did not have an effect on the expression of both the HOs. Cells, in which ho2 was disrupted, were unable to grow microaerobically at a light intensity of 40 micromol m(-2) s(-1), but did grow microaerobically at 10 micromol m(-2) s(-1) light intensity. These cells grew normally aerobically at both light intensities. Comparative analysis of complete cyanobacterial genomes revealed that possession of two HOs is common in cyanobacteria. In phylogenetic analysis of their amino acid sequences, cyanobacterial HO1 and HO2 homologs formed distinct clades. HO sequences of cyanobacteria that have only one isoform were most similar to HO1 sequences. We propose that HO2 might be the more ancient HO homolog that functioned under low O(2) tension, whereas the derived HO1 can better accommodate increased O(2) tension in the environment.
Collapse
Affiliation(s)
- Mete Yilmaz
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
35
|
Carbon monoxide in biology and microbiology: surprising roles for the "Detroit perfume". Adv Microb Physiol 2009; 56:85-167. [PMID: 20943125 DOI: 10.1016/s0065-2911(09)05603-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon monoxide (CO) is a colorless, odorless gas with a reputation for being an anthropogenic poison; there is extensive documentation of the modes of human exposure, toxicokinetics, and health effects. However, CO is also generated endogenously by heme oxygenases (HOs) in mammals and microbes, and its extraordinary biological activities are now recognized and increasingly utilized in medicine and physiology. This review introduces recent advances in CO biology and chemistry and illustrates the exciting possibilities that exist for a deeper understanding of its biological consequences. However, the microbiological literature is scant and is currently restricted to: 1) CO-metabolizing bacteria, CO oxidation by CO dehydrogenase (CODH) and the CO-sensing mechanisms that enable CO oxidation; 2) the use of CO as a heme ligand in microbial biochemistry; and 3) very limited information on how microbes respond to CO toxicity. We demonstrate how our horizons in CO biology have been extended by intense research activity in recent years in mammalian and human physiology and biochemistry. CO is one of several "new" small gas molecules that are increasingly recognized for their profound and often beneficial biological activities, the others being nitric oxide (NO) and hydrogen sulfide (H2S). The chemistry of CO and other heme ligands (oxygen, NO, H2S and cyanide) and the implications for biological interactions are briefly presented. An important advance in recent years has been the development of CO-releasing molecules (CO-RMs) for aiding experimental administration of CO as an alternative to the use of CO gas. The chemical principles of CO-RM design and mechanisms of CO release from CO-RMs (dissociation, association, reduction and oxidation, photolysis, and acidification) are reviewed and we present a survey of the most commonly used CO-RMs. Amongst the most important new applications of CO in mammalian physiology and medicine are its vasoactive properties and the therapeutic potentials of CO-RMs in vascular disease, anti-inflammatory effects, CO-mediated cell signaling in apoptosis, applications in organ preservation, and the effects of CO on mitochondrial function. The very limited literature on microbial growth responses to CO and CO-RMs in vitro, and the transcriptomic and physiological consequences of microbial exposure to CO and CO-RMs are reviewed. There is current interest in CO and CO-RMs as antimicrobial agents, particularly in the control of bacterial infections. Future prospects are suggested and unanswered questions posed.
Collapse
|
36
|
Chim N, Iniguez A, Nguyen TQ, Goulding CW. Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis. J Mol Biol 2009; 395:595-608. [PMID: 19917297 DOI: 10.1016/j.jmb.2009.11.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/06/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
Heme degradation plays a pivotal role in the availability of the essential nutrient, iron, in pathogenic bacteria. A previously unannotated protein from Mycobacterium tuberculosis, Rv3592, which shares homology to heme-degrading enzymes, has been identified. Biochemical analyses confirm that Rv3592, which we have termed MhuD (mycobacterial heme utilization, degrader), is able to bind and degrade heme. Interestingly, contrary to previously reported stoichiometry for the Staphylococcus aureus heme degraders, iron-regulated surface determinant (Isd)G and IsdI, MhuD has the ability to bind heme in a 1:2 protein-to-heme ratio, although the MhuD-diheme complex is inactive. Furthermore, the 1.75-A crystal structure of the MhuD-diheme complex reveals two stacked hemes forming extensive contacts with residues in the active site. In particular, the solvent-exposed heme is axially liganded by His75 and is stacked planar upon the solvent-protected heme. The solvent-protected heme is coordinated by a chloride ion, which is, in turn, stabilized by Asn7. Structural comparison between MhuD-diheme and inactive IsdG and IsdI bound to only one highly distorted metalloporphyrin ring reveals that several residues located in alpha-helix 2 and the subsequent loop appear to be responsible for heme stoichiometric differences and suggest open and closed conformations for substrate entry and product exit.
Collapse
Affiliation(s)
- Nicholas Chim
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
37
|
Bacteria capture iron from heme by keeping tetrapyrrol skeleton intact. Proc Natl Acad Sci U S A 2009; 106:11719-24. [PMID: 19564607 DOI: 10.1073/pnas.0903842106] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Because heme is a major iron-containing molecule in vertebrates, the ability to use heme-bound iron is a determining factor in successful infection by bacterial pathogens. Until today, all known enzymes performing iron extraction from heme did so through the rupture of the tetrapyrrol skeleton. Here, we identified 2 Escherichia coli paralogs, YfeX and EfeB, without any previously known physiological functions. YfeX and EfeB promote iron extraction from heme preserving the tetrapyrrol ring intact. This novel enzymatic reaction corresponds to the deferrochelation of the heme. YfeX and EfeB are the sole proteins able to provide iron from exogenous heme sources to E. coli. YfeX is located in the cytoplasm. EfeB is periplasmic and enables iron extraction from heme in the periplasm and iron uptake in the absence of any heme permease. YfeX and EfeB are widespread and highly conserved in bacteria. We propose that their physiological function is to retrieve iron from heme.
Collapse
|
38
|
Ortiz de Orué Lucana D, Bogel G, Zou P, Groves MR. The oligomeric assembly of the novel haem-degrading protein HbpS is essential for interaction with its cognate two-component sensor kinase. J Mol Biol 2009; 386:1108-22. [PMID: 19244623 DOI: 10.1016/j.jmb.2009.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HbpS, a novel protein of previously unknown function from Streptomyces reticuli, is up-regulated in response to haemin- and peroxide-based oxidative stress and interacts with the SenS/SenR two-component signal transduction system. In this study, we report the high-resolution crystal structures (2.2 and 1.6 A) of octomeric HbpS crystallized in the presence and in the absence of haem and demonstrate that iron binds to surface-exposed lysine residues of an octomeric assembly. Based on an analysis of the crystal structures, we propose that the iron atom originates from the haem group and report subsequent biochemical experiments that demonstrate that HbpS possesses haem-degrading activity in vitro. Further examination of the crystal structures has identified amino acids that are essential for assembly of the octomer. The role of these residues is confirmed by biophysical experiments. Additionally, we show that while the octomeric assembly state of HbpS is not essential for haem-degrading activity, the assembly of HbpS is required for its interaction with the cognate sensor kinase, SenS. Homologs of HbpS and SenS/SenR have been identified in a number of medically and ecologically relevant bacterial species (including Vibrio cholerae, Klebsiella pneumoniae, Corynebacterium diphtheriae, Arthrobacter aurescens and Pseudomonas putida), suggesting the existence of a previously undescribed bacterial oxidative stress-response pathway common to Gram-negative and Gram-positive bacteria. Thus, the data presented provide the first insight into the function of a novel protein family and an example of an iron-mediated interaction between an accessory protein and its cognate two-component sensor kinase.
Collapse
Affiliation(s)
- Darío Ortiz de Orué Lucana
- Universität Osnabrück, FB Biologie/Chemie, Angewandte Genetik der Mikroorganismen, Barbarastrasse 13, 49069 Osnabrück, Germany
| | | | | | | |
Collapse
|
39
|
Small SK, Puri S, Sangwan I, O'Brian MR. Positive control of ferric siderophore receptor gene expression by the Irr protein in Bradyrhizobium japonicum. J Bacteriol 2009; 191:1361-8. [PMID: 19114488 PMCID: PMC2648218 DOI: 10.1128/jb.01571-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 12/16/2008] [Indexed: 12/26/2022] Open
Abstract
Ferric siderophore receptors are components of high-affinity iron-chelate transport systems in gram-negative bacteria. The genes encoding these receptors are generally regulated by repression. Here, we show that the ferrichrome receptor gene bll4920 and four additional putative ferric siderophore receptor genes in Bradyrhizobium japonicum are positively controlled by the regulatory protein Irr, as observed by the low level of mRNA transcripts in an irr mutant in iron-limited cells. Potential Irr binding sites with iron control element (ICE)-like motifs were found upstream and distal to the transcription start sites of the five receptor genes. However, purified recombinant Irr bound only some of those elements. Nevertheless, dissection of the bll4920 promoter region showed that a component in extracts of wild-type cells grown in iron-limited media bound only in the ICE motif region of the promoter. This binding was not observed with extracts of cells from the parent strain grown under high-iron conditions or from an irr mutant strain. Furthermore, gel mobility supershift experiments identified Irr as the binding protein in cell extracts. Chromatin immunoprecipitation experiments demonstrated that Irr occupies the promoters of the five ferric iron transport genes in vivo. We conclude that Irr is a direct positive regulator of ferric iron transport in B. japonicum.
Collapse
Affiliation(s)
- Sandra K Small
- Department of Biochemistry, State University of New York at Buffalo, 14214, USA
| | | | | | | |
Collapse
|
40
|
Guo Y, Guo G, Mao X, Zhang W, Xiao J, Tong W, Liu T, Xiao B, Liu X, Feng Y, Zou Q. Functional identification of HugZ, a heme oxygenase from Helicobacter pylori. BMC Microbiol 2008; 8:226. [PMID: 19091096 PMCID: PMC2644699 DOI: 10.1186/1471-2180-8-226] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 12/17/2008] [Indexed: 11/17/2022] Open
Abstract
Background Iron is recognized as an important trace element, essential for most organisms including pathogenic bacteria. HugZ, a protein related to heme iron utilization, is involved in bacterial acquisition of iron from the host. We previously observed that a hugZ homologue is correlated with the adaptive colonization of Helicobacter pylori (H. pylori), a major gastro-enteric pathogen. However, its exact physiological role remains unclear. Results A gene homologous to hugZ, designated hp0318, identified in H. pylori ATCC 26695, exhibits 66% similarity to cj1613c of Campylobacter jejuni NCTC 11168. Soluble 6 × His fused-HugZ protein was expressed in vitro. Hemin-agrose affinity analysis indicated that the recombinant HugZ protein can bind to hemin. Absorption spectroscopy at 411 nm further revealed a heme:HugZ binding ratio of 1:1. Enzymatic assays showed that purified recombinant HugZ protein can degrade hemin into biliverdin and carbon monoxide in the presence of either ascorbic acid or NADPH and cytochrome P450 reductase. The biochemical and enzymatic characteristics agreed closely with those of Campylobacter jejuni Cj1613c protein, implying that hp0318 is a functional member of the HugZ family. A hugZ deletion mutant was obtained by homologous recombination. This mutant strain showed poor growth when hemoglobin was provided as the source of iron, partly because of its failure to utilize hemoglobin efficiently. Real-time quantitative PCR also confirmed that the expression of hugZ was regulated by iron levels. Conclusion These findings provide biochemical and genetic evidence that hugZ (hp0318) encodes a heme oxygenase involved in iron release/uptake in H. pylori.
Collapse
Affiliation(s)
- Ying Guo
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University, Chongqing, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee WC, Reniere ML, Skaar EP, Murphy MEP. Ruffling of metalloporphyrins bound to IsdG and IsdI, two heme-degrading enzymes in Staphylococcus aureus. J Biol Chem 2008; 283:30957-63. [PMID: 18713745 DOI: 10.1074/jbc.m709486200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IsdG and IsdI are paralogous proteins that are intracellular components of a complex heme uptake system in Staphylococcus aureus. IsdG and IsdI were shown previously to reductively degrade hemin. Crystal structures of the apoproteins show that these proteins belong to a newly identified heme degradation family distinct from canonical eukaryotic and prokaryotic heme oxygenases. Here we report the crystal structures of an inactive N7A variant of IsdG in complex with Fe(3+)-protoporphyrin IX (IsdG-hemin) and of IsdI in complex with cobalt protoporphyrin IX (IsdI-CoPPIX) to 1.8 A or better resolution. These structures show that the metalloporphyrins are buried into similar deep clefts such that the propionic acids form salt bridges to two Arg residues. His(77) (IsdG) or His(76) (IsdI), a critical residue required for activity, is coordinated to the Fe(3+) or Co(3+) atoms, respectively. The bound porphyrin rings form extensive steric interactions in the binding cleft such that the rings are highly distorted from the plane. This distortion is best described as ruffled and places the beta- and delta-meso carbons proximal to the distal oxygen-binding site. In the IsdG-hemin structure, Fe(3+) is pentacoordinate, and the distal side is occluded by the side chain of Ile(55). However, in the structure of IsdI-CoPPIX, the distal side of the CoPPIX accommodates a chloride ion in a cavity formed through a conformational change in Ile(55). The chloride ion participates in a hydrogen bond to the side chain amide of Asn(6). Together the structures suggest a reaction mechanism in which a reactive peroxide intermediate proceeds with nucleophilic oxidation at the beta- or delta-meso carbon of the hemin.
Collapse
Affiliation(s)
- Woo Cheol Lee
- Department of Microbiology and Immunology, Life Sciences Institute, the University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
42
|
Sangwan I, Small SK, O'Brian MR. The Bradyrhizobium japonicum Irr protein is a transcriptional repressor with high-affinity DNA-binding activity. J Bacteriol 2008; 190:5172-7. [PMID: 18539736 PMCID: PMC2493276 DOI: 10.1128/jb.00495-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 05/23/2008] [Indexed: 12/25/2022] Open
Abstract
The Irr protein is a global regulator of iron homeostasis in Bradyrhizobium japonicum, and a subset of genes within the Irr regulon are negatively controlled under iron limitation. However, repressor function, high-affinity DNA binding in vitro, or promoter occupancy in vivo of Irr for a negatively regulated gene has not been demonstrated. Here, we show that the blr7895 and bll6680 genes are negatively regulated by Irr as determined by derepression of transcript levels in iron-limited cells of an irr mutant strain. Electrophoretic gel mobility shift analysis showed that a component in extracts of wild-type cells grown under iron limitation bound the iron control elements (ICE) within the promoters of blr7895 and bll6680 identified previously (G. Rudolph, G. Semini, F. Hauser, A. Lindemann, M. Friberg, H. Hennecke, and H. M. Fischer, J. Bacteriol. 188:733-744, 2006). Binding was not observed with extracts of cells from the parent strain grown under high iron conditions or with those from an irr mutant. Furthermore, gel mobility supershift experiments identified Irr as a component of the binding complex. Purified recombinant Irr bound to ICE DNA with high affinity in the presence of divalent metal, with K(d) values of 7 to 19 nM, consistent with a physiological role for Irr as a transcriptional regulator. In addition, in vitro transcription initiated from the blr7895 promoter was inhibited by Irr. Whole-cell cross-linking and immunoprecipitation experiments showed that Irr occupies the promoters of blr7895 and bll6680 in vivo in an iron-dependent manner. The findings demonstrate that Irr is a transcriptional repressor that binds DNA with high affinity.
Collapse
Affiliation(s)
- Indu Sangwan
- Department of Biochemistry, 140 Farber Hall, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
43
|
Bibb LA, Kunkle CA, Schmitt MP. The ChrA-ChrS and HrrA-HrrS signal transduction systems are required for activation of the hmuO promoter and repression of the hemA promoter in Corynebacterium diphtheriae. Infect Immun 2007; 75:2421-31. [PMID: 17353293 PMCID: PMC1865786 DOI: 10.1128/iai.01821-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Corynebacterium diphtheriae hmuO gene, which encodes a heme oxygenase involved in heme iron utilization, is activated in a heme- or hemoglobin-dependent manner in part by the two-component system ChrA-ChrS. Mutation of either the chrA or the chrS gene resulted in a marked reduction of hemoglobin-dependent activation at the hmuO promoter in C. diphtheriae; however, it was observed that significant levels of hemoglobin-dependent expression were maintained in the mutants, suggesting that an additional activator is involved in regulation. A BLAST search of the C. diphtheriae genome sequence revealed a second two-component system, encoded by DIP2268 and DIP2267, that shares similarity with ChrS and ChrA, respectively; we have designated these genes hrrS (DIP2268) and hrrA (DIP2267). Analysis of hmuO promoter expression demonstrated that hemoglobin-dependent activity was fully abolished in strains from which both the chrA-chrS and the hrrA-hrrS two-component systems were deleted. Similarly, deletion of the sensor kinase genes chrS and hrrS or the genes encoding both of the response regulators chrA and hrrA also eliminated hemoglobin-dependent activation at the hmuO promoter. We also show that the regulators ChrA-ChrS and HrrA-HrrS are involved in the hemoglobin-dependent repression of the promoter upstream of hemA, which encodes a heme biosynthesis enzyme. Evidence for cross talk between the ChrA-ChrS and HrrA-HrrS systems is presented. In conclusion, these findings demonstrate that the ChrA-ChrS and HrrA-HrrS regulatory systems are critical for full hemoglobin-dependent activation at the hmuO promoter and also suggest that these two-component systems are involved in the complex mechanism of the regulation of heme homeostasis in C. diphtheriae.
Collapse
Affiliation(s)
- Lori A Bibb
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
44
|
Kunkle CA, Schmitt MP. Comparative analysis of hmuO function and expression in Corynebacterium species. J Bacteriol 2007; 189:3650-4. [PMID: 17322319 PMCID: PMC1855885 DOI: 10.1128/jb.00056-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have constructed defined deletions in the hmuO gene from Corynebacterium diphtheriae and Corynebacterium ulcerans and show that the C. ulcerans hmuO mutation results in a significant reduction in hemoglobin-iron utilization, whereas in C. diphtheriae strains, deletion of hmuO caused no or only partial reduction in the utilization of heme as an iron source. We also show that expression from the C. ulcerans hmuO promoter exhibits minimal regulation by iron and heme whereas transcription from the C. diphtheriae hmuO promoter shows both significant iron repression and heme-dependent activation. These findings indicate that variability in HmuO function and expression exists among Corynebacterium species.
Collapse
Affiliation(s)
- Carey A Kunkle
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Adminisstration, Bethesda, MD 20892, USA
| | | |
Collapse
|