1
|
Garde S, Chodisetti PK, Reddy M. Peptidoglycan: Structure, Synthesis, and Regulation. EcoSal Plus 2021; 9:eESP-0010-2020. [PMID: 33470191 PMCID: PMC11168573 DOI: 10.1128/ecosalplus.esp-0010-2020] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Peptidoglycan is a defining feature of the bacterial cell wall. Initially identified as a target of the revolutionary beta-lactam antibiotics, peptidoglycan has become a subject of much interest for its biology, its potential for the discovery of novel antibiotic targets, and its role in infection. Peptidoglycan is a large polymer that forms a mesh-like scaffold around the bacterial cytoplasmic membrane. Peptidoglycan synthesis is vital at several stages of the bacterial cell cycle: for expansion of the scaffold during cell elongation and for formation of a septum during cell division. It is a complex multifactorial process that includes formation of monomeric precursors in the cytoplasm, their transport to the periplasm, and polymerization to form a functional peptidoglycan sacculus. These processes require spatio-temporal regulation for successful assembly of a robust sacculus to protect the cell from turgor and determine cell shape. A century of research has uncovered the fundamentals of peptidoglycan biology, and recent studies employing advanced technologies have shed new light on the molecular interactions that govern peptidoglycan synthesis. Here, we describe the peptidoglycan structure, synthesis, and regulation in rod-shaped bacteria, particularly Escherichia coli, with a few examples from Salmonella and other diverse organisms. We focus on the pathway of peptidoglycan sacculus elongation, with special emphasis on discoveries of the past decade that have shaped our understanding of peptidoglycan biology.
Collapse
Affiliation(s)
- Shambhavi Garde
- These authors contributed equally
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| | - Pavan Kumar Chodisetti
- These authors contributed equally
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| | - Manjula Reddy
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| |
Collapse
|
2
|
Studer P, Borisova M, Schneider A, Ayala JA, Mayer C, Schuppler M, Loessner MJ, Briers Y. The Absence of a Mature Cell Wall Sacculus in Stable Listeria monocytogenes L-Form Cells Is Independent of Peptidoglycan Synthesis. PLoS One 2016; 11:e0154925. [PMID: 27149671 PMCID: PMC4858229 DOI: 10.1371/journal.pone.0154925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/21/2016] [Indexed: 01/16/2023] Open
Abstract
L-forms are cell wall-deficient variants of otherwise walled bacteria that maintain the ability to survive and proliferate in absence of the surrounding peptidoglycan sacculus. While transient or unstable L-forms can revert to the walled state and may still rely on residual peptidoglycan synthesis for multiplication, stable L-forms cannot revert to the walled form and are believed to propagate in the complete absence of peptidoglycan. L-forms are increasingly studied as a fundamental biological model system for cell wall synthesis. Here, we show that a stable L-form of the intracellular pathogen Listeria monocytogenes features a surprisingly intact peptidoglycan synthesis pathway including glycosyl transfer, in spite of the accumulation of multiple mutations during prolonged passage in the cell wall-deficient state. Microscopic and biochemical analysis revealed the presence of peptidoglycan precursors and functional glycosyl transferases, resulting in the formation of peptidoglycan polymers but without the synthesis of a mature cell wall sacculus. In conclusion, we found that stable, non-reverting L-forms, which do not require active PG synthesis for proliferation, may still continue to produce aberrant peptidoglycan.
Collapse
Affiliation(s)
- Patrick Studer
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Marina Borisova
- Department of Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Alexander Schneider
- Department of Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Juan A. Ayala
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Christoph Mayer
- Department of Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Markus Schuppler
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Yves Briers
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Department of Applied Biosciences, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
3
|
Cambré A, Zimmermann M, Sauer U, Vivijs B, Cenens W, Michiels CW, Aertsen A, Loessner MJ, Noben JP, Ayala JA, Lavigne R, Briers Y. Metabolite profiling and peptidoglycan analysis of transient cell wall-deficient bacteria in a new Escherichia coli model system. Environ Microbiol 2014; 17:1586-99. [PMID: 25142185 DOI: 10.1111/1462-2920.12594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/11/2014] [Indexed: 12/01/2022]
Abstract
Many bacteria are able to assume a transient cell wall-deficient (or L-form) state under favourable osmotic conditions. Cell wall stress such as exposure to β-lactam antibiotics can enforce the transition to and maintenance of this state. L-forms actively proliferate and can return to the walled state upon removal of the inducing agent. We have adopted Escherichia coli as a model system for the controlled transition to and reversion from the L-form state, and have studied these dynamics with genetics, cell biology and 'omics' technologies. As such, a transposon mutagenesis screen underscored the requirement for the Rcs phosphorelay and colanic acid synthesis, while proteomics show only little differences between rods and L-forms. In contrast, metabolome comparison reveals the high abundance of lysophospholipids and phospholipids with unsaturated or cyclopropanized fatty acids in E. coli L-forms. This increase of membrane lipids associated with increased membrane fluidity may facilitate proliferation through bud formation. Visualization of the residual peptidoglycan with a fluorescently labelled peptidoglycan binding protein indicates de novo cell wall synthesis and a role for septal peptidoglycan synthesis during bud constriction. The DD-carboxypeptidases PBP5 and PBP6 are threefold and fourfold upregulated in L-forms, indicating a specific role for regulation of crosslinking during L-form proliferation.
Collapse
Affiliation(s)
- Alexander Cambré
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, B-3001, Heverlee, Belgium; Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, B-3001, Heverlee, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Antibacterial compounds of Canadian honeys target bacterial cell wall inducing phenotype changes, growth inhibition and cell lysis that resemble action of β-lactam antibiotics. PLoS One 2014; 9:e106967. [PMID: 25191847 PMCID: PMC4156419 DOI: 10.1371/journal.pone.0106967] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/12/2014] [Indexed: 01/22/2023] Open
Abstract
Honeys show a desirable broad spectrum activity against Gram-positive and negative bacteria making antibacterial activity an intrinsic property of honey and a desirable source for new drug development. The cellular targets and underlying mechanism of action of honey antibacterial compounds remain largely unknown. To facilitate the target discovery, we employed a method of phenotypic profiling by directly comparing morphological changes in Escherichia coli induced by honeys to that of ampicillin, the cell wall-active β-lactam of known mechanism of action. Firstly, we demonstrated the purity of tested honeys from potential β-lactam contaminations using quantitative LC-ESI-MS. Exposure of log-phase E. coli to honey or ampicillin resulted in time- and concentration-dependent changes in bacterial cell shape with the appearance of filamentous phenotypes at sub-inhibitory concentrations and spheroplasts at the MBC. Cell wall destruction by both agents, clearly visible on microscopic micrographs, was accompanied by increased permeability of the lipopolysaccharide outer membrane as indicated by fluorescence-activated cell sorting (FACS). More than 90% E. coli exposed to honey or ampicillin became permeable to propidium iodide. Consistently with the FACS results, both honey-treated and ampicillin-treated E. coli cells released lipopolysaccharide endotoxins at comparable levels, which were significantly higher than controls (p<0.0001). E. coli cells transformed with the ampicillin-resistance gene (β-lactamase) remained sensitive to honey, displayed the same level of cytotoxicity, cell shape changes and endotoxin release as ampicillin-sensitive cells. As expected, β-lactamase protected the host cell from antibacterial action of ampicillin. Thus, both honey and ampicillin induced similar structural changes to the cell wall and LPS and that this ability underlies antibacterial activities of both agents. Since the cell wall is critical for cell growth and survival, honey active compounds would be highly applicable for therapeutic purposes while differences in the mode of action between honey and ampicillin may provide clinical advantage in eradicating β-lactam-resistant pathogens.
Collapse
|
5
|
Bacterial cell morphogenesis does not require a preexisting template structure. Curr Biol 2014; 24:863-7. [PMID: 24704074 PMCID: PMC3989771 DOI: 10.1016/j.cub.2014.02.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/03/2022]
Abstract
Morphogenesis, the development of shape or form in cells or organisms, is a fundamental but poorly understood process throughout biology. In the bacterial domain, cells have a wide range of characteristic shapes, including rods, cocci, and spirals. The cell wall, composed of a simple meshwork of long glycan strands crosslinked by short peptides (peptidoglycan, PG) and anionic cell wall polymers such as wall teichoic acids (WTAs), is the major determinant of cell shape. It has long been debated whether the formation of new wall material or the transmission of shape from parent to daughter cells requires existing wall material as a template [1–3]. However, rigorous testing of this hypothesis has been problematical because the cell wall is normally an essential structure. L-forms are wall-deficient variants of common bacteria that have been classically identified as antibiotic-resistant variants in association with a wide range of infectious diseases [4–6]. We recently determined the genetic basis for the L-form transition in the rod-shaped bacterium Bacillus subtilis and thus how to generate L-forms reliably and reproducibly [7, 8]. Using the new L-form system, we show here that we can delete essential genes for cell wall synthesis and propagate cells in the long-term absence of a cell wall template molecule. Following genetic restoration of cell wall synthesis, we show that the ability to generate a classical rod-shaped cell is restored, conclusively rejecting template-directed models, at least for the establishment of cell shape in B. subtilis. Essential cell wall synthetic genes can be deleted in B. subtilis L-forms Reintroduction of the genes restores cell wall synthesis This is sufficient to regenerate the cell wall and correct cell morphology Cell morphogenesis does not require a preexisting cell wall template
Collapse
|
6
|
Miskinyte M, Sousa A, Ramiro RS, de Sousa JAM, Kotlinowski J, Caramalho I, Magalhães S, Soares MP, Gordo I. The genetic basis of Escherichia coli pathoadaptation to macrophages. PLoS Pathog 2013; 9:e1003802. [PMID: 24348252 PMCID: PMC3861542 DOI: 10.1371/journal.ppat.1003802] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/14/2013] [Indexed: 12/25/2022] Open
Abstract
Antagonistic interactions are likely important driving forces of the evolutionary process underlying bacterial genome complexity and diversity. We hypothesized that the ability of evolved bacteria to escape specific components of host innate immunity, such as phagocytosis and killing by macrophages (MΦ), is a critical trait relevant in the acquisition of bacterial virulence. Here, we used a combination of experimental evolution, phenotypic characterization, genome sequencing and mathematical modeling to address how fast, and through how many adaptive steps, a commensal Escherichia coli (E. coli) acquire this virulence trait. We show that when maintained in vitro under the selective pressure of host MΦ commensal E. coli can evolve, in less than 500 generations, virulent clones that escape phagocytosis and MΦ killing in vitro, while increasing their pathogenicity in vivo, as assessed in mice. This pathoadaptive process is driven by a mechanism involving the insertion of a single transposable element into the promoter region of the E. coli yrfF gene. Moreover, transposition of the IS186 element into the promoter of Lon gene, encoding an ATP-dependent serine protease, is likely to accelerate this pathoadaptive process. Competition between clones carrying distinct beneficial mutations dominates the dynamics of the pathoadaptive process, as suggested from a mathematical model, which reproduces the observed experimental dynamics of E. coli evolution towards virulence. In conclusion, we reveal a molecular mechanism explaining how a specific component of host innate immunity can modulate microbial evolution towards pathogenicity.
Collapse
Affiliation(s)
| | - Ana Sousa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | | - Iris Caramalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Unidade de Imunologia Clínica, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Sara Magalhães
- Centro Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | | | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
7
|
Allan E, Hoischen C, Gumpert J. Chapter 1 Bacterial L‐Forms. ADVANCES IN APPLIED MICROBIOLOGY 2009; 68:1-39. [DOI: 10.1016/s0065-2164(09)01201-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|