1
|
Martínez LE, Gómez G, Ramírez N, Franco B, Robleto EA, Pedraza-Reyes M. 8-OxoG-Dependent Regulation of Global Protein Responses Leads to Mutagenesis and Stress Survival in Bacillus subtilis. Antioxidants (Basel) 2024; 13:332. [PMID: 38539865 PMCID: PMC10968225 DOI: 10.3390/antiox13030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
The guanine oxidized (GO) system of Bacillus subtilis, composed of the YtkD (MutT), MutM and MutY proteins, counteracts the cytotoxic and genotoxic effects of the oxidized nucleobase 8-OxoG. Here, we report that in growing B. subtilis cells, the genetic inactivation of GO system potentiated mutagenesis (HPM), and subsequent hyperresistance, contributes to the damaging effects of hydrogen peroxide (H2O2) (HPHR). The mechanism(s) that connect the accumulation of the mutagenic lesion 8-OxoG with the ability of B. subtilis to evolve and survive the noxious effects of oxidative stress were dissected. Genetic and biochemical evidence indicated that the synthesis of KatA was exacerbated, in a PerR-independent manner, and the transcriptional coupling repair factor, Mfd, contributed to HPHR and HPM of the ΔGO strain. Moreover, these phenotypes are associated with wider pleiotropic effects, as revealed by a global proteome analysis. The inactivation of the GO system results in the upregulated production of KatA, and it reprograms the synthesis of the proteins involved in distinct types of cellular stress; this has a direct impact on (i) cysteine catabolism, (ii) the synthesis of iron-sulfur clusters, (iii) the reorganization of cell wall architecture, (iv) the activation of AhpC/AhpF-independent organic peroxide resistance, and (v) increased resistance to transcription-acting antibiotics. Therefore, to contend with the cytotoxic and genotoxic effects derived from the accumulation of 8-OxoG, B. subtilis activates the synthesis of proteins belonging to transcriptional regulons that respond to a wide, diverse range of cell stressors.
Collapse
Affiliation(s)
- Lissett E. Martínez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico; (L.E.M.); (G.G.); (N.R.); (B.F.)
| | - Gerardo Gómez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico; (L.E.M.); (G.G.); (N.R.); (B.F.)
| | - Norma Ramírez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico; (L.E.M.); (G.G.); (N.R.); (B.F.)
| | - Bernardo Franco
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico; (L.E.M.); (G.G.); (N.R.); (B.F.)
| | - Eduardo A. Robleto
- School of Life Sciences, University of Nevada, Las Vegas, NV 89557, USA;
| | - Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico; (L.E.M.); (G.G.); (N.R.); (B.F.)
| |
Collapse
|
2
|
Browning KR, Merrikh H. Pathogenic bacteria experience pervasive RNA polymerase backtracking during infection. mBio 2024; 15:e0273723. [PMID: 38095872 PMCID: PMC10790778 DOI: 10.1128/mbio.02737-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
IMPORTANCE Eukaryotic hosts have defense mechanisms that may disrupt molecular transactions along the pathogen's chromosome through excessive DNA damage. Given that DNA damage stalls RNA polymerase (RNAP) thereby increasing mutagenesis, investigating how host defense mechanisms impact the movement of the transcription machinery on the pathogen chromosome is crucial. Using a new methodology we developed, we elucidated the dynamics of RNAP movement and association with the chromosome in the pathogenic bacterium Salmonella enterica during infection. We found that dynamics of RNAP movement on the chromosome change significantly during infection genome-wide, including at regions that encode for key virulence genes. In particular, we found that there is pervasive RNAP backtracking on the bacterial chromosome during infections and that anti-backtracking factors are critical for pathogenesis. Altogether, our results suggest that, interestingly, the host environment can promote the development of antimicrobial resistance and hypervirulence as stalled RNAPs can accelerate evolution through increased mutagenesis.
Collapse
Affiliation(s)
- Kaitlyn R. Browning
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Houra Merrikh
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Nudler E. Transcription-coupled global genomic repair in E. coli. Trends Biochem Sci 2023; 48:873-882. [PMID: 37558547 DOI: 10.1016/j.tibs.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
The nucleotide excision repair (NER) pathway removes helix-distorting lesions from DNA in all organisms. Escherichia coli has long been a model for understanding NER, which is traditionally divided into major and minor subpathways known as global genome repair (GGR) and transcription-coupled repair (TCR), respectively. TCR has been assumed to be mediated exclusively by Mfd, a DNA translocase of minimal NER phenotype. This review summarizes the evidence that shaped the traditional view of NER in bacteria, and reviews data supporting a new model in which GGR and TCR are inseparable. In this new model, RNA polymerase serves both as the essential primary sensor of bulky DNA lesions genome-wide and as the delivery platform for the assembly of functional NER complexes in living cells.
Collapse
Affiliation(s)
- Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
4
|
Carvajal-Garcia J, Samadpour AN, Hernandez Viera AJ, Merrikh H. Oxidative stress drives mutagenesis through transcription-coupled repair in bacteria. Proc Natl Acad Sci U S A 2023; 120:e2300761120. [PMID: 37364106 PMCID: PMC10318952 DOI: 10.1073/pnas.2300761120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
In bacteria, mutations lead to the evolution of antibiotic resistance, which is one of the main public health problems of the twenty-first century. Therefore, determining which cellular processes most frequently contribute to mutagenesis, especially in cells that have not been exposed to exogenous DNA damage, is critical. Here, we show that endogenous oxidative stress is a key driver of mutagenesis and the subsequent development of antibiotic resistance. This is the case for all classes of antibiotics and highly divergent species tested, including patient-derived strains. We show that the transcription-coupled repair pathway, which uses the nucleotide excision repair proteins (TC-NER), is responsible for endogenous oxidative stress-dependent mutagenesis and subsequent evolution. This suggests that a majority of mutations arise through transcription-associated processes rather than the replication fork. In addition to determining that the NER proteins play a critical role in mutagenesis and evolution, we also identify the DNA polymerases responsible for this process. Our data strongly suggest that cooperation between three different mutagenic DNA polymerases, likely at the last step of TC-NER, is responsible for mutagenesis and evolution. Overall, our work identifies a highly conserved pathway that drives mutagenesis due to endogenous oxidative stress, which has broad implications for all diseases of evolution, including antibiotic resistance development.
Collapse
Affiliation(s)
- Juan Carvajal-Garcia
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232
| | | | | | - Houra Merrikh
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37232
| |
Collapse
|
5
|
Browning KR, Merrikh H. Pathogenic bacteria experience pervasive RNA polymerase backtracking during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540596. [PMID: 37215019 PMCID: PMC10197661 DOI: 10.1101/2023.05.12.540596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pathogenic bacteria and their eukaryotic hosts are in a constant arms race. Hosts have numerous defense mechanisms at their disposal that not only challenge the bacterial invaders, but have the potential to disrupt molecular transactions along the bacterial chromosome. However, it is unclear how the host impacts association of proteins with the bacterial chromosome at the molecular level during infection. This is partially due to the lack of a method that could detect these events in pathogens while they are within host cells. We developed and optimized a system capable of mapping and measuring levels of bacterial proteins associated with the chromosome while they are actively infecting the host (referred to as PIC-seq). Here, we focused on the dynamics of RNA polymerase (RNAP) movement and association with the chromosome in the pathogenic bacterium Salmonella enterica as a model system during infection. Using PIC-seq, we found that RNAP association patterns with the chromosome change during infection genome-wide, including at regions that encode for key virulence genes. Importantly, we found that infection of a host significantly increases RNAP backtracking on the bacterial chromosome. RNAP backtracking is the most common form of disruption to RNAP progress on the chromosome. Interestingly, we found that the resolution of backtracked RNAPs via the anti-backtracking factors GreA and GreB is critical for pathogenesis, revealing a new class of virulence genes. Altogether, our results strongly suggest that infection of a host significantly impacts transcription by disrupting RNAP movement on the chromosome within the bacterial pathogen. The increased backtracking events have important implications not only for efficient transcription, but also for mutation rates as stalled RNAPs increase the levels of mutagenesis.
Collapse
Affiliation(s)
- Kaitlyn R. Browning
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN 37232, USA
| | - Houra Merrikh
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Abstract
Mechanisms of evolution and evolution of antibiotic resistance are both fundamental and world health problems. Stress-induced mutagenesis defines mechanisms of mutagenesis upregulated by stress responses, which drive adaptation when cells are maladapted to their environments—when stressed. Work in mutagenesis induced by antibiotics had produced tantalizing clues but not coherent mechanisms. We review recent advances in antibiotic-induced mutagenesis that integrate how reactive oxygen species (ROS), the SOS and general stress responses, and multichromosome cells orchestrate a stress response-induced switch from high-fidelity to mutagenic repair of DNA breaks. Moreover, while sibling cells stay stable, a mutable “gambler” cell subpopulation is induced by differentially generated ROS, which signal the general stress response. We discuss other evolvable subpopulations and consider diverse evolution-promoting molecules as potential targets for drugs to slow evolution of antibiotic resistance, cross-resistance, and immune evasion. An FDA-approved drug exemplifies “stealth” evolution-slowing drugs that avoid selecting resistance to themselves or antibiotics.
Collapse
|
7
|
Deaconescu AM. Mfd - at the crossroads of bacterial DNA repair, transcriptional regulation and molecular evolvability. Transcription 2021; 12:156-170. [PMID: 34674614 PMCID: PMC8632110 DOI: 10.1080/21541264.2021.1982628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
For survival, bacteria need to continuously evolve and adapt to complex environments, including those that may impact the integrity of the DNA, the repository of genetic information to be passed on to future generations. The multiple factors of DNA repair share the substrate on which they operate with other key cellular machineries, principally those of replication and transcription, implying a high degree of coordination of DNA-based activities. In this review, I focus on progress made in the understanding of the protein factors operating at the crossroads of these three fundamental processes, with emphasis on the mutation frequency decline protein (Mfd, aka TRCF). Although Mfd research has a rich history that goes back in time for more than half a century, recent reports hint that much remains to be uncovered. I argue that besides being a transcription-repair coupling factor (TRCF), Mfd is also a global regulator of transcription and a pro-mutagenic factor, and that the way it interfaces with transcription, replication and nucleotide excision repair makes it an attractive candidate for the development of strategies to curb molecular evolution, hence, antibiotic resistance.
Collapse
Affiliation(s)
- Alexandra M. Deaconescu
- CONTACT Alexandra M. Deaconescu Molecular Biology, Cell Biology and Biochemistry, Laboratories of Molecular Medicine, Brown University, 70 Ship St. G-E4, Providence, RI02903, USA
| |
Collapse
|
8
|
Gutiérrez R, Ram Y, Berman J, Carstens Marques de Sousa K, Nachum-Biala Y, Britzi M, Elad D, Glaser G, Covo S, Harrus S. Adaptive resistance mutations at supra-inhibitory concentrations independent of SOS mutagenesis. Mol Biol Evol 2021; 38:4095-4115. [PMID: 34175952 PMCID: PMC8476149 DOI: 10.1093/molbev/msab196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emergence of resistant bacteria during antimicrobial treatment is one of the most critical and universal health threats. It is known that several stress-induced mutagenesis and heteroresistance mechanisms can enhance microbial adaptation to antibiotics. Here, we demonstrate that the pathogen Bartonella can undergo stress-induced mutagenesis despite the fact it lacks error-prone polymerases, the rpoS gene and functional UV-induced mutagenesis. We demonstrate that Bartonella acquire de novo single mutations during rifampicin exposure at suprainhibitory concentrations at a much higher rate than expected from spontaneous fluctuations. This is while exhibiting a minimal heteroresistance capacity. The emerged resistant mutants acquired a single rpoB mutation, whereas no other mutations were found in their whole genome. Interestingly, the emergence of resistance in Bartonella occurred only during gradual exposure to the antibiotic, indicating that Bartonella sense and react to the changing environment. Using a mathematical model, we demonstrated that, to reproduce the experimental results, mutation rates should be transiently increased over 1,000-folds, and a larger population size or greater heteroresistance capacity is required. RNA expression analysis suggests that the increased mutation rate is due to downregulation of key DNA repair genes (mutS, mutY, and recA), associated with DNA breaks caused by massive prophage inductions. These results provide new evidence of the hazard of antibiotic overuse in medicine and agriculture.
Collapse
Affiliation(s)
- Ricardo Gutiérrez
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.,The Center for Research in Tropical Diseases, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel.,School of Computer Science, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Judith Berman
- Shmunis School of Biomedicine and Cancer, Faculty of Life Sciences, Tel Aviv University, Tel Aviv University, Ramat Aviv, Israel
| | | | - Yaarit Nachum-Biala
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Malka Britzi
- The National Residue Control Laboratory, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Daniel Elad
- Department of Clinical Bacteriology and Mycology, The Kimron Veterinary Institute, Bet Dagan, Israel
| | - Gad Glaser
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shimon Harrus
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
9
|
Non-B DNA-Forming Motifs Promote Mfd-Dependent Stationary-Phase Mutagenesis in Bacillus subtilis. Microorganisms 2021; 9:microorganisms9061284. [PMID: 34204686 PMCID: PMC8231525 DOI: 10.3390/microorganisms9061284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Transcription-induced mutagenic mechanisms limit genetic changes to times when expression happens and to coding DNA. It has been hypothesized that intrinsic sequences that have the potential to form alternate DNA structures, such as non-B DNA structures, influence these mechanisms. Non-B DNA structures are promoted by transcription and induce genome instability in eukaryotic cells, but their impact in bacterial genomes is less known. Here, we investigated if G4 DNA- and hairpin-forming motifs influence stationary-phase mutagenesis in Bacillus subtilis. We developed a system to measure the influence of non-B DNA on B. subtilis stationary-phase mutagenesis by deleting the wild-type argF at its chromosomal position and introducing IPTG-inducible argF alleles differing in their ability to form hairpin and G4 DNA structures into an ectopic locus. Using this system, we found that sequences predicted to form non-B DNA structures promoted mutagenesis in B. subtilis stationary-phase cells; such a response did not occur in growing conditions. We also found that the transcription-coupled repair factor Mfd promoted mutagenesis at these predicted structures. In summary, we showed that non-B DNA-forming motifs promote genetic instability, particularly in coding regions in stressed cells; therefore, non-B DNA structures may have a spatial and temporal mutagenic effect in bacteria. This study provides insights into mechanisms that prevent or promote mutagenesis and advances our understanding of processes underlying bacterial evolution.
Collapse
|
10
|
Mfd regulates RNA polymerase association with hard-to-transcribe regions in vivo, especially those with structured RNAs. Proc Natl Acad Sci U S A 2021; 118:2008498118. [PMID: 33443179 DOI: 10.1073/pnas.2008498118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RNA polymerase (RNAP) encounters various roadblocks during transcription. These obstacles can impede RNAP movement and influence transcription, ultimately necessitating the activity of RNAP-associated factors. One such factor is the bacterial protein Mfd, a highly conserved DNA translocase and evolvability factor that interacts with RNAP. Although Mfd is thought to function primarily in the repair of DNA lesions that stall RNAP, increasing evidence suggests that it may also be important for transcription regulation. However, this is yet to be fully characterized. To shed light on Mfd's in vivo functions, we identified the chromosomal regions where it associates. We analyzed Mfd's impact on RNAP association and transcription regulation genome-wide. We found that Mfd represses RNAP association at many chromosomal regions. We found that these regions show increased RNAP pausing, suggesting that they are hard to transcribe. Interestingly, we noticed that the majority of the regions where Mfd regulates transcription contain highly structured regulatory RNAs. The RNAs identified regulate a myriad of biological processes, ranging from metabolism to transfer RNA regulation to toxin-antitoxin (TA) functions. We found that cells lacking Mfd are highly sensitive to toxin overexpression. Finally, we found that Mfd promotes mutagenesis in at least one toxin gene, suggesting that its function in regulating transcription may promote evolution of certain TA systems and other regions containing strong RNA secondary structures. We conclude that Mfd is an RNAP cofactor that is important, and at times critical, for transcription regulation at hard-to-transcribe regions, especially those that express structured regulatory RNAs.
Collapse
|
11
|
Martin HA, Sundararajan A, Ermi TS, Heron R, Gonzales J, Lee K, Anguiano-Mendez D, Schilkey F, Pedraza-Reyes M, Robleto EA. Mfd Affects Global Transcription and the Physiology of Stressed Bacillus subtilis Cells. Front Microbiol 2021; 12:625705. [PMID: 33603726 PMCID: PMC7885715 DOI: 10.3389/fmicb.2021.625705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
For several decades, Mfd has been studied as the bacterial transcription-coupled repair factor. However, recent observations indicate that this factor influences cell functions beyond DNA repair. Our lab recently described a role for Mfd in disulfide stress that was independent of its function in nucleotide excision repair and base excision repair. Because reports showed that Mfd influenced transcription of single genes, we investigated the global differences in transcription in wild-type and mfd mutant growth-limited cells in the presence and absence of diamide. Surprisingly, we found 1,997 genes differentially expressed in Mfd– cells in the absence of diamide. Using gene knockouts, we investigated the effect of genetic interactions between Mfd and the genes in its regulon on the response to disulfide stress. Interestingly, we found that Mfd interactions were complex and identified additive, epistatic, and suppressor effects in the response to disulfide stress. Pathway enrichment analysis of our RNASeq assay indicated that major biological functions, including translation, endospore formation, pyrimidine metabolism, and motility, were affected by the loss of Mfd. Further, our RNASeq findings correlated with phenotypic changes in growth in minimal media, motility, and sensitivity to antibiotics that target the cell envelope, transcription, and DNA replication. Our results suggest that Mfd has profound effects on the modulation of the transcriptome and on bacterial physiology, particularly in cells experiencing nutritional and oxidative stress.
Collapse
Affiliation(s)
- Holly Anne Martin
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | | | - Tatiana S Ermi
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Robert Heron
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jason Gonzales
- West Career and Technical Academy, Las Vegas, NV, United States
| | - Kaiden Lee
- The College of Idaho, Caldwell, ID, United States
| | - Diana Anguiano-Mendez
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Faye Schilkey
- National Center for Genome Resources, Santa Fe, NM, United States
| | - Mario Pedraza-Reyes
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | - Eduardo A Robleto
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
12
|
Suárez VP, Martínez LE, Leyva-Sánchez HC, Valenzuela-García LI, Lara-Martínez R, Jiménez-García LF, Ramírez-Ramírez N, Obregon-Herrera A, Cuéllar-Cruz M, Robleto EA, Pedraza-Reyes M. Transcriptional coupling and repair of 8-OxoG activate a RecA-dependent checkpoint that controls the onset of sporulation in Bacillus subtilis. Sci Rep 2021; 11:2513. [PMID: 33510358 PMCID: PMC7844254 DOI: 10.1038/s41598-021-82247-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/18/2021] [Indexed: 11/09/2022] Open
Abstract
During sporulation Bacillus subtilis Mfd couples transcription to nucleotide excision repair (NER) to eliminate DNA distorting lesions. Here, we report a significant decline in sporulation following Mfd disruption, which was manifested in the absence of external DNA-damage suggesting that spontaneous lesions activate the function of Mfd for an efficient sporogenesis. Accordingly, a dramatic decline in sporulation efficiency took place in a B. subtilis strain lacking Mfd and the repair/prevention guanine oxidized (GO) system (hereafter, the ∆GO system), composed by YtkD, MutM and MutY. Furthermore, the simultaneous absence of Mfd and the GO system, (i) sensitized sporulating cells to H2O2, and (ii) elicited spontaneous and oxygen radical-induced rifampin-resistance (Rifr) mutagenesis. Epifluorescence (EF), confocal and transmission electron (TEM) microscopy analyses, showed a decreased ability of ∆GO ∆mfd strain to sporulate and to develop the typical morphologies of sporulating cells. Remarkably, disruption of sda, sirA and disA partially, restored the sporulation efficiency of the strain deficient for Mfd and the ∆GO system; complete restoration occurred in the RecA- background. Overall, our results unveil a novel Mfd mechanism of transcription-coupled-repair (TCR) elicited by 8-OxoG which converges in the activation of a RecA-dependent checkpoint event that control the onset of sporulation in B. subtilis.
Collapse
Affiliation(s)
- Valeria P Suárez
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | - Lissett E Martínez
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | - Hilda C Leyva-Sánchez
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | - Luz I Valenzuela-García
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | - Reyna Lara-Martínez
- Department of Cell Biology, Faculty of Sciences, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Cd. Mx., Coyoacán, 04510, Mexico City, Mexico
| | - Luis F Jiménez-García
- Department of Cell Biology, Faculty of Sciences, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Cd. Mx., Coyoacán, 04510, Mexico City, Mexico
| | - Norma Ramírez-Ramírez
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | - Armando Obregon-Herrera
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | | | - Mario Pedraza-Reyes
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
13
|
Role of Mfd and GreA in Bacillus subtilis Base Excision Repair-Dependent Stationary-Phase Mutagenesis. J Bacteriol 2020; 202:JB.00807-19. [PMID: 32041798 DOI: 10.1128/jb.00807-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
We report that the absence of an oxidized guanine (GO) system or the apurinic/apyrimidinic (AP) endonucleases Nfo, ExoA, and Nth promoted stress-associated mutagenesis (SAM) in Bacillus subtilis YB955 (hisC952 metB5 leuC427). Moreover, MutY-promoted SAM was Mfd dependent, suggesting that transcriptional transactions over nonbulky DNA lesions promoted error-prone repair. Here, we inquired whether Mfd and GreA, which control transcription-coupled repair and transcription fidelity, influence the mutagenic events occurring in nutritionally stressed B. subtilis YB955 cells deficient in the GO or AP endonuclease repair proteins. To this end, mfd and greA were disabled in genetic backgrounds defective in the GO and AP endonuclease repair proteins, and the strains were tested for growth-associated and stress-associated mutagenesis. The results revealed that disruption of mfd or greA abrogated the production of stress-associated amino acid revertants in the GO and nfo exoA nth strains, respectively. These results suggest that in nutritionally stressed B. subtilis cells, spontaneous nonbulky DNA lesions are processed in an error-prone manner with the participation of Mfd and GreA. In support of this notion, stationary-phase ΔytkD ΔmutM ΔmutY (referred to here as ΔGO) and Δnfo ΔexoA Δnth (referred to here as ΔAP) cells accumulated 8-oxoguanine (8-OxoG) lesions, which increased significantly following Mfd disruption. In contrast, during exponential growth, disruption of mfd or greA increased the production of His+, Met+, or Leu+ prototrophs in both DNA repair-deficient strains. Thus, in addition to unveiling a role for GreA in mutagenesis, our results suggest that Mfd and GreA promote or prevent mutagenic events driven by spontaneous genetic lesions during the life cycle of B. subtilis IMPORTANCE In this paper, we report that spontaneous genetic lesions of an oxidative nature in growing and nutritionally stressed B. subtilis strain YB955 (hisC952 metB5 leuC427) cells drive Mfd- and GreA-dependent repair transactions. However, whereas Mfd and GreA elicit faithful repair events during growth to maintain genome fidelity, under starving conditions, both factors promote error-prone repair to produce genetic diversity, allowing B. subtilis to escape from growth-limiting conditions.
Collapse
|
14
|
Martin HA, Kidman AA, Socea J, Vallin C, Pedraza-Reyes M, Robleto EA. The Bacillus Subtilis K-State Promotes Stationary-Phase Mutagenesis via Oxidative Damage. Genes (Basel) 2020; 11:genes11020190. [PMID: 32053972 PMCID: PMC7073564 DOI: 10.3390/genes11020190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial cells develop mutations in the absence of cellular division through a process known as stationary-phase or stress-induced mutagenesis. This phenomenon has been studied in a few bacterial models, including Escherichia coli and Bacillus subtilis; however, the underlying mechanisms between these systems differ. For instance, RecA is not required for stationary-phase mutagenesis in B. subtilis like it is in E. coli. In B. subtilis, RecA is essential to the process of genetic transformation in the subpopulation of cells that become naturally competent in conditions of stress. Interestingly, the transcriptional regulator ComK, which controls the development of competence, does influence the accumulation of mutations in stationary phase in B. subtilis. Since recombination is not involved in this process even though ComK is, we investigated if the development of a subpopulation (K-cells) could be involved in stationary-phase mutagenesis. Using genetic knockout strains and a point-mutation reversion system, we investigated the effects of ComK, ComEA (a protein involved in DNA transport during transformation), and oxidative damage on stationary-phase mutagenesis. We found that stationary-phase revertants were more likely to have undergone the development of competence than the background of non-revertant cells, mutations accumulated independently of DNA uptake, and the presence of exogenous oxidants potentiated mutagenesis in K-cells. Therefore, the development of the K-state creates conditions favorable to an increase in the genetic diversity of the population not only through exogenous DNA uptake but also through stationary-phase mutagenesis.
Collapse
Affiliation(s)
- Holly A. Martin
- University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA; (H.A.M.); (A.A.K.); (J.S.); (C.V.)
| | - Amanda A. Kidman
- University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA; (H.A.M.); (A.A.K.); (J.S.); (C.V.)
| | - Jillian Socea
- University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA; (H.A.M.); (A.A.K.); (J.S.); (C.V.)
| | - Carmen Vallin
- University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA; (H.A.M.); (A.A.K.); (J.S.); (C.V.)
| | - Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, P.O. Box 187, Guanajuato Gto. 36050, Mexico;
| | - Eduardo A. Robleto
- University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA; (H.A.M.); (A.A.K.); (J.S.); (C.V.)
- Correspondence: ; Tel.: +1-702-895-2496
| |
Collapse
|
15
|
Ragheb M, Merrikh H. The enigmatic role of Mfd in replication-transcription conflicts in bacteria. DNA Repair (Amst) 2019; 81:102659. [PMID: 31311770 PMCID: PMC6892258 DOI: 10.1016/j.dnarep.2019.102659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conflicts between replication and transcription can have life-threatening consequences. RNA polymerase (RNAP) is the major impediment to replication progression, and its efficient removal from DNA should mitigate the consequences of collisions with replication. Cells have various proteins that can resolve conflicts by removing stalled (or actively translocating) RNAP from DNA. It would therefore seem logical that RNAP-associated factors, such as the bacterial DNA translocase Mfd, would minimize the effects of conflicts. Despite seemingly conclusive statements in most textbooks, the role of Mfd in conflicts remains an enigma. In this review, we will discuss the different physical states of RNAP during transcription, and how each distinct state can influence conflict severity and potentially trigger the involvement of Mfd. We propose models to explain the contradictory conclusions from published studies on the potential role of Mfd in resolving conflicts.
Collapse
Affiliation(s)
- Mark Ragheb
- Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Houra Merrikh
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37205, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
16
|
Martin HA, Porter KE, Vallin C, Ermi T, Contreras N, Pedraza-Reyes M, Robleto EA. Mfd protects against oxidative stress in Bacillus subtilis independently of its canonical function in DNA repair. BMC Microbiol 2019; 19:26. [PMID: 30691388 PMCID: PMC6350366 DOI: 10.1186/s12866-019-1394-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Previous reports showed that mutagenesis in nutrient-limiting conditions is dependent on Mfd in Bacillus subtilis. Mfd initiates one type of transcription-coupled repair (TCR); this type of repair is known to target bulky lesions, like those associated with UV exposure. Interestingly, the roles of Mfd in repair of oxidative-promoted DNA damage and regulation of transcription differ. Here, we used a genetic approach to test whether Mfd protected B. subtilis from exposure to two different oxidants. RESULTS Wild-type cells survived tert-butyl hydroperoxide (t-BHP) exposure significantly better than Mfd-deficient cells. This protective effect was independent of UvrA, a component of the canonical TCR/nucleotide excision repair (NER) pathway. Further, our results suggest that Mfd and MutY, a DNA glycosylase that processes 8-oxoG DNA mismatches, work together to protect cells from lesions generated by oxidative damage. We also tested the role of Mfd in mutagenesis in starved cells exposed to t-BHP. In conditions of oxidative stress, Mfd and MutY may work together in the formation of mutations. Unexpectedly, Mfd increased survival when cells were exposed to the protein oxidant diamide. Under this type of oxidative stress, cells survival was not affected by MutY or UvrA. CONCLUSIONS These results are significant because they show that Mfd mediates error-prone repair of DNA and protects cells against oxidation of proteins by affecting gene expression; Mfd deficiency resulted in increased gene expression of the OhrR repressor which controls the cellular response to organic peroxide exposure. These observations point to Mfd functioning beyond a DNA repair factor in cells experiencing oxidative stress.
Collapse
Affiliation(s)
- Holly Anne Martin
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA
| | - Katelyn E Porter
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA
| | - Carmen Vallin
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA
| | - Tatiana Ermi
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA
| | - Natalie Contreras
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA
| | - Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, P.O. Box 187, Gto. 36050, Guanajuato, Mexico
| | - Eduardo A Robleto
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada, 89154, USA.
| |
Collapse
|
17
|
Ragheb MN, Thomason MK, Hsu C, Nugent P, Gage J, Samadpour AN, Kariisa A, Merrikh CN, Miller SI, Sherman DR, Merrikh H. Inhibiting the Evolution of Antibiotic Resistance. Mol Cell 2018; 73:157-165.e5. [PMID: 30449724 PMCID: PMC6320318 DOI: 10.1016/j.molcel.2018.10.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/17/2018] [Accepted: 10/09/2018] [Indexed: 11/30/2022]
Abstract
Efforts to battle antimicrobial resistance (AMR) are generally focused on developing novel antibiotics. However, history shows that resistance arises regardless of the nature or potency of new drugs. Here, we propose and provide evidence for an alternate strategy to resolve this problem: inhibiting evolution. We determined that the DNA translocase Mfd is an “evolvability factor” that promotes mutagenesis and is required for rapid resistance development to all antibiotics tested across highly divergent bacterial species. Importantly, hypermutator alleles that accelerate AMR development did not arise without Mfd, at least during evolution of trimethoprim resistance. We also show that Mfd’s role in AMR development depends on its interactions with the RNA polymerase subunit RpoB and the nucleotide excision repair protein UvrA. Our findings suggest that AMR development can be inhibited through inactivation of evolvability factors (potentially with “anti-evolution” drugs)—in particular, Mfd—providing an unexplored route toward battling the AMR crisis. The bacterial transcription-coupled repair (TCR) factor Mfd promotes mutagenesis Mfd-driven mutagenesis accelerates the evolution of antimicrobial resistance (AMR) The rapid evolution of AMR requires Mfd’s interaction with RpoB and UvrA Mfd may be an ideal target for “anti-evolution” drugs that inhibit AMR development
Collapse
Affiliation(s)
- Mark N Ragheb
- Department of Microbiology, University of Washington, Seattle, WA, USA; Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | | | - Chris Hsu
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Patrick Nugent
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - John Gage
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Ankunda Kariisa
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Samuel I Miller
- Department of Microbiology, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David R Sherman
- Center for Infectious Disease Research, Seattle, WA, USA; Interdiscipinary Program of Pathobiology, Department of Global Health, University of Washington, Seattle, WA, USA
| | - Houra Merrikh
- Department of Microbiology, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
18
|
Valenzuela‐García LI, Ayala‐García VM, Regalado‐García AG, Setlow P, Pedraza‐Reyes M. Transcriptional coupling (Mfd) and DNA damage scanning (DisA) coordinate excision repair events for efficient Bacillus subtilis spore outgrowth. Microbiologyopen 2018; 7:e00593. [PMID: 29536659 PMCID: PMC6182552 DOI: 10.1002/mbo3.593] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/06/2018] [Indexed: 01/16/2023] Open
Abstract
The absence of base excision repair (BER) proteins involved in processing ROS-promoted genetic insults activates a DNA damage scanning (DisA)-dependent checkpoint event in outgrowing Bacillus subtilis spores. Here, we report that genetic disabling of transcription-coupled repair (TCR) or nucleotide excision repair (NER) pathways severely affected outgrowth of ΔdisA spores, and much more so than the effects of these mutations on log phase growth. This defect delayed the first division of spore's nucleoid suggesting that unrepaired lesions affected transcription and/or replication during outgrowth. Accordingly, return to life of spores deficient in DisA/Mfd or DisA/UvrA was severely affected by a ROS-inducer or a replication blocking agent, hydrogen peroxide and 4-nitroquinoline-oxide, respectively. Mutation frequencies to rifampin resistance (Rifr ) revealed that DisA allowed faithful NER-dependent DNA repair but activated error-prone repair in TCR-deficient outgrowing spores. Sequencing analysis of rpoB from spontaneous Rifr colonies revealed that mutations resulting from base deamination predominated in outgrowing wild-type spores. Interestingly, a wide range of base substitutions promoted by oxidized DNA bases were detected in ΔdisA and Δmfd outgrown spores. Overall, our results suggest that Mfd and DisA coordinate excision repair events in spore outgrowth to eliminate DNA lesions that interfere with replication and transcription during this developmental period.
Collapse
Affiliation(s)
| | | | | | - Peter Setlow
- Department of Molecular Biology and BiophysicsUConn HealthFarmingtonCTUSA
| | | |
Collapse
|
19
|
Involvement of transcription-coupled repair factor Mfd and DNA helicase UvrD in mutational processes in Pseudomonas putida. DNA Repair (Amst) 2018; 72:18-27. [PMID: 30292721 DOI: 10.1016/j.dnarep.2018.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 11/20/2022]
Abstract
Stalled RNA polymerases (RNAPs) pose an obstacle for the replicating complexes, which could lead to transcription-replication conflicts and result in genetic instability. Stalled RNAPs and DNA lesions blocking RNAP elongation are removed by transcription-coupled repair (TCR), the process which in bacteria is mediated by TCR factor Mfd and helicase UvrD. Although the mechanism of TCR has been extensively studied, its role in mutagenesis is still obscure. In the current study we have investigated the role of Mfd and UvrD in mutational processes in soil bacterium Pseudomonas putida. Our results revealed that UvrD helicase is essential to prevent the emergence of mutations, as the loss of uvrD resulted in elevated mutant frequency both in exponential- and stationary-phase bacterial cultures. UvrD was also found to be necessary to survive DNA damage, but NER or MMR pathways are not completely abolished in UvrD-deficient P. putida. Mfd-deficiency had a moderate impact on surviving DNA damage and did not influence the frequency of mutations occurred in exponentially growing bacteria. However, the absence of Mfd caused approximately a two-fold decline in stationary-phase mutant frequency compared to the P. putida wild-type strain and suppressed the elevated mutant frequency observed in the ΔuvrD strain. Remarkably, the Mfd-deficient strain also formed less UV-induced mutants. These results suggest that in P. putida the Mfd-mediated TCR could be associated with UV- and stationary-phase mutagenesis.
Collapse
|
20
|
Suzuki H, Taketani T, Kobayashi J, Ohshiro T. Antibiotic resistance mutations induced in growing cells of Bacillus-related thermophiles. J Antibiot (Tokyo) 2018; 71:382-389. [PMID: 29348523 DOI: 10.1038/s41429-017-0003-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022]
Abstract
Stress-induced mutagenesis can assist pathogens in generating drug-resistant cells during antibiotic therapy; however, if and how antibiotics induce mutagenesis in microbes remains poorly understood. A non-pathogenic thermophile, Geobacillus kaustophilus HTA426, efficiently produces derivative cells resistant to rifampicin and streptomycin via rpoB and rpsL mutations, respectively. Here, we examined this phenomenon to suggest a novel mutagenic mode induced by antibiotics. Fluctuation analysis indicated that mutations occurred via spontaneous mutations during culture. However, mutations were much more frequent in growing cells than stationary cells, and mutation sites were varied through cell growth. These observations suggested that growing cells induced mutagenesis in response to antibiotics. An in-frame deletion of mfd, which governs transcription-coupled repair to correct DNA lesions on the transcribed strand, caused mutations that were comparable between growing and stationary cells; therefore, the mutagenic mechanism was attributable to DNA repair defects where growing cells depressed mfd function. Mutations occurred more frequently at optimal growth temperatures for G. kaustophilus than at a higher growth temperature, suggesting that the mutagenesis relies on active cellular activities rather than high temperature-associated DNA damage. In addition, the mutagenesis may involve a mutagenic factor targeting these sites, in addition to mfd depression, because rpoB and rpsL mutations were dominant at thymine and guanine sites on the transcribed strand. A similar mutagenic profile was observed for other Geobacillus and thermophilic Bacillus species. This suggests that Bacillus-related thermophiles commonly induce mutagenesis in response to rifampicin and streptomycin to produce resistant cells.
Collapse
Affiliation(s)
- Hirokazu Suzuki
- Functional Genomics of Extremophiles, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-Ku, Fukuoka, 812-8581, Japan. .,Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8550, Japan.
| | - Tatsunari Taketani
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8550, Japan
| | - Jyumpei Kobayashi
- Functional Genomics of Extremophiles, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-Ku, Fukuoka, 812-8581, Japan.,Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8550, Japan
| | - Takashi Ohshiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8550, Japan
| |
Collapse
|
21
|
Implementation of a loss-of-function system to determine growth and stress-associated mutagenesis in Bacillus subtilis. PLoS One 2017; 12:e0179625. [PMID: 28700593 PMCID: PMC5507404 DOI: 10.1371/journal.pone.0179625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/01/2017] [Indexed: 11/19/2022] Open
Abstract
A forward mutagenesis system based on the acquisition of mutations that inactivate the thymidylate synthase gene (TMS) and confer a trimethoprim resistant (Tmpr) phenotype was developed and utilized to study transcription-mediated mutagenesis (TMM). In addition to thyA, Bacillus subtilis possesses thyB, whose expression occurs under conditions of cell stress; therefore, we generated a thyB- thyA+ mutant strain. Tmpr colonies of this strain were produced with a spontaneous mutation frequency of ~1.4 × 10-9. Genetic disruption of the canonical mismatch (MMR) and guanine oxidized (GO) repair pathways increased the Tmpr frequency of mutation by ~2-3 orders of magnitude. A wide spectrum of base substitutions as well as insertion and deletions in the ORF of thyA were found to confer a Tmpr phenotype. Stationary-phase-associated mutagenesis (SPM) assays revealed that colonies with a Tmpr phenotype, accumulated over a period of ten days with a frequency of ~ 60 ×10-7. The Tmpr system was further modified to study TMM by constructing a ΔthyA ΔthyB strain carrying an IPTG-inducible Pspac-thyA cassette. In conditions of transcriptional induction of thyA, the generation of Tmpr colonies increased ~3-fold compared to conditions of transcriptional repression. Further, the Mfd and GreA factors were necessary for the generation of Tmpr colonies in the presence of IPTG in B. subtilis. Because GreA and Mfd facilitate transcription-coupled repair, our results suggest that TMM is a mechanim to produce genetic diversity in highly transcribed regions in growth-limited B. subtilis cells.
Collapse
|
22
|
Processing closely spaced lesions during Nucleotide Excision Repair triggers mutagenesis in E. coli. PLoS Genet 2017; 13:e1006881. [PMID: 28686598 PMCID: PMC5521853 DOI: 10.1371/journal.pgen.1006881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/21/2017] [Accepted: 06/21/2017] [Indexed: 11/19/2022] Open
Abstract
It is generally assumed that most point mutations are fixed when damage containing template DNA undergoes replication, either right at the fork or behind the fork during gap filling. Here we provide genetic evidence for a pathway, dependent on Nucleotide Excision Repair, that induces mutations when processing closely spaced lesions. This pathway, referred to as Nucleotide Excision Repair-induced Mutagenesis (NERiM), exhibits several characteristics distinct from mutations that occur within the course of replication: i) following UV irradiation, NER-induced mutations are fixed much more rapidly (t ½ ≈ 30 min) than replication dependent mutations (t ½ ≈ 80–100 min) ii) NERiM specifically requires DNA Pol IV in addition to Pol V iii) NERiM exhibits a two-hit dose-response curve that suggests processing of closely spaced lesions. A mathematical model let us define the geometry (infer the structure) of the toxic intermediate as being formed when NER incises a lesion that resides in close proximity of another lesion in the complementary strand. This critical NER intermediate requires Pol IV / Pol II for repair, it is either lethal if left unrepaired or mutation-prone when repaired. Finally, NERiM is found to operate in stationary phase cells providing an intriguing possibility for ongoing evolution in the absence of replication. In this paper, we report the surprising finding that in addition to the well-known properties of Nucleotide Excision Repair (NER) in efficiently repairing a large number of DNA lesions, NER entails a mutagenic sub-pathway. Our data suggest that closely spaced lesions are processed by NER into a toxic DNA intermediate, i.e. a gap containing a lesion, that leads either to mutagenesis during its repair or to cell death in the absence of repair. The paper describes a new pathway for the generation of mutations in stationary phase bacteria or quiescent cells; it also provides an additional role for Pol IV, the most widely distributed specialized DNA polymerase in all forms of life.
Collapse
|
23
|
Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis. J Bacteriol 2017; 199:JB.00715-16. [PMID: 27920297 DOI: 10.1128/jb.00715-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/29/2016] [Indexed: 01/21/2023] Open
Abstract
The Gram-positive microorganism Bacillus subtilis relies on a single class Ib ribonucleotide reductase (RNR) to generate 2'-deoxyribonucleotides (dNDPs) for DNA replication and repair. In this work, we investigated the influence of RNR levels on B. subtilis stationary-phase-associated mutagenesis (SPM). Since RNR is essential in this bacterium, we engineered a conditional mutant of strain B. subtilis YB955 (hisC952 metB5 leu427) in which expression of the nrdEF operon was modulated by isopropyl-β-d-thiogalactopyranoside (IPTG). Moreover, genetic inactivation of ytcG, predicted to encode a repressor (NrdR) of nrdEF in this strain, dramatically increased the expression levels of a transcriptional nrdE-lacZ fusion. The frequencies of mutations conferring amino acid prototrophy in three genes were measured in cultures under conditions that repressed or induced RNR-encoding genes. The results revealed that RNR was necessary for SPM and overexpression of nrdEF promoted growth-dependent mutagenesis and SPM. We also found that nrdEF expression was induced by H2O2 and such induction was dependent on the master regulator PerR. These observations strongly suggest that the metabolic conditions operating in starved B. subtilis cells increase the levels of RNR, which have a direct impact on SPM. IMPORTANCE Results presented in this study support the concept that the adverse metabolic conditions prevailing in nutritionally stressed bacteria activate an oxidative stress response that disturbs ribonucleotide reductase (RNR) levels. Such an alteration of RNR levels promotes mutagenic events that allow Bacillus subtilis to escape from growth-limited conditions.
Collapse
|
24
|
Selby CP. Mfd Protein and Transcription-Repair Coupling in Escherichia coli. Photochem Photobiol 2017; 93:280-295. [PMID: 27864884 DOI: 10.1111/php.12675] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/18/2016] [Indexed: 01/30/2023]
Abstract
In 1989, transcription-repair coupling (TRC) was first described in Escherichia coli, as the transcription-dependent, preferential nucleotide excision repair (NER) of UV photoproducts located in the template DNA strand. This finding led to pioneering biochemical studies of TRC in the laboratory of Professor Aziz Sancar, where, at the time, major contributions were being made toward understanding the roles of the UvrA, UvrB and UvrC proteins in NER. When the repair studies were extended to TRC, template but not coding strand lesions were found to block RNA polymerase (RNAP) in vitro, and unexpectedly, the blocked RNAP inhibited NER. A transcription-repair coupling factor, also called Mfd protein, was found to remove the blocked RNAP, deliver the repair enzyme to the lesion and thereby mediate more rapid repair of the transcription-blocking lesion compared with lesions elsewhere. Structural and functional analyses of Mfd protein revealed helicase motifs responsible for ATP hydrolysis and DNA binding, and regions that interact with RNAP and UvrA. These and additional studies provided a basis upon which other investigators, in following decades, have characterized fascinating and unexpected structural and mechanistic features of Mfd, revealed the possible existence of additional pathways of TRC and discovered additional roles of Mfd in the cell.
Collapse
Affiliation(s)
- Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
25
|
Deaconescu AM, Suhanovsky MM. From Mfd to TRCF and Back Again-A Perspective on Bacterial Transcription-coupled Nucleotide Excision Repair. Photochem Photobiol 2017; 93:268-279. [PMID: 27859304 PMCID: PMC5672955 DOI: 10.1111/php.12661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/08/2016] [Indexed: 12/17/2022]
Abstract
Photochemical and other reactions on DNA cause damage and corrupt genetic information. To counteract this damage, organisms have evolved intricate repair mechanisms that often crosstalk with other DNA-based processes such as transcription. Intriguing observations in the late 1980s and early 1990s led to the discovery of transcription-coupled repair (TCR), a subpathway of nucleotide excision repair. TCR, found in all domains of life, prioritizes for repair lesions located in the transcribed DNA strand, directly read by RNA polymerase. Here, we give a historical overview of developments in the field of bacterial TCR, starting from the pioneering work of Evelyn Witkin and Aziz Sancar, which led to the identification of the first transcription-repair coupling factor (the Mfd protein), to recent studies that have uncovered alternative TCR pathways and regulators.
Collapse
Affiliation(s)
- Alexandra M. Deaconescu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Margaret M. Suhanovsky
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| |
Collapse
|
26
|
Darrigo C, Guillemet E, Dervyn R, Ramarao N. The Bacterial Mfd Protein Prevents DNA Damage Induced by the Host Nitrogen Immune Response in a NER-Independent but RecBC-Dependent Pathway. PLoS One 2016; 11:e0163321. [PMID: 27711223 PMCID: PMC5053507 DOI: 10.1371/journal.pone.0163321] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/07/2016] [Indexed: 11/28/2022] Open
Abstract
Production of reactive nitrogen species is an important component of the host immune defence against bacteria. Here, we show that the bacterial protein Mfd (Mutation frequency decline), a highly conserved and ubiquitous bacterial protein involved in DNA repair, confers bacterial resistance to the eukaryotic nitrogen response produced by macrophage cells and during mice infection. In addition, we show that RecBC is also necessary to survive this stress. The inactivation of recBC and mfd genes is epistatic showing that Mfd follows the RecBC repair pathway to protect the bacteria against the genotoxic effect of nitrite. Surprisingly given the role of Mfd in transcription-coupled repair, UvrA is not necessary to survive the nitrite response. Taken together, our data reveal that during the eukaryotic nitrogen response, Mfd is required to maintain bacterial genome integrity in a NER-independent but RecBC-dependent pathway.
Collapse
Affiliation(s)
- Claire Darrigo
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Elisabeth Guillemet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Rozenn Dervyn
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Nalini Ramarao
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
27
|
Abstract
Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. The serial steps in NER involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. Transcription-coupled repair (TCR) is a subpathway of NER dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, I report on recent findings that contribute to the elucidation of TCR mechanisms in the bacterium Escherichia coli, the yeast Saccharomyces cerevisiae and human cells. I review general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.
Collapse
Affiliation(s)
- Graciela Spivak
- Biology Department, Stanford University, 385 Serra Mall, Stanford, CA, 94305-5020, USA.
| |
Collapse
|
28
|
The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response. Sci Rep 2016; 6:29349. [PMID: 27435260 PMCID: PMC4951645 DOI: 10.1038/srep29349] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/17/2016] [Indexed: 01/23/2023] Open
Abstract
Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO.
Collapse
|
29
|
Stationary-Phase Mutagenesis in Stressed Bacillus subtilis Cells Operates by Mfd-Dependent Mutagenic Pathways. Genes (Basel) 2016; 7:genes7070033. [PMID: 27399782 PMCID: PMC4962003 DOI: 10.3390/genes7070033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 12/15/2022] Open
Abstract
In replication-limited cells of Bacillus subtilis, Mfd is mutagenic at highly transcribed regions, even in the absence of bulky DNA lesions. However, the mechanism leading to increased mutagenesis through Mfd remains currently unknown. Here, we report that Mfd may promote mutagenesis in nutritionally stressed B. subtilis cells by coordinating error-prone repair events mediated by UvrA, MutY and PolI. Using a point-mutated gene conferring leucine auxotrophy as a genetic marker, it was found that the absence of UvrA reduced the Leu+ revertants and that a second mutation in mfd reduced mutagenesis further. Moreover, the mfd and polA mutants presented low but similar reversion frequencies compared to the parental strain. These results suggest that Mfd promotes mutagenic events that required the participation of NER pathway and PolI. Remarkably, this Mfd-dependent mutagenic pathway was found to be epistatic onto MutY; however, whereas the MutY-dependent Leu+ reversions required Mfd, a direct interaction between these proteins was not apparent. In summary, our results support the concept that Mfd promotes mutagenesis in starved B. subtilis cells by coordinating both known and previously unknown Mfd-associated repair pathways. These mutagenic processes bias the production of genetic diversity towards highly transcribed regions in the genome.
Collapse
|
30
|
Willing SE, Richards EJ, Sempere L, Dale AG, Cutting SM, Fairweather NF. Increased toxin expression in a Clostridium difficile mfd mutant. BMC Microbiol 2015; 15:280. [PMID: 26679502 PMCID: PMC4683965 DOI: 10.1186/s12866-015-0611-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022] Open
Abstract
Background The symptoms of Clostridium difficile infection are mediated primarily by two toxins, TcdA and TcdB, the expression of which is governed by a multitude of factors including nutrient availability, growth phase and cell stress. Several global regulators have been implicated in the regulation of toxin expression, such as CcpA and CodY. Results During attempts to insertionally inactivate a putative secondary cell wall polysaccharide synthesis gene, we obtained several mutants containing off-target insertions. One mutant displayed an unusual branched colony morphology and was investigated further. Marker recovery revealed an insertion in mfd, a gene encoding a transcription-coupled repair factor. The mfd mutant exhibited pleiotropic effects, in particular increased expression of both toxin A and B (TcdA and TcdB) compared to the parental strain. Western blotting and cellular cytotoxicity assays revealed increased expression across all time points over a 24 h period, with inactivation of mfd resulting in at least a 10 fold increase in cell cytotoxicity. qRT-PCR demonstrated the upregulation of both toxins occurred on a transcriptional level. All effects of the mfd mutation were complemented by a plasmid-encoded copy of mfd, showing the effects are not due to polar effects of the intron insertion or to second site mutations. Conclusions This study adds Mfd to the repertoire of factors involved in regulation of toxin expression in Clostridium difficile. Mfd is known to remove RNA polymerase molecules from transcriptional sites where it has stalled due to repressor action, preventing transcriptional read through. The consistently high levels of toxin in the C. difficile mfd mutant indicate this process is inefficient leading to transcriptional de-repression.
Collapse
Affiliation(s)
- Stephanie E Willing
- Department of Life Sciences, Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK. .,School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| | - Emma J Richards
- Department of Life Sciences, Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK.
| | - Lluis Sempere
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| | - Aaron G Dale
- Department of Life Sciences, Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK.
| | - Simon M Cutting
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| | - Neil F Fairweather
- Department of Life Sciences, Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
31
|
Abstract
Early research on the origins and mechanisms of mutation led to the establishment of the dogma that, in the absence of external forces, spontaneous mutation rates are constant. However, recent results from a variety of experimental systems suggest that mutation rates can increase in response to selective pressures. This chapter summarizes data demonstrating that,under stressful conditions, Escherichia coli and Salmonella can increase the likelihood of beneficial mutations by modulating their potential for genetic change.Several experimental systems used to study stress-induced mutagenesis are discussed, with special emphasison the Foster-Cairns system for "adaptive mutation" in E. coli and Salmonella. Examples from other model systems are given to illustrate that stress-induced mutagenesis is a natural and general phenomenon that is not confined to enteric bacteria. Finally, some of the controversy in the field of stress-induced mutagenesis is summarized and discussed, and a perspective on the current state of the field is provided.
Collapse
|
32
|
Abstract
The classical experiments of Luria and Delbrück showed convincingly that mutations exist before selection and do not contribute to the creation of mutations when selection is lethal. In contrast, when nonlethal selections are used,measuring mutation rates and separating the effects of mutation and selection are difficult and require methods to fully exclude growth after selection has been applied. Although many claims of stress-induced mutagenesis have been made, it is difficult to exclude the influence of growth under nonlethal selection conditions in accounting for the observed increases in mutant frequency. Instead, for many of the studied experimental systems the increase in mutant frequency can be explainedbetter by the ability of selection to detect small differences in growth rate caused by common small effect mutations. A verycommon mutant class,found in response to many different types of selective regimensin which increased gene dosage can resolve the problem, is gene amplification. In the well-studiedlac system of Cairns and Foster, the apparent increase in Lac+revertants can be explained by high-level amplification of the lac operon and the increased probability for a reversion mutation to occur in any one of the amplified copies. The associated increase in general mutation rate observed in revertant cells in that system is an artifact caused by the coincidental co-amplification of the nearby dinB gene (encoding the error-prone DNA polymerase IV) on the particular plasmid used for these experiments. Apart from the lac system, similar gene amplification processes have been described for adaptation to toxic drugs, growth in host cells, and various nutrient limitations.
Collapse
|
33
|
Role of Bacillus subtilis DNA Glycosylase MutM in Counteracting Oxidatively Induced DNA Damage and in Stationary-Phase-Associated Mutagenesis. J Bacteriol 2015; 197:1963-71. [PMID: 25825434 DOI: 10.1128/jb.00147-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/24/2015] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Reactive oxygen species (ROS) promote the synthesis of the DNA lesion 8-oxo-G, whose mutagenic effects are counteracted in distinct organisms by the DNA glycosylase MutM. We report here that in Bacillus subtilis, mutM is expressed during the exponential and stationary phases of growth. In agreement with this expression pattern, results of a Western blot analysis confirmed the presence of MutM in both stages of growth. In comparison with cells of a wild-type strain, cells of B. subtilis lacking MutM increased their spontaneous mutation frequency to Rif(r) and were more sensitive to the ROS promoter agents hydrogen peroxide and 1,1'-dimethyl-4,4'-bipyridinium dichloride (Paraquat). However, despite MutM's proven participation in preventing ROS-induced-DNA damage, the expression of mutM was not induced by hydrogen peroxide, mitomycin C, or NaCl, suggesting that transcription of this gene is not under the control of the RecA, PerR, or σ(B) regulons. Finally, the role of MutM in stationary-phase-associated mutagenesis (SPM) was investigated in the strain B. subtilis YB955 (hisC952 metB5 leuC427). Results revealed that under limiting growth conditions, a mutM knockout strain significantly increased the amount of stationary-phase-associated his, met, and leu revertants produced. In summary, our results support the notion that the absence of MutM promotes mutagenesis that allows nutritionally stressed B. subtilis cells to escape from growth-limiting conditions. IMPORTANCE The present study describes the role played by a DNA repair protein (MutM) in protecting the soil bacterium Bacillus subtilis from the genotoxic effects induced by reactive oxygen species (ROS) promoter agents. Moreover, it reveals that the genetic inactivation of mutM allows nutritionally stressed bacteria to escape from growth-limiting conditions, putatively by a mechanism that involves the accumulation and error-prone processing of oxidized DNA bases.
Collapse
|
34
|
Abstract
ABSTRACT
The family
Bacillaceae
constitutes a phenotypically diverse and globally ubiquitous assemblage of bacteria. Investigation into how evolution has shaped, and continues to shape, this family has relied on several widely ranging approaches from classical taxonomy, ecological field studies, and evolution in soil microcosms to genomic-scale phylogenetics, laboratory, and directed evolution experiments. One unifying characteristic of the
Bacillaceae
, the endospore, poses unique challenges to answering questions regarding both the calculation of evolutionary rates and claims of extreme longevity in ancient environmental samples.
Collapse
|
35
|
Barajas-Ornelas RDC, Ramírez-Guadiana FH, Juárez-Godínez R, Ayala-García VM, Robleto EA, Yasbin RE, Pedraza-Reyes M. Error-prone processing of apurinic/apyrimidinic (AP) sites by PolX underlies a novel mechanism that promotes adaptive mutagenesis in Bacillus subtilis. J Bacteriol 2014; 196:3012-22. [PMID: 24914186 PMCID: PMC4135629 DOI: 10.1128/jb.01681-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 06/05/2014] [Indexed: 01/19/2023] Open
Abstract
In growing cells, apurinic/apyrimidinic (AP) sites generated spontaneously or resulting from the enzymatic elimination of oxidized bases must be processed by AP endonucleases before they compromise cell integrity. Here, we investigated how AP sites and the processing of these noncoding lesions by the AP endonucleases Nfo, ExoA, and Nth contribute to the production of mutations (hisC952, metB5, and leuC427) in starved cells of the Bacillus subtilis YB955 strain. Interestingly, cells from this strain that were deficient for Nfo, ExoA, and Nth accumulated a greater amount of AP sites in the stationary phase than during exponential growth. Moreover, under growth-limiting conditions, the triple nfo exoA nth knockout strain significantly increased the amounts of adaptive his, met, and leu revertants produced by the B. subtilis YB955 parental strain. Of note, the number of stationary-phase-associated reversions in the his, met, and leu alleles produced by the nfo exoA nth strain was significantly decreased following disruption of polX. In contrast, during growth, the reversion rates in the three alleles tested were significantly increased in cells of the nfo exoA nth knockout strain deficient for polymerase X (PolX). Therefore, we postulate that adaptive mutations in B. subtilis can be generated through a novel mechanism mediated by error-prone processing of AP sites accumulated in the stationary phase by the PolX DNA polymerase.
Collapse
Affiliation(s)
| | | | - Rafael Juárez-Godínez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Victor M Ayala-García
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Eduardo A Robleto
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Ronald E Yasbin
- College of Arts and Sciences, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
36
|
Deaconescu AM. RNA polymerase between lesion bypass and DNA repair. Cell Mol Life Sci 2013; 70:4495-509. [PMID: 23807206 PMCID: PMC11113250 DOI: 10.1007/s00018-013-1384-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 11/29/2022]
Abstract
DNA damage leads to heritable changes in the genome via DNA replication. However, as the DNA helix is the site of numerous other transactions, notably transcription, DNA damage can have diverse repercussions on cellular physiology. In particular, DNA lesions have distinct effects on the passage of transcribing RNA polymerases, from easy bypass to almost complete block of transcription elongation. The fate of the RNA polymerase positioned at a lesion is largely determined by whether the lesion is structurally subtle and can be accommodated and eventually bypassed, or bulky, structurally distorting and requiring remodeling/complete dissociation of the transcription elongation complex, excision, and repair. Here we review cellular responses to DNA damage that involve RNA polymerases with a focus on bacterial transcription-coupled nucleotide excision repair and lesion bypass via transcriptional mutagenesis. Emphasis is placed on the explosion of new structural information on RNA polymerases and relevant DNA repair factors and the mechanistic models derived from it.
Collapse
Affiliation(s)
- Alexandra M Deaconescu
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South St., MS029, Waltham, MA, 02454, USA,
| |
Collapse
|
37
|
Ramírez-Guadiana FH, Del Carmen Barajas-Ornelas R, Ayala-García VM, Yasbin RE, Robleto E, Pedraza-Reyes M. Transcriptional coupling of DNA repair in sporulating Bacillus subtilis cells. Mol Microbiol 2013; 90:1088-99. [PMID: 24118570 DOI: 10.1111/mmi.12417] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2013] [Indexed: 11/28/2022]
Abstract
In conditions of halted or limited genome replication, like those experienced in sporulating cells of Bacillus subtilis, a more immediate detriment caused by DNA damage is altering the transcriptional programme that drives this developmental process. Here, we report that mfd, which encodes a conserved bacterial protein that mediates transcription-coupled DNA repair (TCR), is expressed together with uvrA in both compartments of B. subtilis sporangia. The function of Mfd was found to be important for processing the genetic damage during B. subtilis sporulation. Disruption of mfd sensitized developing spores to mitomycin-C (M-C) treatment and UV-C irradiation. Interestingly, in non-growing sporulating cells, Mfd played an anti-mutagenic role as its absence promoted UV-induced mutagenesis through a pathway involving YqjH/YqjW-mediated translesion synthesis (TLS). Two observations supported the participation of Mfd-dependent TCR in spore morphogenesis: (i) disruption of mfd notoriously affected the efficiency of B. subtilis sporulation and (ii) in comparison with the wild-type strain, a significant proportion of Mfd-deficient sporangia that survived UV-C treatment developed an asporogenous phenotype. We propose that the Mfd-dependent repair pathway operates during B. subtilis sporulation and that its function is required to eliminate genetic damage from transcriptionally active genes.
Collapse
|
38
|
McGrath M, Gey van Pittius NC, van Helden PD, Warren RM, Warner DF. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 2013; 69:292-302. [DOI: 10.1093/jac/dkt364] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
39
|
Wright BE, Schmidt KH, Minnick MF. Kinetic models reveal the in vivo mechanisms of mutagenesis in microbes and man. Mutat Res 2013; 752:129-137. [PMID: 23274173 PMCID: PMC3631585 DOI: 10.1016/j.mrrev.2012.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/14/2012] [Accepted: 12/18/2012] [Indexed: 06/01/2023]
Abstract
This review summarizes the evidence indicating that mutagenic mechanisms in vivo are essentially the same in all living cells. Unique metabolic reactions to a particular environmental stress apparently target specific genes for increased rates of transcription and mutation, resulting in higher mutation rates for those genes most likely to solve the problem. Kinetic models which have demonstrated predictive value are described and are shown to simulate mutagenesis in vivo in Escherichia coli, the p53 tumor suppressor gene, and somatic hypermutation. In all three models, direct correlations are seen between mutation frequencies and transcription rates. G and C nucleosides in single-stranded DNA (ssDNA) are intrinsically mutable, and G and C silent mutations in p53 and in VH framework regions provide compelling evidence for intrinsic mechanisms of mutability, since mutation outcomes are neutral and are not selected. During transcription, the availability of unpaired bases in the ssDNA of secondary structures is rate-limiting for, and determines the frequency of mutations in vivo. In vitro analyses also verify the conclusion that intrinsically mutable bases are in fact located in ssDNA loops of predicted stem-loop structures (SLSs).
Collapse
Affiliation(s)
- Barbara E Wright
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, United States.
| | - Karen H Schmidt
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, United States
| | - Michael F Minnick
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, United States
| |
Collapse
|
40
|
Abstract
Nucleotide excision repair (NER) has allowed bacteria to flourish in many different niches around the globe that inflict harsh environmental damage to their genetic material. NER is remarkable because of its diverse substrate repertoire, which differs greatly in chemical composition and structure. Recent advances in structural biology and single-molecule studies have given great insight into the structure and function of NER components. This ensemble of proteins orchestrates faithful removal of toxic DNA lesions through a multistep process. The damaged nucleotide is recognized by dynamic probing of the DNA structure that is then verified and marked for dual incisions followed by excision of the damage and surrounding nucleotides. The opposite DNA strand serves as a template for repair, which is completed after resynthesis and ligation.
Collapse
Affiliation(s)
- Caroline Kisker
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | | | | |
Collapse
|
41
|
Abstract
From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis.
Collapse
|
42
|
Martin HA, Pedraza-Reyes M, Yasbin RE, Robleto EA. Transcriptional de-repression and Mfd are mutagenic in stressed Bacillus subtilis cells. J Mol Microbiol Biotechnol 2012; 21:45-58. [PMID: 22248542 DOI: 10.1159/000332751] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In recent years, it has been proposed that conflicts between transcription and active chromosomal replication engender genome instability events. Furthermore, transcription elongation factors have been reported to prevent conflicts between transcription and replication and avoid genome instability. Here, we examined transcriptional de-repression as a genetic diversity-producing agent and showed, through the use of physiological and genetic means, that transcriptional de-represssion of a leuC defective allele leads to accumulation of Leu(+) mutations. We also showed, by using riboswitches that activate transcription in conditions of tyrosine or methionine starvation, that the effect of transcriptional de-repression of the leuC construct on the accumulation of Leu(+) mutations was independent of selection. We examined the role of Mfd, a transcription elongation factor involved in DNA repair, in this process and showed that proficiency of this factor promotes mutagenic events. These results are in stark contrast to previous reports in Escherichia coli, which showed that Mfd prevents replication fork collapses. Because our assays place cells under non-growing conditions, by starving them for two amino acids, we surmised that the Mfd mutagenic process associated with transcriptional de-repression does not result from conflicts with chromosomal replication. These results raise the interesting concept that transcription elongation factors may serve two functions in cells. In growing conditions, these factors prevent the generation of mutations, while in stress or non-growing conditions they mediate the production of genetic diversity.
Collapse
|
43
|
Ganesan A, Spivak G, Hanawalt PC. Transcription-coupled DNA repair in prokaryotes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:25-40. [PMID: 22749141 DOI: 10.1016/b978-0-12-387665-2.00002-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair (NER) that acts specifically on lesions in the transcribed strand of expressed genes. First reported in mammalian cells, TCR was then documented in Escherichia coli. In this organism, an RNA polymerase arrested at a lesion is displaced by the transcription repair coupling factor, Mfd. This protein recruits the NER lesion-recognition factor UvrA, and then dissociates from the DNA. UvrA binds UvrB, and the assembled UvrAB* complex initiates repair. In mutants lacking active Mfd, TCR is absent. A gene transcribed by the bacteriophage T7 RNA polymerase in E. coli also requires Mfd for TCR. The CSB protein (missing or defective in cells of patients with Cockayne syndrome, complementation group B) is essential for TCR in humans. CSB and its homologs in higher eukaryotes are likely functional equivalents of Mfd.
Collapse
Affiliation(s)
- Ann Ganesan
- Department of Biology, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
44
|
A high-frequency mutation in Bacillus subtilis: requirements for the decryptification of the gudB glutamate dehydrogenase gene. J Bacteriol 2011; 194:1036-44. [PMID: 22178973 DOI: 10.1128/jb.06470-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Common laboratory strains of Bacillus subtilis encode two glutamate dehydrogenases: the enzymatically active protein RocG and the cryptic enzyme GudB that is inactive due to a duplication of three amino acids in its active center. The inactivation of the rocG gene results in poor growth of the bacteria on complex media due to the accumulation of toxic intermediates. Therefore, rocG mutants readily acquire suppressor mutations that decryptify the gudB gene. This decryptification occurs by a precise deletion of one part of the 9-bp direct repeat that causes the amino acid duplication. This mutation occurs at the extremely high frequency of 10(-4). Mutations affecting the integrity of the direct repeat result in a strong reduction of the mutation frequency; however, the actual sequence of the repeat is not essential. The mutation frequency of gudB was not affected by the position of the gene on the chromosome. When the direct repeat was placed in the completely different context of an artificial promoter, the precise deletion of one part of the repeat was also observed, but the mutation frequency was reduced by 3 orders of magnitude. Thus, transcription of the gudB gene seems to be essential for the high frequency of the appearance of the gudB1 mutation. This idea is supported by the finding that the transcription-repair coupling factor Mfd is required for the decryptification of gudB. The Mfd-mediated coupling of transcription to mutagenesis might be a built-in precaution that facilitates the accumulation of mutations preferentially in transcribed genes.
Collapse
|
45
|
Mismatch repair modulation of MutY activity drives Bacillus subtilis stationary-phase mutagenesis. J Bacteriol 2010; 193:236-45. [PMID: 20971907 DOI: 10.1128/jb.00940-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stress-promoted mutations that occur in nondividing cells (adaptive mutations) have been implicated strongly in causing genetic variability as well as in species survival and evolutionary processes. Oxidative stress-induced DNA damage has been associated with generation of adaptive His(+) and Met(+) but not Leu(+) revertants in strain Bacillus subtilis YB955 (hisC952 metB5 leuC427). Here we report that an interplay between MutY and MutSL (mismatch repair system [MMR]) plays a pivotal role in the production of adaptive Leu(+) revertants. Essentially, the genetic disruption of MutY dramatically reduced the reversion frequency to the leu allele in this model system. Moreover, the increased rate of adaptive Leu(+) revertants produced by a MutSL knockout strain was significantly diminished following mutY disruption. Interestingly, although the expression of mutY took place during growth and stationary phase and was not under the control of RecA, PerR, or σ(B), a null mutation in the mutSL operon increased the expression of mutY several times. Thus, in starved cells, saturation of the MMR system may induce the expression of mutY, disturbing the balance between MutY and MMR proteins and aiding in the production of types of mutations detected by reversion to leucine prototrophy. In conclusion, our results support the idea that MMR regulation of the mutagenic/antimutagenic properties of MutY promotes stationary-phase mutagenesis in B. subtilis cells.
Collapse
|
46
|
Abstract
Adaptive (stationary phase) mutagenesis is a phenomenon by which nondividing cells acquire beneficial mutations as a response to stress. Although the generation of adaptive mutations is essentially stochastic, genetic factors are involved in this phenomenon. We examined how defects in a transcriptional factor, previously reported to alter the acquisition of adaptive mutations, affected mutation levels in a gene under selection. The acquisition of mutations was directly correlated to the level of transcription of a defective leuC allele placed under selection. To further examine the correlation between transcription and adaptive mutation, we placed a point-mutated allele, leuC427, under the control of an inducible promoter and assayed the level of reversion to leucine prototrophy under conditions of leucine starvation. Our results demonstrate that the level of Leu(+) reversions increased significantly in parallel with the induced increase in transcription levels. This mutagenic response was not observed under conditions of exponential growth. Since transcription is a ubiquitous biological process, transcription-associated mutagenesis may influence evolutionary processes in all organisms.
Collapse
|
47
|
Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD. Co-orientation of replication and transcription preserves genome integrity. PLoS Genet 2010; 6:e1000810. [PMID: 20090829 PMCID: PMC2797598 DOI: 10.1371/journal.pgen.1000810] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 12/10/2009] [Indexed: 01/18/2023] Open
Abstract
In many bacteria, there is a genome-wide bias towards co-orientation of replication and transcription, with essential and/or highly-expressed genes further enriched co-directionally. We previously found that reversing this bias in the bacterium Bacillus subtilis slows replication elongation, and we proposed that this effect contributes to the evolutionary pressure selecting the transcription-replication co-orientation bias. This selection might have been based purely on selection for speedy replication; alternatively, the slowed replication might actually represent an average of individual replication-disruption events, each of which is counter-selected independently because genome integrity is selected. To differentiate these possibilities and define the precise forces driving this aspect of genome organization, we generated new strains with inversions either over ∼1/4 of the chromosome or at ribosomal RNA (rRNA) operons. Applying mathematical analysis to genomic microarray snapshots, we found that replication rates vary dramatically within the inverted genome. Replication is moderately impeded throughout the inverted region, which results in a small but significant competitive disadvantage in minimal medium. Importantly, replication is strongly obstructed at inverted rRNA loci in rich medium. This obstruction results in disruption of DNA replication, activation of DNA damage responses, loss of genome integrity, and cell death. Our results strongly suggest that preservation of genome integrity drives the evolution of co-orientation of replication and transcription, a conserved feature of genome organization. An important feature of genome organization is that transcription and replication are selectively co-oriented. This feature helps to avoid conflicts between head-on replication and transcription. The precise consequences of the conflict and how it affects genome organization remain to be understood. We previously found that reversing the transcription bias slows replication in the Bacillus subtilis genome. Here we engineered new inversions to avoid changes in other aspects of genome organization. We found that the reversed transcription bias is sufficient to decrease replication speed, and it results in lowered fitness of the inversion strains and a competitive disadvantage relative to wild-type cells in minimal medium. Further, by analyzing genomic copy-number snapshots to obtain replication speed as a function of genome position, we found that inversion of the strongly-transcribed rRNA genes obstructs replication during growth in rich medium. This confers a strong growth disadvantage to cells in rich medium, turns on DNA damage responses, and leads to cell death in a subpopulation of cells, while the surviving cells are more sensitive to genotoxic agents. Our results strongly support the hypothesis that evolution has favored co-orientation of transcription with replication, mainly to avoid these effects.
Collapse
Affiliation(s)
- Anjana Srivatsan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ashley Tehranchi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - David M. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jue D. Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
48
|
Tsai YK, Chen HW, Lo TC, Lin TH. Specific point mutations in Lactobacillus casei ATCC 27139 cause a phenotype switch from Lac- to Lac+. MICROBIOLOGY-SGM 2009; 155:751-760. [PMID: 19246746 DOI: 10.1099/mic.0.021907-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lactose metabolism is a changeable phenotype in strains of Lactobacillus casei. In this study, we found that L. casei ATCC 27139 was unable to utilize lactose. However, when exposed to lactose as the sole carbon source, spontaneous Lac(+) clones could be obtained. A gene cluster (lacTEGF-galKETRM) involved in the metabolism of lactose and galactose in L. casei ATCC 27139 (Lac(-)) and its Lac(+) revertant (designated strain R1) was sequenced and characterized. We found that only one nucleotide, located in the lacTEGF promoter (lacTp), of the two lac-gal gene clusters was different. The protein sequence identity between the lac-gal gene cluster and those reported previously for some L. casei (Lac(+)) strains was high; namely, 96-100 % identity was found and no premature stop codon was identified. A single point mutation located within the lacTp promoter region was also detected for each of the 41 other independently isolated Lac(+) revertants of L. casei ATCC 27139. The revertants could be divided into six classes based on the positions of the point mutations detected. Primer extension experiments conducted on transcription from lacTp revealed that the lacTp promoter of these six classes of Lac(+) revertants was functional, while that of L. casei ATCC 27139 was not. Northern blotting experiments further confirmed that the lacTEGF operon of strain R1 was induced by lactose but suppressed by glucose, whereas no blotting signal was ever detected for L. casei ATCC 27139. These results suggest that a single point mutation in the lacTp promoter was able to restore the transcription of a fully functional lacTEGF operon and cause a phenotype switch from Lac(-) to Lac(+) for L. casei ATCC 27139.
Collapse
Affiliation(s)
- Yu-Kuo Tsai
- Prof. Thy-Hou Lin laboratory, Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, ROC
| | - Hung-Wen Chen
- Prof. Thy-Hou Lin laboratory, Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, ROC
| | - Ta-Chun Lo
- Prof. Thy-Hou Lin laboratory, Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, ROC
| | - Thy-Hou Lin
- Prof. Thy-Hou Lin laboratory, Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
49
|
Defects in the error prevention oxidized guanine system potentiate stationary-phase mutagenesis in Bacillus subtilis. J Bacteriol 2008; 191:506-13. [PMID: 19011023 DOI: 10.1128/jb.01210-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Previous studies showed that a Bacillus subtilis strain deficient in mismatch repair (MMR; encoded by the mutSL operon) promoted the production of stationary-phase-induced mutations. However, overexpression of the mutSL operon did not completely suppress this process, suggesting that additional DNA repair mechanisms are involved in the generation of stationary-phase-associated mutants in this bacterium. In agreement with this hypothesis, the results presented in this work revealed that starved B. subtilis cells lacking a functional error prevention GO (8-oxo-G) system (composed of YtkD, MutM, and YfhQ) had a dramatic propensity to increase the number of stationary-phase-induced revertants. These results strongly suggest that the occurrence of mutations is exacerbated by reactive oxygen species in nondividing cells of B. subtilis having an inactive GO system. Interestingly, overexpression of the MMR system significantly diminished the accumulation of mutations in cells deficient in the GO repair system during stationary phase. These results suggest that the MMR system plays a general role in correcting base mispairing induced by oxidative stress during stationary phase. Thus, the absence or depression of both the MMR and GO systems contributes to the production of stationary-phase mutants in B. subtilis. In conclusion, our results support the idea that oxidative stress is a mechanism that generates genetic diversity in starved cells of B. subtilis, promoting stationary-phase-induced mutagenesis in this soil microorganism.
Collapse
|
50
|
Gonzalez C, Hadany L, Ponder RG, Price M, Hastings PJ, Rosenberg SM. Mutability and importance of a hypermutable cell subpopulation that produces stress-induced mutants in Escherichia coli. PLoS Genet 2008; 4:e1000208. [PMID: 18833303 PMCID: PMC2543114 DOI: 10.1371/journal.pgen.1000208] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 08/25/2008] [Indexed: 01/03/2023] Open
Abstract
In bacterial, yeast, and human cells, stress-induced mutation mechanisms are induced in growth-limiting environments and produce non-adaptive and adaptive mutations. These mechanisms may accelerate evolution specifically when cells are maladapted to their environments, i.e., when they are are stressed. One mechanism of stress-induced mutagenesis in Escherichia coli occurs by error-prone DNA double-strand break (DSB) repair. This mechanism was linked previously to a differentiated subpopulation of cells with a transiently elevated mutation rate, a hypermutable cell subpopulation (HMS). The HMS could be important, producing essentially all stress-induced mutants. Alternatively, the HMS was proposed to produce only a minority of stress-induced mutants, i.e., it was proposed to be peripheral. We characterize three aspects of the HMS. First, using improved mutation-detection methods, we estimate the number of mutations per genome of HMS-derived cells and find that it is compatible with fitness after the HMS state. This implies that these mutants are not necessarily an evolutionary dead end, and could contribute to adaptive evolution. Second, we show that stress-induced Lac(+) mutants, with and without evidence of descent from the HMS, have similar Lac(+) mutation sequences. This provides evidence that HMS-descended and most stress-induced mutants form via a common mechanism. Third, mutation-stimulating DSBs introduced via I-SceI endonuclease in vivo do not promote Lac(+) mutation independently of the HMS. This and the previous finding support the hypothesis that the HMS underlies most stress-induced mutants, not just a minority of them, i.e., it is important. We consider a model in which HMS differentiation is controlled by stress responses. Differentiation of an HMS potentially limits the risks of mutagenesis in cell clones.
Collapse
Affiliation(s)
- Caleb Gonzalez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Graduate Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lilach Hadany
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Rebecca G. Ponder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mellanie Price
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Graduate Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|