1
|
DeLira-Bustillos N, Angulo-Zamudio UA, Leon-Sicairos N, Flores-Villaseñor H, Velazquez-Roman J, Tapia-Pastrana G, Martínez-Villa FA, Velázquez-Cruz R, Salmerón J, Canizales-Quinteros S, Canizalez-Roman A. Distribution and virulence of Escherichia coli harboring cyclomodulins and supplementary virulence genes isolates from clinical and environmental samples. Microb Pathog 2024; 190:106634. [PMID: 38556104 DOI: 10.1016/j.micpath.2024.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
This study aimed to determine the prevalence of cyclomodulins (cdt, cnf, pks and cif) in Escherichia coli (E. coli) isolated from clinical and environmental samples, the presence of supplementary virulence genes (SVG), antibiotic resistance, and in vitro cytotoxicity. 413 E. coli were isolated from clinical (stool from obese subjects, normal weight subjects, children with diarrhea, and children without diarrhea; and urine from pregnant and non-pregnant women with urinary tract infections) and environmental (water and different foods) samples. PCR was performed to identify E. coli pathotypes, the four cyclomodulins, and 18 SVG; virulence score, cytotoxic assay, and antibiotic resistance assay were performed. Fifteen percent of E. coli were positive for cyclomodulins and were found in all isolation sources; however, in children with diarrhea, they were more frequent. The most frequent cyclomodulin was cdt. More DEC strains harbor cyclomodulins than non-DEC, and cyclomodulins were most frequent among aEPEC pathotype. SVG ehaC was associated with cyclomodulin-positive strains. Cyclomodulin-positive E. coli had a higher virulence score but no significant cytotoxic activity. They were slightly more resistant to antibiotics. In conclusion, cyclomodulins-positive E. coli was widely distributed in humans, food, and the environment, and they were associated with SVG ehaC, suggesting that these genes may play a role in the pathogenesis of the cyclomodulins. However, more research is needed.
Collapse
Affiliation(s)
- Nora DeLira-Bustillos
- Programa de Doctorado, Posgrado Integral en Biotecnología, FCQB, UAS, 80030, Culiacan Sinaloa, Mexico
| | | | - Nidia Leon-Sicairos
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan Sinaloa, Mexico; Pediatric Hospital of Sinaloa, 80200, Culiacan Sinaloa, Mexico
| | - Hector Flores-Villaseñor
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan Sinaloa, Mexico; The Sinaloa State Public Health Laboratory, Secretariat of Health, 80058, Culiacan Sinaloa, Mexico
| | - Jorge Velazquez-Roman
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan Sinaloa, Mexico
| | - Gabriela Tapia-Pastrana
- Laboratorio de Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, Oaxaca, 71256, Mexico
| | | | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, 14610, Mexico
| | - Jorge Salmerón
- Centro de Investigación en Políticas, Población y Salud de la Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico
| | | | - Adrian Canizalez-Roman
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan Sinaloa, Mexico; The Women's Hospital, Secretariat of Health, 80020, Culiacan Sinaloa, Mexico.
| |
Collapse
|
2
|
Markelova NN, Semenova EF, Sineva ON, Sadykova VS. The Role of Cyclomodulins and Some Microbial Metabolites in Bacterial Microecology and Macroorganism Carcinogenesis. Int J Mol Sci 2022; 23:ijms231911706. [PMID: 36233008 PMCID: PMC9570213 DOI: 10.3390/ijms231911706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
A number of bacteria that colonize the human body produce toxins and effectors that cause changes in the eukaryotic cell cycle—cyclomodulins and low-molecular-weight compounds such as butyrate, lactic acid, and secondary bile acids. Cyclomodulins and metabolites are necessary for bacteria as adaptation factors—which are influenced by direct selection—to the ecological niches of the host. In the process of establishing two-way communication with the macroorganism, these compounds cause limited damage to the host, despite their ability to disrupt key processes in eukaryotic cells, which can lead to pathological changes. Possible negative consequences of cyclomodulin and metabolite actions include their potential role in carcinogenesis, in particular, with the ability to cause DNA damage, increase genome instability, and interfere with cancer-associated regulatory pathways. In this review, we aim to examine cyclomodulins and bacterial metabolites as important factors in bacterial survival and interaction with the host organism to show their heterogeneous effect on oncogenesis depending on the surrounding microenvironment, pathological conditions, and host genetic background.
Collapse
Affiliation(s)
- Natalia N. Markelova
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia
- Correspondence: (N.N.M.); (V.S.S.)
| | - Elena F. Semenova
- Institute of Biochemical Technology, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, 295007 Simferopol, Russia
| | - Olga N. Sineva
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia
| | - Vera S. Sadykova
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia
- Correspondence: (N.N.M.); (V.S.S.)
| |
Collapse
|
3
|
Rodríguez-Rubio L, Haarmann N, Schwidder M, Muniesa M, Schmidt H. Bacteriophages of Shiga Toxin-Producing Escherichia coli and Their Contribution to Pathogenicity. Pathogens 2021; 10:404. [PMID: 33805526 PMCID: PMC8065619 DOI: 10.3390/pathogens10040404] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Shiga toxins (Stx) of Shiga toxin-producing Escherichia coli (STEC) are generally encoded in the genome of lambdoid bacteriophages, which spend the most time of their life cycle integrated as prophages in specific sites of the bacterial chromosome. Upon spontaneous induction or induction by chemical or physical stimuli, the stx genes are co-transcribed together with the late phase genes of the prophages. After being assembled in the cytoplasm, and after host cell lysis, mature bacteriophage particles are released into the environment, together with Stx. As members of the group of lambdoid phages, Stx phages share many genetic features with the archetypical temperate phage Lambda, but are heterogeneous in their DNA sequences due to frequent recombination events. In addition to Stx phages, the genome of pathogenic STEC bacteria may contain numerous prophages, which are either cryptic or functional. These prophages may carry foreign genes, some of them related to virulence, besides those necessary for the phage life cycle. Since the production of one or more Stx is considered the major pathogenicity factor of STEC, we aim to highlight the new insights on the contribution of Stx phages and other STEC phages to pathogenicity.
Collapse
Affiliation(s)
- Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Nadja Haarmann
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maike Schwidder
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| |
Collapse
|
4
|
Sy BM, Tree JJ. Small RNA Regulation of Virulence in Pathogenic Escherichia coli. Front Cell Infect Microbiol 2021; 10:622202. [PMID: 33585289 PMCID: PMC7873438 DOI: 10.3389/fcimb.2020.622202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
Enteric and extraintestinal pathotypes of Escherichia coli utilize a wide range of virulence factors to colonize niches within the human body. During infection, virulence factors such as adhesins, secretions systems, or toxins require precise regulation and coordination to ensure appropriate expression. Additionally, the bacteria navigate rapidly changing environments with fluctuations in pH, temperature, and nutrient levels. Enteric pathogens utilize sophisticated, interleaved systems of transcriptional and post-transcriptional regulation to sense and respond to these changes and modulate virulence gene expression. Regulatory small RNAs and RNA-binding proteins play critical roles in the post-transcriptional regulation of virulence. In this review we discuss how the mosaic genomes of Escherichia coli pathotypes utilize small RNA regulation to adapt to their niche and become successful human pathogens.
Collapse
Affiliation(s)
- Brandon M Sy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
5
|
Fitzgerald SF, Beckett AE, Palarea-Albaladejo J, McAteer S, Shaaban S, Morgan J, Ahmad NI, Young R, Mabbott NA, Morrison L, Bono JL, Gally DL, McNeilly TN. Shiga toxin sub-type 2a increases the efficiency of Escherichia coli O157 transmission between animals and restricts epithelial regeneration in bovine enteroids. PLoS Pathog 2019; 15:e1008003. [PMID: 31581229 PMCID: PMC6776261 DOI: 10.1371/journal.ppat.1008003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Specific Escherichia coli isolates lysogenised with prophages that express Shiga toxin (Stx) can be a threat to human health, with cattle being an important natural reservoir. In many countries the most severe pathology is associated with enterohaemorrhagic E. coli (EHEC) serogroups that express Stx subtype 2a. In the United Kingdom, phage type (PT) 21/28 O157 strains have emerged as the predominant cause of life-threatening EHEC infections and this phage type commonly encodes both Stx2a and Stx2c toxin types. PT21/28 is also epidemiologically linked to super-shedding (>103 cfu/g of faeces) which is significant for inter-animal transmission and human infection as demonstrated using modelling studies. We demonstrate that Stx2a is the main toxin produced by stx2a+/stx2c+ PT21/28 strains induced with mitomycin C and this is associated with more rapid induction of gene expression from the Stx2a-encoding prophage compared to that from the Stx2c-encoding prophage. Bacterial supernatants containing either Stx2a and/or Stx2c were demonstrated to restrict growth of bovine gastrointestinal organoids with no restriction when toxin production was not induced or prevented by mutation. Isogenic strains that differed in their capacity to produce Stx2a were selected for experimental oral colonisation of calves to assess the significance of Stx2a for both super-shedding and transmission between animals. Restoration of Stx2a expression in a PT21/28 background significantly increased animal-to-animal transmission and the number of sentinel animals that became super-shedders. We propose that while both Stx2a and Stx2c can restrict regeneration of the epithelium, it is the relatively rapid and higher levels of Stx2a induction, compared to Stx2c, that have contributed to the successful emergence of Stx2a+ E. coli isolates in cattle in the last 40 years. We propose a model in which Stx2a enhances E. coli O157 colonisation of in-contact animals by restricting regeneration and turnover of the colonised gastrointestinal epithelium. Enterohaemorrhagic E. coli (EHEC) O157 strains are found in cattle where they are asymptomatic, while human exposure can lead to severe symptoms including bloody diarrhoea and kidney damage due to the activity of Shiga toxin (Stx). The most serious symptoms in humans are associated with isolates that encode Stx subtype 2a. The advantage of these toxins in the animal reservoir is still not clear, however there is experimental evidence implicating Stx with increased bacterial adherence, immune modulation and suppression of predatory protozoa. In this study, the hypothesis that Stx2a is important for super-shedding and calf-to-calf transmission was tested by comparing excretion and transmission dynamics of E. coli O157 strains with and without Stx2a. While Stx2a did not alter excretion levels when calfs were orally challenge, it enabled colonisation of more in contact ‘sentinel’ animals in our transmission model. We show that Stx2a is generally induced more rapidly than Stx2c, resulting in increased levels of Stx2a expression. Both Stx2a and Stx2c were able to restrict cellular proliferation of epithelial cells in cultured bovine enteroids. Taken together, we propose that rapid production of Stx2a and its role in establishing E. coli O157 colonisation in the bovine gastrointestinal tract facilitate effective transmission and have led to its expansion in the cattle E. coli O157 population.
Collapse
Affiliation(s)
- Stephen F. Fitzgerald
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | - Amy E. Beckett
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | | | - Sean McAteer
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Sharif Shaaban
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Jason Morgan
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- Moredun Research Institute, Penicuik, United Kingdom
| | | | - Rachel Young
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Neil A. Mabbott
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - Liam Morrison
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
| | - James L. Bono
- United States Department of Agriculture, Agricultural Research Service, Nebraska, United States of America
| | - David L. Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Midlothian, United Kingdom
- * E-mail: (DLG); (TNM)
| | - Tom N. McNeilly
- Moredun Research Institute, Penicuik, United Kingdom
- * E-mail: (DLG); (TNM)
| |
Collapse
|
6
|
Salvador FA, Hernandes RT, Vieira MAM, Rockstroh AC, Gomes TAT. Distribution of non-LEE-encoded type 3 secretion system dependent effectors in enteropathogenic Escherichia coli. Braz J Microbiol 2014; 45:851-5. [PMID: 25477918 PMCID: PMC4204969 DOI: 10.1590/s1517-83822014000300014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 03/14/2014] [Indexed: 01/02/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) are important human gastroenteritis agents. The prevalence of six non-LEE genes encoding type 3 translocated effectors was investigated. The nleC, cif and nleB genes were more prevalent in typical than in atypical EPEC, although a higher diversity of genes combinations was observed in atypical EPEC.
Collapse
Affiliation(s)
- Fábia A Salvador
- Departamento de Microbiologia, Imunologia e Parasitologia Universidade Federal de São Paulo São PauloSP Brazil Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rodrigo T Hernandes
- Departamento de Microbiologia, Imunologia e Parasitologia Universidade Federal de São Paulo São PauloSP Brazil Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil. ; Departamento de Microbiologia e Imunologia Instituto de Biociências Universidade Estadual Paulista "Julio de Mesquita Filho" BotucatuSP Brazil Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista "Julio de Mesquita Filho", Botucatu, SP, Brazil
| | - Mônica A M Vieira
- Departamento de Microbiologia, Imunologia e Parasitologia Universidade Federal de São Paulo São PauloSP Brazil Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Anna C Rockstroh
- Departamento de Microbiologia, Imunologia e Parasitologia Universidade Federal de São Paulo São PauloSP Brazil Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia Universidade Federal de São Paulo São PauloSP Brazil Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Martínez-Castillo A, Muniesa M. Implications of free Shiga toxin-converting bacteriophages occurring outside bacteria for the evolution and the detection of Shiga toxin-producing Escherichia coli. Front Cell Infect Microbiol 2014; 4:46. [PMID: 24795866 PMCID: PMC3997033 DOI: 10.3389/fcimb.2014.00046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/27/2014] [Indexed: 11/13/2022] Open
Abstract
In this review we highlight recent work that has increased our understanding of the distribution of Shiga toxin-converting phages that can be detected as free phage particles, independently of Shiga toxin-producing bacteria (STEC). Stx phages are a quite diverse group of temperate phages that can be found in their prophage state inserted within the STEC chromosome, but can also be found as phages released from the cell after activation of their lytic cycle. They have been detected in extraintestinal environments such as water polluted with feces from humans or animals, food samples or even in stool samples of healthy individuals. The high persistence of phages to several inactivation conditions makes them suitable candidates for the successful mobilization of stx genes, possibly resulting in the genes reaching a new bacterial genomic background by means of transduction, where ultimately they may be expressed, leading to Stx production. Besides the obvious fact that Stx phages circulating between bacteria can be, and probably are, involved in the emergence of new STEC strains, we review here other possible ways in which free Stx phages could interfere with the detection of STEC in a given sample by current laboratory methods and how to avoid such interference.
Collapse
Affiliation(s)
| | - Maite Muniesa
- Department of Microbiology, Faculty of Biology, University of BarcelonaBarcelona, Spain
| |
Collapse
|
8
|
Schrodt C, McHugh EE, Gawinowicz MA, DuPont HL, Brown EL. Rifaximin-mediated changes to the epithelial cell proteome: 2-D gel analysis. PLoS One 2013; 8:e68550. [PMID: 23922656 PMCID: PMC3724845 DOI: 10.1371/journal.pone.0068550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/30/2013] [Indexed: 12/11/2022] Open
Abstract
Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens.
Collapse
Affiliation(s)
- Caroline Schrodt
- Center for Infectious Diseases, the University of Texas School of Public Health, Houston, Texas, United States of America
| | - Erin E. McHugh
- Center for Infectious Diseases, the University of Texas School of Public Health, Houston, Texas, United States of America
| | - Mary Ann Gawinowicz
- Protein Core Facility, Columbia University College, New York, New York, United States of America
| | - Herbert L. DuPont
- Center for Infectious Diseases, the University of Texas School of Public Health, Houston, Texas, United States of America
- Internal Medicine Services, St. Luke’s Episcopal Hospital and Department of Medicine, Infectious Diseases Section, Baylor College of Medicine, Houston, Texas, United States of America
| | - Eric L. Brown
- Center for Infectious Diseases, the University of Texas School of Public Health, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J, Darfeuille-Michaud A, Pezet D, Bonnet R. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One 2013; 8:e56964. [PMID: 23457644 PMCID: PMC3572998 DOI: 10.1371/journal.pone.0056964] [Citation(s) in RCA: 399] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 01/18/2013] [Indexed: 02/08/2023] Open
Abstract
Some Escherichia coli strains produce toxins designated cyclomodulins (CMs) which interfere with the eukaryotic cell cycle of host cells, suggesting a possible link between these bacteria and cancers. There are relatively few data available concerning the colonization of colon tumors by cyclomodulin- and genotoxic-producing E. coli. We did a qualitative and phylogenetic analysis of mucosa-associated E. coli harboring cyclomodulin-encoding genes from 38 patients with colorectal cancer (CRC) and 31 with diverticulosis. The functionality of these genes was investigated on cell cultures and the genotoxic activity of strains devoid of known CM-encoding gene was investigated. Results showed a higher prevalence of B2 phylogroup E. coli harboring the colibatin-producing genes in biopsies of patients with CRC (55.3%) than in those of patients with diverticulosis (19.3%), (p<0.01). Likewise, a higher prevalence of B2 E. coli harboring the CNF1-encoding genes in biopsies of patients with CRC (39.5%) than in those of patients with diverticulosis (12.9%), (p = 0.01). Functional analysis revealed that the majority of these genes were functional. Analysis of the ability of E. coli to adhere to intestinal epithelial cells Int-407 indicated that highly adherent E. coli strains mostly belonged to A and D phylogroups, whatever the origin of the strains (CRC or diverticulosis), and that most E. coli strains belonging to B2 phylogroup displayed very low levels of adhesion. In addition, 27.6% (n = 21/76) E. coli strains devoid of known cyclomodulin-encoding genes induced DNA damage in vitro, as assessed by the comet assay. In contrast to cyclomodulin-producing E. coli, these strains mainly belonged to A or D E. coli phylogroups, and exhibited a non significant difference in the distribution of CRC and diverticulosis specimens (22% versus 32.5%, p = 0.91). In conclusion, cyclomodulin-producing E. coli belonging mostly to B2 phylogroup colonize the colonic mucosa of patients with CRC.
Collapse
Affiliation(s)
- Emmanuel Buc
- UMR 1071 Inserm/Université d'Auvergne, Clermont Université, Clermont-Ferrand, France
- USC 2018, INRA, Clermont-Ferrand, France
- Service de Chirurgie digestive, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Damien Dubois
- UMR 1071 Inserm/Université d'Auvergne, Clermont Université, Clermont-Ferrand, France
- USC 2018, INRA, Clermont-Ferrand, France
- Service de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Pierre Sauvanet
- UMR 1071 Inserm/Université d'Auvergne, Clermont Université, Clermont-Ferrand, France
- USC 2018, INRA, Clermont-Ferrand, France
- Service de Chirurgie digestive, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Jennifer Raisch
- UMR 1071 Inserm/Université d'Auvergne, Clermont Université, Clermont-Ferrand, France
- USC 2018, INRA, Clermont-Ferrand, France
| | - Julien Delmas
- UMR 1071 Inserm/Université d'Auvergne, Clermont Université, Clermont-Ferrand, France
- USC 2018, INRA, Clermont-Ferrand, France
- Service de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Arlette Darfeuille-Michaud
- UMR 1071 Inserm/Université d'Auvergne, Clermont Université, Clermont-Ferrand, France
- USC 2018, INRA, Clermont-Ferrand, France
- Service de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Denis Pezet
- UMR 1071 Inserm/Université d'Auvergne, Clermont Université, Clermont-Ferrand, France
- USC 2018, INRA, Clermont-Ferrand, France
- Service de Chirurgie digestive, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Richard Bonnet
- UMR 1071 Inserm/Université d'Auvergne, Clermont Université, Clermont-Ferrand, France
- USC 2018, INRA, Clermont-Ferrand, France
- Service de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
10
|
Martínez-Castillo A, Allué-Guardia A, Dahbi G, Blanco J, Creuzburg K, Schmidt H, Muniesa M. Type III effector genes and other virulence factors of Shiga toxin-encoding Escherichia coli isolated from wastewater. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:147-155. [PMID: 23757242 DOI: 10.1111/j.1758-2229.2011.00317.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pathogenic Shiga toxin-producing Escherichia coli (STEC) strains share the genes encoding Shiga toxins (stx) and many other virulence factors. The classification and evolutionary studies of pathogenic E. coli based on their virulence genes have been conducted with E. coli isolated from human and animal infections or outbreaks. In this study, we used 103 STEC strains isolated from faecally polluted water environments to analyse 23 virulence genes (stx1 , cdt, hlyA, saa, eae, three type III effector genes encoded within the locus of enterocyte effacement (LEE) and 15 non-LEE-encoded type III effector genes). Despite the presence of several stx2 variants, our isolates demonstrated low prevalence of the virulence genes (only 46.6% of the strains were positive for virulence determinants). Among these, the largest repertoire was found in a few O157:H7 isolates (most from cattle wastewater and one from sewage), while other serotypes showed fewer virulence determinants. The occurrence of most virulence genes seemed to be independent from one another. This was clear for hlyA (the most prevalent), cdt and cif (the least prevalent). Other effector genes, could be found or not in combination with others, suggesting that they can be mobilized independently. Our data suggest that E. coli strains can evolve separately by independently acquiring mobile genetic elements.
Collapse
Affiliation(s)
- Alexandre Martínez-Castillo
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain. Laboratorio de Referencia de E. coli (LREC), Department of Microbiology and Parasitology, Faculty of Veterinary Science, University of Santiago de Compostela, 27002 Lugo, Spain. Institute of Food Science and Biotechnology, Department of Food Microbiology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The role of bacteriophages as natural vectors for some of the most potent bacterial toxins is well recognized and includes classical type I membrane-acting superantigens, type II pore-forming lysins, and type III exotoxins, such as diphtheria and botulinum toxins. Among Gram-negative pathogens, a novel class of bacterial virulence factors called effector proteins (EPs) are phage encoded among pathovars of Escherichia coli, Shigella spp., and Salmonella enterica. This chapter gives an overview of the different types of virulence factors encoded within phage genomes based on their role in bacterial pathogenesis. It also discusses phage-pathogenicity island interactions uncovered from studies of phage-encoded EPs. A detailed examination of the filamentous phage CTXφ that encodes cholera toxin is given as the sole example to date of a single-stranded DNA phage that encodes a bacterial toxin.
Collapse
|
12
|
Genetic background and mobility of variants of the gene nleA in attaching and effacing Escherichia coli. Appl Environ Microbiol 2011; 77:8705-13. [PMID: 22003022 DOI: 10.1128/aem.06492-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we characterized the genetic background of various nleA variants in 106 Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) strains. The flanking regions of eight nleA variants were analyzed by DNA sequencing and compared with the corresponding regions of five previously described NleA-encoding prophages. The analyzed nleA variants were all located downstream of the DNA region responsible for phage morphogenesis. In particular, the type III effector genes avrA, ospB, nleH, and nleG and IS elements were detected in the neighborhood of nleA. The structure of the eight analyzed regions flanking nleA primarily resembled the corresponding region of the NleA₄₇₉₅-encoding prophage BP-4795. Using PCR, the gene order flanking 13 nleA variants in strains of different serogroups was compared to the respective regions in reference strains. The analyses showed that strains which harbor prophages with conserved flanking regions of a particular nleA variant predominantly occurred, and IS elements were additionally detected in these regions. We were able to mobilize nleA by transduction in 20% of strains determined, which comprised in particular EPEC strains harboring an nleA variant, the gene encoding the protein known as "EspI-like." Plaque hybridization was used to identify phages that harbor the genes stx and nleA. However, only two strains harbored variant nleA₄₇₉₅ in the genome of an Stx1 prophage.
Collapse
|
13
|
Salvarani S, Tramuta C, Nebbia P, Robino P. Occurrence and functionality of cycle inhibiting factor, cytotoxic necrotising factors and cytolethal distending toxins in Escherichia coli isolated from calves and dogs in Italy. Res Vet Sci 2011; 92:372-7. [PMID: 21621806 DOI: 10.1016/j.rvsc.2011.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/19/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Escherichia coli isolated from animals up to three months of age, with diarrhea (255 calves and 29 dogs (pups)), without diarrhea (21 calves and 11 pups, used as controls), and 58 adult dogs with cystitis were tested to investigate the occurrence and functional expression of cyclomodulins cycle inhibiting factor (CIF), cytotoxic necrotizing factors (CNFs) and cytolethal distending toxins (CDTs). In cyclomodulin-positive isolates the association was assessed with other virulence genotypes and phylogenetic groups. Of 374 E. coli isolates, 80 (21.4%) were positive for at least one cyclomodulin and 14 of the latter (3.7%) showed different combinations of more than one. cif-positive isolates showed a low number of additional virulence factors, and were commonly associated with phylogroup B1, while cnf- and cdt-positive isolates, harboring many extraintestinal virulence factors, belonged to phylogroups B2 and D. Almost all isolates showed an irreversible cytopathic effect (CPE), displaying functionality of cyclomodulins. Five isolates that presented a mutation of cif were CPE-negative.
Collapse
Affiliation(s)
- S Salvarani
- Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco (TO), Italy
| | | | | | | |
Collapse
|
14
|
Taieb F, Nougayrède JP, Oswald E. Cycle inhibiting factors (cifs): cyclomodulins that usurp the ubiquitin-dependent degradation pathway of host cells. Toxins (Basel) 2011; 3:356-68. [PMID: 22069713 PMCID: PMC3202828 DOI: 10.3390/toxins3040356] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/16/2011] [Accepted: 03/16/2011] [Indexed: 11/16/2022] Open
Abstract
Cycle inhibiting factors (Cifs) are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are "cyclomodulins" that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL) complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions.
Collapse
Affiliation(s)
- Frédéric Taieb
- INRA, USC Molecular and Cellular Pathogenesis of Escherichia coli Infections, Toulouse, F-31300, France; (J.-P.N.); (E.O.)
- Inserm, U1043, Toulouse, F-31300, France
- University of Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
- CNRS, U5282, Toulouse, F-31300, France
- Author to whom correspondence should be addressed; ; Tel.: +33-5-6119-3286; Fax: +33-5-6119-3975
| | - Jean-Philippe Nougayrède
- INRA, USC Molecular and Cellular Pathogenesis of Escherichia coli Infections, Toulouse, F-31300, France; (J.-P.N.); (E.O.)
- Inserm, U1043, Toulouse, F-31300, France
- University of Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
- CNRS, U5282, Toulouse, F-31300, France
| | - Eric Oswald
- INRA, USC Molecular and Cellular Pathogenesis of Escherichia coli Infections, Toulouse, F-31300, France; (J.-P.N.); (E.O.)
- Inserm, U1043, Toulouse, F-31300, France
- University of Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
- CNRS, U5282, Toulouse, F-31300, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, F-31300, France
| |
Collapse
|
15
|
Royan SV, Jones RM, Koutsouris A, Roxas JL, Falzari K, Weflen AW, Kim A, Bellmeyer A, Turner JR, Neish AS, Rhee KJ, Viswanathan VK, Hecht GA. Enteropathogenic E. coli non-LEE encoded effectors NleH1 and NleH2 attenuate NF-κB activation. Mol Microbiol 2010; 78:1232-45. [PMID: 21091507 PMCID: PMC3325542 DOI: 10.1111/j.1365-2958.2010.07400.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Enteric bacterial pathogens have evolved sophisticated strategies to evade host immune defences. Some pathogens deliver anti-inflammatory effector molecules into the host cell cytoplasm via a type III secretion system (T3SS). Enteropathogenic Escherichia coli (EPEC) inhibits inflammation by an undefined, T3SS-dependent mechanism. Two proteins encoded outside of the EPEC locus of enterocyte effacement (LEE) pathogenicity island, non-LEE-encoded effector H1 (NleH1) and H2 (NleH2), display sequence similarity to Shigella flexneri OspG, which inhibits activation of the pro-inflammatory transcription factor NF-κB. We hypothesized that the anti-inflammatory effects of EPEC were mediated by NleH1 and NleH2. In this study, we examined the effect of NleH1/H2 on the NF-κB pathway. We show that NleH1/H2 are secreted via the T3SS and that transfection of cells with plasmids harbouring nleH1 or nleH2 decreased IKK-β-induced NF-κB activity and attenuated TNF-α-induced degradation of phospho-IκBα by preventing ubiquitination. Serum KC levels were higher in mice infected with ΔnleH1H2 than those infected with WT EPEC, indicating that NleH1/H2 dampen pro-inflammatory cytokine expression. ΔnleH1H2 was cleared more rapidly than WT EPEC while complementation of ΔnleH1H2 with either NleH1 or NleH2 prolonged colonization. Together, these data show that NleH1 and NleH2 function to dampen host inflammation and facilitate EPEC colonization during pathogenesis.
Collapse
Affiliation(s)
- Sandhya V. Royan
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Rheinallt M. Jones
- Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Athanasia Koutsouris
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jennifer L. Roxas
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kanakeshwari Falzari
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Andrew W. Weflen
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amy Kim
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amy Bellmeyer
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jerrold R. Turner
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Andrew S. Neish
- Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ki-Jong Rhee
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - V. K. Viswanathan
- Department of Veterinary Sciences and Microbiology, University of Arizona, Tucson, AZ 85721, USA
| | - Gail A. Hecht
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
16
|
Creuzburg K, Middendorf B, Mellmann A, Martaler T, Holz C, Fruth A, Karch H, Schmidt H. Evolutionary analysis and distribution of type III effector genes in pathogenic Escherichia coli from human, animal and food sources. Environ Microbiol 2010; 13:439-52. [PMID: 20880329 DOI: 10.1111/j.1462-2920.2010.02349.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular analysis of Shiga toxin-producing Escherichia coli (STEC) from different sources is considered as a major approach to assess their risk potential. However, only limited data are available about the correlation of evolutionary relationship, the presence of major virulence factor genes and the putative risk of an STEC strain for human infection. In this study, we analysed the evolutionary relationship of 136 pathogenic E. coli strains from human, animal and food sources by multi-locus sequence typing (MLST) and molecular subtyping of their Shiga toxin (stx) and intimin (eae) genes. Moreover, the distribution of three type III effector genes, encoded within the locus of enterocyte effacement (LEE), and 16 effector genes, which are encoded outside the LEE, was analysed. One hundred and five strains from different sources harboured 5-15 of the analysed non-LEE-encoded effector genes. In 101 of these strains, the LEE genes eae, map, espF and espG were present simultaneously. Thirty-one isolates deriving mainly from food and patients suffering from haemolytic uraemic syndrome (HUS) were eae-negative and did not carry any of the analysed effector genes. By combination of MLST and virulence gene data, we defined five genetic clusters. Within these clusters a clear-cut affiliation of particular sequence types and the occurrence of certain effector genes was observed. However, in contrast to other studies, a significant correlation between the amount and type of effector genes and the risk to cause HUS could not be demonstrated.
Collapse
Affiliation(s)
- Kristina Creuzburg
- Department of Food Microbiology, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
OI-57, a genomic island of Escherichia coli O157, is present in other seropathotypes of Shiga toxin-producing E. coli associated with severe human disease. Infect Immun 2010; 78:4697-704. [PMID: 20823207 DOI: 10.1128/iai.00512-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Strains of Shiga toxin-producing Escherichia coli (STEC) are a heterogeneous E. coli group that may cause severe disease in humans. STEC have been categorized into seropathotypes (SPTs) based on their phenotypic and molecular characteristics and the clinical features of the associated diseases. SPTs range from A to E, according to a decreasing rank of pathogenicity. To define the virulence gene asset ("virulome") characterizing the highly pathogenic SPTs, we used microarray hybridization to compare the whole genomes of STEC belonging to SPTs B, C, and D with that of STEC O157 (SPT A). The presence of the open reading frames (ORFs) associated with SPTs A and B was subsequently investigated by PCR in a larger panel of STEC and in other E. coli strains. A genomic island termed OI-57 was present in SPTs A and B but not in the other SPTs. OI-57 harbors the putative virulence gene adfO, encoding a factor enhancing the adhesivity of STEC O157, and ckf, encoding a putative killing factor for the bacterial cell. PCR analyses showed that OI-57 was present in its entirety in the majority of the STEC genomes examined, indicating that it represents a stable acquisition of the positive clonal lineages. OI-57 was also present in a high proportion of the human enteropathogenic E. coli genomes assayed, suggesting that it could be involved in the attaching-and-effacing colonization of the intestinal mucosa. In conclusion, OI-57 appears to be part of the virulome of pathogenic STEC and further studies are needed to elucidate its role in the pathogenesis of STEC infections.
Collapse
|
18
|
Abstract
Determinants of urosepsis in Escherichia coli remain incompletely defined. Cyclomodulins (CMs) are a growing functional family of toxins that hijack the eukaryotic cell cycle. Four cyclomodulin types are actually known in E. coli: cytotoxic necrotizing factors (CNFs), cycle-inhibiting factor (Cif), cytolethal distending toxins (CDTs), and the pks-encoded toxin. In the present study, the distribution of CM-encoding genes and the functionality of these toxins were investigated in 197 E. coli strains isolated from patients with community-acquired urosepsis (n = 146) and from uninfected subjects (n = 51). This distribution was analyzed in relation to the phylogenetic background, clinical origin, and antibiotic resistance of the strains. It emerged from this study that strains harboring the pks island and the cnf1 gene (i) were strongly associated with the B2 phylogroup (P, <0.001), (ii) frequently harbored both toxin-encoded genes in phylogroup B2 (33%), and (iii) were predictive of a urosepsis origin (P, <0.001 to 0.005). However, the prevalences of the pks island among phylogroup B2 strains, in contrast to those of the cnf1 gene, were not significantly different between fecal and urosepsis groups, suggesting that the pks island is more important for the colonization process and the cnf1 gene for virulence. pks- or cnf1-harboring strains were significantly associated with susceptibility to antibiotics (amoxicillin, cotrimoxazole, and quinolones [P, <0.001 to 0.043]). Otherwise, only 6% and 1% of all strains harbored the cdtB and cif genes, respectively, with no particular distribution by phylogenetic background, antimicrobial susceptibility, or clinical origin.
Collapse
|
19
|
Deng W, de Hoog CL, Yu HB, Li Y, Croxen MA, Thomas NA, Puente JL, Foster LJ, Finlay BB. A comprehensive proteomic analysis of the type III secretome of Citrobacter rodentium. J Biol Chem 2009; 285:6790-800. [PMID: 20034934 DOI: 10.1074/jbc.m109.086603] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium belong to the family of attaching and effacing (A/E) bacterial pathogens. They intimately attach to host intestinal epithelial cells, trigger the effacement of intestinal microvilli, and cause diarrheal disease. Central to their pathogenesis is a type III secretion system (T3SS) encoded by a pathogenicity island called the locus of enterocyte effacement (LEE). The T3SS is used to inject both LEE- and non-LEE-encoded effector proteins into the host cell, where these effectors modulate host signaling pathways and immune responses. Identifying the effectors and elucidating their functions are central to understanding the molecular pathogenesis of these pathogens. Here we analyzed the type III secretome of C. rodentium using the highly sensitive and quantitative SILAC (stable isotope labeling with amino acids in cell culture)-based mass spectrometry. This approach not only confirmed nearly all known secreted proteins and effectors previously identified by conventional biochemical and proteomic techniques, but also identified several new secreted proteins. The T3SS-dependent secretion of these new proteins was validated, and five of them were translocated into cultured cells, representing new or additional effectors. Deletion mutants for genes encoding these effectors were generated in C. rodentium and tested in a murine infection model. This study comprehensively characterizes the type III secretome of C. rodentium, expands the repertoire of type III secreted proteins and effectors for the A/E pathogens, and demonstrates the simplicity and sensitivity of using SILAC-based quantitative proteomics as a tool for identifying substrates for protein secretion systems.
Collapse
Affiliation(s)
- Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mordhorst IL, Claus H, Ewers C, Lappann M, Schoen C, Elias J, Batzilla J, Dobrindt U, Wieler LH, Bergfeld AK, Mühlenhoff M, Vogel U. O-acetyltransferase geneneuOis segregated according to phylogenetic background and contributes to environmental desiccation resistance inEscherichia coliK1. Environ Microbiol 2009; 11:3154-65. [DOI: 10.1111/j.1462-2920.2009.02019.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Samba-Louaka A, Taieb F, Nougayrède JP, Oswald E. Cif type III effector protein: a smart hijacker of the host cell cycle. Future Microbiol 2009; 4:867-77. [PMID: 19722840 DOI: 10.2217/fmb.09.60] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During coevolution with their hosts, bacteria have developed functions that allow them to interfere with the mechanisms controlling the proliferation of eukaryotic cells. Cycle inhibiting factor (Cif) is one of these cyclomodulins, the family of bacterial effectors that interfere with the host cell cycle. Acquired early during evolution by bacteria isolated from vertebrates and invertebrates, Cif is an effector protein of type III secretion machineries. Cif blocks the host cell cycle in G1 and G2 by inducing the accumulation of the cyclin-dependent kinase inhibitors p21(waf1/cip1) and p27(kip1). The x-ray crystal structure of Cif reveals it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases. This review summarizes and discusses what we know about Cif, from the bacterial gene to the host target.
Collapse
|
22
|
The enteropathogenic Escherichia coli effector Cif induces delayed apoptosis in epithelial cells. Infect Immun 2009; 77:5471-7. [PMID: 19786559 DOI: 10.1128/iai.00860-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The cycle inhibiting factor (Cif) belongs to a family of bacterial toxins, the cyclomodulins, which modulate the host cell cycle. Upon injection into the host cell by the type III secretion system of enteropathogenic Escherichia coli (EPEC), Cif induces both G(2) and G(1) cell cycle arrests. The cell cycle arrests correlate with the accumulation of p21(waf1) and p27(kip1) proteins that inhibit CDK-cyclin complexes, whose activation is required for G(1)/S and G(2)/M transitions. Increases of p21 and p27 levels are independent of p53 transcriptional induction and result from protein stabilization through inhibition of the ubiquitin/proteasome degradation pathway. In this study, we show that Cif not only induces cell cycle arrest but also eventually provokes a delayed cell death. Indeed, 48 h after infection with EPEC expressing Cif, cultured IEC-6 intestinal cells were positive for extracellular binding of annexin V and exhibited high levels of cleaved caspase-3 and lactate dehydrogenase release, indicating evidence of apoptosis. Cif was necessary and sufficient for inducing this late apoptosis, and the cysteine residue of the catalytic site was required for Cif activity. These results highlight a more complex role of Cif than previously thought, as a cyclomodulin but also as an apoptosis inducer.
Collapse
|
23
|
Tree JJ, Wolfson EB, Wang D, Roe AJ, Gally DL. Controlling injection: regulation of type III secretion in enterohaemorrhagic Escherichia coli. Trends Microbiol 2009; 17:361-70. [PMID: 19660954 DOI: 10.1016/j.tim.2009.06.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 05/25/2009] [Accepted: 06/01/2009] [Indexed: 12/01/2022]
Abstract
Type III secretion (T3S) systems enable the injection of bacterial proteins through membrane barriers into host cells, either from outside the host cell or from within a vacuole. This system is required for colonization of their ruminant reservoir hosts by enterohaemorrhagic Escherichia coli (EHEC) and might also be important for the etiology of disease in the incidental human host. T3S systems of E. coli inject a cocktail of proteins into epithelial cells that enables bacterial attachment and promotes longer-term colonization in the animal. Here, we review recent progress in our understanding of the regulation of T3S in EHEC, focusing on the induction and assembly of the T3S system, the co-ordination of effector protein expression, and the timing of effector protein export through the apparatus. Strain variation is often associated with differences in bacteriophages encoding the production of Shiga toxin and in multiple cryptic prophage elements that can encode effector proteins and T3S regulators. It is evident that this repertoire of phage-related sequences results in the different levels of T3S demonstrated between strains, with implications for EHEC epidemiology and strain evolution.
Collapse
Affiliation(s)
- Jai J Tree
- Immunity and Infection Division, The Roslin Institute and R(D)SVS, Chancellor's Building, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | | | | | | | | |
Collapse
|
24
|
Nobe R, Nougayrède JP, Taieb F, Bardiau M, Cassart D, Navarro-Garcia F, Mainil J, Hayashi T, Oswald E. Enterohaemorrhagic Escherichia coli serogroup O111 inhibits NF-(kappa)B-dependent innate responses in a manner independent of a type III secreted OspG orthologue. MICROBIOLOGY-SGM 2009; 155:3214-3225. [PMID: 19628559 DOI: 10.1099/mic.0.030759-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) inject a repertoire of effector proteins into host cells via a type III secretion system (T3SS) encoded by the locus of enterocyte effacement (LEE). OspG is an effector protein initially identified in Shigella that was shown to inhibit the host innate immune response. In this study, we found ospG homologues in EHEC (mainly of serogroup O111) and in Yersinia enterocolitica. The T3SS encoded by the LEE was able to inject these different OspG homologues into host cells. Infection of HeLa cells with EHEC O111 inhibited the NF-kappaB-dependent innate immune response via a T3SS-dependent mechanism. However, an EHEC O111 ospG mutant was still able to inhibit NF-kappaB p65 transfer to the nucleus in infected cells stimulated by tumour necrosis factor alpha (TNF-alpha). In addition, no difference in the inflammatory response was observed between wild-type EHEC O111 and the isogenic ospG mutant in the rabbit ligated intestinal loop model. These results suggest that OspG is not the sole effector protein involved in the inactivation of the host innate immune system during EHEC O111 infection.
Collapse
Affiliation(s)
- Rika Nobe
- Université de Toulouse, ENVT, UMR1225, F-31076 Toulouse, France.,INRA, UMR1225, ENVT, F-31076 Toulouse, France
| | - Jean-Philippe Nougayrède
- Université de Toulouse, ENVT, UMR1225, F-31076 Toulouse, France.,INRA, UMR1225, ENVT, F-31076 Toulouse, France
| | - Frédéric Taieb
- Université de Toulouse, ENVT, UMR1225, F-31076 Toulouse, France.,INRA, UMR1225, ENVT, F-31076 Toulouse, France
| | - Marjorie Bardiau
- Department of Infectious Diseases, Bacteriology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman, Liège B4000, Belgium
| | - Dominique Cassart
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman, Liège B4000, Belgium
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ap. Postal 14-740, 07000 Mexico DF, Mexico
| | - Jacques Mainil
- Department of Infectious Diseases, Bacteriology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman, Liège B4000, Belgium
| | - Tetsuya Hayashi
- Division of Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan
| | - Eric Oswald
- Université de Toulouse, ENVT, UMR1225, F-31076 Toulouse, France.,INRA, UMR1225, ENVT, F-31076 Toulouse, France
| |
Collapse
|
25
|
Genomic instability in regions adjacent to a highly conserved pch prophage in Escherichia coli O157:H7 generates diversity in expression patterns of the LEE pathogenicity island. J Bacteriol 2009; 191:3553-68. [PMID: 19329643 DOI: 10.1128/jb.01738-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The LEE pathogenicity island has been acquired on multiple occasions within the different lineages of enteropathogenic and enterohemorrhagic Escherichia coli. In each lineage, LEE expression is regulated by complex networks of pathways, including core pathways shared by all lineages and lineage-specific pathways. Within the O157:H7 lineage of enterohemorrhagic E. coli, strain-to-strain variation in LEE expression has been observed, implying that expression patterns can diversify even within highly related subpopulations. Using comparative genomics of E. coli O157:H7 subpopulations, we have identified one source of strain-level variation affecting LEE expression. The variation occurs in prophage-dense regions of the genome that lie immediately adjacent to the late regions of the pch prophage carrying pchA, pchB, pchC, and a newly identified pch gene, pchX. Genomic segments extending from the holin S region to the pchA, pchB, pchC, and pchX genes of their respective prophage are highly conserved but are nonetheless embedded within adjacent genomic segments that are extraordinarily variable, termed pch adjacent genomic regions (pch AGR). Despite the remarkable degree of variation, the pattern of variation in pch AGR is highly correlated with the distribution of phylogenetic markers on the backbone of the genome. Quantitative analysis of transcription from the LEE1 promoter further revealed that variation in the pch AGR has substantial effects on absolute levels and patterns of LEE1 transcription. Variation in the pch AGR therefore serves as a mechanism to diversify LEE expression patterns, and the lineage-specific pattern of pch AGR variation could ultimately influence ecological or virulence characteristics of subpopulations within each lineage.
Collapse
|
26
|
Jubelin G, Chavez CV, Taieb F, Banfield MJ, Samba-Louaka A, Nobe R, Nougayrède JP, Zumbihl R, Givaudan A, Escoubas JM, Oswald E. Cycle inhibiting factors (CIFs) are a growing family of functional cyclomodulins present in invertebrate and mammal bacterial pathogens. PLoS One 2009; 4:e4855. [PMID: 19308257 PMCID: PMC2654923 DOI: 10.1371/journal.pone.0004855] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 02/16/2009] [Indexed: 01/04/2023] Open
Abstract
The cycle inhibiting factor (Cif) produced by enteropathogenic and enterohemorrhagic Escherichia coli was the first cyclomodulin to be identified that is injected into host cells via the type III secretion machinery. Cif provokes cytopathic effects characterized by G(1) and G(2) cell cycle arrests, accumulation of the cyclin-dependent kinase inhibitors (CKIs) p21(waf1/cip1) and p27(kip1) and formation of actin stress fibres. The X-ray crystal structure of Cif revealed it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases that share a conserved catalytic triad. Here we report the discovery and characterization of four Cif homologs encoded by different pathogenic or symbiotic bacteria isolated from vertebrates or invertebrates. Cif homologs from the enterobacteria Yersinia pseudotuberculosis, Photorhabdus luminescens, Photorhabdus asymbiotica and the beta-proteobacterium Burkholderia pseudomallei all induce cytopathic effects identical to those observed with Cif from pathogenic E. coli. Although these Cif homologs are remarkably divergent in primary sequence, the catalytic triad is strictly conserved and was shown to be crucial for cell cycle arrest, cytoskeleton reorganization and CKIs accumulation. These results reveal that Cif proteins form a growing family of cyclomodulins in bacteria that interact with very distinct hosts including insects, nematodes and humans.
Collapse
Affiliation(s)
- Grégory Jubelin
- INRA, UMR1225, Toulouse, France
- Université de Toulouse, ENVT, UMR 1225, Toulouse, France
| | - Carolina Varela Chavez
- INRA, UMR 1133 Laboratoire EMIP, Montpellier, France
- Université Montpellier 2, UMR 1133 Laboratoire EMIP, Montpellier, France
| | - Frédéric Taieb
- INRA, UMR1225, Toulouse, France
- Université de Toulouse, ENVT, UMR 1225, Toulouse, France
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre, NR4 7UH, Norwich, United Kingdom
| | - Ascel Samba-Louaka
- INRA, UMR1225, Toulouse, France
- Université de Toulouse, ENVT, UMR 1225, Toulouse, France
| | - Rika Nobe
- INRA, UMR1225, Toulouse, France
- Université de Toulouse, ENVT, UMR 1225, Toulouse, France
| | | | - Robert Zumbihl
- INRA, UMR 1133 Laboratoire EMIP, Montpellier, France
- Université Montpellier 2, UMR 1133 Laboratoire EMIP, Montpellier, France
| | - Alain Givaudan
- INRA, UMR 1133 Laboratoire EMIP, Montpellier, France
- Université Montpellier 2, UMR 1133 Laboratoire EMIP, Montpellier, France
| | - Jean-Michel Escoubas
- INRA, UMR 1133 Laboratoire EMIP, Montpellier, France
- Université Montpellier 2, UMR 1133 Laboratoire EMIP, Montpellier, France
| | - Eric Oswald
- INRA, UMR1225, Toulouse, France
- Université de Toulouse, ENVT, UMR 1225, Toulouse, France
| |
Collapse
|
27
|
A bacterial type III effector family uses the papain-like hydrolytic activity to arrest the host cell cycle. Proc Natl Acad Sci U S A 2009; 106:3716-21. [PMID: 19225106 DOI: 10.1073/pnas.0900212106] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogenic bacteria deliver effector proteins into host cells through the type III secretion apparatus to modulate the host function. We identify a family of proteins, homologous to the type III effector Cif from enteropathogenic Escherichia coli, in pathogens including Yersinia, Photorhabdus, and Burkholderia that contain functional type III secretion systems. Like Cif, this family of proteins is capable of arresting the host cell cycle at G(2)/M. Structure of one of the family members, Cif homolog in Burkholderia pseudomallei (CHBP), reveals a papain-like fold and a conserved Cys-His-Gln catalytic triad despite the lack of primary sequence identity. For CHBP and Cif, only the putative catalytic Cys is susceptible to covalent modification by E-64, a specific inhibitor of papain-like cysteine proteases. Unlike papain-like enzymes where the S2 site is the major determinant of cleavage-site specificity, CHBP has a characteristic negatively charged pocket occupying surface areas corresponding to the S1/S1' site in papain-like proteases. The negative charge is provided by a conserved aspartate, and the pocket best fits an arginine, as revealed by molecular docking analysis. Mutation analysis establishes the essential role of the catalytic triad and the negatively charged pocket in inducing cell cycle arrest in host cells. Our results demonstrate that bacterial pathogens have evolved a unique papain-like hydrolytic activity to block the normal host cell cycle progression.
Collapse
|
28
|
The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Curr Opin Microbiol 2009; 12:101-9. [PMID: 19144561 PMCID: PMC2697328 DOI: 10.1016/j.mib.2008.11.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 11/24/2022]
Abstract
Diarrhoeal disease caused by enteropathogenic E. coli (EPEC) is dependent on a delivery system that injects numerous bacterial ‘effector’ proteins directly into host cells. The best-described EPEC effectors are encoded together on the locus of enterocyte effacement (LEE) pathogenicity island and display high levels of multifunctionality and cooperativity within the host cell. More recently, effectors encoded outside the LEE (non-LEE effectors) have been discovered and their functions are beginning to be uncovered. The recent completion of the EPEC genome sequence suggests its effector repertoire consists of at least 21 effector proteins. Here, we describe the genomic location of effectors and discuss recent advances made on effector cellular function as well as their role in the infection process.
Collapse
|
29
|
Systematic identification and sequence analysis of the genomic islands of the enteropathogenic Escherichia coli strain B171-8 by the combined use of whole-genome PCR scanning and fosmid mapping. J Bacteriol 2008; 190:6948-60. [PMID: 18757547 DOI: 10.1128/jb.00625-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are diarrheagenic pathogens that colonize the intestinal tract through the formation of attaching and effacing lesions, induced by effectors translocated via a type III secretion system (T3SS) encoded on the locus of enterocyte effacement (LEE). In EHEC O157, numerous virulence factors, including around 40 T3SS effectors, have been identified. Most of them are encoded on genomic islands (GEIs) such as prophages and integrative elements. For EPEC, however, no systematic search of GEIs and virulence-related genes carried therein has been done, and only a limited number of virulence factors have been identified so far. In this study, we performed a systemic and genome-wide survey of the GEIs in strain B171-8, one of the prototype strains of EPEC, by the combined use of whole-genome PCR scanning and fosmid mapping and identified 22 large GEIs, including nine lambda-like prophages, three P2-like prophages, the LEE, and three additional integrative elements. On these prophages and integrative elements, we found genes for a set of T3SS proteins, a total of 33 T3SS effectors or effector homologues, and 12 other virulence factors which include five nonfimbrial adhesins. Most of the T3SS effector families identified are also present in EHEC O157, but B171-8 possesses a significantly smaller number of effectors. Not only the presence or absence of Shiga toxin genes but also the difference in the T3SS effector repertoire should be considered in analyzing the pathogenicity of EPEC and EHEC strains.
Collapse
|