1
|
Kasu IR, Reyes-Matte O, Bonive-Boscan A, Derman AI, Lopez-Garrido J. Catabolism of germinant amino acids is required to prevent premature spore germination in Bacillus subtilis. mBio 2024; 15:e0056224. [PMID: 38564667 PMCID: PMC11077977 DOI: 10.1128/mbio.00562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Spores of Bacillus subtilis germinate in response to specific germinant molecules that are recognized by receptors in the spore envelope. Germinants signal to the dormant spore that the environment can support vegetative growth, so many germinants, such as alanine and valine, are also essential metabolites. As such, they are also required to build the spore. Here we show that these germinants cause premature germination if they are still present at the latter stages of spore formation and beyond, but that B. subtilis metabolism is configured to prevent this: alanine and valine are catabolized and cleared from wild-type cultures even when alternative carbon and nitrogen sources are present. Alanine and valine accumulate in the spent media of mutants that are unable to catabolize these amino acids, and premature germination is pervasive. Premature germination does not occur if the germinant receptor that responds to alanine and valine is eliminated, or if wild-type strains that are able to catabolize and clear alanine and valine are also present in coculture. Our findings demonstrate that spore-forming bacteria must fine-tune the concentration of any metabolite that can also function as a germinant to a level that is high enough to allow for spore development to proceed, but not so high as to promote premature germination. These results indicate that germinant selection and metabolism are tightly linked, and suggest that germinant receptors evolve in tandem with the catabolic priorities of the spore-forming bacterium. IMPORTANCE Many bacterial species produce dormant cells called endospores, which are not killed by antibiotics or common disinfection practices. Endospores pose critical challenges in the food industry, where endospore contaminations cause food spoilage, and in hospitals, where infections by pathogenic endospore formers threaten the life of millions every year. Endospores lose their resistance properties and can be killed easily when they germinate and exit dormancy. We have discovered that the enzymes that break down the amino acids alanine and valine are critical for the production of stable endospores. If these enzymes are absent, endospores germinate as they are formed or shortly thereafter in response to alanine, which can initiate the germination of many different species' endospores, or to valine. By blocking the activity of alanine dehydrogenase, the enzyme that breaks down alanine and is not present in mammals, it may be possible to inactivate endospores by triggering premature and unproductive germination.
Collapse
Affiliation(s)
- Iqra R. Kasu
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | | - Alan I. Derman
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
2
|
Narayan B, Verma SK, Singh S, Gupta MK, Kumar S. Protective antigen of Bacillus anthracis in combination with TLR4 or TLR5 agonist confers superior protection against lethal challenge in mouse model. Microbes Infect 2023; 25:105183. [PMID: 37437686 DOI: 10.1016/j.micinf.2023.105183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
The immunogenicity and protective ability of recombinant PA (rPA) with two innate immune system modulators, i.e., monophosphoryl lipid A (MPLA), a TLR4 agonist, and recombinant flagellin C (FliC), a TLR5 agonist, were studied in the mouse model. BALB/c mice were inoculated with three doses of rPA + alum (Alum group), rPA + FliC + alum (FliC group), rPA + MPLA + alum (MPLA group), or only alum adjuvant (Alum alone group). Significant increases in anti-PA IgG titers were observed in the Alum, FliC and MPLA groups when compared to control Alum alone group. Similarly, a significant enhancement of proinflammatory (TNF-α, IL-1β), Th1 (IFN-γ, IL-12(p70), IL-2) and Th2 (IL-10, IL-4) cytokines were also noticed in Alum, FliC and MPLA groups compared to Alum alone group. The rPA-specific IgG and cytokine responses in MPLA and FliC groups were significantly higher than the Alum group, suggesting enhancement of immune response by these TLR agonists. MPLA was also found to skew the IgG1:IgG2a ratio towards IgG2a. At a challenge dose of 25 LD50, complete protection was observed in mice of MPLA group whereas lesser protection was observed in FliC (87%) and Alum (50%) groups. Therefore, we suggest the use of MPLA in further development of rPA based anthrax vaccines.
Collapse
Affiliation(s)
- Bineet Narayan
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior 474002, India
| | - Shailendra Kumar Verma
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior 474002, India
| | - Sandeep Singh
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior 474002, India
| | - Mahendra K Gupta
- School of Studies in Botany and Microbiology, Jiwaji University, Gwalior, India
| | - Subodh Kumar
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
3
|
Chattopadhyay D, Walker DR, Rich-New ST, Kearney JF, Turnbough, Jr. CL. Crystal structure and induced stability of trimeric BxpB: implications for the assembly of BxpB-BclA complexes in the exosporium of Bacillus anthracis. mBio 2023; 14:e0117223. [PMID: 37382447 PMCID: PMC10470788 DOI: 10.1128/mbio.01172-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
The outermost exosporium layer of Bacillus anthracis spores, the causative agents of anthrax, is comprised of a basal layer and an external hair-like nap. The nap includes filaments composed of trimers of the collagen-like glycoprotein BclA. Essentially all BclA trimers are attached to the spore in a process in which part of the 38-residue amino-terminal domain (NTD) of BclA forms an extremely stable interaction with the basal layer protein BxpB. Evidence indicates that the BclA-BxpB interaction is direct and requires trimeric BxpB. To further investigate the nature of the BclA-BxpB interaction, we determined the crystal structure of BxpB. The structure was trimeric with each monomer consisting of 11 β strands with connecting loops. The structure did not include apparently disordered amino acids 1-19, which contain the only two cysteine residues of the 167-residue BxpB. The orientation of the structure reveals regions of BxpB that could be involved in interacting with the BclA NTD and with adjacent cysteine-rich proteins in the basal layer. Furthermore, the BxpB structure closely resembles that of the 134-residue carboxyl-terminal domain of BclA, which forms trimers that are highly resistant to heat and detergent. We demonstrated that BxpB trimers do not share this resistance. However, when BxpB trimers are mixed with a peptide containing residues 20-38 of BclA, they form a complex that is as stable as BclA-BxpB complexes extracted from spores. Together, our results provide new insights into the mechanism of BclA-BxpB attachment and incorporation into the exosporium. IMPORTANCE The B. anthracis exosporium plays major roles in spore survival and infectivity, but the complex mechanism of its assembly is poorly understood. Key steps in this process are the stable attachment of collagen-like BclA filaments to the major basal layer structural protein BxpB and the insertion of BxpB into an underlying basal layer scaffold. The goal of this study is to further elucidate these interactions thereby advancing our understanding of exosporium assembly, a process shared by many spore-forming bacteria including important human pathogens.
Collapse
Affiliation(s)
| | - Dionna R. Walker
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shane T. Rich-New
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John F. Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
4
|
Caldwell M, Hughes M, Wei F, Ngo C, Pascua R, Pugazhendhi AS, Coathup MJ. Promising applications of D-amino acids in periprosthetic joint infection. Bone Res 2023; 11:14. [PMID: 36894568 PMCID: PMC9998894 DOI: 10.1038/s41413-023-00254-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
Due to the rise in our aging population, a disproportionate demand for total joint arthroplasty (TJA) in the elderly is forecast. Periprosthetic joint infection (PJI) represents one of the most challenging complications that can occur following TJA, and as the number of primary and revision TJAs continues to rise, an increasing PJI burden is projected. Despite advances in operating room sterility, antiseptic protocols, and surgical techniques, approaches to prevent and treat PJI remain difficult, primarily due to the formation of microbial biofilms. This difficulty motivates researchers to continue searching for an effective antimicrobial strategy. The dextrorotatory-isoforms of amino acids (D-AAs) are essential components of peptidoglycan within the bacterial cell wall, providing strength and structural integrity in a diverse range of species. Among many tasks, D-AAs regulate cell morphology, spore germination, and bacterial survival, evasion, subversion, and adhesion in the host immune system. When administered exogenously, accumulating data have demonstrated that D-AAs play a pivotal role against bacterial adhesion to abiotic surfaces and subsequent biofilm formation; furthermore, D-AAs have substantial efficacy in promoting biofilm disassembly. This presents D-AAs as promising and novel targets for future therapeutic approaches. Despite their emerging antibacterial efficacy, their role in disrupting PJI biofilm formation, the disassembly of established TJA biofilm, and the host bone tissue response remains largely unexplored. This review aims to examine the role of D-AAs in the context of TJAs. Data to date suggest that D-AA bioengineering may serve as a promising future strategy in the prevention and treatment of PJI.
Collapse
Affiliation(s)
- Matthew Caldwell
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Megan Hughes
- School of Biosciences, Cardiff University, CF10 3AT, Wales, UK
| | - Fei Wei
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Christopher Ngo
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Raven Pascua
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Abinaya Sindu Pugazhendhi
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Melanie J Coathup
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA.
| |
Collapse
|
5
|
Durand-Heredia J, Hsieh HY, Spreng KA, Stewart GC. Roles and Organization of BxpB (ExsFA) and ExsFB in the Exosporium Outer Basal Layer of Bacillus anthracis. J Bacteriol 2022; 204:e0029022. [PMID: 36394311 PMCID: PMC9765029 DOI: 10.1128/jb.00290-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
BxpB (also known as ExsFA) and ExsFB are an exosporium basal layer structural protein and a putative interspace protein of Bacillus anthracis that are known to be required for proper incorporation of the BclA collagen-like glycoprotein on the spore surface. Despite extensive similarity of the two proteins, their distribution in the spore is markedly different. We utilized a fluorescent fusion approach to examine features of the two genes that affect spore localization. The timing of expression of the bxpB and exsFB genes and their distinct N-terminal sequences were both found to be important for proper assembly into the exosporium basal layer. Results of this study provided evidence that the BclA nap glycoprotein is not covalently attached to BxpB protein despite the key role that the latter plays in BclA incorporation. Assembly of the BxpB- and ExsFB-containing outer basal layer appears not to be completely abolished in mutants lacking the ExsY and CotY basal layer structural proteins despite these spores lacking a visible exosporium. The BxpB and, to a lesser extent, the ExsFB proteins, were found to be capable of self-assembly in vitro into higher-molecular-weight forms that are stable to boiling in SDS under reducing conditions. IMPORTANCE The genus Bacillus consists of spore-forming bacteria. Some species of this genus, especially those that are pathogens of animals or insects, contain an outermost spore layer called the exosporium. The zoonotic pathogen B. anthracis is an example of this group. The exosporium likely contributes to virulence and environmental persistence of these pathogens. This work provides important new insights into the exosporium assembly process and the interplay between BclA and BxpB in this process.
Collapse
Affiliation(s)
- Jorge Durand-Heredia
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Hsin-Yeh Hsieh
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Krista A. Spreng
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - George C. Stewart
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
6
|
Aguirre AM, Adegbite AO, Sorg JA. Clostridioides difficile bile salt hydrolase activity has substrate specificity and affects biofilm formation. NPJ Biofilms Microbiomes 2022; 8:94. [PMID: 36450806 PMCID: PMC9712596 DOI: 10.1038/s41522-022-00358-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
The Clostridioides difficile pathogen is responsible for nosocomial infections. Germination is an essential step for the establishment of C. difficile infection (CDI) because toxins that are secreted by vegetative cells are responsible for the symptoms of CDI. Germination can be stimulated by the combinatorial actions of certain amino acids and either conjugated or deconjugated cholic acid-derived bile salts. During synthesis in the liver, cholic acid- and chenodeoxycholic acid-class bile salts are conjugated with either taurine or glycine at the C24 carboxyl. During GI transit, these conjugated bile salts are deconjugated by microbes that express bile salt hydrolases (BSHs). Here, we surprisingly find that several C. difficile strains have BSH activity. We observed this activity in both C. difficile vegetative cells and in spores and that the observed BSH activity was specific to taurine-derived bile salts. Additionally, we find that this BSH activity can produce cholate for metabolic conversion to deoxycholate by C. scindens. The C. scindens-produced deoxycholate signals to C. difficile to initiate biofilm formation. Our results show that C. difficile BSH activity has the potential to influence the interactions between microbes, and this could extend to the GI setting.
Collapse
Affiliation(s)
| | | | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Liu G, Yang Y, Yang G, Duan S, Yuan P, Zhang S, Li F, Gao XD, Nakanishi H. Triosephosphate Isomerase and Its Product Glyceraldehyde-3-Phosphate Are Involved in the Regulatory Mechanism That Suppresses Exit from the Quiescent State in Yeast Cells. Microbiol Spectr 2022; 10:e0089722. [PMID: 35924934 PMCID: PMC9430402 DOI: 10.1128/spectrum.00897-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/17/2022] [Indexed: 11/27/2022] Open
Abstract
Cells of the budding yeast Saccharomyces cerevisiae form spores or stationary cells upon nutrient starvation. These quiescent cells are known to resume mitotic growth in response to nutrient signals, but the mechanism remains elusive. Here, we report that quiescent yeast cells are equipped with a negative regulatory mechanism which suppresses the commencement of mitotic growth. The regulatory process involves a glycolytic enzyme, triosephosphate isomerase (Tpi1), and its product, glyceraldehyde-3-phosphate (GAP). GAP serves as an inhibitory signaling molecule; indeed, the return to growth of spores or stationary cells is suppressed by the addition of GAP even in nutrient-rich growth media, though mitotic cells are not affected. Reciprocally, dormancy is abolished by heat treatment because of the heat sensitivity of Tpi1. For example, spores commence germination merely upon heat treatment, which indicates that the negative regulatory mechanism is actively required for spores to prevent premature germination. Stationary cells of Candida glabrata are also manipulated by heat and GAP, suggesting that the regulatory process is conserved in the pathogenic yeast. IMPORTANCE Our results suggest that, in quiescent cells, nutrient signals do not merely provoke a positive regulatory process to commence mitotic growth. Exit from the quiescent state in yeast cells is regulated by balancing between the positive and negative signaling pathways. Identifying the negative regulatory pathway would provide new insight into the regulation of the transition from the quiescent to the mitotic state. Clinically, quiescent cells are problematic because they are resistant to environmental stresses and antibiotics. Given that the quiescent state is modulated by manipulation of the negative regulatory mechanism, understanding this process is important not only for its biological interest but also as a potential target for antifungal treatment.
Collapse
Affiliation(s)
- Guoyu Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd., Beijing, China
| | - Yan Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shenglin Duan
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd., Beijing, China
| | - Peng Yuan
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd., Beijing, China
| | - Shuang Zhang
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Feng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Lee CJ, Qiu TA, Hong Z, Zhang Z, Min Y, Zhang L, Dai L, Zhao H, Si T, Sweedler JV. Profiling of d-alanine production by the microbial isolates of rat gut microbiota. FASEB J 2022; 36:e22446. [PMID: 35816159 DOI: 10.1096/fj.202101595r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/11/2022]
Abstract
d-alanine (d-Ala) and several other d-amino acids (d-AAs) act as hormones and neuromodulators in nervous and endocrine systems. Unlike the endogenously synthesized d-serine in animals, d-Ala may be from exogenous sources, e.g., diet and intestinal microorganisms. However, it is unclear if the capability to produce d-Ala and other d-AAs varies among different microbial strains in the gut. We isolated individual microorganisms of rat gut microbiota and profiled their d-AA production in vitro, focusing on d-Ala. Serial dilutions of intestinal contents from adult male rats were plated on agar to obtain clonal cultures. Using MALDI-TOF MS for rapid strain typing, we identified 38 unique isolates, grouped into 11 species based on 16S rRNA gene sequences. We then used two-tier screening to profile bacterial d-AA production, combining a d-amino acid oxidase-based enzymatic assay for rapid assessment of non-acidic d-AA amount and chiral LC-MS/MS to quantify individual d-AAs, revealing 19 out of the 38 isolated strains as d-AA producers. LC-MS/MS analysis of the eight top d-AA producers showed high levels of d-Ala in all strains tested, with substantial inter- and intra-species variations. Though results from the enzymatic assay and LC-MS/MS analysis aligned well, LC-MS/MS further revealed the existence of d-glutamate and d-aspartate, which are poor substrates for this enzymatic assay. We observed large inter- and intra-species variation of d-AA production profiles from rat gut microbiome species, demonstrating the importance of chemical profiling of gut microbiota in addition to sequencing, furthering the idea that microbial metabolites modulate host physiology.
Collapse
Affiliation(s)
- Cindy J Lee
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Tian A Qiu
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Zhilai Hong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhenkun Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuhao Min
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Linzixuan Zhang
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huimin Zhao
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jonathan V Sweedler
- Department of Chemistry, Carl R. Woese Institute for Genomic Biology, and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
Andryukov BG, Karpenko AA, Lyapun IN. Learning from Nature: Bacterial Spores as a Target for Current Technologies in Medicine (Review). Sovrem Tekhnologii Med 2021; 12:105-122. [PMID: 34795986 PMCID: PMC8596247 DOI: 10.17691/stm2020.12.3.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Indexed: 01/05/2023] Open
Abstract
The capability of some representatives of Clostridium spp. and Bacillus spp. genera to form spores in extreme external conditions long ago became a subject of medico-biological investigations. Bacterial spores represent dormant cellular forms of gram-positive bacteria possessing a high potential of stability and the capability to endure extreme conditions of their habitat. Owing to these properties, bacterial spores are recognized as the most stable systems on the planet, and spore-forming microorganisms became widely spread in various ecosystems. Spore-forming bacteria have been attracted increased interest for years due to their epidemiological danger. Bacterial spores may be in the quiescent state for dozens or hundreds of years but after they appear in the favorable conditions of a human or animal organism, they turn into vegetative forms causing an infectious process. The greatest threat among the pathogenic spore-forming bacteria is posed by the causative agents of anthrax (B. anthracis), food toxicoinfection (B. cereus), pseudomembranous colitis (C. difficile), botulism (C. botulinum), gas gangrene (C. perfringens). For the effective prevention of severe infectious diseases first of all it is necessary to study the molecular structure of bacterial spores and the biochemical mechanisms of sporulation and to develop innovative methods of detection and disinfection of dormant cells. There is another side of the problem: the necessity to investigate exo- and endospores from the standpoint of obtaining similar artificially synthesized models in order to use them in the latest medical technologies for the development of thermostable vaccines, delivery of biologically active substances to the tissues and intracellular structures. In recent years, bacterial spores have become an interesting object for the exploration from the point of view of a new paradigm of unicellular microbiology in order to study microbial heterogeneity by means of the modern analytical tools.
Collapse
Affiliation(s)
- B G Andryukov
- Leading Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia; Professor, Department of Fundamental Sciences; Far Eastern Federal University, 10 Village Ayaks, Island Russkiy, Vladivostok, 690922, Russia
| | - A A Karpenko
- Senior Researcher, Laboratory of Cell Biophysics; A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevskogo St., Vladivostok, 690041, Russia
| | - I N Lyapun
- Researcher, Laboratory of Molecular Microbiology G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| |
Collapse
|
10
|
Furuta Y, Cheng C, Zorigt T, Paudel A, Izumi S, Tsujinouchi M, Shimizu T, Meijer WG, Higashi H. Direct Regulons of AtxA, the Master Virulence Regulator of Bacillus anthracis. mSystems 2021; 6:e0029121. [PMID: 34282944 PMCID: PMC8407390 DOI: 10.1128/msystems.00291-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
AtxA, the master virulence regulator of Bacillus anthracis, regulates the expression of three toxins and genes for capsule formation that are required for the pathogenicity of B. anthracis. Recent transcriptome analyses showed that AtxA affects a large number of genes on the chromosome and plasmids, suggesting a role as a global regulator. However, information on genes directly regulated by AtxA is scarce. In this work, we conducted genome-wide analyses and cataloged the binding sites of AtxA in vivo and transcription start sites on the B. anthracis genome. By integrating these results, we detected eight genes as direct regulons of AtxA. These consisted of five protein-coding genes, including two of the three toxin genes, and three genes encoding the small RNAs XrrA and XrrB and a newly discovered 95-nucleotide small RNA, XrrC. Transcriptomes from single-knockout mutants of these small RNAs revealed changes in the transcription levels of genes related to the aerobic electron transport chain, heme biosynthesis, and amino acid metabolism, suggesting their function for the control of cell physiology. These results reveal the first layer of the gene regulatory network for the pathogenicity of B. anthracis and provide a data set for the further study of the genomics and genetics of B. anthracis. IMPORTANCE Bacillus anthracis is the Gram-positive bacterial species that causes anthrax. Anthrax is still prevalent in countries mainly in Asia and Africa, where it causes economic damage and remains a public health issue. The mechanism of pathogenicity is mainly explained by the three toxin proteins expressed from the pXO1 plasmid and by proteins involved in capsule formation expressed from the pXO2 plasmid. AtxA is a protein expressed from the pXO1 plasmid that is known to upregulate genes involved in toxin production and capsule formation and is thus considered the master virulence regulator of B. anthracis. Therefore, understanding the detailed mechanism of gene regulation is important for the control of anthrax. The significance of this work lies in the identification of genes that are directly regulated by AtxA via genome-wide analyses. The results reveal the first layer of the gene regulatory network for the pathogenicity of B. anthracis and provide useful resources for a further understanding of B. anthracis.
Collapse
Affiliation(s)
- Yoshikazu Furuta
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Cheng Cheng
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Tuvshinzaya Zorigt
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Atmika Paudel
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shun Izumi
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mai Tsujinouchi
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomoko Shimizu
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Wim G. Meijer
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Hideaki Higashi
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
11
|
Spore-Associated Proteins Involved in c-di-GMP Synthesis and Degradation of Bacillus anthracis. J Bacteriol 2021; 203:e0013521. [PMID: 34096779 DOI: 10.1128/jb.00135-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bis-(3'-5')-cyclic-dimeric GMP (c-di-GMP) is an important bacterial regulatory signaling molecule affecting biofilm formation, toxin production, motility, and virulence. The genome of Bacillus anthracis, the causative agent of anthrax, is predicted to encode ten putative GGDEF/EAL/HD-GYP-domain containing proteins. Heterologous expression in Bacillus subtilis hosts indicated that there are five active GGDEF domain-containing proteins and four active EAL or HD-GYP domain-containing proteins. Using an mCherry gene fusion-Western blotting approach, the expression of the c-di-GMP-associated proteins was observed throughout the in vitro life cycle. Of the six c-di-GMP-associated proteins found to be present in sporulating cells, four (CdgA, CdgB, CdgD, and CdgG) contain active GGDEF domains. The six proteins expressed in sporulating cells are retained in spores in a CotE-independent manner and thus are not likely to be localized to the exosporium layer of the spores. Individual deletion mutations involving the nine GGDEF/EAL protein-encoding genes and one HD-GYP protein-encoding gene did not affect sporulation efficiency, the attachment of the exosporium glycoprotein BclA, or biofilm production. Notably, expression of anthrax toxin was not affected by deletion of any of the cdg determinants. Three determinants encoding proteins with active GGDEF domains were found to affect germination kinetics. This study reveals a spore association of cyclic-di-GMP regulatory proteins and a likely role for these proteins in the biology of the B. anthracis spore. IMPORTANCE The genus Bacillus is composed of Gram-positive, rod shaped, soil-dwelling bacteria. As a mechanism for survival in the harsh conditions in soil, the organisms undergo sporulation, and the resulting spores permit the organisms to survive harsh environmental conditions. Although most species are saprophytes, Bacillus cereus and Bacillus anthracis are human pathogens and Bacillus thuringiensis is an insect pathogen. The bacterial c-di-GMP regulatory system is an important control system affecting motility, biofilm formation, and toxin production. The role of c-di-GMP has been studied in the spore-forming bacilli Bacillus subtilis, Bacillus amyloliquefaciens, B. cereus, and B. thuringiensis. However, this regulatory system has not heretofore been examined in the high-consequence zoonotic pathogen of this genus, B. anthracis.
Collapse
|
12
|
Zhang L, Zeng F, McKay CP, Navarro-González R, Sun HJ. Optimizing Chiral Selectivity in Practical Life-Detection Instruments. ASTROBIOLOGY 2021; 21:505-510. [PMID: 33885325 DOI: 10.1089/ast.2020.2381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Preferential uptake of either levorotatory (L) or dextrorotatory (D) enantiomer of a chiral molecule is a potential planetary life-detection method. On Earth, bacteria, as a rule, metabolize D-sugars and L-amino acids. Here, we use growth experiments to identify exceptions to the rule and their potential impact on the method's reliability. Our experiments involve six strains of Bacillus and collective uptake of the sugars glucose and arabinose, and the amino acids alanine, glutamic acid, leucine, cysteine, and serine-all of which are highly soluble. We find that selective uptake is not evident unless (1) each sugar is tested individually and (2) multiple amino acids are tested together in a mixture. Combining sugars should be avoided because, as we show in Bacillus bacteria, the same organisms may catabolize one sugar, glucose, in D-form and another sugar, arabinose, in L-form. Single amino acids should be avoided because bacteria can access certain proteinogenically incompatible enantiomers using specific racemases. Specifically, bacteria contain an alanine acid racemase and can catabolize D-alanine if no other D-amino acids are present. The proposed improvements would reliably separate nonselective chemical reactions from biological reactions and, if life is indicated, inform whether the selective patterns for amino acids and sugars are the same as on Earth.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Desert Plant Roots Ecology and Vegetation Restoration Laboratory, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Christopher P McKay
- Space Science Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Rafael Navarro-González
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Henry J Sun
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Las Vegas, Nevada, USA
| |
Collapse
|
13
|
Krajčíková D, Bugárová V, Barák I. Interactions of Bacillus subtilis Basement Spore Coat Layer Proteins. Microorganisms 2021; 9:microorganisms9020285. [PMID: 33573199 PMCID: PMC7911427 DOI: 10.3390/microorganisms9020285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Abstract
Bacillus subtilis endospores are exceptionally resistant cells encircled by two protective layers: a petidoglycan layer, termed the cortex, and the spore coat, a proteinaceous layer. The formation of both structures depends upon the proper assembly of a basement coat layer, which is composed of two proteins, SpoIVA and SpoVM. The present work examines the interactions of SpoIVA and SpoVM with coat proteins recruited to the spore surface during the early stages of coat assembly. We showed that the alanine racemase YncD associates with two morphogenetic proteins, SpoIVA and CotE. Mutant spores lacking the yncD gene were less resistant against wet heat and germinated to a greater extent than wild-type spores in the presence of micromolar concentrations of l-alanine. In seeking a link between the coat and cortex formation, we investigated the interactions between SpoVM and SpoIVA and the proteins essential for cortex synthesis and found that SpoVM interacts with a penicillin-binding protein, SpoVD, and we also demonstrated that SpoVM is crucial for the proper localization of SpoVD. This study shows that direct contacts between coat morphogenetic proteins with a complex of cortex-synthesizing proteins could be one of the tools by which bacteria couple cortex and coat formation.
Collapse
|
14
|
Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, Bhakta S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles' heel for the TB-causing pathogen. FEMS Microbiol Rev 2020; 43:548-575. [PMID: 31183501 PMCID: PMC6736417 DOI: 10.1093/femsre/fuz016] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis, remains one of the leading causes of mortality across the world. There is an urgent requirement to build a robust arsenal of effective antimicrobials, targeting novel molecular mechanisms to overcome the challenges posed by the increase of antibiotic resistance in TB. Mycobacterium tuberculosis has a unique cell envelope structure and composition, containing a peptidoglycan layer that is essential for maintaining cellular integrity and for virulence. The enzymes involved in the biosynthesis, degradation, remodelling and recycling of peptidoglycan have resurfaced as attractive targets for anti-infective drug discovery. Here, we review the importance of peptidoglycan, including the structure, function and regulation of key enzymes involved in its metabolism. We also discuss known inhibitors of ATP-dependent Mur ligases, and discuss the potential for the development of pan-enzyme inhibitors targeting multiple Mur ligases.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Tulika Munshi
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Jess Healy
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Nicholas H Keep
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
15
|
Buhr T, Minter Z, Kennihan N, Young A, Borgers‐Klonkowski E, Osborn E, Bohmke M, Hamilton S, Kimani M, Miller C, Mackie R, Innocenti J, Bensman M, Lilly S. Combining spore germination and heat inactivation to decontaminate materials contaminated with
Bacillus anthracis
spores. J Appl Microbiol 2019; 128:124-137. [DOI: 10.1111/jam.14474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 11/26/2022]
Affiliation(s)
- T.L. Buhr
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - Z.A. Minter
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - N.L. Kennihan
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - A.A. Young
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - E.L. Borgers‐Klonkowski
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - E.B. Osborn
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - M.D. Bohmke
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - S.M. Hamilton
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - M.B. Kimani
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - C.T. Miller
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - R.S. Mackie
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - J.M. Innocenti
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - M.D. Bensman
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| | - S.D. Lilly
- Naval Surface Warfare Center‐Dahlgren Division CBR Concepts and Experimentation Branch (B21) Dahlgren VA USA
| |
Collapse
|
16
|
|
17
|
Robinson CV, Bishop AH. A disclosure gel for visual detection of live Bacillus anthracis spores. J Appl Microbiol 2019; 126:1700-1707. [PMID: 30776160 PMCID: PMC6850754 DOI: 10.1111/jam.14226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 11/29/2022]
Abstract
Aims To develop a gel formulation to trigger a visual signal for rapid disclosure of the location and extent of surface contamination with viable Bacillus anthracis spores. Methods and Results Methylumbelliferyl‐α‐d‐glucopyranoside was combined with hyaluronic acid to produce a gel that could be applied to a surface as a coating. It remained hydrated for a sufficient time for α‐glucosidase activity present in intact B. anthracis spores to cleave the substrate and release the fluorescent product, methylumbelliferone. The presence of B. anthracis spores could be disclosed at 5 × 104CFU per reaction test well (0·32 cm2) both visually and using fluorescence detection equipment. Conclusions The disclosure gel provides a rapid, visual response to the presence of B. anthracis spores on a surface. Significance and Impact of the Study The disclosure gel demonstrates the first steps towards the development of a formulation that can provide nonspecialist users with a visual alert to the presence of B. anthracis spores on a surface. It is envisioned that such a formulation would be beneficial in scenarios where exposure to spore release is a risk, and could be used in the initial assessment of equipment to aid prioritization and localized execution of a decontamination strategy.
Collapse
Affiliation(s)
- C V Robinson
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, UK
| | - A H Bishop
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, Devon, UK
| |
Collapse
|
18
|
Coordinated Assembly of the Bacillus anthracis Coat and Exosporium during Bacterial Spore Outer Layer Formation. mBio 2018; 9:mBio.01166-18. [PMID: 30401771 PMCID: PMC6222130 DOI: 10.1128/mbio.01166-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This work dramatically improves our understanding of the assembly of the outermost layer of the B. anthracis spore, the exosporium, a layer that encases spores from many bacterial species and likely plays important roles in the spore’s interactions with the environment, including host tissues. Nonetheless, the mechanisms directing exosporium assembly into a shell surrounding the spore are still very poorly understood. In this study, we clarify these mechanisms by the identification of a novel protein interaction network that directs assembly to initiate at a specific subcellular location in the developing cell. Our results further suggest that the presence or absence of an exosporium has a major impact on the assembly of other more interior spore layers, thereby potentially explaining long-noted differences in spore assembly between B. anthracis and the model organism B. subtilis. Bacterial spores produced by the Bacillales are composed of concentric shells, each of which contributes to spore function. Spores from all species possess a cortex and coat, but spores from many species possess additional outer layers. The outermost layer of Bacillus anthracis spores, the exosporium, is separated from the coat by a gap known as the interspace. Exosporium and interspace assembly remains largely mysterious. As a result, we have a poor understanding of the overarching mechanisms driving the assembly of one of the most ubiquitous cell types in nature. To elucidate the mechanisms directing exosporium assembly, we generated strains bearing mutations in candidate exosporium-controlling genes and analyzed the effect on exosporium formation. Biochemical and cell biological analyses argue that CotE directs the assembly of CotO into the spore and that CotO might be located at or close to the interior side of the cap. Taken together with data showing that CotE and CotO interact directly in vitro, we propose a model in which CotE and CotO are important components of a protein interaction network that connects the exosporium to the forespore during cap formation and exosporium elongation. Our data also suggest that the cap interferes with coat assembly at one pole of the spore, altering the pattern of coat deposition compared to the model organism Bacillus subtilis. We propose that the difference in coat assembly patterns between these two species is due to an inherent flexibility in coat assembly, which may facilitate the evolution of spore outer layer complexity.
Collapse
|
19
|
Jones RM, Popham DL, Schmidt AL, Neidle EL, Stabb EV. Vibrio fischeri DarR Directs Responses to d-Aspartate and Represents a Group of Similar LysR-Type Transcriptional Regulators. J Bacteriol 2018; 200:e00773-17. [PMID: 29437849 PMCID: PMC6040199 DOI: 10.1128/jb.00773-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/24/2018] [Indexed: 01/11/2023] Open
Abstract
Mounting evidence suggests that d-amino acids play previously underappreciated roles in diverse organisms. In bacteria, even d-amino acids that are absent from canonical peptidoglycan (PG) may act as growth substrates, as signals, or in other functions. Given these proposed roles and the ubiquity of d-amino acids, the paucity of known d-amino-acid-responsive transcriptional control mechanisms in bacteria suggests that such regulation awaits discovery. We found that DarR, a LysR-type transcriptional regulator (LTTR), activates transcription in response to d-Asp. The d-Glu auxotrophy of a Vibrio fischerimurI::Tn mutant was suppressed, with the wild-type PG structure maintained, by a point mutation in darR This darR mutation resulted in the overexpression of an adjacent operon encoding a putative aspartate racemase, RacD, which compensated for the loss of the glutamate racemase encoded by murI Using transcriptional reporters, we found that wild-type DarR activated racD transcription in response to exogenous d-Asp but not upon the addition of l-Asp, l-Glu, or d-Glu. A DNA sequence typical of LTTR-binding sites was identified between darR and the divergently oriented racD operon, and scrambling this sequence eliminated activation of the reporter in response to d-Asp. In several proteobacteria, genes encoding LTTRs similar to DarR are linked to genes with predicted roles in d- and/or l-Asp metabolism. To test the functional similarities in another bacterium, darR and racD mutants were also generated in Acinetobacter baylyi In V. fischeri and A. baylyi, growth on d-Asp required the presence of both darR and racD Our results suggest that multiple bacteria have the ability to sense and respond to d-Asp.IMPORTANCE d-Amino acids are prevalent in the environment and are generated by organisms from all domains of life. Although some biological roles for d-amino acids are understood, in other cases, their functions remain uncertain. Given the ubiquity of d-amino acids, it seems likely that bacteria will initiate transcriptional responses to them. Elucidating d-amino acid-responsive regulators along with the genes they control will help uncover bacterial uses of d-amino acids. Here, we report the discovery of DarR, a novel LTTR in V. fischeri that mediates a transcriptional response to environmental d-Asp and underpins the catabolism of d-Asp. DarR represents the founding member of a group of bacterial homologs that we hypothesize control aspects of aspartate metabolism in response to d-Asp and/or to d-Asp-containing peptides.
Collapse
Affiliation(s)
- Richard M Jones
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - David L Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Alicia L Schmidt
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
20
|
Rabi R, Larcombe S, Mathias R, McGowan S, Awad M, Lyras D. Clostridium sordellii outer spore proteins maintain spore structural integrity and promote bacterial clearance from the gastrointestinal tract. PLoS Pathog 2018; 14:e1007004. [PMID: 29668758 PMCID: PMC5927469 DOI: 10.1371/journal.ppat.1007004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/30/2018] [Accepted: 04/03/2018] [Indexed: 12/25/2022] Open
Abstract
Bacterial spores play an important role in disease initiation, transmission and persistence. In some species, the exosporium forms the outermost structure of the spore and provides the first point of contact between the spore and the environment. The exosporium may also be involved in spore adherence, protection and germination. Clostridium sordellii is a highly lethal, spore forming pathogen that causes soft-tissue infections, enteritis and toxic-shock syndrome. Despite the importance of C. sordellii spores in disease, spore proteins from this bacterium have not been defined or interrogated functionally. In this study, we identified the C. sordellii outer spore proteome and two of the identified proteins, CsA and CsB, were characterised using a genetic and phenotypic approach. Both proteins were essential for the correct formation and positioning of the C. sordellii spore coat and exosporium. The absence of CsA reduced sporulation levels and increased spore sensitivity to heat, sodium hydroxide and hydrochloric acid. By comparison, CsB was required for normal levels of spore adherence to cervical, but not vaginal, cells, with csB mutant spores having increased adherence properties. The establishment of a mouse infection model of the gastrointestinal tract for C. sordellii allowed the role of CsA and CsB to be interrogated in an infected host. Following the oral administration of spores to mice, the wild-type strain efficiently colonized the gastrointestinal tract, with the peak of bacterial numbers occurring at one day post-infection. Colonization was reduced by two logs at four days post-infection. By comparison, mice infected with the csB mutant did not show a reduction in bacterial numbers. We conclude that C. sordellii outer spore proteins are important for the structural and functional integrity of spores. Furthermore, outer spore proteins are required for wild-type levels of colonization during infection, possibly as a result of the role that the proteins play in spore structure and morphology.
Collapse
Affiliation(s)
- Rebecca Rabi
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Sarah Larcombe
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Rommel Mathias
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Sheena McGowan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Milena Awad
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
21
|
Abstract
Despite being resistant to a variety of environmental insults, the bacterial endospore can sense the presence of small molecules and respond by germinating, losing the specialized structures of the dormant spore, and resuming active metabolism, before outgrowing into vegetative cells. Our current level of understanding of the spore germination process in bacilli and clostridia is reviewed, with particular emphasis on the germinant receptors characterized in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. The recent evidence for a local clustering of receptors in a "germinosome" would begin to explain how signals from different receptors could be integrated. The SpoVA proteins, involved in the uptake of Ca2+-dipicolinic acid into the forespore during sporulation, are also responsible for its release during germination. Lytic enzymes SleB and CwlJ, found in bacilli and some clostridia, hydrolyze the spore cortex: other clostridia use SleC for this purpose. With genome sequencing has come the appreciation that there is considerable diversity in the setting for the germination machinery between bacilli and clostridia.
Collapse
|
22
|
Stelder SK, Benito de Moya C, Hoefsloot HCJ, de Koning LJ, Brul S, de Koster CG. Stoichiometry, Absolute Abundance, and Localization of Proteins in the Bacillus cereus Spore Coat Insoluble Fraction Determined Using a QconCAT Approach. J Proteome Res 2018; 17:903-917. [PMID: 29260567 PMCID: PMC5799878 DOI: 10.1021/acs.jproteome.7b00732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Spores of Bacillus cereus pose a threat to food
safety due to their high resistance to the heat or acid treatments
commonly used to make food microbiologically safe. Spores may survive
these treatments and later resume growth either on foodstuffs or,
after ingestion, upon entering the gut they are capable of producing
toxins, which cause either vomiting or diarrhea. The outer layers
of the spore, the spore coat and exosporium, consist primarily of
proteins that may serve as potential biomarkers for detection. The
major morphogenetic protein CotE is important for correct assembly
and attachment of the outermost layer, the exosporium, and by extension
retention of many proteins. However, characterization of the proteins
affected by deletion of CotE has been limited to electrophoretic patterns.
Here we report the effect of CotE deletion on the insoluble fraction
of the spore proteome through liquid chromatography–Fourier
transform tandem mass spectrometry (LC–FTMS/MS) analysis. A total of 560 proteins have been identified in both mutant
and wild-type spore coat isolates. A further 163 proteins were identified
exclusively in wild-type spore isolates indicating that they are dependent
on CotE for their association with the spore. Several of these are
newly confirmed as associated with the exosporium, namely BC_2569
(BclF), BC_3345, BC_2427, BC_2878, BC_0666, BC_2984, BC_3481, and
BC_2570. A total of 153 proteins were only identified in ΔCotE
spore isolates. This was observed for proteins that are known or likely
to be interacting with or are encased by CotE. Crucial spore proteins
were quantified using a QconCAT reference standard, the first time
this was used in a biochemically heterogeneous system. This allowed
us to determine the absolute abundance of 21 proteins, which spanned
across three orders of magnitude and together covered 5.66% ±
0.51 of the total spore weight. Applying the QconCAT methodology to
the ΔCotE mutant allowed us to quantify 4.13% ± 0.14 of
the spore total weight and revealed a reduction in abundance for most
known exosporium associated proteins upon CotE deletion. In contrast,
several proteins, either known or likely to be interacting with or
encased by CotE (i.e., GerQ), were more abundant. The results obtained
provide deeper insight into the layered spore structure such as which
proteins are exposed on the outside of the spore. This information
is important for developing detection methods for targeting spores
in a food safety setting. Furthermore, protein stoichiometry and determination
of the abundance of germination mediating enzymes provides useful
information for germination and outgrowth model development.
Collapse
Affiliation(s)
- Sacha K Stelder
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Celia Benito de Moya
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Huub C J Hoefsloot
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Leo J de Koning
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Chris G de Koster
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
23
|
Kohler LJ, Quirk AV, Welkos SL, Cote CK. Incorporating germination-induction into decontamination strategies for bacterial spores. J Appl Microbiol 2017; 124:2-14. [PMID: 28980459 DOI: 10.1111/jam.13600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 01/05/2023]
Abstract
Bacterial spores resist environmental extremes and protect key spore macromolecules until more supportive conditions arise. Spores germinate upon sensing specific molecules, such as nutrients. Germination is regulated by specialized mechanisms or structural features of the spore that limit contact with germinants and enzymes that regulate germination. Importantly, germination renders spores more susceptible to inactivating processes such as heat, desiccation, and ultraviolet radiation, to which they are normally refractory. Thus, germination can be intentionally induced through a process called germination-induction and subsequent treatment of these germinated spores with common disinfectants or gentle heat will inactivate them. However, while the principle of germination-induction has been shown effective in the laboratory, this strategy has not yet been fully implemented in real-word scenarios. Here, we briefly review the mechanisms of bacterial spore germination and discuss the evolution of germination-induction as a decontamination strategy. Finally, we examine progress towards implementing germination-induction in three contexts: biodefense, hospital settings and food manufacture. SIGNIFICANCE AND IMPACT This article reviews implementation of germination-induction as part of a decontamination strategy for the cleanup of bacterial spores. To our knowledge this is the first time that germination-induction studies have been reviewed in this context. This article will provide a resource which summarizes the mechanisms of germination in Clostridia and Bacillus species, challenges and successes in germination-induction, and potential areas where this strategy may be implemented.
Collapse
Affiliation(s)
- L J Kohler
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - A V Quirk
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - S L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - C K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| |
Collapse
|
24
|
Abstract
Spores of Clostridiales and Bacillales are encased in a complex series of concentric shells that provide protection, facilitate germination, and mediate interactions with the environment. Analysis of diverse spore-forming species by thin-section transmission electron microscopy reveals that the number and morphology of these encasing shells vary greatly. In some species, they appear to be composed of a small number of discrete layers. In other species, they can comprise multiple, morphologically complex layers. In addition, spore surfaces can possess elaborate appendages. For all their variability, there is a consistent architecture to the layers encasing the spore. A hallmark of all Clostridiales and Bacillales spores is the cortex, a layer made of peptidoglycan. In close association with the cortex, all species examined possess, at a minimum, a series of proteinaceous layers, called the coat. In some species, including Bacillus subtilis, only the coat is present. In other species, including Bacillus anthracis, an additional layer, called the exosporium, surrounds the coat. Our goals here are to review the present understanding of the structure, composition, assembly, and functions of the coat, primarily in the model organism B. subtilis, but also in the small but growing number of other spore-forming species where new data are showing that there is much to be learned beyond the relatively well-developed basis of knowledge in B. subtilis. To help summarize this large field and define future directions for research, we will focus on key findings in recent years.
Collapse
|
25
|
Ramírez-Guadiana FH, Meeske AJ, Wang X, Rodrigues CDA, Rudner DZ. The Bacillus subtilis germinant receptor GerA triggers premature germination in response to morphological defects during sporulation. Mol Microbiol 2017; 105:689-704. [PMID: 28605069 DOI: 10.1111/mmi.13728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/14/2022]
Abstract
During sporulation in Bacillus subtilis, germinant receptors assemble in the inner membrane of the developing spore. In response to specific nutrients, these receptors trigger germination and outgrowth. In a transposon-sequencing screen, we serendipitously discovered that loss of function mutations in the gerA receptor partially suppress the phenotypes of > 25 sporulation mutants. Most of these mutants have modest defects in the assembly of the spore protective layers that are exacerbated in the presence of a functional GerA receptor. Several lines of evidence indicate that these mutants inappropriately trigger the activation of GerA during sporulation resulting in premature germination. These findings led us to discover that up to 8% of wild-type sporulating cells trigger premature germination during differentiation in a GerA-dependent manner. This phenomenon was observed in domesticated and undomesticated wild-type strains sporulating in liquid and on solid media. Our data indicate that the GerA receptor is poised on a knife's edge during spore development. We propose that this sensitized state ensures a rapid response to nutrient availability and also elicits premature germination of spores with improperly assembled protective layers resulting in the elimination of even mildly defective individuals from the population.
Collapse
Affiliation(s)
- Fernando H Ramírez-Guadiana
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Alexander J Meeske
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Christopher D A Rodrigues
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
26
|
Abstract
To survive adverse conditions, some bacterial species are capable of developing into a cell type, the "spore," which exhibits minimal metabolic activity and remains viable in the presence of multiple environmental challenges. For some pathogenic bacteria, this developmental state serves as a means of survival during transmission from one host to another. Spores are the highly infectious form of these bacteria. Upon entrance into a host, specific signals facilitate germination into metabolically active replicating organisms, resulting in disease pathogenesis. In this article, we will review spore structure and function in well-studied pathogens of two genera, Bacillus and Clostridium, focusing on Bacillus anthracis and Clostridium difficile, and explore current data regarding the lifestyles of these bacteria outside the host and transmission from one host to another.
Collapse
|
27
|
Shrestha R, Lockless SW, Sorg JA. A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate. J Biol Chem 2017; 292:10735-10742. [PMID: 28487371 DOI: 10.1074/jbc.m117.791749] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/07/2017] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile has become one of the most common bacterial pathogens in hospital-acquired infections in the United States. Although C. difficile is strictly anaerobic, it survives in aerobic environments and transmits between hosts via spores. C. difficile spore germination is triggered in response to certain bile acids and glycine. Although glycine is the most effective co-germinant, other amino acids can substitute with varying efficiencies. Of these, l-alanine is an effective co-germinant and is also a germinant for most bacterial spores. Many endospore-forming bacteria embed alanine racemases into their spore coats, and these enzymes are thought to convert the l-alanine germinant into d-alanine, a spore germination inhibitor. Although the C. difficile Alr2 racemase is the sixth most highly expressed gene during C. difficile spore formation, a previous study reported that Alr2 has little to no role in germination of C. difficile spores in rich medium. Here, we hypothesized that Alr2 could affect C. difficile l-alanine-induced spore germination in a defined medium. We found that alr2 mutant spores more readily germinate in response to l-alanine as a co-germinant. Surprisingly, d-alanine also functioned as a co-germinant. Moreover, we found that Alr2 could interconvert l- and d-serine and that Alr2 bound to l- and d-serine with ∼2-fold weaker affinity to that of l- and d-alanine. Finally, we demonstrate that l- and d-serine are also co-germinants for C. difficile spores. These results suggest that C. difficile spores can respond to a diverse set of amino acid co-germinants and reveal that Alr2 can accommodate serine as a substrate.
Collapse
Affiliation(s)
- Ritu Shrestha
- From the Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Steve W Lockless
- From the Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Joseph A Sorg
- From the Department of Biology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
28
|
Mott T, Shoe J, Hunter M, Woodson A, Fritts K, Klimko C, Quirk A, Welkos S, Cote C. Comparison of sampling methods to recover germinatedBacillus anthracisandBacillus thuringiensisendospores from surface coupons. J Appl Microbiol 2017; 122:1219-1232. [DOI: 10.1111/jam.13418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 11/26/2022]
Affiliation(s)
- T.M. Mott
- Bacteriology Division; United States Army Medical Research Institute of Infectious Disease (USAMRIID); Frederick MD USA
| | - J.L. Shoe
- Bacteriology Division; United States Army Medical Research Institute of Infectious Disease (USAMRIID); Frederick MD USA
| | - M. Hunter
- Bacteriology Division; United States Army Medical Research Institute of Infectious Disease (USAMRIID); Frederick MD USA
| | - A.M. Woodson
- Bacteriology Division; United States Army Medical Research Institute of Infectious Disease (USAMRIID); Frederick MD USA
| | - K.A. Fritts
- Bacteriology Division; United States Army Medical Research Institute of Infectious Disease (USAMRIID); Frederick MD USA
| | - C.P. Klimko
- Bacteriology Division; United States Army Medical Research Institute of Infectious Disease (USAMRIID); Frederick MD USA
| | - A.V. Quirk
- Bacteriology Division; United States Army Medical Research Institute of Infectious Disease (USAMRIID); Frederick MD USA
| | - S.L. Welkos
- Bacteriology Division; United States Army Medical Research Institute of Infectious Disease (USAMRIID); Frederick MD USA
| | - C.K. Cote
- Bacteriology Division; United States Army Medical Research Institute of Infectious Disease (USAMRIID); Frederick MD USA
| |
Collapse
|
29
|
Terry C, Jiang S, Radford DS, Wan Q, Tzokov S, Moir A, Bullough PA. Molecular tiling on the surface of a bacterial spore - the exosporium of the Bacillus anthracis/cereus/thuringiensis group. Mol Microbiol 2017; 104:539-552. [PMID: 28214340 PMCID: PMC5434927 DOI: 10.1111/mmi.13650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 01/04/2023]
Abstract
Bacteria of the genera Bacillus and Clostridium form highly resistant spores, which in the case of some pathogens act as the infectious agents. An exosporium forms the outermost layer of some spores; it plays roles in protection, adhesion, dissemination, host targeting in pathogens and germination control. The exosporium of the Bacillus cereus group, including the anthrax pathogen, contains a 2D‐crystalline basal layer, overlaid by a hairy nap. BclA and related proteins form the hairy nap, and require ExsFA (BxpB) for their localization on the basal layer. Until now, the identity of the main structural protein components of the basal layer was unknown. We demonstrate here that ExsY forms one of the essential components. Through heterologous expression in Escherichia coli, we also demonstrate that ExsY can self‐assemble into ordered 2D arrays that mimic the structure of the exosporium basal layer. Self‐assembly is likely to play an important role in the construction of the exosporium. The ExsY array is stable to heat and chemical denaturants, forming a robust layer that would contribute to overall spore resistance. Our structural analysis also provides novel insight into the location of other molecular components anchored onto the exosporium, such as BclA and ExsFA.
Collapse
Affiliation(s)
- Cassandra Terry
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Shuo Jiang
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - David S Radford
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Qiang Wan
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Svetomir Tzokov
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Anne Moir
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Per A Bullough
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| |
Collapse
|
30
|
Warda AK, Xiao Y, Boekhorst J, Wells-Bennik MHJ, Nierop Groot MN, Abee T. Analysis of Germination Capacity and Germinant Receptor (Sub)clusters of Genome-Sequenced Bacillus cereus Environmental Isolates and Model Strains. Appl Environ Microbiol 2017; 83:e02490-16. [PMID: 27881417 PMCID: PMC5288832 DOI: 10.1128/aem.02490-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/17/2016] [Indexed: 12/28/2022] Open
Abstract
Spore germination of 17 Bacillus cereus food isolates and reference strains was evaluated using flow cytometry analysis in combination with fluorescent staining at a single-spore level. This approach allowed for rapid collection of germination data under more than 20 conditions, including heat activation of spores, germination in complex media (brain heart infusion [BHI] and tryptone soy broth [TSB]), and exposure to saturating concentrations of single amino acids and the combination of alanine and inosine. Whole-genome sequence comparison revealed a total of 11 clusters of operons encoding germinant receptors (GRs): GerK, GerI, and GerL were present in all strains, whereas GerR, GerS, GerG, GerQ, GerX, GerF, GerW, and GerZ (sub)clusters showed a more diverse presence/absence in different strains. The spores of tested strains displayed high diversity with regard to their sensitivity and responsiveness to selected germinants and heat activation. The two laboratory strains, B. cereus ATCC 14579 and ATCC 10987, and 11 food isolates showed a good germination response under a range of conditions, whereas four other strains (B. cereus B4085, B4086, B4116, and B4153) belonging to phylogenetic group IIIA showed a very weak germination response even in BHI and TSB media. Germination responses could not be linked to specific (combinations of) GRs, but it was noted that the four group IIIA strains contained pseudogenes or variants of subunit C in their gerL cluster. Additionally, two of those strains (B4086 and B4153) carried pseudogenes in the gerK and gerRI (sub)clusters that possibly affected the functionality of these GRs. IMPORTANCE Germination of bacterial spores is a critical step before vegetative growth can resume. Food products may contain nutrient germinants that trigger germination and outgrowth of Bacillus species spores, possibly leading to food spoilage or foodborne illness. Prediction of spore germination behavior is, however, very challenging, especially for spores of natural isolates that tend to show more diverse germination responses than laboratory strains. The approach used has provided information on the genetic diversity in GRs and corresponding subclusters encoded by B. cereus strains, as well as their germination behavior and possible associations with GRs, and it provides a basis for further extension of knowledge on the role of GRs in B. cereus (group member) ecology and transmission to the host.
Collapse
Affiliation(s)
- Alicja K Warda
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Yinghua Xiao
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jos Boekhorst
- TI Food and Nutrition, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | - Marjon H J Wells-Bennik
- TI Food and Nutrition, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | - Masja N Nierop Groot
- TI Food and Nutrition, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
31
|
Abstract
In some Bacillus species, including Bacillus subtilis, the coat is the outermost layer of the spore. In others, such as the Bacillus cereus family, there is an additional layer that envelops the coat, called the exosporium. In the case of Bacillus anthracis, a series of fine hair-like projections, also referred to as a "hairy" nap, extends from the exosporium basal layer. The exact role of the exosporium in B. anthracis, or for any of the Bacillus species possessing this structure, remains unclear. However, it has been assumed that the exosporium would play some role in infection for B. anthracis, because it is the outermost structure of the spore and would make initial contact with host and immune cells during infection. Therefore, the exosporium has been a topic of great interest, and over the past decade much progress has been made to understand its composition, biosynthesis, and potential roles. Several key aspects of this spore structure, however, are still debated and remain undetermined. Although insights have been gained on the interaction of exosporium with the host during infection, the exact role and significance of this complex structure remain to be determined. Furthermore, because the exosporium is a highly antigenic structure, future strategies for the next-generation anthrax vaccine should pursue its inclusion as a component to provide protection against the spore itself during the initial stages of anthrax.
Collapse
|
32
|
The Exosporium Layer of Bacterial Spores: a Connection to the Environment and the Infected Host. Microbiol Mol Biol Rev 2016; 79:437-57. [PMID: 26512126 DOI: 10.1128/mmbr.00050-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Much of what we know regarding bacterial spore structure and function has been learned from studies of the genetically well-characterized bacterium Bacillus subtilis. Molecular aspects of spore structure, assembly, and function are well defined. However, certain bacteria produce spores with an outer spore layer, the exosporium, which is not present on B. subtilis spores. Our understanding of the composition and biological functions of the exosporium layer is much more limited than that of other aspects of the spore. Because the bacterial spore surface is important for the spore's interactions with the environment, as well as being the site of interaction of the spore with the host's innate immune system in the case of spore-forming bacterial pathogens, the exosporium is worthy of continued investigation. Recent exosporium studies have focused largely on members of the Bacillus cereus family, principally Bacillus anthracis and Bacillus cereus. Our understanding of the composition of the exosporium, the pathway of its assembly, and its role in spore biology is now coming into sharper focus. This review expands on a 2007 review of spore surface layers which provided an excellent conceptual framework of exosporium structure and function (A. O. Henriques and C. P. Moran, Jr., Annu Rev Microbiol 61:555-588, 2007, http://dx.doi.org/10.1146/annurev.micro.61.080706.093224). That review began a process of considering outer spore layers as an integrated, multilayered structure rather than simply regarding the outer spore components as independent parts.
Collapse
|
33
|
Hernández SB, Cava F. Environmental roles of microbial amino acid racemases. Environ Microbiol 2015; 18:1673-85. [DOI: 10.1111/1462-2920.13072] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/15/2015] [Accepted: 09/27/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Sara B. Hernández
- Laboratory for Molecular Infection Medicine Sweden; Department of Molecular Biology; Umeå Centre for Microbial Research; Umeå University; 90187 Umeå Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden; Department of Molecular Biology; Umeå Centre for Microbial Research; Umeå University; 90187 Umeå Sweden
| |
Collapse
|
34
|
Sporulation Temperature Reveals a Requirement for CotE in the Assembly of both the Coat and Exosporium Layers of Bacillus cereus Spores. Appl Environ Microbiol 2015; 82:232-43. [PMID: 26497467 DOI: 10.1128/aem.02626-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/15/2015] [Indexed: 11/20/2022] Open
Abstract
The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation.
Collapse
|
35
|
Fimlaid KA, Jensen O, Donnelly ML, Francis MB, Sorg JA, Shen A. Identification of a Novel Lipoprotein Regulator of Clostridium difficile Spore Germination. PLoS Pathog 2015; 11:e1005239. [PMID: 26496694 PMCID: PMC4619724 DOI: 10.1371/journal.ppat.1005239] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a Gram-positive spore-forming pathogen and a leading cause of nosocomial diarrhea. C. difficile infections are transmitted when ingested spores germinate in the gastrointestinal tract and transform into vegetative cells. Germination begins when the germinant receptor CspC detects bile salts in the gut. CspC is a subtilisin-like serine pseudoprotease that activates the related CspB serine protease through an unknown mechanism. Activated CspB cleaves the pro-SleC zymogen, which allows the activated SleC cortex hydrolase to degrade the protective cortex layer. While these regulators are essential for C. difficile spores to outgrow and form toxin-secreting vegetative cells, the mechanisms controlling their function have only been partially characterized. In this study, we identify the lipoprotein GerS as a novel regulator of C. difficile spore germination using targeted mutagenesis. A gerS mutant has a severe germination defect and fails to degrade cortex even though it processes SleC at wildtype levels. Using complementation analyses, we demonstrate that GerS secretion, but not lipidation, is necessary for GerS to activate SleC. Importantly, loss of GerS attenuates the virulence of C. difficile in a hamster model of infection. Since GerS appears to be conserved exclusively in related Peptostreptococcaeace family members, our results contribute to a growing body of work indicating that C. difficile has evolved distinct mechanisms for controlling the exit from dormancy relative to B. subtilis and other spore-forming organisms.
Collapse
Affiliation(s)
- Kelly A. Fimlaid
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- Program in Cellular, Molecular & Biomedical Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - Owen Jensen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - M. Lauren Donnelly
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Michael B. Francis
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Aimee Shen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
36
|
Abstract
Since the first application of high hydrostatic pressure (HHP) for food preservation more than 100 years ago, a wealth of knowledge has been gained on molecular mechanisms underlying the HHP-mediated destruction of microorganisms. However, one observation made back then is still valid, i.e. that HHP alone is not sufficient for the complete inactivation of bacterial endospores. To achieve "commercial sterility" of low-acid foods, i.e. inactivation of spores capable of growing in a specific product under typical storage conditions, a combination of HHP with other hurdles is required (most effectively with heat (HPT)). Although HPT processes are not yet industrially applied, continuous technical progress and increasing consumer demand for minimally processed, additive-free food with long shelf life, makes HPT sterilization a promising alternative to thermal processing.In recent years, considerable progress has been made in understanding the response of spores of the model organism B. subtilis to HPT treatments and detailed insights into some basic mechanisms in Clostridium species shed new light on differences in the HPT-mediated inactivation of Bacillus and Clostridium spores. In this chapter, current knowledge on sporulation and germination processes, which presents the basis for understanding development and loss of the extreme resistance properties of spores, is summarized highlighting commonalities and differences between Bacillus and Clostridium species. In this context, the effect of HPT treatments on spores, inactivation mechanism and kinetics, the role of population heterogeneity, and influence factors on the results of inactivation studies are discussed.
Collapse
Affiliation(s)
- Christian A Lenz
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, 85354, Freising, Germany
| | | |
Collapse
|
37
|
|
38
|
Involvement of alanine racemase in germination of Bacillus cereus spores lacking an intact exosporium. Arch Microbiol 2013; 196:79-85. [PMID: 24346000 DOI: 10.1007/s00203-013-0946-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/29/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
The L-alanine mediated germination of food isolated Bacillus cereus DSA 1 spores, which lacked an intact exosporium, increased in the presence of D-cycloserine (DCS), which is an alanine racemase (Alr) inhibitor, reflecting the activity of the Alr enzyme, capable of converting L-alanine to the germination inhibitor D-alanine. Proteomic analysis of the alkaline extracts of the spore proteins, which include exosporium and coat proteins, confirmed that Alr was present in the B. cereus DSA 1 spores and matched to that encoded by B. cereus ATCC 14579, whose spore germination was strongly affected by the block of conversion of L- to D-alanine. Unlike ATCC 14579 spores, L-alanine germination of B. cereus DSA 1 spores was not affected by the preincubation with DCS, suggesting a lack of restriction in the reactant accessibility.
Collapse
|
39
|
Setlow P. Summer meeting 201--when the sleepers wake: the germination of spores of Bacillus species. J Appl Microbiol 2013; 115:1251-68. [PMID: 24102780 DOI: 10.1111/jam.12343] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/08/2013] [Accepted: 09/09/2013] [Indexed: 11/27/2022]
Affiliation(s)
- P Setlow
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
40
|
Abhyankar W, Hossain AH, Djajasaputra A, Permpoonpattana P, Ter Beek A, Dekker HL, Cutting SM, Brul S, de Koning LJ, de Koster CG. In Pursuit of Protein Targets: Proteomic Characterization of Bacterial Spore Outer Layers. J Proteome Res 2013; 12:4507-21. [DOI: 10.1021/pr4005629] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Patima Permpoonpattana
- School
of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | | - Simon M. Cutting
- School
of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | | | |
Collapse
|
41
|
Adaptive strategies and pathogenesis of Clostridium difficile from in vivo transcriptomics. Infect Immun 2013; 81:3757-69. [PMID: 23897605 DOI: 10.1128/iai.00515-13] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is currently the major cause of nosocomial intestinal diseases associated with antibiotic therapy in adults. In order to improve our knowledge of C. difficile-host interactions, we analyzed the genome-wide temporal expression of C. difficile 630 genes during the first 38 h of mouse colonization to identify genes whose expression is modulated in vivo, suggesting that they may play a role in facilitating the colonization process. In the ceca of the C. difficile-monoassociated mice, 549 genes of the C. difficile genome were differentially expressed compared to their expression during in vitro growth, and they were distributed in several functional categories. Overall, our results emphasize the roles of genes involved in host adaptation. Colonization results in a metabolic shift, with genes responsible for the fermentation as well as several other metabolic pathways being regulated inversely to those involved in carbon metabolism. In addition, several genes involved in stress responses, such as ferrous iron uptake or the response to oxidative stress, were regulated in vivo. Interestingly, many genes encoding conserved hypothetical proteins (CHP) were highly and specifically upregulated in vivo. Moreover, genes for all stages of sporulation were quickly induced in vivo, highlighting the observation that sporulation is central to the persistence of C. difficile in the gut and to its ability to spread in the environment. Finally, we inactivated two genes that were differentially expressed in vivo and evaluated the relative colonization fitness of the wild-type and mutant strains in coinfection experiments. We identified a CHP as a putative colonization factor, supporting the suggestion that the in vivo transcriptomic approach can unravel new C. difficile virulence genes.
Collapse
|
42
|
A genetic approach for the identification of exosporium assembly determinants of Bacillus anthracis. J Microbiol Methods 2013; 93:58-67. [PMID: 23411372 DOI: 10.1016/j.mimet.2013.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/25/2013] [Accepted: 01/31/2013] [Indexed: 11/21/2022]
Abstract
The exosporium is the outermost layer of spores of the zoonotic pathogen Bacillus anthracis. The composition of the exosporium and its functions are only partly understood. Because this outer spore layer is refractive to traditional biochemical analysis, a genetic approach is needed in order to define the proteins which comprise this important spore layer and its assembly pathway. We have created a novel genetic screening system for the identification and isolation of mutants with defects in exosporium assembly during B. anthracis spore maturation. The system is based on the targeting sequence of the BclA exosporium nap layer glycoprotein and a fluorescent reporter. By utilizing this screening system and gene inactivation with Tn916, several novel putative exosporium-associated determinants were identified. A sampling of the mutants obtained was further characterized, confirming their exosporium defect and validating the utility of this screen to identify novel spore determinants in the genome of this pathogen.
Collapse
|
43
|
McKenney PT, Driks A, Eichenberger P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 2013; 11:33-44. [PMID: 23202530 PMCID: PMC9910062 DOI: 10.1038/nrmicro2921] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sporulation in Bacillus subtilis involves an asymmetric cell division followed by differentiation into two cell types, the endospore and the mother cell. The endospore coat is a multilayered shell that protects the bacterial genome during stress conditions and is composed of dozens of proteins. Recently, fluorescence microscopy coupled with high-resolution image analysis has been applied to the dynamic process of coat assembly and has shown that the coat is organized into at least four distinct layers. In this Review, we provide a brief summary of B. subtilis sporulation, describe the function of the spore surface layers and discuss the recent progress that has improved our understanding of the structure of the endospore coat and the mechanisms of coat assembly.
Collapse
Affiliation(s)
- Peter T. McKenney
- Center for Genomics and Systems Biology, Department of
Biology, New York University, New York, New York 10003, USA
| | - Adam Driks
- Department of Microbiology and Immunology, Stritch School
of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Patrick Eichenberger
- Center for Genomics and Systems Biology, Department of
Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
44
|
Butzin XY, Troiano AJ, Coleman WH, Griffiths KK, Doona CJ, Feeherry FE, Wang G, Li YQ, Setlow P. Analysis of the effects of a gerP mutation on the germination of spores of Bacillus subtilis. J Bacteriol 2012; 194:5749-58. [PMID: 22904285 PMCID: PMC3486119 DOI: 10.1128/jb.01276-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/08/2012] [Indexed: 12/28/2022] Open
Abstract
As previously reported, gerP Bacillus subtilis spores were defective in nutrient germination triggered via various germinant receptors (GRs), and the defect was eliminated by severe spore coat defects. The gerP spores' GR-dependent germination had a longer lag time between addition of germinants and initiation of rapid release of spores' dipicolinic acid (DPA), but times for release of >90% of DPA from individual spores were identical for wild-type and gerP spores. The gerP spores were also defective in GR-independent germination by DPA with its associated Ca(2+) divalent cation (CaDPA) but germinated better than wild-type spores with the GR-independent germinant dodecylamine. The gerP spores exhibited no increased sensitivity to hypochlorite, suggesting that these spores have no significant coat defect. Overexpression of GRs in gerP spores did lead to faster germination via the overexpressed GR, but this was still slower than germination of comparable gerP(+) spores. Unlike wild-type spores, for which maximal nutrient germinant concentrations were between 500 μM and 2 mM for l-alanine and ≤10 mM for l-valine, rates of gerP spore germination increased up to between 200 mM and 1 M l-alanine and 100 mM l-valine, and at 1 M l-alanine, the rates of germination of wild-type and gerP spores with or without all alanine racemases were almost identical. A high pressure of 150 MPa that triggers spore germination by activating GRs also triggered germination of wild-type and gerP spores identically. All these results support the suggestion that GerP proteins facilitate access of nutrient germinants to their cognate GRs in spores' inner membrane.
Collapse
Affiliation(s)
- Xuan Yi Butzin
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Anthony J. Troiano
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - William H. Coleman
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Keren K. Griffiths
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Christopher J. Doona
- U.S. Army—Natick Soldier RD&E Center, Warfighter Directorate, Natick, Massachusetts, USA
| | - Florence E. Feeherry
- U.S. Army—Natick Soldier RD&E Center, Warfighter Directorate, Natick, Massachusetts, USA
| | - Guiwen Wang
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| | - Yong-qing Li
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| | - Peter Setlow
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
45
|
Abstract
Spores of Bacillus subtilis are encased in a protective coat made up of at least 70 proteins. The structure of the spore coat has been examined using a variety of genetic, imaging and biochemical techniques; however, the majority of these studies have focused on mature spores. In this study we use a library of 41 spore coat proteins fused to the green fluorescent protein to examine spore coat morphogenesis over the time-course of sporulation. We found considerable diversity in the localization dynamics of coat proteins and were able to establish six classes based on localization kinetics. Localization dynamics correlate well with the known transcriptional regulators of coat gene expression. Previously, we described the existence of multiple layers in the mature spore coat. Here, we find that the spore coat initially assembles a scaffold that is organized into multiple layers on one pole of the spore. The coat then encases the spore in multiple co-ordinated waves. Encasement is driven, at least partially, by transcription of coat genes and deletion of sporulation transcription factors arrests encasement. We also identify the trans-compartment SpoIIIAH-SpoIIQ channel as necessary for encasement. This is the first demonstration of a forespore contribution to spore coat morphogenesis.
Collapse
Affiliation(s)
- Peter T McKenney
- New York University, Center for Genomics and Systems Biology, Department of Biology, 12 Waverly Place, 8th floor, New York, NY 10003, USA
| | | |
Collapse
|
46
|
Conti P, Tamborini L, Pinto A, Blondel A, Minoprio P, Mozzarelli A, De Micheli C. Drug Discovery Targeting Amino Acid Racemases. Chem Rev 2011; 111:6919-46. [DOI: 10.1021/cr2000702] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Paola Conti
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Lucia Tamborini
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Andrea Pinto
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Arnaud Blondel
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS-URA 2185, Département de Biologie Structurale et Chimie, 25 rue du Dr. Roux, 75724 Paris, France
| | - Paola Minoprio
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosoma; Département d’Infection et Epidémiologie; 25 rue du Dr. Roux, 75724 Paris, France
| | - Andrea Mozzarelli
- Dipartimento di Biochimica e Biologia Molecolare, via G. P. Usberti 23/A, 43100 Parma, Italy
- Istituto di Biostrutture e Biosistemi, viale Medaglie d’oro, Roma, Italy
| | - Carlo De Micheli
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| |
Collapse
|
47
|
Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior. Curr Opin Biotechnol 2011; 22:180-6. [DOI: 10.1016/j.copbio.2010.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/12/2010] [Accepted: 11/15/2010] [Indexed: 11/21/2022]
|
48
|
A novel spore protein, ExsM, regulates formation of the exosporium in Bacillus cereus and Bacillus anthracis and affects spore size and shape. J Bacteriol 2010; 192:4012-21. [PMID: 20543075 DOI: 10.1128/jb.00197-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacillus cereus spores are assembled with a series of concentric layers that protect them from a wide range of environmental stresses. The outermost layer, or exosporium, is a bag-like structure that interacts with the environment and is composed of more than 20 proteins and glycoproteins. Here, we identified a new spore protein, ExsM, from a beta-mercaptoethanol extract of B. cereus ATCC 4342 spores. Subcellular localization of an ExsM-green fluorescent protein (GFP) protein revealed a dynamic pattern of fluorescence that follows the site of formation of the exosporium around the forespore. Under scanning electron microscopy, exsM null mutant spores were smaller and rounder than wild-type spores, which had an extended exosporium (spore length for the wt, 2.40 +/- 0.56 microm, versus that for the exsM mutant, 1.66 +/- 0.38 microm [P < 0.001]). Thin-section electron microscopy revealed that exsM mutant spores were encased by a double-layer exosporium, both layers of which were composed of a basal layer and a hair-like nap. Mutant exsM spores were more resistant to lysozyme treatment and germinated with higher efficiency than wild-type spores, and they had a delay in outgrowth. Insertional mutagenesis of exsM in Bacillus anthracis DeltaSterne resulted in a partial second exosporium and in smaller spores. In all, these findings suggest that ExsM plays a critical role in the formation of the exosporium.
Collapse
|
49
|
McPherson SA, Li M, Kearney JF, Turnbough CL. ExsB, an unusually highly phosphorylated protein required for the stable attachment of the exosporium of Bacillus anthracis. Mol Microbiol 2010; 76:1527-38. [PMID: 20444088 DOI: 10.1111/j.1365-2958.2010.07182.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The outermost layer of the Bacillus anthracis spore, the exosporium, is composed of a paracrystalline basal layer and an external hair-like nap. The nap is formed from a single collagen-like glycoprotein, while the basal layer contains many different proteins, including a 186-amino acid protein called ExsB. In this study, we discovered that ExsB is unusually highly phosphorylated, with at least 14 of its 19 threonine residues modified. The phosphorylated threonines are included in seven contiguous approximately 12-residue imperfect repeats, which presumably contain kinase recognition sequences. We demonstrated that a B. anthracis DeltaexsB mutant unable to synthesize ExsB produced spores with an exosporium that was readily sloughed, indicating that ExsB was required for stable exosporium attachment. This unstable exosporium also lacked the enzyme alanine racemase, which is normally tightly associated with the exosporium. Additionally, purified DeltaexsB spores lacking a visible exosporium were devoid of most exosporium proteins but, surprisingly, retained the putative exosporium proteins BxpC and CotB-1. Finally, we showed that transcription of the exsB gene occurred only during the late stages of sporulation, and we used an active and phosphorylated ExsB-EGFP fusion protein to monitor ExsB localization to wild-type and DeltabxpB mutant exosporia.
Collapse
Affiliation(s)
- Sylvia A McPherson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
50
|
Abee T, Groot MN, Tempelaars M, Zwietering M, Moezelaar R, van der Voort M. Germination and outgrowth of spores of Bacillus cereus group members: diversity and role of germinant receptors. Food Microbiol 2010; 28:199-208. [PMID: 21315974 DOI: 10.1016/j.fm.2010.03.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/19/2010] [Accepted: 03/25/2010] [Indexed: 11/26/2022]
Abstract
Bacillus cereus is a gram-positive, facultative anaerobic, endospore-forming toxicogenic human pathogen. Endospores are highly specialized, metabolically dormant cell types that are resistant to extreme environmental conditions, including heat, dehydration and other physical stresses. B. cereus can enter a range of environments, and can in its spore form, survive harsh conditions. If these conditions become favorable, spores can germinate and grow out and reach considerable numbers in a range of environments including processed foods. Certainly the last decade, when consumer preferences have shifted to mildly processed food, new opportunities arose for spore-forming spoilage and pathogenic organisms. Only rigorous methods have been shown to be capable of destroying all spores present in food, thus a shift toward e.g., milder heat preservation strategies, may result in low but significant amounts of viable spores in food products. Hence, the need for a mild spore destruction strategy is eminent including control of spore outgrowth. Consequently, there is a large interest in triggering spore germination in foodstuffs, since germinated spores have lost the extreme resistance of dormant spores and are relatively easy to kill. Another option could be to prevent germination so that no dangerous levels can be reached. This contribution will focus on germination and outgrowth characteristics of B. cereus and other members of the B. cereus group, providing an overview of the niches these spore-formers can occupy, the signals that trigger germination, and how B. cereus copes with these wake-up calls in different environments including foods, during food processing and upon interaction with the human host.
Collapse
Affiliation(s)
- Tjakko Abee
- TI Food and Nutrition (TIFN), Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|