1
|
Kang SM, Kang HS, Chung WH, Kang KT, Kim DH. Structural Perspectives on Metal Dependent Roles of Ferric Uptake Regulator (Fur). Biomolecules 2024; 14:981. [PMID: 39199369 PMCID: PMC11353095 DOI: 10.3390/biom14080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Iron is crucial for the metabolism and growth of most prokaryotic cells. The ferric uptake regulator (Fur) protein plays a central role in regulating iron homeostasis and metabolic processes in bacteria. It ensures the proper utilization of iron and the maintenance of cellular functions in response to environmental cues. Fur proteins are composed of an N-terminal DNA-binding domain (DBD) and a C-terminal dimerization domain (DD), typically existing as dimers in solution. Fur proteins have conserved metal-binding sites named S1, S2, and S3. Among them, site S2 serves as a regulatory site, and metal binding at S2 results in conformational changes. Additionally, as a transcriptional regulator, Fur specifically binds to a consensus DNA sequence called the Fur box. To elucidate the structural and functional properties of Fur proteins, various structures of metal- or DNA-bound Fur proteins or apo-Fur proteins have been determined. In this review, we focus on the structural properties of Fur proteins according to their ligand-bound state and the drug development strategies targeting Fur proteins. This information provides valuable insights for drug discovery.
Collapse
Affiliation(s)
- Sung-Min Kang
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea; (S.-M.K.); (W.-H.C.); (K.-T.K.)
| | - Hoon-Seok Kang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Woo-Hyun Chung
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea; (S.-M.K.); (W.-H.C.); (K.-T.K.)
| | - Kyu-Tae Kang
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea; (S.-M.K.); (W.-H.C.); (K.-T.K.)
| | - Do-Hee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| |
Collapse
|
2
|
Gavriil A, Giannenas I, Skandamis PN. A current insight into Salmonella's inducible acid resistance. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 39014992 DOI: 10.1080/10408398.2024.2373387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Salmonella is a diverse and ubiquitous group of bacteria and a major zoonotic pathogen implicated in several foodborne disease outbreaks worldwide. With more than 2500 distinct serotypes, this pathogen has evolved to survive in a wide spectrum of environments and across multiple hosts. The primary and most common source of transmission is through contaminated food or water. Although the main sources have been primarily linked to animal-related food products, outbreaks due to the consumption of contaminated plant-related food products have increased in the last few years. The perceived ability of Salmonella to trigger defensive mechanisms following pre-exposure to sublethal acid conditions, namely acid adaptation, has renewed a decade-long attention. The impact of acid adaptation on the subsequent resistance against lethal factors of the same or multiple stresses has been underscored by multiple studies. Α plethora of studies have been published, aiming to outline the factors that- alone or in combination- can impact this phenomenon and to unravel the complex networking mechanisms underlying its induction. This review aims to provide a current and updated insight into the factors and mechanisms that rule this phenomenon.
Collapse
Affiliation(s)
- Alkmini Gavriil
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Athens, Greece
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Ilias Giannenas
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis N Skandamis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
3
|
Hu Z, Ojima S, Zhu Z, Yu X, Sugiyama M, Haneda T, Okamura M, Ono HK, Hu DL. Salmonella pathogenicity island-14 is a critical virulence factor responsible for systemic infection in chickens caused by Salmonella gallinarum. Front Vet Sci 2024; 11:1401392. [PMID: 38846788 PMCID: PMC11153813 DOI: 10.3389/fvets.2024.1401392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Salmonella enterica serovar Gallinarum (S. gallinarum) is an important host-specific pathogen that causes fowl typhoid, a severe systemic, septicemic, and fatal infection, in chickens. S. gallinarum causes high morbidity and mortality in chickens and poses a significant burden and economic losses to the poultry industry in many developing countries. However, the virulence factors and mechanisms of S. gallinarum-induced systemic infection in chickens remain poorly understood. In this study, we constructed a Salmonella pathogenicity island-14 (SPI-14) mutant strain (mSPI-14) of S. gallinarum and evaluated the pathogenicity of mSPI-14 in the chicken systemic infection model. The mSPI-14 exhibited the same level of bacterial growth and morphological characteristics but significantly reduced resistance to bile acids compared with the wild-type (WT) strain in vitro. The virulence of mSPI-14 was significantly attenuated in the chicken oral infection model in vivo. Chickens infected with WT showed typical clinical symptoms of fowl typhoid, with all birds succumbing to the infection within 6 to 9 days post-inoculation, and substantial increases in bacterial counts and significant pathological changes in the liver and spleen were observed. In contrast, all mSPI-14-infected chickens survived, the bacterial counts in the organs were significantly lower, and no significant pathological changes were observed in the liver and spleen. The expression of interleukin (IL)-1β, IL-12, CXCLi1, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in the liver of mSPI-14-infected chickens were significantly lower than those in the WT-infected chickens. These results indicate that SPI-14 is a crucial virulence factor in systemic infection of chickens, and avirulent mSPI-14 could be used to develop a new attenuated live vaccine to prevent S. gallinarum infection in chickens.
Collapse
Affiliation(s)
- Zuo Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Shinjiro Ojima
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Zhihao Zhu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Xiaoying Yu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Takeshi Haneda
- Laboratory of Microbiology, Kitasato University School of Pharmacy, Tokyo, Japan
| | - Masashi Okamura
- Section of Applied Veterinary Sciences, Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hisaya K. Ono
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
| |
Collapse
|
4
|
Ilyas M, Purkait D, Atmakuri K. Genomic islands and their role in fitness traits of two key sepsis-causing bacterial pathogens. Brief Funct Genomics 2024; 23:55-68. [PMID: 36528816 DOI: 10.1093/bfgp/elac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 01/21/2024] Open
Abstract
To survive and establish a niche for themselves, bacteria constantly evolve. Toward that, they not only insert point mutations and promote illegitimate recombinations within their genomes but also insert pieces of 'foreign' deoxyribonucleic acid, which are commonly referred to as 'genomic islands' (GEIs). The GEIs come in several forms, structures and types, often providing a fitness advantage to the harboring bacterium. In pathogenic bacteria, some GEIs may enhance virulence, thus altering disease burden, morbidity and mortality. Hence, delineating (i) the GEIs framework, (ii) their encoded functions, (iii) the triggers that help them move, (iv) the mechanisms they exploit to move among bacteria and (v) identification of their natural reservoirs will aid in superior tackling of several bacterial diseases, including sepsis. Given the vast array of comparative genomics data, in this short review, we provide an overview of the GEIs, their types and the compositions therein, especially highlighting GEIs harbored by two important pathogens, viz. Acinetobacter baumannii and Klebsiella pneumoniae, which prominently trigger sepsis in low- and middle-income countries. Our efforts help shed some light on the challenges these pathogens pose when equipped with GEIs. We hope that this review will provoke intense research into understanding GEIs, the cues that drive their mobility across bacteria and the ways and means to prevent their transfer, especially across pathogenic bacteria.
Collapse
Affiliation(s)
- Mohd Ilyas
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Dyuti Purkait
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Krishnamohan Atmakuri
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| |
Collapse
|
5
|
Small RNAs Activate Salmonella Pathogenicity Island 1 by Modulating mRNA Stability through the hilD mRNA 3' Untranslated Region. J Bacteriol 2023; 205:e0033322. [PMID: 36472436 PMCID: PMC9879128 DOI: 10.1128/jb.00333-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is an enteric pathogen associated with foodborne disease. Salmonella invades the intestinal epithelium using a type three secretion system encoded on Salmonella pathogenicity island 1 (SPI-1). SPI-1 genes are tightly regulated by a complex feed-forward loop to ensure proper spatial and temporal expression. Most regulatory input is integrated at HilD, through control of hilD mRNA translation or HilD protein activity. The hilD mRNA possesses a 310-nucleotide 3' untranslated region (UTR) that influences HilD and SPI-1 expression, and this regulation is dependent on Hfq and RNase E, cofactors known to mediate small RNA (sRNA) activities. Thus, we hypothesized that the hilD mRNA 3' UTR is a target for sRNAs. Here, we show that two sRNAs, SdsR and Spot 42, regulate SPI-1 by targeting different regions of the hilD mRNA 3' UTR. Regulatory activities of these sRNAs depended on Hfq and RNase E, in agreement with previous roles found for both at the hilD 3' UTR. Salmonella mutants lacking SdsR and Spot 42 had decreased virulence in a mouse model of infection. Collectively, this work suggests that these sRNAs targeting the hilD mRNA 3' UTR increase hilD mRNA levels by interfering with RNase E-dependent mRNA degradation and that this regulatory effect is required for Salmonella invasiveness. Our work provides novel insights into mechanisms of sRNA regulation at bacterial mRNA 3' UTRs and adds to our knowledge of post-transcriptional regulation of the SPI-1 complex feed-forward loop. IMPORTANCE Salmonella enterica serovar Typhimurium is a prominent foodborne pathogen, infecting millions of people a year. To express virulence genes at the correct time and place in the host, Salmonella uses a complex regulatory network that senses environmental conditions. Known for their role in allowing quick responses to stress and virulence conditions, we investigated the role of small RNAs in facilitating precise expression of virulence genes. We found that the 3' untranslated region of the hilD mRNA, encoding a key virulence regulator, is a target for small RNAs and RNase E. The small RNAs stabilize hilD mRNA to allow proper expression of Salmonella virulence genes in the host.
Collapse
|
6
|
Gibbons E, Tamanna M, Cherayil BJ. The rpoS gene confers resistance to low osmolarity conditions in Salmonella enterica serovar Typhi. PLoS One 2022; 17:e0279372. [PMID: 36525423 PMCID: PMC9757558 DOI: 10.1371/journal.pone.0279372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Salmonella enterica serovars Typhimurium and Typhi are enteropathogens that differ in host range and the diseases that they cause. We found that exposure to a combination of hypotonicity and the detergent Triton X-100 significantly reduced the viability of the S. Typhi strain Ty2 but had no effect on the S. Typhimurium strain SL1344. Further analysis revealed that hypotonicity was the critical factor: incubation in distilled water alone was sufficient to kill Ty2, while the addition of sodium chloride inhibited killing in a dose-dependent manner. Ty2's loss of viability in water was modified by culture conditions: bacteria grown in well-aerated shaking cultures were more susceptible than bacteria grown under less aerated static conditions. Ty2, like many S. Typhi clinical isolates, has an inactivating mutation in the rpoS gene, a transcriptional regulator of stress responses, whereas most S. Typhimurium strains, including SL1344, have the wild-type gene. Transformation of Ty2 with a plasmid expressing wild-type rpoS, but not the empty vector, significantly increased survival in distilled water. Moreover, an S. Typhi strain with wild-type rpoS had unimpaired survival in water. Inactivation of the wild-type gene in this strain significantly reduced survival, while replacement with an arabinose-inducible allele of rpoS restored viability in water under inducing conditions. Our observations on rpoS-dependent differences in susceptibility to hypotonic conditions may be relevant to the ability of S. Typhi and S. Typhimurium to tolerate the various environments they encounter during the infectious cycle. They also have implications for the handling of these organisms during experimental manipulations.
Collapse
Affiliation(s)
- Eamon Gibbons
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Mehbooba Tamanna
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Medical Sciences Program, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Bobby J. Cherayil
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Díaz-Torres O, Lugo-Melchor OY, de Anda J, Orozco-Nunnelly DA, Gradilla-Hernández MS, Senés-Guerrero C. Characterizing a subtropical hypereutrophic lake: From physicochemical variables to shotgun metagenomic data. Front Microbiol 2022; 13:1037626. [DOI: 10.3389/fmicb.2022.1037626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Lake Cajititlán is a subtropical and endorheic lake, which is heavily impacted by nutrient pollution. Agricultural runoff and poorly treated wastewater have entered this reservoir at alarming rates during past rainy seasons, causing the cultural eutrophication of this body of water and resulting in several massive fish kill events. In this study, shotgun metagenomic sequencing was used to examine the taxonomic and functional structure of microbial communities in Lake Cajititlán during the rainy season. Several water quality features and their interactions with microbial communities were also assessed to identify the major factors affecting the water quality and biota, specifically fish species. According to current water quality regulations, most of the physicochemical variables analyzed (dissolved oxygen, pH, Secchi disk, NH4+, NO3−, blue-green algae, total phosphorus, and chlorophyll-a) were outside of the permissible limits. Planktothrix agardhii and Microcystis aeruginosa were the most abundant phytoplankton species, and the dominant bacterial genera were Pseudomonas, Streptomyces, and Flavobacterium, with Pseudomonas fluorescens, Stenotrophomonas maltophilia, and Aeromonas veronii representing the most abundant bacterial species. All of these microorganisms have been reported to be potentially harmful to fish, and the latter three (P. fluorescens, S. maltophilia, A. veronii) also contain genes associated with pathogenicity in fish mortality (fur, luxS, aer, act, aha, exu, lip, ser). Genetic evidence from the microbial communities analyzed herein reveals that anthropogenic sources of nutrients in the lake altered genes involved in nitrogen, phosphorus, sulfur, and carbon metabolism, mainly at the beginning of the rainy season. These findings suggest that abiotic factors influence the structure of the microbial communities, along with the major biogeochemical cycles of Lake Cajititlán, resulting in temporal variations and an excess of microorganisms that can thrive in high-nutrient and low-oxygen environments. After reviewing the literature, this appears to be the first study that focuses on characterizing the water quality of a subtropical hypereutrophic lake through associations between physicochemical variables and shotgun metagenomic data. In addition, there are few studies that have coupled the metabolism of aquatic ecosystems with nutrient cycles.
Collapse
|
8
|
Rogers AR, Turner EE, Johnson DT, Ellermeier JR. Envelope Stress Activates Expression of the Twin Arginine Translocation (Tat) System in Salmonella. Microbiol Spectr 2022; 10:e0162122. [PMID: 36036643 PMCID: PMC9604234 DOI: 10.1128/spectrum.01621-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
The twin arginine translocation system (Tat) is a protein export system that is conserved in bacteria, archaea, and plants. In Gram-negative bacteria, it is required for the export of folded proteins from the cytoplasm to the periplasm. In Salmonella, there are 30 proteins that are predicted substrates of Tat, and among these are enzymes required for anaerobic respiration and peptidoglycan remodeling. We have demonstrated that some conditions that induce bacterial envelope stress activate expression of a ΔtatABC-lacZ fusion in Salmonella enterica serovar Typhimurium. Particularly, the addition of bile salts to the growth medium causes a 3-fold induction of a ΔtatABC-lacZ reporter fusion. Our data demonstrate that this induction is mediated via the phage shock protein (Psp) stress response system protein PspA. Further, we show that deletion of tatABC increases the induction of tatABC expression in bile salts. Indeed, the data suggest significant interaction between PspA and the Tat system in the regulatory response to bile salts. Although we have not identified the precise mechanism of Psp regulation of tatABC, our work shows that PspA is involved in the activation of tatABC expression by bile salts and adds another layer of complexity to the Salmonella response to envelope stress. IMPORTANCE Salmonella species cause an array of diseases in a variety of hosts. This research is significant in showing induction of the Tat system as a defense against periplasmic stress. Understanding the underlying mechanism of this regulation broadens our understanding of the Salmonella stress response, which is critical to the ability of the organism to cause infection.
Collapse
Affiliation(s)
- Alexandra R. Rogers
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| | - Ezekeial E. Turner
- College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - Deauna T. Johnson
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| | - Jeremy R. Ellermeier
- Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona, USA
| |
Collapse
|
9
|
Slauch JM. Interplay between Rho, H-NS, spurious transcription, and Salmonella gene regulation. Proc Natl Acad Sci U S A 2022; 119:e2211222119. [PMID: 35939681 PMCID: PMC9388120 DOI: 10.1073/pnas.2211222119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- James M. Slauch
- Department of Microbiology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
10
|
Abstract
Bacterial flagellin activates the host immune system and triggers pyroptosis. Salmonella reduces flagellin expression when it survives within host cells. Here, we found that the UMPylator YdiU significantly altered the Salmonella flagellar biogenesis process upon host cell entry. The expression levels of class II and class III flagellar genes, but not the class I flagellar genes flhDC, were dramatically increased in a ΔydiU strain compared to wild-type (WT) Salmonella in a host-simulating environment. A direct interaction between YdiU and FlhDC was detected by bacterial two-hybrid assay. Furthermore, YdiU efficiently catalyzed the UMPylation of FlhC but not FlhD, FliA, or FliC. UMPylation of FlhC completely eliminated its DNA-binding activity. In vivo experiments showed that YdiU was required and sufficient for Salmonella flagellar control within host cells. Mice infected with the ΔydiU strain died much earlier than WT strain-infected mice and developed much more severe inflammation and injury in organs and much higher levels of cytokines in blood, demonstrating that early host death induced by the ΔydiU strain is probably due to excessive inflammation. Our results indicate that YdiU acts as an essential factor of Salmonella to mediate host immune escape.
Collapse
|
11
|
Abstract
Iron limitation is a universal strategy of host immunity during bacterial infection. However, the mechanisms by which pathogens antagonize host nutritional immunity have not been fully elucidated. Here, we identified a requirement for the UMPylator YdiU for this process in Salmonella. The expression of YdiU was dramatically induced by the metal starvation signal. The intracellular iron content was much lower in the ΔydiU strain than in wild-type Salmonella, and the ΔydiU strain exhibited severe growth defect under metal deficiency environments. Genome-wide expression analyses revealed significantly decreased expression of iron uptake genes in ΔydiU strain compared with the wild-type strain. Interestingly, YdiU did not affect the expression level of the major iron uptake regulator Fur but directly UMPylated Fur on its H118 residue in vivo and in vitro. UMPylation destroyed the Fur dimer, promoted Fur aggregation, and eliminated the DNA-binding activity of Fur, thus abolishing the ability of Fur to inhibit iron uptake. Restricting Fur to the deUMPylated state dramatically eliminates Salmonella iron uptake in iron deficiency environments. In parallel, YdiU facilitates Salmonella survival within host cells by regulating the iron uptake pathway.
Collapse
|
12
|
Abstract
Iron is an essential element for Escherichia, Salmonella, and Shigella species. The acquisition of sufficient amounts of iron is difficult in many environments, including the intestinal tract, where these bacteria usually reside. Members of these genera have multiple iron transport systems to transport both ferrous and ferric iron. These include transporters for free ferrous iron, ferric iron associated with chelators, and heme. The numbers and types of transport systems in any species reflect the diversity of niches that it can inhabit. Many of the iron transport genes are found on mobile genetic elements or pathogenicity islands, and there is evidence of the spread of the genes among different species and pathotypes. This is notable among the pathogenic members of the genera in which iron transport systems acquired by horizontal gene transfer allow the bacteria to overcome host innate defenses that act to restrict the availability of iron to the pathogen. The need for iron is balanced by the need to avoid iron overload since excess iron is toxic to the cell. Genes for iron transport and metabolism are tightly regulated and respond to environmental cues, including iron availability, oxygen, and temperature. Master regulators, the iron sensor Fur and the Fur-regulated small RNA (sRNA) RyhB, coordinate the expression of iron transport and cellular metabolism genes in response to the availability of iron.
Collapse
|
13
|
Chowdhury R, Pavinski Bitar PD, Adams MC, Chappie JS, Altier C. AraC-type regulators HilC and RtsA are directly controlled by an intestinal fatty acid to regulate Salmonella invasion. Mol Microbiol 2021; 116:1464-1475. [PMID: 34687258 DOI: 10.1111/mmi.14835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 01/30/2023]
Abstract
Invasion of the intestinal epithelium is an essential but energetically expensive survival strategy and is, therefore, tightly regulated by using specific cues from the environment. The enteric pathogen Salmonella controls its invasion machinery through the elegant coordination of three AraC-type transcription activators, HilD, HilC, and RtsA. Most environmental signals target HilD to control invasion, whereas HilC and RtsA are known only to augment these effects on HilD. Here we show that a fatty acid found in the murine colon, cis-2-hexadecenoic acid (c2-HDA), represses Salmonella invasion by directly targeting HilC and RtsA, in addition to HilD. c2-HDA directly binds each of these regulators and inhibits their attachment to DNA targets, repressing invasion even in the absence of HilD. Fatty acid binding, however, does not affect HilC and RtsA protein stability, unlike HilD. Importantly, we show that HilC and RtsA are highly effective in restoring HilD production and invasion gene expression after elimination of the repressive fatty acid c2-HDA. Together, these results illuminate a precise mechanism by which HilC and RtsA may modulate invasion as Salmonella navigates through different regions of the intestine, contributing to our understanding of how this enteric pathogen senses and adapts to a diverse intestinal environment while maintaining its virulence.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Paulina D Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Myfanwy C Adams
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
14
|
Long-Distance Effects of H-NS Binding in the Control of hilD Expression in the Salmonella SPI1 Locus. J Bacteriol 2021; 203:e0030821. [PMID: 34424033 DOI: 10.1128/jb.00308-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium utilizes a type three secretion system (T3SS) carried on the Salmonella pathogenicity island 1 (SPI1) to invade intestinal epithelial cells and induce inflammatory diarrhea. HilA activates expression of the T3SS structural genes. Expression of hyper invasion locus A (hilA) is controlled by the transcription factors HilD, HilC, and RtsA, which act in a complex feed-forward regulatory loop. The nucleoid-associated protein H-NS is a xenogeneic silencer that has a major effect on SPI1 expression. In this work, we use genetic techniques to show that disruptions of the chromosomal region surrounding hilD have a cis effect on H-NS-mediated repression of the hilD promoter; this effect occurs asymmetrically over ∼4 kb spanning the prgH-hilD intergenic region. CAT cassettes inserted at various positions in this region are also silenced in relation to the proximity to the hilD promoter. We identify a putative H-NS nucleation site, and its mutation results in derepression of the locus. Furthermore, we genetically show that HilD abrogates H-NS-mediated silencing to activate the hilD promoter. In contrast, H-NS-mediated repression of the hilA promoter, downstream of hilD, is through its control of HilD, which directly activates hilA transcription. Likewise, activation of the prgH promoter, although in a region silenced by H-NS, is strictly dependent on HilA. In summary, we propose a model in which H-NS nucleates within the hilD promoter region to polymerize and exert its repressive effect. Thus, H-NS-mediated repression of SPI1 is primarily through the control of hilD expression, with HilD capable of overcoming H-NS to autoactivate. IMPORTANCE Members of the foodborne pathogen Salmonella rely on a type III secretion system to invade intestinal epithelial cells and initiate infection. This system was acquired through horizontal gene transfer, essentially creating the Salmonella genus. Expression of this critical virulence factor is controlled by a complex regulatory network. The nucleoid protein H-NS is a global repressor of horizontally acquired genomic loci. Here, we identify the critical site of H-NS regulation in this system and show that alterations to the DNA over a surprisingly large region affect this regulation, providing important information regarding the mechanism of H-NS action.
Collapse
|
15
|
Powers TR, Haeberle AL, Predeus AV, Hammarlöf DL, Cundiff JA, Saldaña-Ahuactzi Z, Hokamp K, Hinton JCD, Knodler LA. Intracellular niche-specific profiling reveals transcriptional adaptations required for the cytosolic lifestyle of Salmonella enterica. PLoS Pathog 2021; 17:e1009280. [PMID: 34460873 PMCID: PMC8432900 DOI: 10.1371/journal.ppat.1009280] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/10/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes diarrheal disease in humans and animals. During salmonellosis, S. Typhimurium colonizes epithelial cells lining the gastrointestinal tract. S. Typhimurium has an unusual lifestyle in epithelial cells that begins within an endocytic-derived Salmonella-containing vacuole (SCV), followed by escape into the cytosol, epithelial cell lysis and bacterial release. The cytosol is a more permissive environment than the SCV and supports rapid bacterial growth. The physicochemical conditions encountered by S. Typhimurium within the epithelial cytosol, and the bacterial genes required for cytosolic colonization, remain largely unknown. Here we have exploited the parallel colonization strategies of S. Typhimurium in epithelial cells to decipher the two niche-specific bacterial virulence programs. By combining a population-based RNA-seq approach with single-cell microscopic analysis, we identified bacterial genes with cytosol-induced or vacuole-induced expression signatures. Using these genes as environmental biosensors, we defined that Salmonella is exposed to oxidative stress and iron and manganese deprivation in the cytosol and zinc and magnesium deprivation in the SCV. Furthermore, iron availability was critical for optimal S. Typhimurium replication in the cytosol, as well as entC, fepB, soxS, mntH and sitA. Virulence genes that are typically associated with extracellular bacteria, namely Salmonella pathogenicity island 1 (SPI1) and SPI4, showed increased expression in the cytosol compared to vacuole. Our study reveals that the cytosolic and vacuolar S. Typhimurium virulence gene programs are unique to, and tailored for, residence within distinct intracellular compartments. This archetypical vacuole-adapted pathogen therefore requires extensive transcriptional reprogramming to successfully colonize the mammalian cytosol.
Collapse
Affiliation(s)
- TuShun R. Powers
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Alexander V. Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Disa L. Hammarlöf
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jennifer A. Cundiff
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Leigh A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
16
|
Pérez-Morales D, Nava-Galeana J, Rosales-Reyes R, Teehan P, Yakhnin H, Melchy-Pérez EI, Rosenstein Y, De la Cruz MA, Babitzke P, Bustamante VH. An incoherent feedforward loop formed by SirA/BarA, HilE and HilD is involved in controlling the growth cost of virulence factor expression by Salmonella Typhimurium. PLoS Pathog 2021; 17:e1009630. [PMID: 34048498 PMCID: PMC8192010 DOI: 10.1371/journal.ppat.1009630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 06/10/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
An intricate regulatory network controls the expression of Salmonella virulence genes. The transcriptional regulator HilD plays a central role in this network by controlling the expression of tens of genes mainly required for intestinal colonization. Accordingly, the expression/activity of HilD is highly regulated by multiple factors, such as the SirA/BarA two-component system and the Hcp-like protein HilE. SirA/BarA positively regulates translation of hilD mRNA through a regulatory cascade involving the small RNAs CsrB and CsrC, and the RNA-binding protein CsrA, whereas HilE inhibits HilD activity by protein-protein interaction. In this study, we show that SirA/BarA also positively regulates translation of hilE mRNA through the same mentioned regulatory cascade. Thus, our results reveal a paradoxical regulation exerted by SirA/BarA-Csr on HilD, which involves simultaneous opposite effects, direct positive control and indirect negative control through HilE. This kind of regulation is called an incoherent type-1 feedforward loop (I1-FFL), which is a motif present in certain regulatory networks and represents a complex biological problem to decipher. Interestingly, our results, together with those from a previous study, indicate that HilE, the repressor component of the I1-FFL reported here (I1-FFLSirA/BarA-HilE-HilD), is required to reduce the growth cost imposed by the expression of the genes regulated by HilD. Moreover, we and others found that HilE is necessary for successful intestinal colonization by Salmonella. Thus, these findings support that I1-FFLSirA/BarA-HilE-HilD cooperates to control the precise amount and activity of HilD, for an appropriate balance between the growth cost and the virulence benefit generated by the expression of the genes induced by this regulator. I1-FFLSirA/BarA-HilE-HilD represents a complex regulatory I1-FFL that involves multiple regulators acting at distinct levels of gene expression, as well as showing different connections to the rest of the regulatory network governing Salmonella virulence. To infect the intestine of a broad range of hosts, including humans, Salmonella is required to express a large number of genes encoding different cellular functions, which imposes a growth penalty. Thus, Salmonella has developed complex regulatory mechanisms that control the expression of virulence genes. Here we identified a novel and sophisticated regulatory mechanism that is involved in the fine-tuned control of the expression level and activity of the transcriptional regulator HilD, for the appropriate balance between the growth cost and the virulence benefit generated by the expression of tens of Salmonella genes. This mechanism forms an incoherent type-1 feedforward loop (I1-FFL), which involves paradoxical regulation; that is, a regulatory factor exerting simultaneous opposite control (positive and negative) on another factor. I1-FFLs are present in regulatory networks of diverse organisms, from bacteria to humans, and represent a complex biological problem to decipher. Interestingly, the I1-FFL reported here is integrated by ancestral regulators and by regulators that Salmonella has acquired during evolution. Thus, our findings reveal a novel I1-FFL of bacteria, which is involved in virulence. Moreover, our results illustrate the integration of ancestral and acquired factors into a regulatory motif, which can lead to the expansion of regulatory networks.
Collapse
Affiliation(s)
- Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Jessica Nava-Galeana
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Roberto Rosales-Reyes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Paige Teehan
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Erika I. Melchy-Pérez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Miguel A. De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
17
|
Impact of the Resistance Responses to Stress Conditions Encountered in Food and Food Processing Environments on the Virulence and Growth Fitness of Non-Typhoidal Salmonellae. Foods 2021; 10:foods10030617. [PMID: 33799446 PMCID: PMC8001757 DOI: 10.3390/foods10030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 01/22/2023] Open
Abstract
The success of Salmonella as a foodborne pathogen can probably be attributed to two major features: its remarkable genetic diversity and its extraordinary ability to adapt. Salmonella cells can survive in harsh environments, successfully compete for nutrients, and cause disease once inside the host. Furthermore, they are capable of rapidly reprogramming their metabolism, evolving in a short time from a stress-resistance mode to a growth or virulent mode, or even to express stress resistance and virulence factors at the same time if needed, thanks to a complex and fine-tuned regulatory network. It is nevertheless generally acknowledged that the development of stress resistance usually has a fitness cost for bacterial cells and that induction of stress resistance responses to certain agents can trigger changes in Salmonella virulence. In this review, we summarize and discuss current knowledge concerning the effects that the development of resistance responses to stress conditions encountered in food and food processing environments (including acid, osmotic and oxidative stress, starvation, modified atmospheres, detergents and disinfectants, chilling, heat, and non-thermal technologies) exerts on different aspects of the physiology of non-typhoidal Salmonellae, with special emphasis on virulence and growth fitness.
Collapse
|
18
|
Positive regulation of Type III secretion effectors and virulence by RyhB paralogs in Salmonella enterica serovar Enteritidis. Vet Res 2021; 52:44. [PMID: 33691799 PMCID: PMC7944605 DOI: 10.1186/s13567-021-00915-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/17/2021] [Indexed: 01/02/2023] Open
Abstract
Small non-coding RNA RyhB is a key regulator of iron homeostasis in bacteria by sensing iron availability in the environment. Although RyhB is known to influence bacterial virulence by interacting with iron metabolism related regulators, its interaction with virulence genes, especially the Type III secretion system (T3SS), has not been reported. Here, we demonstrate that two RyhB paralogs of Salmonella enterica serovar Enteritidis upregulate Type III secretion system (T3SS) effectors, and consequently affect Salmonella invasion into intestinal epithelial cells. Specifically, we found that RyhB-1 modulate Salmonella response to stress condition of iron deficiency and hypoxia, and stress in simulated intestinal environment (SIE). Under SIE culture conditions, both RyhB-1 and RyhB-2 are drastically induced and directly upregulate the expression of T3SS effector gene sipA by interacting with its 5′ untranslated region (5′ UTR) via an incomplete base-pairing mechanism. In addition, the RyhB paralogs upregulate the expression of T3SS effector gene sopE. By regulating the invasion-related genes, RyhBs in turn affect the ability of S. Enteritidis to adhere to and invade into intestinal epithelial cells. Our findings provide evidence that RyhBs function as critical virulence factors by directly regulating virulence-related gene expression. Thus, inhibition of RyhBs may be a potential strategy to attenuate Salmonella.
Collapse
|
19
|
Sousa Gerós A, Simmons A, Drakesmith H, Aulicino A, Frost JN. The battle for iron in enteric infections. Immunology 2020; 161:186-199. [PMID: 32639029 PMCID: PMC7576875 DOI: 10.1111/imm.13236] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element for almost all living organisms, but can be extremely toxic in high concentrations. All organisms must therefore employ homeostatic mechanisms to finely regulate iron uptake, usage and storage in the face of dynamic environmental conditions. The critical step in mammalian systemic iron homeostasis is the fine regulation of dietary iron absorption. However, as the gastrointestinal system is also home to >1014 bacteria, all of which engage in their own programmes of iron homeostasis, the gut represents an anatomical location where the inter-kingdom fight for iron is never-ending. Here, we explore the molecular mechanisms of, and interactions between, host and bacterial iron homeostasis in the gastrointestinal tract. We first detail how mammalian systemic and cellular iron homeostasis influences gastrointestinal iron availability. We then focus on two important human pathogens, Salmonella and Clostridia; despite their differences, they exemplify how a bacterial pathogen must navigate and exploit this web of iron homeostasis interactions to avoid host nutritional immunity and replicate successfully. We then reciprocally explore how iron availability interacts with the gastrointestinal microbiota, and the consequences of this on mammalian physiology and pathogen iron acquisition. Finally, we address how understanding the battle for iron in the gastrointestinal tract might inform clinical practice and inspire new treatments for important diseases.
Collapse
Affiliation(s)
- Ana Sousa Gerós
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Alison Simmons
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Hal Drakesmith
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Anna Aulicino
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Joe N. Frost
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
20
|
Acuña LG, Barros MJ, Montt F, Peñaloza D, Núñez P, Valdés I, Gil F, Fuentes JA, Calderón IL. Participation of two sRNA RyhB homologs from the fish pathogen Yersinia ruckeri in bacterial physiology. Microbiol Res 2020; 242:126629. [PMID: 33153884 DOI: 10.1016/j.micres.2020.126629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/11/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023]
Abstract
Small noncoding RNAs (sRNAs) are important regulators of gene expression and physiology in bacteria. RyhB is an iron-responsive sRNA well characterized in Escherichia coli and conserved in other Enterobacteriaceae. In this study, we identified and characterized two RyhB homologs (named RyhB-1 and RyhB-2) in the fish pathogen Yersinia ruckeri. We found that, as in other Enterobacteriaceae, both RyhB-1 and RyhB-2 are induced under iron starvation, repressed by the Fur regulator, and depend on Hfq for stability. Despite these similarities in expression, the mutant strains of Y. ruckeri lacking RyhB-1 (ΔryhB-1) or RyhB-2 (ΔryhB-2) exhibited differential phenotypes. In comparison with the wild type, the ΔryhB-1 strain showed a hypermotile phenotype, reduced biofilm formation, increased replication rate, faster growth, and increased ATP levels in bacterial cultures. By contrast, in salmon cell cultures, the ΔryhB-1 strain exhibited an increased survival. On the other hand, the ΔryhB-2 strain was non-motile and showed augmented biofilm formation as compared to the wild type. The expression of a subset of RyhB conserved targets, selected from different bacterial species, was analyzed by quantitative RT-PCR in wild type, ΔryhB-1, ΔryhB-2, and ΔryhB-1 ΔryhB-2 strains cultured in iron-depleted media. RyhB-1 negatively affected the expression of most analyzed genes (sodB, acnA, sdhC, bfr, fliF, among others), whose functions are related to metabolism and motility, involving iron-containing proteins. Among the genes analyzed, only sdhC and bfr appeared as targets for RyhB-2. Taken together, these results indicate that Y. ruckeri RyhB homologs participate in the modulation of the bacterial physiology with non-redundant roles.
Collapse
Affiliation(s)
- Lillian G Acuña
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - M José Barros
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Fernanda Montt
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Diego Peñaloza
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Paula Núñez
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Iván Valdés
- Desarrollo de Biológicos, Veterquímica S.A., Santiago, Chile.
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Iván L Calderón
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
21
|
The Endoribonuclease RNase E Coordinates Expression of mRNAs and Small Regulatory RNAs and Is Critical for the Virulence of Brucella abortus. J Bacteriol 2020; 202:JB.00240-20. [PMID: 32747427 DOI: 10.1128/jb.00240-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
RNases are key regulatory components in prokaryotes, responsible for the degradation and maturation of specific RNA molecules at precise times. Specifically, RNases allow cells to cope with changes in their environment through rapid alteration of gene expression. To date, few RNases have been characterized in the mammalian pathogen Brucella abortus In the present work, we sought to investigate several RNases in B. abortus and determine what role, if any, they have in pathogenesis. Of the 4 RNases reported in this study, the highly conserved endoribonuclease, RNase E, was found to play an integral role in the virulence of B. abortus Although rne, which encodes RNase E, is essential in B. abortus, we were able to generate a strain encoding a defective version of RNase E lacking the C-terminal portion of the protein, and this strain (rne-tnc) was attenuated in a mouse model of Brucella infection. RNA-sequencing analysis revealed massive RNA dysregulation in B. abortus rne-tnc, with 122 upregulated and 161 downregulated transcripts compared to the parental strain. Interestingly, several mRNAs related to metal homeostasis were significantly decreased in the rne-tnc strain. We also identified a small regulatory RNA (sRNA), called Bsr4, that exhibited significantly elevated levels in rne-tnc, demonstrating an important role for RNase E in sRNA-mediated regulatory pathways in Brucella Overall, these data highlight the importance of RNase E in B. abortus, including the role of RNase E in properly controlling mRNA levels and contributing to virulence in an animal model of infection.IMPORTANCE Brucellosis is a debilitating disease of humans and animals globally, and there is currently no vaccine to combat human infection by Brucella spp. Moreover, effective antibiotic treatment in humans is extremely difficult and can lead to disease relapse. Therefore, it is imperative that systems and pathways be identified and characterized in the brucellae so new vaccines and therapies can be generated. In this study, we describe the impact of the endoribonuclease RNase E on the control of mRNA and small regulatory RNA (sRNA) levels in B. abortus, as well as the importance of RNase E for the full virulence of B. abortus This work greatly enhances our understanding of ribonucleases in the biology and pathogenesis of Brucella spp.
Collapse
|
22
|
Envelope Stress and Regulation of the Salmonella Pathogenicity Island 1 Type III Secretion System. J Bacteriol 2020; 202:JB.00272-20. [PMID: 32571967 DOI: 10.1128/jb.00272-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 01/19/2023] Open
Abstract
Salmonella enterica serovar Typhimurium uses a type three secretion system (T3SS) encoded on the Salmonella pathogenicity island 1 (SPI1) to invade intestinal epithelial cells and induce inflammatory diarrhea. The SPI1 T3SS is regulated by numerous environmental and physiological signals, integrated to either activate or repress invasion. Transcription of hilA, encoding the transcriptional activator of the SPI1 structural genes, is activated by three AraC-like regulators, HilD, HilC, and RtsA, that act in a complex feed-forward loop. Deletion of bamB, encoding a component of the β-barrel assembly machinery, causes a dramatic repression of SPI1, but the mechanism was unknown. Here, we show that partially defective β-barrel assembly activates the RcsCDB regulon, leading to decreased hilA transcription. This regulation is independent of RpoE activation. Though Rcs has been previously shown to repress SPI1 when disulfide bond formation is impaired, we show that activation of Rcs in a bamB background is dependent on the sensor protein RcsF, whereas disulfide bond status is sensed independently. Rcs decreases transcription of the flagellar regulon, including fliZ, the product of which indirectly activates HilD protein activity. Rcs also represses hilD, hilC, and rtsA promoters by an unknown mechanism. Both dsbA and bamB mutants have motility defects, though this is simply regulatory in a bamB background; motility is restored in the absence of Rcs. Effector secretion assays show that repression of SPI1 in a bamB background is also regulatory; if expressed, the SPI1 T3SS is functional in a bamB background. This emphasizes the sensitivity of SPI1 regulation to overall envelope homeostasis.IMPORTANCE Salmonella causes worldwide foodborne illness, leading to massive disease burden and an estimated 600,000 deaths per year. Salmonella infects orally and invades intestinal epithelial cells using a type 3 secretion system that directly injects effector proteins into host cells. This first step in invasion is tightly regulated by a variety of inputs. In this work, we demonstrate that Salmonella senses the functionality of outer membrane assembly in determining regulation of invasion machinery, and we show that Salmonella uses distinct mechanisms to detect specific perturbations in envelope assembly.
Collapse
|
23
|
Hör J, Matera G, Vogel J, Gottesman S, Storz G. Trans-Acting Small RNAs and Their Effects on Gene Expression in Escherichia coli and Salmonella enterica. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0030-2019. [PMID: 32213244 PMCID: PMC7112153 DOI: 10.1128/ecosalplus.esp-0030-2019] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Indexed: 12/20/2022]
Abstract
The last few decades have led to an explosion in our understanding of the major roles that small regulatory RNAs (sRNAs) play in regulatory circuits and the responses to stress in many bacterial species. Much of the foundational work was carried out with Escherichia coli and Salmonella enterica serovar Typhimurium. The studies of these organisms provided an overview of how the sRNAs function and their impact on bacterial physiology, serving as a blueprint for sRNA biology in many other prokaryotes. They also led to the development of new technologies. In this chapter, we first summarize how these sRNAs were identified, defining them in the process. We discuss how they are regulated and how they act and provide selected examples of their roles in regulatory circuits and the consequences of this regulation. Throughout, we summarize the methodologies that were developed to identify and study the regulatory RNAs, most of which are applicable to other bacteria. Newly updated databases of the known sRNAs in E. coli K-12 and S. enterica Typhimurium SL1344 serve as a reference point for much of the discussion and, hopefully, as a resource for readers and for future experiments to address open questions raised in this review.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Gianluca Matera
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892
| |
Collapse
|
24
|
Horizontally Acquired Quorum-Sensing Regulators Recruited by the PhoP Regulatory Network Expand the Host Adaptation Repertoire in the Phytopathogen Pectobacterium brasiliense. mSystems 2020; 5:5/1/e00650-19. [PMID: 31992632 PMCID: PMC6989131 DOI: 10.1128/msystems.00650-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this study, we examine the impact of transcriptional network rearrangements driven by horizontal gene acquisition in PhoP and SlyA regulons using as a case study a phytopathosystem comprised of potato tubers and the soft-rot pathogen Pectobacterium brasiliense 1692 (Pb1692). Genome simulations and statistical analyses uncovered the tendency of PhoP and SlyA networks to mobilize lineage-specific traits predicted as horizontal gene transfer at late infection, highlighting the prominence of regulatory network rearrangements in this stage of infection. The evidence further supports the circumscription of two horizontally acquired quorum-sensing regulators (carR and expR1) by the PhoP network. By recruiting carR and expR1, the PhoP network also impacts certain host adaptation- and bacterial competition-related systems, seemingly in a quorum sensing-dependent manner, such as the type VI secretion system, carbapenem biosynthesis, and plant cell wall-degrading enzymes (PCWDE) like cellulases and pectate lyases. Conversely, polygalacturonases and the type III secretion system (T3SS) exhibit a transcriptional pattern that suggests quorum-sensing-independent regulation by the PhoP network. This includes an uncharacterized novel phage-related gene family within the T3SS gene cluster that has been recently acquired by two Pectobacterium species. The evidence further suggests a PhoP-dependent regulation of carbapenem- and PCWDE-encoding genes based on the synthesized products' optimum pH. The PhoP network also controls slyA expression in planta, which seems to impact carbohydrate metabolism regulation, especially at early infection, when 76.2% of the SlyA-regulated genes from that category also require PhoP to achieve normal expression levels.IMPORTANCE Exchanging genetic material through horizontal transfer is a critical mechanism that drives bacteria to efficiently adapt to host defenses. In this report, we demonstrate that a specific plant-pathogenic species (from the Pectobacterium genus) successfully integrated a population density-based behavior system (quorum sensing) acquired through horizontal transfer into a resident stress-response gene regulatory network controlled by the PhoP protein. Evidence found here underscores that subsets of bacterial weaponry critical for colonization, typically known to respond to quorum sensing, are also controlled by PhoP. Some of these traits include different types of enzymes that can efficiently break down plant cell walls depending on the environmental acidity level. Thus, we hypothesize that PhoP's ability to elicit regulatory responses based on acidity and nutrient availability fluctuations has strongly impacted the fixation of its regulatory connection with quorum sensing. In addition, another global gene regulator, known as SlyA, was found under the PhoP regulatory network. The SlyA regulator controls a series of carbohydrate metabolism-related traits, which also seem to be regulated by PhoP. By centralizing quorum sensing and slyA under PhoP scrutiny, Pectobacterium cells added an advantageous layer of control over those two networks that potentially enhances colonization efficiency.
Collapse
|
25
|
Liu J, Tian Y, Zhao Y, Zeng R, Chen B, Hu B, Walcott RR. Ferric Uptake Regulator (FurA) is Required for Acidovorax citrulli Virulence on Watermelon. PHYTOPATHOLOGY 2019; 109:1997-2008. [PMID: 31454303 DOI: 10.1094/phyto-05-19-0172-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Acidovorax citrulli is the causal agent of bacterial fruit blotch, a serious threat to commercial watermelon and melon crop production worldwide. Ferric uptake regulator (Fur) is a global transcription factor that affects a number of virulence-related functions in phytopathogenic bacteria; however, the role of furA has not been determined for A. citrulli. Hence, we constructed an furA deletion mutant and a corresponding complement in the background of A. citrulli strain xlj12 to investigate the role of the gene in siderophore production, concentration of intracellular Fe2+, bacterial sensitivity to hydrogen peroxide, biofilm formation, swimming motility, hypersensitive response induction, and virulence on melon seedlings. The A. citrulli furA deletion mutant displayed increased siderophore production, intracellular Fe2+ concentration, and increased sensitivity to hydrogen peroxide. In contrast, biofilm formation, swimming motility, and virulence on melon seedlings were significantly reduced in the furA mutant. As expected, complementation of the furA deletion mutant restored all phenotypes to wild-type levels. In accordance with the phenotypic results, the expression levels of bfrA and bfrB that encode bacterioferritin, sodB that encodes iron/manganese superoxide dismutase, fliS that encodes a flagellar protein, hrcN that encodes the type III secretion system (T3SS) ATPase, and hrcC that encodes the T3SS outer membrane ring protein were significantly downregulated in the A. citrulli furA deletion mutant. In addition, the expression of feo-related genes and feoA and feoB was significantly upregulated in the furA mutant. Overall, these results indicated that, in A. citrulli, FurA contributes to the regulation of the iron balance system, and affects a variety of virulence-related traits.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Rong Zeng
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Baohui Chen
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Ron R Walcott
- Department of Plant Pathology, 4315 Miller Plant Sciences, the University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
26
|
Staes I, Passaris I, Cambré A, Aertsen A. Population heterogeneity tactics as driving force in Salmonella virulence and survival. Food Res Int 2019; 125:108560. [DOI: 10.1016/j.foodres.2019.108560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 01/28/2023]
|
27
|
Song X, Zhang H, Ma S, Song Y, Lv R, Liu X, Yang B, Huang D, Liu B, Jiang L. Transcriptome analysis of virulence gene regulation by the ATP-dependent Lon protease in Salmonella Typhimurium. Future Microbiol 2019; 14:1109-1122. [PMID: 31370702 DOI: 10.2217/fmb-2019-0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: Determination of the virulence regulatory network controlled by the ATP-dependent Lon protease in Salmonella enterica serovar Typhimurium. Materials & methods: The effect of Lon on S. Typhimurium virulence genes expression was investigated by RNA sequencing, and virulence-associated phenotypes between the wild-type and lon mutant were compared. Results: SPI-1, SPI-4, SPI-9 and flagellar genes were activated, while SPI-2 genes were repressed in the lon mutant. Accordingly, the lon mutant exhibited increased adhesion to and invasion of epithelial cells, increased motility and decreased replication in macrophages. The activation of SPI-2 genes by Lon partially accounts for the replication defect of the mutant. Conclusion: A wide range of virulence regulatory functions are governed by Lon in S. enterica ser. Typhimurium.
Collapse
Affiliation(s)
- Xiaorui Song
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.,College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Huan Zhang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.,College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Shuangshuang Ma
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Yajun Song
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Runxia Lv
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Xiaoqian Liu
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Bin Yang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Di Huang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Bin Liu
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| |
Collapse
|
28
|
PhoP-Mediated Repression of the SPI1 Type 3 Secretion System in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00264-19. [PMID: 31182495 DOI: 10.1128/jb.00264-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Salmonella must rapidly adapt to various niches in the host during infection. Relevant virulence factors must be appropriately induced, and systems that are detrimental in a particular environment must be turned off. Salmonella infects intestinal epithelial cells using a type 3 secretion system (T3SS) encoded on Salmonella pathogenicity island 1 (SPI1). The system is controlled by three AraC-like regulators, HilD, HilC, and RtsA, which form a complex feed-forward loop to activate expression of hilA, encoding the main transcriptional regulator of T3SS structural genes. This system is tightly regulated, with many of the activating signals acting at the level of hilD translation or HilD protein activity. Once inside the phagosomes of epithelial cells, or in macrophages during systemic stages of disease, the SPI1 T3SS is no longer required or expressed. Here, we show that the PhoPQ two-component system, critical for intracellular survival, appears to be the primary mechanism by which Salmonella shuts down the SPI1 T3SS. PhoP negatively regulates hilA through multiple distinct mechanisms: direct transcriptional repression of the hilA promoter, indirect transcriptional repression of both the hilD and rtsA promoters, and activation of the small RNA (sRNA) PinT. Genetic analyses and electrophoretic mobility shift assays suggest that PhoP specifically binds the hilA promoter to block binding of activators HilD, HilC, and RtsA as a mechanism of repression.IMPORTANCE Salmonella is one of the most common foodborne pathogens, causing an estimated 1.2 million illnesses per year in the United States. A key step in infection is the activation of the bacterial invasion machinery, which induces uptake of the bacterium into epithelial cells and leads to induction of inflammatory diarrhea. Upon entering the vacuolar compartments of host cells, Salmonella senses an environmental transition and represses the invasion machinery with a two-component system relevant for survival within the vacuole. This adaptation to specific host niches is an important example of how signals are integrated for survival of the pathogen.
Collapse
|
29
|
Volk M, Vollmer I, Heroven AK, Dersch P. Transcriptional and Post-transcriptional Regulatory Mechanisms Controlling Type III Secretion. Curr Top Microbiol Immunol 2019; 427:11-33. [PMID: 31218505 DOI: 10.1007/82_2019_168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Type III secretion systems (T3SSs) are utilized by numerous Gram-negative bacteria to efficiently interact with host cells and manipulate their function. Appropriate expression of type III secretion genes is achieved through the integration of multiple control elements and regulatory pathways that ultimately coordinate the activity of a central transcriptional activator usually belonging to the AraC/XylS family. Although several regulatory elements are conserved between different species and families, each pathogen uses a unique set of control factors and mechanisms to adjust and optimize T3SS gene expression to the need and lifestyle of the pathogen. This is reflected by the complex set of sensory systems and diverse transcriptional, post-transcriptional and post-translational control strategies modulating T3SS expression in response to environmental and intrinsic cues. Whereas some pathways regulate solely the T3SS, others coordinately control expression of one or multiple T3SSs together with other virulence factors and fitness traits on a global scale. Over the past years, several common regulatory themes emerged, e.g., environmental control by two-component systems and carbon metabolism regulators or coupling of T3SS induction with host cell contact/translocon-effector secretion. One of the remaining challenges is to resolve the understudied post-transcriptional regulation of T3SS and the dynamics of the control process.
Collapse
Affiliation(s)
- Marcel Volk
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Ines Vollmer
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Brunswick, Germany.
- Institute for Infectiology, University Münster, Münster, Germany.
| |
Collapse
|
30
|
Hung CC, Eade CR, Betteken MI, Pavinski Bitar PD, Handley EM, Nugent SL, Chowdhury R, Altier C. Salmonella invasion is controlled through the secondary structure of the hilD transcript. PLoS Pathog 2019; 15:e1007700. [PMID: 31017982 PMCID: PMC6502421 DOI: 10.1371/journal.ppat.1007700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/06/2019] [Accepted: 03/12/2019] [Indexed: 11/19/2022] Open
Abstract
Virulence functions of bacterial pathogens are often energetically costly and thus are subjected to intricate regulatory mechanisms. In Salmonella, invasion of the intestinal epithelium, an essential early step in virulence, requires the production of a multi-protein type III secretion apparatus. The pathogen mitigates the overall cost of invasion by inducing it in only a fraction of its population. This constitutes a successful virulence strategy as invasion by a small number is sufficient to promote the proliferation of the non-invading majority. Such a system suggests the existence of a sensitive triggering mechanism that permits only a minority of Salmonella to reach a threshold of invasion-gene induction. We show here that the secondary structure of the invasion regulator hilD message provides such a trigger. The 5' end of the hilD mRNA is predicted to contain two mutually exclusive stem-loop structures, the first of which (SL1) overlaps the ribosome-binding site and the ORF start codon. Changes that reduce its stability enhance invasion gene expression, while those that increase stability reduce invasion. Conversely, disrupting the second stem-loop (SL2) represses invasion genes. Although SL2 is the energetically more favorable, repression through SL1 is enhanced by binding of the global regulator CsrA. This system thus alters the levels of hilD mRNA and is so sensitive that changing a single base pair within SL1, predicted to augment its stability, eliminates expression of invasion genes and significantly reduces Salmonella virulence in mice. This system thus provides a possible means to rapidly and finely tune an essential virulence function.
Collapse
Affiliation(s)
- Chien-Che Hung
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Colleen R. Eade
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Michael I. Betteken
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Paulina D. Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Elaine M. Handley
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Staci L. Nugent
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
31
|
Mutz YDS, Rosario DKA, Paschoalin VMF, Conte-Junior CA. Salmonella enterica: A hidden risk for dry-cured meat consumption? Crit Rev Food Sci Nutr 2019; 60:976-990. [DOI: 10.1080/10408398.2018.1555132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yhan da Silva Mutz
- Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Technology, Federal Fluminense University, Vital Brazil Filho, Niterói, RJ, Brazil
| | - Denes Kaic Alves Rosario
- Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Technology, Federal Fluminense University, Vital Brazil Filho, Niterói, RJ, Brazil
| | | | - Carlos Adam Conte-Junior
- Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Technology, Federal Fluminense University, Vital Brazil Filho, Niterói, RJ, Brazil
- National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
32
|
Kim K, Golubeva YA, Vanderpool CK, Slauch JM. Oxygen-dependent regulation of SPI1 type three secretion system by small RNAs in Salmonella enterica serovar Typhimurium. Mol Microbiol 2018; 111:570-587. [PMID: 30484918 DOI: 10.1111/mmi.14174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 01/31/2023]
Abstract
Salmonella Typhimurium induces inflammatory diarrhea and uptake into intestinal epithelial cells using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Three AraC-like regulators, HilD, HilC and RtsA, form a feed-forward regulatory loop that activates transcription of hilA, encoding the activator of the T3SS structural genes. Many environmental signals and regulatory systems are integrated into this circuit to precisely regulate SPI1 expression. A subset of these regulatory factors affects translation of hilD, but the mechanisms are poorly understood. Here, we identified two sRNAs, FnrS and ArcZ, which repress hilD translation, leading to decreased production of HilA. FnrS and ArcZ are oppositely regulated in response to oxygen, one of the key environmental signals affecting expression of SPI1. Mutational analysis demonstrates that FnrS and ArcZ bind to the hilD mRNA 5' UTR, resulting in translational repression. Deletion of fnrS led to increased HilD production under low-aeration conditions, whereas deletion of arcZ abolished the regulatory effect on hilD translation aerobically. The fnrS arcZ double mutant has phenotypes in a mouse oral infection model consistent with increased expression of SPI1. Together, these results suggest that coordinated regulation by these two sRNAs maximizes HilD production at an intermediate level of oxygen.
Collapse
Affiliation(s)
- Kyungsub Kim
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Yekaterina A Golubeva
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - James M Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| |
Collapse
|
33
|
HilE Regulates HilD by Blocking DNA Binding in Salmonella enterica Serovar Typhimurium. J Bacteriol 2018; 200:JB.00750-17. [PMID: 29378886 DOI: 10.1128/jb.00750-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/18/2018] [Indexed: 11/20/2022] Open
Abstract
The Salmonella type three secretion system (T3SS), encoded in the Salmonella pathogenicity island 1 (SPI1) locus, mediates the invasion of the host intestinal epithelium. SPI1 expression is dependent upon three AraC-like regulators: HilD, HilC, and RtsA. These regulators act in a complex feed-forward loop to activate each other and hilA, which encodes the activator of the T3SS structural genes. HilD has been shown to be the major integration point of most signals known to activate the expression of the SPI1 T3SS, acting as a switch to control induction of the system. HilE is a negative regulator that acts upon HilD. Here we provide genetic and biochemical data showing that HilE specifically binds to HilD but not to HilC or RtsA. This protein-protein interaction blocks the ability of HilD to bind DNA as shown by both an in vivo reporter system and an in vitro gel shift assay. HilE does not affect HilD dimerization, nor does it control the stability of the HilD protein. We also investigated the role of HilE during the infection of mice using competition assays. Although deletion of hilE does not confer a phenotype, the hilE mutation does suppress the invasion defect conferred by loss of FliZ, which acts as a positive signal controlling HilD protein activity. Together, these data suggest that HilE functions to restrict low-level HilD activity, preventing premature activation of SPI1 until positive inputs reach a threshold required to fully induce the system.IMPORTANCESalmonella is a leading cause of gastrointestinal and systemic disease throughout the world. The SPI1 T3SS is required for Salmonella to induce inflammatory diarrhea and to gain access to underlying tissue. A complex regulatory network controls expression of SPI1 in response to numerous physiological inputs. Most of these signals impinge primarily on HilD translation or activity. The system is triggered when HilD activity crosses a threshold that allows efficient activation of its own promoter. This threshold is set by HilE, which binds to HilD to prevent the inevitable minor fluctuations in HilD activity from inappropriately activating the system. The circuit also serves as a paradigm for systems that must integrate numerous environmental parameters to control regulatory output.
Collapse
|
34
|
Paredes-Amaya CC, Valdés-García G, Juárez-González VR, Rudiño-Piñera E, Bustamante VH. The Hcp-like protein HilE inhibits homodimerization and DNA binding of the virulence-associated transcriptional regulator HilD in Salmonella. J Biol Chem 2018. [PMID: 29535187 DOI: 10.1074/jbc.ra117.001421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
HilD is an AraC-like transcriptional regulator that plays a central role in Salmonella virulence. HilD controls the expression of the genes within the Salmonella pathogenicity island 1 (SPI-1) and of several genes located outside SPI-1, which are mainly required for Salmonella invasion of host cells. The expression, amount, and activity of HilD are tightly controlled by the activities of several factors. The HilE protein represses the expression of the SPI-1 genes through its interaction with HilD; however, the mechanism by which HilE affects HilD is unknown. In this study, we used genetic and biochemical assays revealing how HilE controls the transcriptional activity of HilD. We found that HilD needs to assemble in homodimers to induce expression of its target genes. Our results further indicated that HilE individually interacts with each the central and the C-terminal HilD regions, mediating dimerization and DNA binding, respectively. We also observed that these interactions consistently inhibit HilD dimerization and DNA binding. Interestingly, a computational analysis revealed that HilE shares sequence and structural similarities with Hcp proteins, which act as structural components of type 6 secretion systems in Gram-negative bacteria. In conclusion, our results uncover the molecular mechanism by which the Hcp-like protein HilE controls dimerization and DNA binding of the virulence-promoting transcriptional regulator HilD. Our findings may indicate that HilE's activity represents a functional adaptation during the evolution of Salmonella pathogenicity.
Collapse
Affiliation(s)
| | - Gilberto Valdés-García
- Molecular Medicine and Bioprocesses, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Víctor R Juárez-González
- Molecular Medicine and Bioprocesses, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Enrique Rudiño-Piñera
- Molecular Medicine and Bioprocesses, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | | |
Collapse
|
35
|
Thorsing M, dos Santos PT, Kallipolitis BH. Small RNAs in major foodborne pathogens: from novel regulatory activities to future applications. Curr Opin Biotechnol 2018; 49:120-128. [DOI: 10.1016/j.copbio.2017.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022]
|
36
|
The Biochemistry of Sensing: Enteric Pathogens Regulate Type III Secretion in Response to Environmental and Host Cues. mBio 2018; 9:mBio.02122-17. [PMID: 29339429 PMCID: PMC5770552 DOI: 10.1128/mbio.02122-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enteric pathogens employ sophisticated strategies to colonize and infect mammalian hosts. Gram-negative bacteria, such as Escherichia coli, Salmonella, and Campylobacter jejuni, are among the leading causes of gastrointestinal tract infections worldwide. The virulence strategies of many of these Gram-negative pathogens rely on type III secretion systems (T3SSs), which are macromolecular syringes that translocate bacterial effector proteins directly into the host cytosol. However, synthesis of T3SS proteins comes at a cost to the bacterium in terms of growth rate and fitness, both in the environment and within the host. Therefore, expression of the T3SS must be tightly regulated to occur at the appropriate time and place during infection. Enteric pathogens have thus evolved regulatory mechanisms to control expression of their T3SSs in response to specific environmental and host cues. These regulatory cascades integrate multiple physical and chemical signals through complex transcriptional networks. Although the power of bacterial genetics has allowed elucidation of many of these networks, the biochemical interactions between signal and sensor that initiate the signaling cascade are often poorly understood. Here, we review the physical and chemical signals that Gram-negative enteric pathogens use to regulate T3SS expression during infection. We highlight the recent structural and functional studies that have elucidated the biochemical properties governing both the interaction between sensor and signal and the mechanisms of signal transduction from sensor to downstream transcriptional networks.
Collapse
|
37
|
Clark-Curtiss JE, Curtiss R. Salmonella Vaccines: Conduits for Protective Antigens. THE JOURNAL OF IMMUNOLOGY 2018; 200:39-48. [PMID: 29255088 DOI: 10.4049/jimmunol.1600608] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
Abstract
Vaccines afford a better and more cost-effective approach to combatting infectious diseases than continued reliance on antibiotics or antiviral or antiparasite drugs in the current era of increasing incidences of diseases caused by drug-resistant pathogens. Recombinant attenuated Salmonella vaccines (RASVs) have been significantly improved to exhibit the same or better attributes than wild-type parental strains to colonize internal lymphoid tissues and persist there to serve as factories to continuously synthesize and deliver rAgs. Encoded by codon-optimized pathogen genes, Ags are selected to induce protective immunity to infection by that pathogen. After immunization through a mucosal surface, the RASV attributes maximize their abilities to elicit mucosal and systemic Ab responses and cell-mediated immune responses. This article summarizes many of the numerous innovative technologies and discoveries that have resulted in RASV platforms that will enable development of safe efficacious RASVs to protect animals and humans against a diversity of infectious disease agents.
Collapse
Affiliation(s)
- Josephine E Clark-Curtiss
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610.,Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and .,Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611
| |
Collapse
|
38
|
Signal transduction pathway mediated by the novel regulator LoiA for low oxygen tension induced Salmonella Typhimurium invasion. PLoS Pathog 2017; 13:e1006429. [PMID: 28575106 PMCID: PMC5476282 DOI: 10.1371/journal.ppat.1006429] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/19/2017] [Accepted: 05/23/2017] [Indexed: 02/03/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major intestinal pathogen of both humans and animals. Salmonella pathogenicity island 1 (SPI-1)-encoded virulence genes are required for S. Typhimurium invasion. While oxygen (O2) limitation is an important signal for SPI-1 induction under host conditions, how the signal is received and integrated to the central SPI-1 regulatory system in S. Typhimurium is not clear. Here, we report a signal transduction pathway that activates SPI-1 expression in response to low O2. A novel regulator encoded within SPI-14 (STM14_1008), named LoiA (low oxygen induced factor A), directly binds to the promoter and activates transcription of hilD, leading to the activation of hilA (the master activator of SPI-1). Deletion of loiA significantly decreased the transcription of hilA, hilD and other representative SPI-1 genes (sipB, spaO, invH, prgH and invF) under low O2 conditions. The response of LoiA to the low O2 signal is mediated by the ArcB/ArcA two-component system. Deletion of either arcA or arcB significantly decreased transcription of loiA under low O2 conditions. We also confirmed that SPI-14 contributes to S. Typhimurium virulence by affecting invasion, and that loiA is the virulence determinant of SPI-14. Mice infection assays showed that S. Typhimurium virulence was severely attenuated by deletion of either the entire SPI-14 region or the single loiA gene after oral infection, while the virulence was not affected by either deletion after intraperitoneal infection. The signal transduction pathway described represents an important mechanism for S. Typhimurium to sense and respond to low O2 conditions of the host intestinal tract for invasion. SPI-14-encoded loiA is an essential element of this pathway that integrates the low O2 signal into the SPI-1 regulatory system. Acquisition of SPI-14 is therefore crucial for the evolution of S. Typhimurium as an intestinal pathogen. Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major intestinal pathogen of both humans and animals. Salmonella pathogenicity island 1 (SPI-1) is required for host cell invasion by S. Typhimurium. Expression of SPI-1 genes is induced by low oxygen (O2) tension under host conditions, but the relevant regulatory mechanisms are not clear. Here, we report a low O2-induced signal transduction pathway for the activation of SPI-1 expression in S. Typhimurium. A novel regulator, STM14_1008 (named LoiA), encoded within SPI-14 directly activates hilD, which in turn activates hilA (the master activator of SPI-1), and thus other SPI-1 genes under O2-limited conditions. The response of LoiA to the low O2 signal is mediated by the ArcB/ArcA two-component system. We also confirmed that SPI-14 contributes to S. Typhimurium virulence by affecting invasion, with loiA as the virulence determinant. This novel SPI-1 activation pathway can be used by S. Typhimurium to sense and respond to low O2 conditions of the host intestinal tract for invasion. Acquisition of SPI-14 is therefore very important for the evolution of S. Typhimurium virulence by providing an essential component of this pathway, loiA.
Collapse
|
39
|
Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, O'Connor G, Grati M, Mittal J, Yan D, Eshraghi AA, Deo SK, Daunert S, Liu XZ. Neurotransmitters: The Critical Modulators Regulating Gut-Brain Axis. J Cell Physiol 2017; 232:2359-2372. [PMID: 27512962 DOI: 10.1002/jcp.25518] [Citation(s) in RCA: 384] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/10/2016] [Indexed: 12/17/2022]
Abstract
Neurotransmitters, including catecholamines and serotonin, play a crucial role in maintaining homeostasis in the human body. Studies on these neurotransmitters mainly revolved around their role in the "fight or flight" response, transmitting signals across a chemical synapse and modulating blood flow throughout the body. However, recent research has demonstrated that neurotransmitters can play a significant role in the gastrointestinal (GI) physiology. Norepinephrine (NE), epinephrine (E), dopamine (DA), and serotonin have recently been a topic of interest because of their roles in the gut physiology and their potential roles in GI and central nervous system pathophysiology. These neurotransmitters are able to regulate and control not only blood flow, but also affect gut motility, nutrient absorption, GI innate immune system, and the microbiome. Furthermore, in pathological states, such as inflammatory bowel disease (IBD) and Parkinson's disease, the levels of these neurotransmitters are dysregulated, therefore causing a variety of GI symptoms. Research in this field has shown that exogenous manipulation of catecholamine serum concentrations can help in decreasing symptomology and/or disease progression. In this review article, we discuss the current state-of-the-art research and literature regarding the role of neurotransmitters in regulation of normal GI physiology, their impact on several disease processes, and novel work focused on the use of exogenous hormones and/or psychotropic medications to improve disease symptomology. J. Cell. Physiol. 232: 2359-2372, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Luca H Debs
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Amit P Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Desiree Nguyen
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Kunal Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Adrien A Eshraghi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
40
|
Martínez-Flores I, Pérez-Morales D, Sánchez-Pérez M, Paredes CC, Collado-Vides J, Salgado H, Bustamante VH. In silico clustering of Salmonella global gene expression data reveals novel genes co-regulated with the SPI-1 virulence genes through HilD. Sci Rep 2016; 6:37858. [PMID: 27886269 PMCID: PMC5122947 DOI: 10.1038/srep37858] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023] Open
Abstract
A wide variety of Salmonella enterica serovars cause intestinal and systemic infections to humans and animals. Salmonella Patogenicity Island 1 (SPI-1) is a chromosomal region containing 39 genes that have crucial virulence roles. The AraC-like transcriptional regulator HilD, encoded in SPI-1, positively controls the expression of the SPI-1 genes, as well as of several other virulence genes located outside SPI-1. In this study, we applied a clustering method to the global gene expression data of S. enterica serovar Typhimurium from the COLOMBOS database; thus genes that show an expression pattern similar to that of SPI-1 genes were selected. This analysis revealed nine novel genes that are co-expressed with SPI-1, which are located in different chromosomal regions. Expression analyses and protein-DNA interaction assays showed regulation by HilD for six of these genes: gtgE, phoH, sinR, SL1263 (lpxR) and SL4247 were regulated directly, whereas SL1896 was regulated indirectly. Interestingly, phoH is an ancestral gene conserved in most of bacteria, whereas the other genes show characteristics of genes acquired by Salmonella. A role in virulence has been previously demonstrated for gtgE, lpxR and sinR. Our results further expand the regulon of HilD and thus identify novel possible Salmonella virulence genes.
Collapse
Affiliation(s)
- Irma Martínez-Flores
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Mishael Sánchez-Pérez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Claudia C Paredes
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Heladia Salgado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
41
|
Vergnes A, Viala JPM, Ouadah-Tsabet R, Pocachard B, Loiseau L, Méresse S, Barras F, Aussel L. The iron-sulfur cluster sensor IscR is a negative regulator of Spi1 type III secretion system in Salmonella enterica. Cell Microbiol 2016; 19. [PMID: 27704705 DOI: 10.1111/cmi.12680] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 11/28/2022]
Abstract
Iron-sulfur (Fe-S)-containing proteins contribute to various biological processes, including redox reactions or regulation of gene expression. Living organisms have evolved by developing distinct biosynthetic pathways to assemble these clusters, including iron sulfur cluster (ISC) and sulfur mobilization (SUF). Salmonella enterica serovar Typhimurium is an intracellular pathogen responsible for a wide range of infections, from gastroenteritis to severe systemic diseases. Salmonella possesses all known prokaryotic systems to assemble Fe-S clusters, including ISC and SUF. Because iron starvation and oxidative stress are detrimental for Fe-S enzyme biogenesis and because such environments are often met by Salmonella during its intracellular life, we investigated the role of the ISC and SUF machineries during the course of the infection. The iscU mutant, which is predicted to have no ISC system functioning, was found to be defective for epithelial cell invasion and for mice infection, whereas the sufBC mutant, which is predicted to have no SUF system functioning, did not present any defect. Moreover, the iscU mutant was highly impaired in the expression of Salmonella pathogenicity island 1 (Spi1) type III secretion system that is essential for the first stage of Salmonella infection. The Fe-S cluster sensor IscR, a transcriptional regulator matured by the ISC machinery, was shown to bind the promoter of hilD, which encodes the master regulator of Spi1. IscR was also demonstrated to repress hilD and subsequently Spi1 gene expression, consistent with the observation that an IscR mutant is hyper-invasive in epithelial cells. Collectively, our findings indicate that the ISC machinery plays a central role in Salmonella virulence through the ability of IscR to down-regulate Spi1 gene expression. At a broader level, this model illustrates an adaptive mechanism used by bacterial pathogens to modulate their infectivity according to iron and oxygen availability.
Collapse
Affiliation(s)
- Alexandra Vergnes
- Aix Marseille Université, CNRS, LCB UMR, 7283, IMM, Marseille, France
| | - Julie P M Viala
- Aix Marseille Université, CNRS, LCB UMR, 7283, IMM, Marseille, France
| | | | | | - Laurent Loiseau
- Aix Marseille Université, CNRS, LCB UMR, 7283, IMM, Marseille, France
| | | | - Frédéric Barras
- Aix Marseille Université, CNRS, LCB UMR, 7283, IMM, Marseille, France
| | - Laurent Aussel
- Aix Marseille Université, CNRS, LCB UMR, 7283, IMM, Marseille, France
| |
Collapse
|
42
|
Mathieu S, Cissé C, Vitale S, Ahmadova A, Degardin M, Pérard J, Colas P, Miras R, Boturyn D, Covès J, Crouzy S, Michaud-Soret I. From Peptide Aptamers to Inhibitors of FUR, Bacterial Transcriptional Regulator of Iron Homeostasis and Virulence. ACS Chem Biol 2016; 11:2519-28. [PMID: 27409249 DOI: 10.1021/acschembio.6b00360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
FUR (Ferric Uptake Regulator) protein is a global transcriptional regulator that senses iron status and controls the expression of genes involved in iron homeostasis, virulence, and oxidative stress. Ubiquitous in Gram-negative bacteria and absent in eukaryotes, FUR is an attractive antivirulence target since the inactivation of the fur gene in various pathogens attenuates their virulence. The characterization of 13-aa-long anti-FUR linear peptides derived from the variable part of the anti-FUR peptide aptamers, that were previously shown to decrease pathogenic E. coli strain virulence in a fly infection model, is described herein. Modeling, docking, and experimental approaches in vitro (activity and interaction assays, mutations) and in cells (yeast two-hybrid assays) were combined to characterize the interactions of the peptides with FUR, and to understand their mechanism of inhibition. As a result, reliable structure models of two peptide-FUR complexes are given. Inhibition sites are mapped in the groove between the two FUR subunits where DNA should also bind. Another peptide behaves differently and interferes with the dimerization itself. These results define these novel small peptide inhibitors as lead compounds for inhibition of the FUR transcription factor.
Collapse
Affiliation(s)
- Sophie Mathieu
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Cheickna Cissé
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Sylvia Vitale
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Aynur Ahmadova
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Mélissa Degardin
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
- Univ. Grenoble
Alpes, DCM UMR 5250, F-38000 Grenoble, France
- CNRS, DCM UMR
5250, F-38000 Grenoble, France
| | - Julien Pérard
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Pierre Colas
- P2I2 Group, Protein Phosphorylation
and Human Disease Unit, CNRS Unité de Service et de Recherche
USR3151, Station Biologique de Roscoff, F-29680 Roscoff, France
| | - Roger Miras
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Didier Boturyn
- Univ. Grenoble
Alpes, DCM UMR 5250, F-38000 Grenoble, France
- CNRS, DCM UMR
5250, F-38000 Grenoble, France
| | - Jacques Covès
- Univ. Grenoble
Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Serge Crouzy
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| | - Isabelle Michaud-Soret
- CNRS,
Laboratoire
de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UJF, F-38054 Grenoble, France
- CEA, LCBM, F-38054 Grenoble, France
- Univ. Grenoble Alpes,
LCBM, F-38054 Grenoble, France
| |
Collapse
|
43
|
Smith C, Stringer AM, Mao C, Palumbo MJ, Wade JT. Mapping the Regulatory Network for Salmonella enterica Serovar Typhimurium Invasion. mBio 2016; 7:e01024-16. [PMID: 27601571 PMCID: PMC5013294 DOI: 10.1128/mbio.01024-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/10/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Salmonella enterica pathogenicity island 1 (SPI-1) encodes proteins required for invasion of gut epithelial cells. The timing of invasion is tightly controlled by a complex regulatory network. The transcription factor (TF) HilD is the master regulator of this process and senses environmental signals associated with invasion. HilD activates transcription of genes within and outside SPI-1, including six other TFs. Thus, the transcriptional program associated with host cell invasion is controlled by at least 7 TFs. However, very few of the regulatory targets are known for these TFs, and the extent of the regulatory network is unclear. In this study, we used complementary genomic approaches to map the direct regulatory targets of all 7 TFs. Our data reveal a highly complex and interconnected network that includes many previously undescribed regulatory targets. Moreover, the network extends well beyond the 7 TFs, due to the inclusion of many additional TFs and noncoding RNAs. By comparing gene expression profiles of regulatory targets for the 7 TFs, we identified many uncharacterized genes that are likely to play direct roles in invasion. We also uncovered cross talk between SPI-1 regulation and other regulatory pathways, which, in turn, identified gene clusters that likely share related functions. Our data are freely available through an intuitive online browser and represent a valuable resource for the bacterial research community. IMPORTANCE Invasion of epithelial cells is an early step during infection by Salmonella enterica and requires secretion of specific proteins into host cells via a type III secretion system (T3SS). Most T3SS-associated proteins required for invasion are encoded in a horizontally acquired genomic locus known as Salmonella pathogenicity island 1 (SPI-1). Multiple regulators respond to environmental signals to ensure appropriate timing of SPI-1 gene expression. In particular, there are seven transcription regulators that are known to be involved in coordinating expression of SPI-1 genes. We have used complementary genome-scale approaches to map the gene targets of these seven regulators. Our data reveal a highly complex and interconnected regulatory network that includes many previously undescribed target genes. Moreover, our data functionally implicate many uncharacterized genes in the invasion process and reveal cross talk between SPI-1 regulation and other regulatory pathways. All datasets are freely available through an intuitive online browser.
Collapse
Affiliation(s)
- Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Anne M Stringer
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Chunhong Mao
- Biocomplexity Institute of Virginia Tech, Virginia Tech, Blacksburg, Virginia, USA
| | - Michael J Palumbo
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Joseph T Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, USA Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| |
Collapse
|
44
|
Colgan AM, Kröger C, Diard M, Hardt WD, Puente JL, Sivasankaran SK, Hokamp K, Hinton JCD. The Impact of 18 Ancestral and Horizontally-Acquired Regulatory Proteins upon the Transcriptome and sRNA Landscape of Salmonella enterica serovar Typhimurium. PLoS Genet 2016; 12:e1006258. [PMID: 27564394 PMCID: PMC5001712 DOI: 10.1371/journal.pgen.1006258] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/25/2016] [Indexed: 11/24/2022] Open
Abstract
We know a great deal about the genes used by the model pathogen Salmonella enterica serovar Typhimurium to cause disease, but less about global gene regulation. New tools for studying transcripts at the single nucleotide level now offer an unparalleled opportunity to understand the bacterial transcriptome, and expression of the small RNAs (sRNA) and coding genes responsible for the establishment of infection. Here, we define the transcriptomes of 18 mutants lacking virulence-related global regulatory systems that modulate the expression of the SPI1 and SPI2 Type 3 secretion systems of S. Typhimurium strain 4/74. Using infection-relevant growth conditions, we identified a total of 1257 coding genes that are controlled by one or more regulatory system, including a sub-class of genes that reflect a new level of cross-talk between SPI1 and SPI2. We directly compared the roles played by the major transcriptional regulators in the expression of sRNAs, and discovered that the RpoS (σ38) sigma factor modulates the expression of 23% of sRNAs, many more than other regulatory systems. The impact of the RNA chaperone Hfq upon the steady state levels of 280 sRNA transcripts is described, and we found 13 sRNAs that are co-regulated with SPI1 and SPI2 virulence genes. We report the first example of an sRNA, STnc1480, that is subject to silencing by H-NS and subsequent counter-silencing by PhoP and SlyA. The data for these 18 regulatory systems is now available to the bacterial research community in a user-friendly online resource, SalComRegulon. The transcriptional networks and the functions of small regulatory RNAs of Salmonella enterica serovar Typhimurium are being studied intensively. S. Typhimurium is becoming the ideal model pathogen for linking transcriptional and post-transcriptional gene regulation to bacterial virulence. Here, we systematically defined the regulatory factors responsible for controlling the expression of S. Typhimurium coding genes and sRNAs under infection-relevant growth conditions. As well as confirming published regulatory inputs for Salmonella pathogenicity islands, such as the positive role played by Fur in the expression of SPI1, we report, for the first time, the global impact of the FliZ, HilE and PhoB/R transcription factors and identify 124 sRNAs that belong to virulence-associated regulons. We found a subset of genes of known and unknown function that are regulated by both HilD and SsrB, highlighting the cross-talk mechanisms that control Salmonella virulence. An integrative analysis of the regulatory datasets revealed 5 coding genes of unknown function that may play novel roles in virulence. We hope that the SalComRegulon resource will be a dynamic database that will be constantly updated to inspire new hypothesis-driven experimentation, and will contribute to the construction of a comprehensive transcriptional network for S. Typhimurium.
Collapse
Affiliation(s)
- Aoife M. Colgan
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Médéric Diard
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | - José L. Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Sathesh K. Sivasankaran
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
| | - Jay C. D. Hinton
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Miller HK, Schwiesow L, Au-Yeung W, Auerbuch V. Hereditary Hemochromatosis Predisposes Mice to Yersinia pseudotuberculosis Infection Even in the Absence of the Type III Secretion System. Front Cell Infect Microbiol 2016; 6:69. [PMID: 27446816 PMCID: PMC4919332 DOI: 10.3389/fcimb.2016.00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022] Open
Abstract
The iron overload disorder hereditary hemochromatosis (HH) predisposes humans to serious disseminated infection with pathogenic Yersinia as well as several other pathogens. Recently, we showed that the iron-sulfur cluster coordinating transcription factor IscR is required for type III secretion in Y. pseudotuberculosis by direct control of the T3SS master regulator LcrF. In E. coli and Yersinia, IscR levels are predicted to be regulated by iron bioavailability, oxygen tension, and oxidative stress, such that iron depletion should lead to increased IscR levels. To investigate how host iron overload influences Y. pseudotuberculosis virulence and the requirement for the Ysc type III secretion system (T3SS), we utilized two distinct murine models of HH: hemojuvelin knockout mice that mimic severe, early-onset HH as well as mice with the HfeC282Y∕C282Y mutation carried by 10% of people of Northern European descent, associated with adult-onset HH. Hjv−∕− and HfeC282Y∕C282Y transgenic mice displayed enhanced colonization of deep tissues by Y. pseudotuberculosis following oral inoculation, recapitulating enhanced susceptibility of humans with HH to disseminated infection with enteropathogenic Yersinia. Importantly, HH mice orally infected with Y. pseudotuberculosis lacking the T3SS-encoding virulence plasmid, pYV, displayed increased deep tissue colonization relative to wildtype mice. Consistent with previous reports using monocytes from HH vs. healthy donors, macrophages isolated from HfeC282Y∕C282Y mice were defective in Yersinia uptake compared to wildtype macrophages, indicating that the anti-phagocytic property of the Yersinia T3SS plays a less important role in HH animals. These data suggest that Yersinia may rely on distinct virulence factors to cause disease in healthy vs. HH hosts.
Collapse
Affiliation(s)
- Halie K Miller
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz Santa Cruz, CA, USA
| | - Leah Schwiesow
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz Santa Cruz, CA, USA
| | - Winnie Au-Yeung
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz Santa Cruz, CA, USA
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz Santa Cruz, CA, USA
| |
Collapse
|
46
|
Fröhlich KS, Papenfort K. Interplay of regulatory RNAs and mobile genetic elements in enteric pathogens. Mol Microbiol 2016; 101:701-13. [DOI: 10.1111/mmi.13428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Kathrin S. Fröhlich
- Department of Biology I, Microbiology; Ludwig-Maximilians-University Munich; 82152 Martinsried Germany
| | - Kai Papenfort
- Department of Biology I, Microbiology; Ludwig-Maximilians-University Munich; 82152 Martinsried Germany
| |
Collapse
|
47
|
Sridhar S, Steele-Mortimer O. Inherent Variability of Growth Media Impacts the Ability of Salmonella Typhimurium to Interact with Host Cells. PLoS One 2016; 11:e0157043. [PMID: 27280414 PMCID: PMC4900594 DOI: 10.1371/journal.pone.0157043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022] Open
Abstract
Efficient invasion of non-phagocytic cells, such as intestinal epithelial cells, by Salmonella Typhimurium is dependent on the Salmonella Pathogenicity Island 1 (SPI-1)-encoded Type Three Secretion System. The environmental cues involved in SPI-1 induction are not well understood. In vitro, various conditions are used to induce SPI-1 and the invasive phenotype. Although lysogeny broth (LB) is widely used, multiple formulations exist, and variation can arise due to intrinsic differences in complex components. Minimal media are also susceptible to variation. Still, the impact of these inconsistencies on Salmonella virulence gene expression has not been well studied. The goal of this project is to identify growth conditions in LB and minimal medium that affect SPI-1 induction in vitro using both whole population and single cell analysis. Here we show, using a fluorescent reporter of the SPI-1 gene prgH, that growth of Salmonella in LB yields variable induction. Deliberate modification of media components can influence the invasive profile. Finally, we demonstrate that changes in SPI-1 inducing conditions can affect the ability of Salmonella to replicate intracellularly. These data indicate that the specific media growth conditions impact how the bacteria interact with host cells.
Collapse
Affiliation(s)
- Sushmita Sridhar
- Laboratory of Bacteriology, Rocky Mountain Labs, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, Rocky Mountain Labs, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
48
|
Kim JN. Roles of two RyhB paralogs in the physiology of Salmonella enterica. Microbiol Res 2016; 186-187:146-52. [PMID: 27242152 DOI: 10.1016/j.micres.2016.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 11/18/2022]
Abstract
Salmonella has evolved complicated regulatory systems to regulate the expression of virulence determinants that are acquired by horizontal gene transfer in response to various environmental niches. Among these, small RNA (sRNA)-mediated regulation exhibits unique features, distinct from those of protein factor-mediated regulation, which may provide benefits for a pathogen coping with the complex stress conditions encountered during host infection. Specifically, iron acquisition by this pathogenic bacterium is important for cellular processes such as energy metabolism and DNA replication. Many studies on the role of RyhB sRNA have begun to unveil the essential nature of iron acquisition in allowing the organism to persist and develop pathogenicity. The Salmonella genome encodes two RyhB paralogs, RyhB-1 and RyhB-2, which are known to act singularly or together on target expression. Based on the mechanism of Escherichia coli RyhB function, this review proposes a possible model to show how two Salmonella RyhB paralogs regulate the level of target mRNAs by sensing environmental inputs or conditions. This review also describes the involvement of Salmonella RyhBs in diverse functions including nitrate homeostasis, adaptive system to oxidative stress, and intracellular survival. Thus, the two Salmonella RyhBs play a critical role in the regulation of gene expression that appears to be essential for persistence and pathogenesis of Salmonella spp.
Collapse
Affiliation(s)
- Jeong Nam Kim
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
49
|
Balbontín R, Villagra N, Pardos de la Gándara M, Mora G, Figueroa-Bossi N, Bossi L. Expression of IroN, the salmochelin siderophore receptor, requires mRNA activation by RyhB small RNA homologues. Mol Microbiol 2016; 100:139-55. [PMID: 26710935 DOI: 10.1111/mmi.13307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
The iroN gene of Salmonella enterica and uropathogenic Escherichia coli encodes the outer membrane receptor of Fe(3+) -bound salmochelin, a siderophore tailored to evade capture by the host's immune system. The iroN gene is under negative control of the Fur repressor and transcribed under iron limiting conditions. We show here that transcriptional de-repression is not sufficient to allow iroN expression, as this also requires activation by either of two partially homologous small RNAs (sRNAs), RyhB1 and RyhB2. The two sRNAs target the same sequence segment approximately in the middle of the 94-nucleotide 5' untranslated region (UTR) of iroN mRNA. Several lines of evidence suggest that base pair interaction stimulates iroN mRNA translation. Activation does not result from the disruption of a secondary structure masking the ribosome binding site; rather it involves sequences at the 5' end of iroN 5' UTR. In vitro 'toeprint' assays revealed that this upstream site binds the 30S ribosomal subunit provided that RyhB1 is paired with the mRNA. Altogether, our data suggest that RyhB1, and to lesser extent RyhB2, activate iroN mRNA translation by promoting entry of the ribosome at an upstream 'standby' site. These findings add yet an additional nuance to the polychromatic landscape of sRNA-mediated regulation.
Collapse
Affiliation(s)
- Roberto Balbontín
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Nicolás Villagra
- Laboratorio de Patogénesis Molecular y Antimicrobianos, Facultad de Medicina, Universidad Andres Bello, Echaurren 183, Santiago, Chile
| | - Maria Pardos de la Gándara
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Guido Mora
- Laboratorio de Patogénesis Molecular y Antimicrobianos, Facultad de Medicina, Universidad Andres Bello, Echaurren 183, Santiago, Chile
| | - Nara Figueroa-Bossi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Lionello Bossi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
50
|
Modulation of the Interaction of Enteric Bacteria with Intestinal Mucosa by Stress-Related Catecholamines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:143-66. [PMID: 26589217 DOI: 10.1007/978-3-319-20215-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stress associated with parturition, transport or mixing has long been correlated with enhanced faecal excretion of diarrhoeal zoonotic pathogens in animals such as Salmonella enterica and Escherichia coli. It may also predispose humans to infection and/or be associated with more severe outcomes. One possible explanation for this phenomenon is the ability of enteric bacterial pathogens to sense and respond to host stress-related catecholamines. This article reviews evidence of the ability of catecholamine hormones to modulate interactions between Gram-negative diarrhoeal pathogens and intestinal mucosa, as well as the molecular mechanisms that may be at work.
Collapse
|