1
|
De la Cruz MA, Valdez-Salazar HA, Rodríguez-Valverde D, Mejia-Ventura S, Robles-Leyva N, Siqueiros-Cendón T, Rascón-Cruz Q, León-Montes N, Soria-Bustos J, Chimal-Cázares F, Rosales-Reyes R, Cedillo ML, Yañez-Santos JA, Ibarra JA, Torres J, Girón JA, Fox JG, Ares MA. The transcriptional regulator Lrp activates the expression of genes involved in the biosynthesis of tilimycin and tilivalline enterotoxins in Klebsiella oxytoca. mSphere 2025; 10:e0078024. [PMID: 39688404 PMCID: PMC11774035 DOI: 10.1128/msphere.00780-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
The toxigenic Klebsiella oxytoca strains secrete tilymicin and tilivalline enterotoxins, which cause antibiotic-associated hemorrhagic colitis. Both enterotoxins are non-ribosomal peptides synthesized by enzymes encoded in two divergent operons clustered in a pathogenicity island. The transcriptional regulator Lrp (leucine-responsive regulatory protein) controls the expression of several bacterial genes involved in virulence. In this work, we have uncovered novel findings that have significant implications. We determined the transcriptional expression of aroX and npsA, the first genes of each tilimycin (TM)/tilivalline (TV) biosynthetic operon in K. oxytoca MIT 09-7231 wild-type and its derivatives Δlrp mutant and complemented strains. Our results suggest that Lrp directly activates the transcription of both aroX and npsA genes by binding to the intergenic regulatory region in a leucine-dependent manner. Furthermore, the lack of Lrp significantly diminished the cytotoxicity of K. oxytoca on HeLa cells due to reduced production of TM and TV. Altogether, our data present a new perspective on the role of Lrp as a regulator in cytotoxin-producing K. oxytoca strains and how it controls the expression of genes involved in the biosynthesis of their main virulence factors.IMPORTANCETilimycin (TM) and tilivalline (TV) are enterotoxins that are a hallmark for the cytotoxin-producing Klebsiella oxytoca strains, which cause antibiotic-associated hemorrhagic colitis. The biosynthesis of TM and TV is driven by enzymes encoded by the aroX- and NRPS-operons. In this study, we discovered that the transcriptional regulator Lrp plays a crucial role in activating the expression of the aroX- and NRPS-operons, thereby initiating TM and TV biosynthesis. Our results underscore a molecular mechanism by which TM and TV production by toxigenic K. oxytoca strains is regulated and shed further light on developing strategies to prevent the intestinal illness caused by this enteric pathogen.
Collapse
Affiliation(s)
- Miguel A. De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Hilda A. Valdez-Salazar
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Diana Rodríguez-Valverde
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Santa Mejia-Ventura
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Nayely Robles-Leyva
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | | | - Quintín Rascón-Cruz
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Nancy León-Montes
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge Soria-Bustos
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Fernando Chimal-Cázares
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Autónoma de México, Mexico City, Mexico
| | - María L. Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jorge A. Yañez-Santos
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - J. Antonio Ibarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge A. Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
2
|
Isidro-Coxca MI, Ortiz-Jiménez S, Puente JL. Type 1 fimbria and P pili: regulatory mechanisms of the prototypical members of the chaperone-usher fimbrial family. Arch Microbiol 2024; 206:373. [PMID: 39127787 PMCID: PMC11316696 DOI: 10.1007/s00203-024-04092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Adherence to both cellular and abiotic surfaces is a crucial step in the interaction of bacterial pathogens and commensals with their hosts. Bacterial surface structures known as fimbriae or pili play a fundamental role in the early colonization stages by providing specificity or tropism. Among the various fimbrial families, the chaperone-usher family has been extensively studied due to its ubiquity, diversity, and abundance. This family is named after the components that facilitate their biogenesis. Type 1 fimbria and P pilus, two chaperone-usher fimbriae associated with urinary tract infections, have been thoroughly investigated and serve as prototypes that have laid the foundations for understanding the biogenesis of this fimbrial family. Additionally, the study of the mechanisms regulating their expression has also been a subject of great interest, revealing that the regulation of the expression of the genes encoding these structures is a complex and diverse process, involving both common global regulators and those specific to each operon.
Collapse
Affiliation(s)
- María I Isidro-Coxca
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico.
| | - Stephanie Ortiz-Jiménez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico
| | - José L Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor, 62210, Mexico.
| |
Collapse
|
3
|
Gerlach RG, Wittmann I, Heinrich L, Pinkenburg O, Meyer T, Elpers L, Schmidt C, Hensel M, Schnare M. Subversion of a family of antimicrobial proteins by Salmonella enterica. Front Cell Infect Microbiol 2024; 14:1375887. [PMID: 38505286 PMCID: PMC10948614 DOI: 10.3389/fcimb.2024.1375887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Salmonella enterica is a food-borne pathogen able to cause a wide spectrum of diseases ranging from mild gastroenteritis to systemic infections. During almost all stages of the infection process Salmonella is likely to be exposed to a wide variety of host-derived antimicrobial peptides (AMPs). AMPs are important components of the innate immune response which integrate within the bacterial membrane, thus forming pores which lead ultimately to bacterial killing. In contrast to other AMPs Bactericidal/Permeability-increasing Protein (BPI) displayed only weak bacteriostatic or bactericidal effects towards Salmonella enterica sv. Typhimurium (STM) cultures. Surprisingly, we found that sub-antimicrobial concentrations of BPI fold-containing (BPIF) superfamily members mediated adhesion of STM depending on pre-formed type 1 fimbriae. BPIF proteins directly bind to type 1 fimbriae through mannose-containing oligosaccharide modifications. Fimbriae decorated with BPIF proteins exhibit extended binding specificity, allowing for bacterial adhesion on a greater variety of abiotic and biotic surfaces likely promoting host colonization. Further, fimbriae significantly contributed to the resistance against BPI, probably through sequestration of the AMP before membrane interaction. In conclusion, functional subversion of innate immune proteins of the BPIF family through binding to fimbriae promotes Salmonella virulence by survival of host defense and promotion of host colonization.
Collapse
Affiliation(s)
- Roman G. Gerlach
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital of Erlangen and Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
- Robert Koch Institute, Wernigerode, Germany
| | - Irene Wittmann
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital of Erlangen and Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | | | - Olaf Pinkenburg
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Torben Meyer
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Laura Elpers
- Division of Microbiology and CellNanOs – Center of Cellular Nanoanalytics Osnabrück, School of Biology/Chemistry, University Osnabrück, Osnabrück, Germany
| | | | - Michael Hensel
- Division of Microbiology and CellNanOs – Center of Cellular Nanoanalytics Osnabrück, School of Biology/Chemistry, University Osnabrück, Osnabrück, Germany
| | - Markus Schnare
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
4
|
Hoareau M, Gerges E, Crémazy FGE. Shedding Light on Bacterial Chromosome Structure: Exploring the Significance of 3C-Based Approaches. Methods Mol Biol 2024; 2819:3-26. [PMID: 39028499 DOI: 10.1007/978-1-0716-3930-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The complex architecture of DNA within living organisms is essential for maintaining the genetic information that dictates their functions and characteristics. Among the many complexities of genetic material organization, the folding and arrangement of DNA into chromosomes play a critical role in regulating gene expression, replication, and other essential cellular processes. Bacteria, despite their apparently simple cellular structure, exhibit a remarkable level of chromosomal organization that influences their adaptability and survival in diverse environments. Understanding the three-dimensional arrangement of bacterial chromosomes has long been a challenge due to technical limitations, but the development of Chromosome Conformation Capture (3C) methods revolutionized our ability to explore the hierarchical structure and the dynamics of bacterial genomes. Here, we review the major advances in the field of bacterial chromosome structure using 3C technology over the past decade.
Collapse
Affiliation(s)
- Marion Hoareau
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Elias Gerges
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Frédéric G E Crémazy
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France.
| |
Collapse
|
5
|
Conway C, Beckett MC, Dorman CJ. The DNA relaxation-dependent OFF-to-ON biasing of the type 1 fimbrial genetic switch requires the Fis nucleoid-associated protein. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001283. [PMID: 36748578 PMCID: PMC9993118 DOI: 10.1099/mic.0.001283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The structural genes expressing type 1 fimbriae in Escherichia coli alternate between expressed (phase ON) and non-expressed (phase OFF) states due to inversion of the 314 bp fimS genetic switch. The FimB tyrosine integrase inverts fimS by site-specific recombination, alternately connecting and disconnecting the fim operon, encoding the fimbrial subunit protein and its associated secretion and adhesin factors, to and from its transcriptional promoter within fimS. Site-specific recombination by the FimB recombinase becomes biased towards phase ON as DNA supercoiling is relaxed, a condition that occurs when bacteria approach the stationary phase of the growth cycle. This effect can be mimicked in exponential phase cultures by inhibiting the negative DNA supercoiling activity of DNA gyrase. We report that this bias towards phase ON depends on the presence of the Fis nucleoid-associated protein. We mapped the Fis binding to a site within the invertible fimS switch by DNase I footprinting. Disruption of this binding site by base substitution mutagenesis abolishes both Fis binding and the ability of the mutated switch to sustain its phase ON bias when DNA is relaxed, even in bacteria that produce the Fis protein. In addition, the Fis binding site overlaps one of the sites used by the Lrp protein, a known directionality determinant of fimS inversion that also contributes to phase ON bias. The Fis–Lrp relationship at fimS is reminiscent of that between Fis and Xis when promoting DNA relaxation-dependent excision of bacteriophage λ from the E. coli chromosome. However, unlike the co-binding mechanism used by Fis and Xis at λ attR, the Fis–Lrp relationship at fimS involves competitive binding. We discuss these findings in the context of the link between fimS inversion biasing and the physiological state of the bacterium.
Collapse
Affiliation(s)
- Colin Conway
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland.,Present address: Technical University of the Atlantic, Galway, Ireland
| | - Michael C Beckett
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Ziegler CA, Freddolino PL. The leucine-responsive regulatory proteins/feast-famine regulatory proteins: an ancient and complex class of transcriptional regulators in bacteria and archaea. Crit Rev Biochem Mol Biol 2021; 56:373-400. [PMID: 34151666 DOI: 10.1080/10409238.2021.1925215] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Since the discovery of the Escherichia coli leucine-responsive regulatory protein (Lrp) almost 50 years ago, hundreds of Lrp homologs have been discovered, occurring in 45% of sequenced bacteria and almost all sequenced archaea. Lrp-like proteins are often referred to as the feast/famine regulatory proteins (FFRPs), reflecting their common regulatory roles. Acting as either global or local transcriptional regulators, FFRPs detect the environmental nutritional status by sensing small effector molecules (usually amino acids) and regulate the expression of genes involved in metabolism, virulence, motility, nutrient transport, stress tolerance, and antibiotic resistance to implement appropriate behaviors for the specific ecological niche of each organism. Despite FFRPs' complexity, a significant role in gene regulation, and prevalence throughout prokaryotes, the last comprehensive review on this family of proteins was published about a decade ago. In this review, we integrate recent notable findings regarding E. coli Lrp and other FFRPs across bacteria and archaea with previous observations to synthesize a more complete view on the mechanistic details and biological roles of this ancient class of transcription factors.
Collapse
Affiliation(s)
- Christine A Ziegler
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Regulation of gene expression by protein lysine acetylation in Salmonella. J Microbiol 2020; 58:979-987. [PMID: 33201432 DOI: 10.1007/s12275-020-0483-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Protein lysine acetylation influences many physiological functions, such as gene regulation, metabolism, and disease in eukaryotes. Although little is known about the role of lysine acetylation in bacteria, several reports have proposed its importance in various cellular processes. Here, we discussed the function of the protein lysine acetylation and the post-translational modifications (PTMs) of histone-like proteins in bacteria focusing on Salmonella pathogenicity. The protein lysine residue in Salmonella is acetylated by the Pat-mediated enzymatic pathway or by the acetyl phosphate-mediated non-enzymatic pathway. In Salmonella, the acetylation of lysine 102 and lysine 201 on PhoP inhibits its protein activity and DNA-binding, respectively. Lysine acetylation of the transcriptional regulator, HilD, also inhibits pathogenic gene expression. Moreover, it has been reported that the protein acetylation patterns significantly differ in the drug-resistant and -sensitive Salmonella strains. In addition, nucleoid-associated proteins such as histone-like nucleoid structuring protein (H-NS) are critical for the gene silencing in bacteria, and PTMs in H-NS also affect the gene expression. In this review, we suggest that protein lysine acetylation and the post-translational modifications of H-NS are important factors in understanding the regulation of gene expression responsible for pathogenicity in Salmonella.
Collapse
|
8
|
Chen KY, Rathod J, Chiu YC, Chen JW, Tsai PJ, Huang IH. The Transcriptional Regulator Lrp Contributes to Toxin Expression, Sporulation, and Swimming Motility in Clostridium difficile. Front Cell Infect Microbiol 2019; 9:356. [PMID: 31681632 PMCID: PMC6811523 DOI: 10.3389/fcimb.2019.00356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile is a Gram-positive, spore-forming bacterium, and major cause of nosocomial diarrhea. Related studies have identified numerous factors that influence virulence traits such as the production of the two primary toxins, toxin A (TcdA) and toxin B (TcdB), as well as sporulation, motility, and biofilm formation. However, multiple putative transcriptional regulators are reportedly encoded in the genome, and additional factors are likely involved in virulence regulation. Although the leucine-responsive regulatory protein (Lrp) has been studied extensively in Gram-negative bacteria, little is known about its function in Gram-positive bacteria, although homologs have been identified in the genome. This study revealed that disruption of the lone lrp homolog in C. difficile decelerated growth under nutrient-limiting conditions, increased TcdA and TcdB production. Lrp was also found to negatively regulate sporulation while positively regulate swimming motility in strain R20291, but not in strain 630. The C. difficile Lrp appeared to function through transcriptional repression or activation. In addition, the lrp mutant was relatively virulent in a mouse model of infection. The results of this study collectively demonstrated that Lrp has broad regulatory function in C. difficile toxin expression, sporulation, motility, and pathogenesis.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Chiu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Kolenda R, Ugorski M, Grzymajlo K. Everything You Always Wanted to Know About Salmonella Type 1 Fimbriae, but Were Afraid to Ask. Front Microbiol 2019; 10:1017. [PMID: 31139165 PMCID: PMC6527747 DOI: 10.3389/fmicb.2019.01017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
Initial attachment to host intestinal mucosa after oral infection is one of the most important stages during bacterial pathogenesis. Adhesive structures, widely present on the bacterial surface, are mainly responsible for the first contact with host cells and of host-pathogen interactions. Among dozens of different bacterial adhesins, type 1 fimbriae (T1F) are one of the most common adhesive organelles in the members of the Enterobacteriaceae family, including Salmonella spp., and are important virulence factors. Those long, thin structures, composed mainly of FimA proteins, are responsible for recognizing and binding high-mannose oligosaccharides, which are carried by various glycoproteins and expressed at the host cell surface, via FimH adhesin, which is presented at the top of T1F. In this review, we discuss investigations into the functions of T1F, from the earliest work published in 1958 to operon organization, organelle structure, T1F biogenesis, and the various functions of T1F in Salmonella-host interactions. We give special attention to regulation of T1F expression and their role in binding of Salmonella to cells, cell lines, organ explants, and other surfaces with emphasis on biofilm formation and discuss T1F role as virulence factors based on work using animal models. We also discuss the importance of allelic variation in fimH to Salmonella pathogenesis, as well as role of FimH in Salmonella host specificity.
Collapse
Affiliation(s)
- Rafal Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Grzymajlo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
10
|
Matter LB, Ares MA, Abundes-Gallegos J, Cedillo ML, Yáñez JA, Martínez-Laguna Y, De la Cruz MA, Girón JA. The CpxRA stress response system regulates virulence features of avian pathogenic Escherichia coli. Environ Microbiol 2018; 20:3363-3377. [PMID: 30062827 DOI: 10.1111/1462-2920.14368] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/29/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) causes localized and systemic avian infections and is responsible for considerable economic losses in the poultry industry. This organism adheres and invades human and avian cells, however, the regulatory networks that dictate its virulence are largely unknown. The CpxRA two-component system is responsible for sensing and controlling outer-membrane stress and detecting misfolded proteins in the bacterial periplasmic space. CpxA is a membrane sensor kinase and CpxR is a cytoplasmic transcriptional regulator. In this study, we found that the CpxRA system regulates the virulence properties of APEC. Adherence, invasiveness, motility, production of type 1 fimbriae and biofilm were negatively affected in the ΔcpxA mutant indicating that the CpxA is required for full manifestation of these phenotypes. We also found that CpxR-P directly bound to the fimA promoter, locking the fimS region of type 1 fimbriae in the phase-OFF orientation. In addition, the absence of CpxA also reduced flagella production strongly suggesting that CpxRA regulates these two important surface organelles in APEC. This study provides compelling evidence of the role of the CpxRA two-component system in the regulation of virulence factors of avian pathogenic E. coli.
Collapse
Affiliation(s)
- Letícia B Matter
- Emerging Pathogens Institute, University of Florida, P.O. Box 100009, 2055 Mowry Road, Gainesville, FL, USA.,Departamento de Ciências da Saúde, Universidade Regional Integrada do Alto Uruguai e das Missões, Rua Universidade das Missões, CEP: 98.802-470, Santo Ângelo, Rio Grande do Sul, Brasil
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, México
| | - Judith Abundes-Gallegos
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, México
| | - María L Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Jorge A Yáñez
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Ygnacio Martínez-Laguna
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano de Seguro Social, Ciudad de México, México
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
11
|
Azriel S, Goren A, Shomer I, Aviv G, Rahav G, Gal-Mor O. The Typhi colonization factor (Tcf) is encoded by multiple non-typhoidal Salmonella serovars but exhibits a varying expression profile and interchanging contribution to intestinal colonization. Virulence 2017; 8:1791-1807. [PMID: 28922626 DOI: 10.1080/21505594.2017.1380766] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Salmonella enterica serovars Typhi and Paratyphi A are human-restricted pathogens and the leading causative agents of enteric fever. The Typhi colonization factor (Tcf) is a chaperone-usher fimbria, thought to play a role in the host-specificity of typhoidal serovars. Here we show that the tcf cluster (tcfABCD tinR tioA) is present in at least 25 non-typhoidal Salmonella (NTS) serovars and demonstrate its native expression in clinically-important serovars including Schwarzengrund, 9,12:l,v:-, Choleraesuis, Bredeney, Heidelberg, Montevideo, Virchow and Infantis. Although the genetic organization of the tcf cluster is well conserved, the N-terminal half of the fimbrial adhesin, TcfD is highly diverse, suggesting different binding properties of distinct tcfD variants. Comparison of tcfA expression in typhoidal and NTS serovars demonstrated unexpected differences in its expression profiles, with the highest transcription levels in S. Typhi, S. Choleraesuis and S. Infantis. In the latter, tcf is induced in rich broth and under microaerobic conditions, characterizing the intestines of warm blooded animals. Furthermore, Tcf is negatively regulated by the ancestral leucine-responsive transcriptional regulator (Lrp). Using the colitis mouse model, we demonstrate that during mice infection tcfA is expressed at higher levels by S. Infantis than S. Schwarzengrund or S. Heidelberg. Moreover, while Tcf is dispensable for S. Schwarzengrund and S. Heidelberg mouse colonization, Tcf is involved in cecum and colon colonization by S. Infantis. Taken together, our results establish that Tcf is broadly encoded by multiple NTS serovars, but presents variable expression profiles and contributes differently to their virulence.
Collapse
Affiliation(s)
- Shalhevet Azriel
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel
| | - Alina Goren
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel.,b Department of Clinical Microbiology and Immunology , Tel-Aviv University , Tel-Aviv , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| | - Inna Shomer
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel
| | - Gili Aviv
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel.,b Department of Clinical Microbiology and Immunology , Tel-Aviv University , Tel-Aviv , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| | - Galia Rahav
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| | - Ohad Gal-Mor
- a The Infectious Diseases Research Laboratory, Sheba Medical Center , Tel-Hashomer , Israel.,b Department of Clinical Microbiology and Immunology , Tel-Aviv University , Tel-Aviv , Israel.,c Sackler Faculty of Medicine, Tel-Aviv University , Tel-Aviv , Israel
| |
Collapse
|
12
|
Aviv G, Elpers L, Mikhlin S, Cohen H, Vitman Zilber S, Grassl GA, Rahav G, Hensel M, Gal-Mor O. The plasmid-encoded Ipf and Klf fimbriae display different expression and varying roles in the virulence of Salmonella enterica serovar Infantis in mouse vs. avian hosts. PLoS Pathog 2017; 13:e1006559. [PMID: 28817673 PMCID: PMC5560535 DOI: 10.1371/journal.ppat.1006559] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/29/2017] [Indexed: 12/18/2022] Open
Abstract
Salmonella enterica serovar Infantis is one of the prevalent Salmonella serovars worldwide. Different emergent clones of S. Infantis were shown to acquire the pESI virulence-resistance megaplasmid affecting its ecology and pathogenicity. Here, we studied two previously uncharacterized pESI-encoded chaperone-usher fimbriae, named Ipf and Klf. While Ipf homologs are rare and were found only in S. enterica subspecies diarizonae and subspecies VII, Klf is related to the known K88-Fae fimbria and klf clusters were identified in seven S. enterica subspecies I serovars, harboring interchanging alleles of the fimbria major subunit, KlfG. Regulation studies showed that the klf genes expression is negatively and positively controlled by the pESI-encoded regulators KlfL and KlfB, respectively, and are activated by the ancestral leucine-responsive regulator (Lrp). ipf genes are negatively regulated by Fur and activated by OmpR. Furthermore, induced expression of both klf and ipf clusters occurs under microaerobic conditions and at 41°C compared to 37°C, in-vitro. Consistent with these results, we demonstrate higher expression of ipf and klf in chicks compared to mice, characterized by physiological temperature of 41.2°C and 37°C, respectively. Interestingly, while Klf was dispensable for S. Infantis colonization in the mouse, Ipf was required for maximal colonization in the murine ileum. In contrast to these phenotypes in mice, both Klf and Ipf contributed to a restrained infection in chicks, where the absence of these fimbriae has led to moderately higher bacterial burden in the avian host. Taken together, these data suggest that physiological differences between host species, such as the body temperature, can confer differences in fimbriome expression, affecting Salmonella colonization and other host-pathogen interplays.
Collapse
Affiliation(s)
- Gili Aviv
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Laura Elpers
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | | | - Helit Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Guntram A. Grassl
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
13
|
Dorman CJ, Bogue MM. The interplay between DNA topology and accessory factors in site-specific recombination in bacteria and their bacteriophages. Sci Prog 2016; 99:420-437. [PMID: 28742481 PMCID: PMC10365484 DOI: 10.3184/003685016x14811202974921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Site-specific recombination is employed widely in bacteria and bacteriophage as a basis for genetic switching events that control phenotypic variation. It plays a vital role in the life cycles of phages and in the replication cycles of chromosomes and plasmids in bacteria. Site-specific recombinases drive these processes using very short segments of identical (or nearly identical) DNA sequences. In some cases, the efficiencies of the recombination reactions are modulated by the topological state of the participating DNA sequences and by the availability of accessory proteins that shape the DNA. These dependencies link the molecular machines that conduct the recombination reactions to the physiological state of the cell. This is because the topological state of bacterial DNA varies constantly during the growth cycle and so does the availability of the accessory factors. In addition, some accessory factors are under allosteric control by metabolic products or second messengers that report the physiological status of the cell. The interplay between DNA topology, accessory factors and site-specific recombination provides a powerful illustration of the connectedness and integration of molecular events in bacterial cells and in viruses that parasitise bacterial cells.
Collapse
Affiliation(s)
| | - Marina M. Bogue
- Natural Science (Microbiology) from Trinity College Dublin, Ireland
| |
Collapse
|
14
|
Qin R, Sang Y, Ren J, Zhang Q, Li S, Cui Z, Yao YF. The Bacterial Two-Hybrid System Uncovers the Involvement of Acetylation in Regulating of Lrp Activity in Salmonella Typhimurium. Front Microbiol 2016; 7:1864. [PMID: 27909434 PMCID: PMC5112231 DOI: 10.3389/fmicb.2016.01864] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022] Open
Abstract
N𝜀-lysine acetylation is an abundant and important Post-translational modification in bacteria. We used the bacterial two-hybrid system to screen the genome library of the Salmonella Typhimurium to identify potential proteins involved in acetyltransferase Pat - or deacetylase CobB-mediated acetylation. Then, the in vitro (de)acetylation assays were used to validate the potential targets, such as STM14_1074, NrdF, RhaR. Lrp, a leucine-responsive regulatory protein and global regulator, was shown to interact with Pat. We further demonstrate that Lrp could be acetylated by Pat and deacetylated by NAD+-dependent CobB in vitro. Specifically, the conserved lysine residue 36 (K36) in helix-turn-helix (HTH) DNA-binding domain of Lrp was acetylated. Acetylation of K36 impaired the function of Lrp through altering the affinity with the target promoter. The mutation of K36 in chromosome mimicking acetylation enhanced the transcriptional level of itself and attenuated the mRNA levels of Lrp-regulated genes including fimA, which was confirmed by yeast agglutination assay. These findings demonstrate that the acetylation regulates the DNA-binding activity of Lrp, suggesting that acetylation modification of transcription factors is a conserved regulatory manner to modulate gene expression in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Ran Qin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University Nanjing, China
| | - Yu Sang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Jie Ren
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Qiufen Zhang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Shuxian Li
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University Nanjing, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of MedicineShanghai, China; Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China
| |
Collapse
|
15
|
Establishment of a multi-species biofilm model and metatranscriptomic analysis of biofilm and planktonic cell communities. Appl Microbiol Biotechnol 2016; 100:7263-79. [PMID: 27102130 DOI: 10.1007/s00253-016-7532-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 02/06/2023]
Abstract
We collected several biofilm samples from Japanese rivers and established a reproducible multi-species biofilm model that can be analyzed in laboratories. Bacterial abundance at the generic level was highly similar between the planktonic and biofilm communities, whereas comparative metatranscriptomic analysis revealed many upregulated and downregulated genes in the biofilm. Many genes involved in iron-sulfur metabolism, stress response, and cell envelope function were upregulated; biofilm formation is mediated by an iron-dependent signaling mechanism and the signal is relayed to stress-responsive and cell envelope function genes. Flagella-related gene expression was regulated depending upon the growth phase, indicating different roles of flagella during the adherence, maturation, and dispersal steps of biofilm formation. Downregulation of DNA repair genes was observed, indicating that spontaneous mutation frequency would be elevated within the biofilm and that the biofilm is a cradle for generating novel genetic traits. Although the significance remains unclear, genes for rRNA methyltransferase, chromosome partitioning, aminoacyl-tRNA synthase, and cysteine, methionine, leucine, thiamine, nucleotide, and fatty acid metabolism were found to be differentially regulated. These results indicate that planktonic and biofilm communities are in different dynamic states. Studies on biofilm and sessile cells, which have received less attention, are important for understanding microbial ecology and for designing tailor-made anti-biofilm drugs.
Collapse
|
16
|
Lee CA, Yeh KS. The Non-Fimbriate Phenotype Is Predominant among Salmonella enterica Serovar Choleraesuis from Swine and Those Non-Fimbriate Strains Possess Distinct Amino Acid Variations in FimH. PLoS One 2016; 11:e0151126. [PMID: 26974320 PMCID: PMC4790892 DOI: 10.1371/journal.pone.0151126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/24/2016] [Indexed: 11/22/2022] Open
Abstract
Although most Salmonella serovars are able to infect a range of animal hosts, some have acquired the ability to cause systemic infections of specific hosts. For example, Salmonella enterica serovar Choleraesuis is primarily associated with systemic infection in swine. Adherence to host epithelial cells is considered a prerequisite for initial infection, and fimbrial appendages on the outer membrane of the bacteria are implicated in this process. Although type 1 fimbriae encoded by the fim gene cluster are commonly found in Salmonella serovars, it is not known whether S. Choleraesuis produces this fimbrial type and if and how fimbriae are involved in pathogenesis. In the present study, we demonstrated that only four out of 120 S. Choleraesuis isolates from pigs with salmonellosis produced type 1 fimbriae as assayed by the yeast agglutination test and electron microscopy. One of the 116 non-type 1 fimbria-producing isolates was transformed with plasmids carrying different fim genes from S. Typhimurium LB5010, a type 1 fimbria-producing strain. Our results indicate that non-type 1 fimbria-producing S. Choleraesuis required only an intact fimH to regain the ability to produce fimbrial appendages. Sequence comparison revealed six amino acid variations between the FimH of the non-type 1 fimbria-producing S. Choleraesuis isolates and those of the type 1 fimbria-producing S. Choleraesuis isolates. S. Choleraesuis that produced type 1 fimbriae contained FimH with an amino acid sequence identical to that of S. Typhimurium LB5010. Site-directed mutagenesis leading to the replacement of the non-conserved residues revealed that a change from glycine to valine at position of 63 (G63V) resulted in a non-type 1 fimbria-producing S. Choleraesuis being able to express type 1 fimbriae on its outer membrane. It is possible that this particular amino acid change prevents this polypeptide from proper interaction with other Fim subunits required for assembly of an intact type 1 fimbrial shaft in S. Choleraesuis; however, it remains to be determined if and how the absence of type 1 fimbriae production is related to the systemic infection of the swine host by S. Choleraesuis.
Collapse
Affiliation(s)
- Chien-An Lee
- Department of Veterinary Medicine, School of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Kuang-Sheng Yeh
- Department of Veterinary Medicine, School of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- National Taiwan University Veterinary Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
17
|
Regulation of Expression of Uropathogenic Escherichia coli Nonfimbrial Adhesin TosA by PapB Homolog TosR in Conjunction with H-NS and Lrp. Infect Immun 2016; 84:811-21. [PMID: 26755158 DOI: 10.1128/iai.01302-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/31/2015] [Indexed: 12/11/2022] Open
Abstract
Urinary tract infections (UTIs) are a major burden to human health. The overwhelming majority of UTIs are caused by uropathogenic Escherichia coli (UPEC) strains. Unlike some pathogens, UPEC strains do not have a fixed core set of virulence and fitness factors but do have a variety of adhesins and regulatory pathways. One such UPEC adhesin is the nonfimbrial adhesin TosA, which mediates adherence to the epithelium of the upper urinary tract. The tos operon is AT rich, resides on pathogenicity island aspV, and is not expressed under laboratory conditions. Because of this, we hypothesized that tosA expression is silenced by H-NS. Lrp, based on its prominent function in the regulation of other adhesins, is also hypothesized to contribute to tos operon regulation. Using a variety of in vitro techniques, we mapped both the tos operon promoter and TosR binding sites. We have now identified TosR as a dual regulator of the tos operon, which could control the tos operon in association with H-NS and Lrp. H-NS is a negative regulator of the tos operon, and Lrp positively regulates the tos operon. Exogenous leucine also inhibits Lrp-mediated tos operon positive regulation. In addition, TosR binds to the pap operon, which encodes another important UPEC adhesin, P fimbria. Induction of TosR synthesis reduces production of P fimbria. These studies advance our knowledge of regulation of adhesin expression associated with uropathogen colonization of a host.
Collapse
|
18
|
Hypermutator Salmonella Heidelberg induces an early cell death in epithelial cells. Vet Microbiol 2015; 180:65-74. [PMID: 26320605 DOI: 10.1016/j.vetmic.2015.07.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 11/22/2022]
Abstract
We have previously described that a strain of Salmonella Heidelberg with a hypermutator phenotype, B182, adhered strongly to HeLa cells. In this work, we showed that this hypermutator Salmonella strain invaded HeLa epithelial cells and induced cytoskeleton alteration. Those changes lead to HeLa cell death which was characteristic of apoptosis. For the first time, we showed that this hypermutator strain induced apoptosis associated with the activation of caspases 2, 9 and 3. Complementation of B182 strain showed a decrease in cells death induction. In the presence of other Salmonella Heidelberg with a normomutator phenotype, such as WT and SL486, cell death and caspase 3 were undetectable. These results suggested that early apoptosis and caspase 3 activation were specific to B182. Besides, B182 induced LDH release and caspase 3 activation in CaCo-2 and HCT116 cells. Heat-treated B182 and diffusible products failed to induce this phenotype. Epithelial cells treatment with cytochalasin D caused the inhibition of B182 internalisation and caspase 3 activation. These results showed that this cell death required active S. Heidelberg B182 protein synthesis and bacterial internalisation. However sipB and sopB, usually involved in apoptosis induced by Salmonella were not overexpressed in B182, contrary to fimA and fliC. Comparative genome analysis showed numerous mutations as in rpoS which would be more investigated. The role of the hypermutator phenotype might be suspected to be implicated in these specific features. This result expands our knowledge about strong mutators frequently found in bacterial organisms isolated from clinical specimens.
Collapse
|
19
|
Wang KC, Hsu YH, Huang YN, Chen TH, Lin JH, Hsuan SL, Chien MS, Lee WC, Yeh KS. A low-pH medium in vitro or the environment within a macrophage decreases the transcriptional levels of fimA, fimZ and lrp in Salmonella enterica serovar Typhimurium. J Biosci 2014; 38:499-507. [PMID: 23938383 DOI: 10.1007/s12038-013-9347-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many Salmonella Typhimurium isolates produce type 1 fimbriae and exhibit fimbrial phase variation in vitro. Static broth culture favours the production of fimbriae, while solid agar medium inhibits the generation of these appendages. Little information is available regarding whether S. Typhimurium continues to produce type 1 fimbriae during in vivo growth. We used a type 1 fimbrial phase-variable strain S. Typhimurium LB5010 and its derivatives to infect RAW 264.7 macrophages. Following entry into macrophages, S. Typhimurium LB5010 gradually decreased the transcript levels of fimbrial subunit gene fimA, positive regulatory gene fimZ, and global regulatory gene lrp. A similar decrease in transcript levels was detected by RT-PCRwhen the pH of static brothmediumwas shifted frompH 7 to amore acidic pH 4. A fimA-deleted strain continued to multiply within macrophages as did the parental strain. An lrp deletion strain was unimpaired for in vitro growth at pH 7 or pH 4, while a strain harboring an lrp-containing plasmid exhibited impaired in vitro growth at pH 4. We propose that acidic medium, which resembles one aspect of the intracellular environment in a macrophage, inhibits type 1 fimbrial production by down-regulation of the expression of lrp, fimZ and fimA.
Collapse
Affiliation(s)
- Ke-Chuan Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang KC, Hsu YH, Huang YN, Lin JH, Yeh KS. FimY of Salmonella enterica serovar Typhimurium functions as a DNA-binding protein and binds the fimZ promoter. Microbiol Res 2013; 169:496-503. [PMID: 24462182 DOI: 10.1016/j.micres.2013.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/02/2013] [Accepted: 12/08/2013] [Indexed: 11/17/2022]
Abstract
Salmonella enterica serovar Typhimurium produces type 1 fimbriae with binding specificity to mannose residues. Elements involved in fimbrial structural biosynthesis, transport, and regulation are encoded by the fim gene cluster. FimZ, FimY, FimW, STM0551, and an arginine transfer RNA (fimU) were previously demonstrated to regulate fimbrial expression. The amino acid sequences of the C-terminal portion of FimY revealed similarity with those of LuxR-like proteins. Electrophoretic mobility shift assays indicated that FimY possessed DNA-binding capacity and bound a 605-bp DNA fragment spanning the intergenic region between fimY and fimZ, while a FimY protein harboring a double mutation in the C-terminal helix-turn-helix region containing a glycine (G) to aspartate (D) substitution at residue 189 and isoleucine (I) to lysine (K) substitution at residue 195 lost its ability to bind this DNA fragment. A lux box sequence (5'-TCTGTTATTACATAACAAATACT-3') within the fimZ promoter was required for binding. None of the DNA fragments derived from the promoters for fimA, fimY, or fimW was shifted by FimY. Pull-down assays showed that there were physical protein/protein interactions between FimY and FimZ. We propose that in the regulatory circuit of type 1 fimbriae, FimY functions as a DNA-binding protein to activate fimZ, and a FimY-FimZ protein complex may form to regulate other fim genes. Confirming these proposals requires further study.
Collapse
Affiliation(s)
- Ke-Chuan Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Yuan-Hsun Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Yi-Ning Huang
- Department of Veterinary Medicine, School of Veterinary Medicine, College of Bioresources and Agriculture, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan
| | - Jiunn-Horng Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, College of Bioresources and Agriculture, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan; Division of Animal Medicine, Animal Technology Institute Taiwan, Chunan, Miaoli 35053, Taiwan
| | - Kuang-Sheng Yeh
- Department of Veterinary Medicine, School of Veterinary Medicine, College of Bioresources and Agriculture, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan.
| |
Collapse
|
21
|
Wang ZC, Huang CJ, Huang YJ, Wu CC, Peng HL. FimK regulation on the expression of type 1 fimbriae in Klebsiella pneumoniae CG43S3. MICROBIOLOGY-SGM 2013; 159:1402-1415. [PMID: 23704787 DOI: 10.1099/mic.0.067793-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Klebsiella pneumoniae CG43, a heavy encapsulated liver abscess isolate, mainly expresses type 3 fimbriae. Type 1 fimbriae expression was only apparent in CG43S3ΔmrkA (the type 3 fimbriae-deficient strain). The expression of type 1 fimbriae in CG43S3ΔmrkA was reduced by deleting the fimK gene, but was unaffected by removing the 3' end of fimK encoding the C-terminal EIL domain (EILfimK). Quantitative RT-PCR and promoter activity analysis showed that the putative DNA-binding region at the N terminus, but not the C-terminal EIL domain, of FimK positively affects transcription of the type 1 fimbrial major subunit, fimA. An electrophoretic mobility shift assay demonstrated that the recombinant FimK could specifically bind to fimS, which is located upstream of fimA and contains a vegetative promoter for the fim operon, also reflecting possible transcriptional regulation. EILfimK was shown to encode a functional phosphodiesterase (PDE) via enhancing motility in Escherichia coli JM109 and in vitro using PDE activity assays. Moreover, EILfimK exhibited higher PDE activity than FimK, implying that the N-terminal DNA-binding domain may negatively affect the PDE activity of FimK. FimA expression was detected in CG43S3 expressing EILfimK or AILfimK, suggesting that FimA expression is not directly influenced by the c-di-GMP level. In summary, FimK influences type 1 fimbriation by binding to fimS at the N-terminal domain, and thereafter, the altered protein structure may activate C-terminal PDE activity to reduce the intracellular c-di-GMP level.
Collapse
Affiliation(s)
- Zhe-Chong Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Ching-Jou Huang
- Institute of Molecular Medicine and Bioengineering, School of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Ying-Jung Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Chien-Chen Wu
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Hwei-Ling Peng
- Institute of Molecular Medicine and Bioengineering, School of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China.,Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| |
Collapse
|
22
|
Wang KC, Hsu YH, Huang YN, Yeh KS. A previously uncharacterized gene stm0551 plays a repressive role in the regulation of type 1 fimbriae in Salmonella enterica serotype Typhimurium. BMC Microbiol 2012; 12:111. [PMID: 22716649 PMCID: PMC3487979 DOI: 10.1186/1471-2180-12-111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/07/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Salmonella enterica serotype Typhimurium produces surface-associated fimbriae that facilitate adherence of the bacteria to a variety of cells and tissues. Type 1 fimbriae with binding specificity to mannose residues are the most commonly found fimbrial type. In vitro, static-broth culture favors the growth of S. Typhimurium with type 1 fimbriae, whereas non-type 1 fimbriate bacteria are obtained by culture on solid-agar media. Previous studies demonstrated that the phenotypic expression of type 1 fimbriae is the result of the interaction and cooperation of the regulatory genes fimZ, fimY, fimW, and fimU within the fim gene cluster. Genome sequencing revealed a novel gene, stm0551, located between fimY and fimW that encodes an 11.4-kDa putative phosphodiesterase specific for the bacterial second messenger cyclic-diguanylate monophosphate (c-di-GMP). The role of stm0551 in the regulation of type 1 fimbriae in S. Typhimurium remains unclear. RESULTS A stm0551-deleted stain constructed by allelic exchange constitutively produced type 1 fimbriae in both static-broth and solid-agar medium conditions. Quantative RT-PCR revealed that expression of the fimbrial major subunit gene, fimA, and one of the regulatory genes, fimZ, were comparably increased in the stm0551-deleted strain compared with those of the parental strain when grown on the solid-agar medium, a condition that normally inhibits expression of type 1 fimbriae. Following transformation with a plasmid possessing the coding sequence of stm0551, expression of fimA and fimZ decreased in the stm0551 mutant strain in both culture conditions, whereas transformation with the control vector pACYC184 relieved this repression. A purified STM0551 protein exhibited a phosphodiesterase activity in vitro while a point mutation in the putative EAL domain, substituting glutamic acid (E) with alanine (A), of STM0551 or a FimY protein abolished this activity. CONCLUSIONS The finding that the stm0551 gene plays a negative regulatory role in the regulation of type 1 fimbriae in S. Typhimurium has not been reported previously. The possibility that degradation of c-di-GMP is a key step in the regulation of type 1 fimbriae warrants further investigation.
Collapse
Affiliation(s)
- Ke-Chuan Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan
| | | | | | | |
Collapse
|
23
|
Baek CH, Kang HY, Roland KL, Curtiss R. Lrp acts as both a positive and negative regulator for type 1 fimbriae production in Salmonella enterica serovar Typhimurium. PLoS One 2011; 6:e26896. [PMID: 22046399 PMCID: PMC3203922 DOI: 10.1371/journal.pone.0026896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/05/2011] [Indexed: 12/16/2022] Open
Abstract
Leucine-responsive regulatory protein (Lrp) is known to be an indirect activator of type 1 fimbriae synthesis in Salmonella enterica serovar Typhimurium via direct regulation of FimZ, a direct positive regulator for type 1 fimbriae production. Using RT-PCR, we have shown previously that fimA transcription is dramatically impaired in both lrp-deletion (Δlrp) and constitutive-lrp expression (lrpC) mutant strains. In this work, we used chromosomal PfimA-lacZ fusions and yeast agglutination assays to confirm and extend our previous results. Direct binding of Lrp to PfimA was shown by an electrophoretic mobility shift assay (EMSA) and DNA footprinting assay. Site-directed mutagenesis revealed that the Lrp-binding motifs in PfimA play a role in both activation and repression of type 1 fimbriae production. Overproduction of Lrp also abrogates fimZ expression. EMSA data showed that Lrp and FimZ proteins independently bind to PfimA without competitive exclusion. In addition, both Lrp and FimZ binding to PfimA caused a hyper retardation (supershift) of the DNA-protein complex compared to the shift when each protein was present alone. Nutrition-dependent cellular Lrp levels closely correlated with the amount of type 1 fimbriae production. These observations suggest that Lrp plays important roles in type 1 fimbriation by acting as both a positive and negative regulator and its effect depends, at least in part, on the cellular concentration of Lrp in response to the nutritional environment.
Collapse
Affiliation(s)
- Chang-Ho Baek
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Ho-Young Kang
- Department of Microbiology, Pusan National University, Pusan, Korea
| | - Kenneth L. Roland
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Roy Curtiss
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences at Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
24
|
Cordone A, Lucchini S, Felice M, Ricca E. Direct and indirect control of Lrp on LEE pathogenicity genes of Citrobacter rodentium. FEMS Microbiol Lett 2011; 325:64-70. [DOI: 10.1111/j.1574-6968.2011.02411.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/11/2011] [Accepted: 09/05/2011] [Indexed: 11/29/2022] Open
Affiliation(s)
- Angelina Cordone
- Dipartimento di Biologia Strutturale e Funzionale; Università Federico II; Napoli; Italy
| | | | - Maurilio Felice
- Dipartimento di Biologia Strutturale e Funzionale; Università Federico II; Napoli; Italy
| | - Ezio Ricca
- Dipartimento di Biologia Strutturale e Funzionale; Università Federico II; Napoli; Italy
| |
Collapse
|
25
|
More than one way to control hair growth: regulatory mechanisms in enterobacteria that affect fimbriae assembled by the chaperone/usher pathway. J Bacteriol 2011; 193:2081-8. [PMID: 21398554 DOI: 10.1128/jb.00071-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many gram-negative enterobacteria produce surface-associated fimbriae that facilitate attachment and adherence to eucaryotic cells and tissues. These organelles are believed to play an important role during infection by enabling bacteria to colonize specific niches within their hosts. One class of these fimbriae is assembled using a periplasmic chaperone and membrane-associated scaffolding protein that has been referred to as an usher because of its function in fimbrial biogenesis. The presence of multiple types of fimbriae assembled by the chaperone/usher pathway can be found both within a single bacterial species and also among different genera. One way of controlling fimbrial assembly in these bacteria is at the genetic level by positively or negatively regulating fimbrial gene expression. This minireview considers the mechanisms that have been described to control fimbrial gene expression and uses specific examples to demonstrate both unique and shared properties of such regulatory mechanisms.
Collapse
|
26
|
Seshasayee ASN, Sivaraman K, Luscombe NM. An overview of prokaryotic transcription factors : a summary of function and occurrence in bacterial genomes. Subcell Biochem 2011; 52:7-23. [PMID: 21557077 DOI: 10.1007/978-90-481-9069-0_2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcriptional initiation is arguably the most important control point for gene expression. It is regulated by a combination of factors, including DNA sequence and its three-dimensional topology, proteins and small molecules. In this chapter, we focus on the trans-acting factors of bacterial regulation. Initiation begins with the recruitment of the RNA polymerase holoenzyme to a specific locus upstream of the gene known as its promoter. The sigma factor, which is a component of the holoenzyme, provides the most fundamental mechanisms for orchestrating broad changes in gene expression state. It is responsible for promoter recognition as well as recruiting the holoenzyme to the promoter. Distinct sigma factors compete with for binding to a common pool of RNA polymerases, thus achieving condition-dependent differential expression. Another important class of bacterial regulators is transcription factors, which activate or repress transcription of target genes typically in response to an environmental or cellular trigger. These factors may be global or local depending on the number of genes and range of cellular functions that they target. The activities of both global and local transcription factors may be regulated either at a post-transcriptional level via signal-sensing protein domains or at the level of their own expression. In addition to modulating polymerase recruitment to promoters, several global factors are considered as "nucleoid-associated proteins" that impose structural constraints on the chromosome by altering the conformation of the bound DNA, thus influencing other processes involving DNA such as replication and recombination. This chapter concludes with a discussion of how regulatory interactions between transcription factors and their target genes can be represented as a network.
Collapse
|
27
|
Abstract
Emerging models of the bacterial nucleoid show that nucleoid-associated proteins (NAPs) and transcription contribute in combination to the dynamic nature of nucleoid structure. NAPs and other DNA-binding proteins that display gene-silencing and anti-silencing activities are emerging as key antagonistic regulators of nucleoid structure. Furthermore, it is becoming clear that the boundary between NAPs and conventional transcriptional regulators is quite blurred and that NAPs facilitate the evolution of novel gene regulatory circuits. Here, NAP biology is considered from the standpoints of both gene regulation and nucleoid structure.
Collapse
|
28
|
Corcoran CP, Dorman CJ. DNA relaxation-dependent phase biasing of the fim genetic switch in Escherichia coli depends on the interplay of H-NS, IHF and LRP. Mol Microbiol 2009; 74:1071-82. [PMID: 19889099 DOI: 10.1111/j.1365-2958.2009.06919.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reversible inversion of the DNA element fimS is responsible for the phase variable expression of type 1 fimbriae in Escherichia coli. The FimB tyrosine integrase site-specific recombinase inverts fimS in the on-to-off and off-to-on directions with approximately equal efficiencies. However, when DNA supercoiling is relaxed, fimS adopts predominantly the on orientation. This orientational bias is known to require binding of the nucleoid-associated protein LRP within fimS. Here we show that binding of the IHF protein to a site immediately adjacent to fimS is also required for phase-on orientational bias. In the absence of both LRP and IHF binding, fimS adopts the off orientation and the H-NS protein is required to maintain this alternative orientational bias. Thus, fimS has three Recombination Directionality Factors, H-NS, IHF and LRP. The relevant H-NS binding site straddles the left inverted repeat in phase-off fimS and this site is disrupted when fimS inverts to the on orientation. The inversion of fimS with the associated creation and removal of an H-NS binding site required for DNA inversion biasing represents a novel mechanism for modulating the interaction of H-NS with a DNA target and for influencing a site-specific recombination reaction.
Collapse
Affiliation(s)
- Colin P Corcoran
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
29
|
Subashchandrabose S, LeVeque RM, Wagner TK, Kirkwood RN, Kiupel M, Mulks MH. Branched-chain amino acids are required for the survival and virulence of Actinobacillus pleuropneumoniae in swine. Infect Immun 2009; 77:4925-33. [PMID: 19703979 PMCID: PMC2772520 DOI: 10.1128/iai.00671-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/01/2009] [Accepted: 08/17/2009] [Indexed: 11/20/2022] Open
Abstract
In Actinobacillus pleuropneumoniae, which causes porcine pleuropneumonia, ilvI was identified as an in vivo-induced (ivi) gene and encodes the enzyme acetohydroxyacid synthase (AHAS) required for branched-chain amino acid (BCAA) biosynthesis. ilvI and 7 of 32 additional ivi promoters were upregulated in vitro when grown in chemically defined medium (CDM) lacking BCAA. Based on these observations, we hypothesized that BCAA would be found at limiting concentrations in pulmonary secretions and that A. pleuropneumoniae mutants unable to synthesize BCAA would be attenuated in a porcine infection model. Quantitation of free amino acids in porcine pulmonary epithelial lining fluid showed concentrations of BCAA ranging from 8 to 30 micromol/liter, which is 10 to 17% of the concentration in plasma. The expression of both ilvI and lrp, a global regulator that is required for ilvI expression, was strongly upregulated in CDM containing concentrations of BCAA similar to those found in pulmonary secretions. Deletion-disruption mutants of ilvI and lrp were both auxotrophic for BCAA in CDM and attenuated compared to wild-type A. pleuropneumoniae in competitive index experiments in a pig infection model. Wild-type A. pleuropneumoniae grew in CDM+BCAA but not in CDM-BCAA in the presence of sulfonylurea AHAS inhibitors. These results clearly demonstrate that BCAA availability is limited in the lungs and support the hypothesis that A. pleuropneumoniae, and potentially other pulmonary pathogens, uses limitation of BCAA as a cue to regulate the expression of genes required for survival and virulence. These results further suggest a potential role for AHAS inhibitors as antimicrobial agents against pulmonary pathogens.
Collapse
Affiliation(s)
- Sargurunathan Subashchandrabose
- Comparative Medicine and Integrative Biology Program, Department of Microbiology and Molecular Genetics, Department of Large Animal Clinical Sciences, Department of Pathobiology and Diagnostic Investigation, Center for Microbial Pathogenesis, Michigan State University, East Lansing, Michigan 48824
| | - Rhiannon M. LeVeque
- Comparative Medicine and Integrative Biology Program, Department of Microbiology and Molecular Genetics, Department of Large Animal Clinical Sciences, Department of Pathobiology and Diagnostic Investigation, Center for Microbial Pathogenesis, Michigan State University, East Lansing, Michigan 48824
| | - Trevor K. Wagner
- Comparative Medicine and Integrative Biology Program, Department of Microbiology and Molecular Genetics, Department of Large Animal Clinical Sciences, Department of Pathobiology and Diagnostic Investigation, Center for Microbial Pathogenesis, Michigan State University, East Lansing, Michigan 48824
| | - Roy N. Kirkwood
- Comparative Medicine and Integrative Biology Program, Department of Microbiology and Molecular Genetics, Department of Large Animal Clinical Sciences, Department of Pathobiology and Diagnostic Investigation, Center for Microbial Pathogenesis, Michigan State University, East Lansing, Michigan 48824
| | - Matti Kiupel
- Comparative Medicine and Integrative Biology Program, Department of Microbiology and Molecular Genetics, Department of Large Animal Clinical Sciences, Department of Pathobiology and Diagnostic Investigation, Center for Microbial Pathogenesis, Michigan State University, East Lansing, Michigan 48824
| | - Martha H. Mulks
- Comparative Medicine and Integrative Biology Program, Department of Microbiology and Molecular Genetics, Department of Large Animal Clinical Sciences, Department of Pathobiology and Diagnostic Investigation, Center for Microbial Pathogenesis, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
30
|
Borowsky L, Corção G, Cardoso M. Mannanoligosaccharide agglutination by Salmonella enterica strains isolated from carrier pigs. Braz J Microbiol 2009; 40:458-64. [PMID: 24031388 PMCID: PMC3768530 DOI: 10.1590/s1517-83822009000300007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 11/12/2008] [Accepted: 05/04/2009] [Indexed: 01/10/2023] Open
Abstract
Type-1 fimbriae are associated with most Salmonella enterica serovars and are an essential factor for host colonization. Mannanoligosaccharides (MOS), a prebiotic that is agglutinated by type-1 fimbriae, are proposed for the control of enterobacteria colonization and may be an alternative to Salmonella control in pigs. The aim of this study was to evaluate the capability of porcine Salmonella strains to adhere to MOS in vitro. A total of 108 strains of Salmonella sp. isolated from carrier pigs were evaluated for the amplification of fimA and fimH genes, agglutination of MOS and hemagglutination. In all tested strains, amplicons of expected size were detected for both fimA and fimH gene. In the hemagglutination assays, 31 (28.7%) strains presented mannose-sensitive agglutination of erythrocytes, indicating that the strains were expressing type-1 fimbriae. Considering only strains expressing the type-1 fimbriae, 23 (74.2%) presented a strong agglutination of MOS, 3 (9.6%) a weak reaction and 5 (16.2%) none. The results indicate that Salmonella enterica strains expressing type-1 fimbriae can agglutinate effectively in vitro to MOS.
Collapse
Affiliation(s)
- Luciane Borowsky
- Departamento de Medicina Veterinária Preventiva, Universidade Federal do Rio Grande do Sul , Porto Alegre, RS , Brasil
| | | | | |
Collapse
|
31
|
Leonard PG, Ono S, Gor J, Perkins SJ, Ladbury JE. Investigation of the self-association and hetero-association interactions of H-NS and StpA from Enterobacteria. Mol Microbiol 2009; 73:165-79. [PMID: 19508284 DOI: 10.1111/j.1365-2958.2009.06754.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nucleoid-associated protein H-NS and its paralogue StpA are global regulators of gene expression and form an integral part of the protein scaffold responsible for DNA condensation in Escherichia coli and Salmonella typhimurium. Although protein oligomerization is a requirement for this function, it is not entirely understood how this is accomplished. We address this by reporting on the self-association of H-NS and its hetero-association with StpA. We identify residues 1-77 of H-NS as being necessary and sufficient for high-order association. A multi-technique-based approach was used to measure the effects of salt concentration on the size distribution of H-NS and the thermal stability of H-NS and StpA dimers. The thermal stability of the StpA homodimer is significantly greater than that of H-NS(1-74). Investigation of the hetero-association of H-NS and StpA proteins suggested that the association of H-NS with StpA is more stable than the self-association of either H-NS or StpA with themselves. This provides a clear understanding of the method of oligomerization of these important proteins in effecting DNA condensation and reveals that the different associative properties of H-NS and StpA allow them to perform distinct, yet complementary roles in the bacterial nucleoid.
Collapse
Affiliation(s)
- Paul G Leonard
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
32
|
Dorman CJ. Nucleoid-associated proteins and bacterial physiology. ADVANCES IN APPLIED MICROBIOLOGY 2009; 67:47-64. [PMID: 19245936 DOI: 10.1016/s0065-2164(08)01002-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial physiology is enjoying a renaissance in the postgenomic era as investigators struggle to interpret the wealth of new data that has emerged and continues to emerge from genome sequencing projects and from analyses of bacterial gene regulation patterns using whole-genome methods at the transcriptional and posttranscriptional levels. Information from model organisms such as the Gram-negative bacterium Escherichia coli is proving to be invaluable in providing points of reference for such studies. An important feature of this work concerns the nature of global mechanisms of gene regulation where a relatively small number of regulatory proteins affect the expression of scores of genes simultaneously. The nucleoid-associated proteins, especially Factor for Inversion Stimulation (Fis), IHF, H-NS, HU, and Lrp, represent a prominent group of global regulators and studies of these proteins and their roles in bacterial physiology are providing new insights into how the bacterium governs gene expression in ways that maximize its competitive advantage.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, School of Genetics and Microbiology, Trinity College, Dublin 2, Ireland
| |
Collapse
|
33
|
Leucine-responsive regulatory protein (Lrp) acts as a virulence repressor in Salmonella enterica serovar Typhimurium. J Bacteriol 2008; 191:1278-92. [PMID: 19074398 DOI: 10.1128/jb.01142-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leucine-responsive regulatory protein (Lrp) is a global gene regulator that influences expression of a large number of genes including virulence-related genes in Escherichia coli and Salmonella. No systematic studies examining the regulation of virulence genes by Lrp have been reported in Salmonella. We report here that constitutive expression of Lrp [lrp(Con)] dramatically attenuates Salmonella virulence while an lrp deletion (Deltalrp) mutation enhances virulence. The lrp(Con) mutant caused pleiotropic effects that include defects in invasion, cytotoxicity, and colonization, whereas the Deltalrp mutant was more proficient at these activities than the wild-type strain. We present evidence that Lrp represses transcription of key virulence regulator genes--hilA, invF, and ssrA--in Salmonella pathogenicity island 1 (SPI-1) and 2 (SPI-2), by binding directly to their promoter regions, P(hilA), P(invF), and P(ssrA). In addition, Western blot analysis showed that the expression of the SPI-1 effector SipA was reduced in the lrp(Con) mutant and enhanced in the Deltalrp mutant. Computational analysis revealed putative Lrp-binding consensus DNA motifs located in P(hilA), P(invF), and P(ssrA). These results suggest that Lrp binds to the consensus motifs and modulates expression of the linked genes. The presence of leucine enhanced Lrp binding to P(invF) in vitro and the addition of leucine to growth medium decreased the level of invF transcription. However, leucine had no effect on expression of hilA and ssrA or on cellular levels of Lrp. In addition, Lrp appears to be an antivirulence gene, since the deletion mutant showed enhanced cell invasion, cytotoxicity, and hypervirulence in BALB/c mice.
Collapse
|
34
|
Abstract
The Gram-negative bacterium Escherichia coli and its close relative Salmonella enterica have made important contributions historically to our understanding of how bacteria control DNA supercoiling and of how supercoiling influences gene expression and vice versa. Now they are contributing again by providing examples where changes in DNA supercoiling affect the expression of virulence traits that are important for infectious disease. Available examples encompass both the earliest stages of pathogen–host interactions and the more intimate relationships in which the bacteria invade and proliferate within host cells. A key insight concerns the link between the physiological state of the bacterium and the activity of DNA gyrase, with downstream effects on the expression of genes with promoters that sense changes in DNA supercoiling. Thus the expression of virulence traits by a pathogen can be interpreted partly as a response to its own changing physiology. Knowledge of the molecular connections between physiology, DNA topology and gene expression offers new opportunities to fight infection.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin 2, Ireland.
| | | |
Collapse
|
35
|
McFarland KA, Dorman CJ. Autoregulated expression of the gene coding for the leucine-responsive protein, Lrp, a global regulator in Salmonella enterica serovar Typhimurium. MICROBIOLOGY-SGM 2008; 154:2008-2016. [PMID: 18599829 DOI: 10.1099/mic.0.2008/018358-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, the lrp gene encoding the leucine-responsive regulatory protein (Lrp) in Salmonella enterica serovar Typhimurium was found to be negatively autoregulated. Its transcription start site was determined by primer extension analysis, showing that the lrp promoter is located at a different site to that inferred previously from the S. Typhimurium genome sequence. Chromosomal DNA fragments that include the promoter region were bound by purified Lrp protein in vitro, producing up to four distinct protein-DNA complexes. DNase I footprinting identified regions that were protected by the protein in vitro as well as bases that became hypersensitive to DNase I treatment following Lrp binding. A clear pattern of periodic hypersensitivity was detected between positions -130 and +15 that was consistent with wrapping of the DNA around Lrp in a nucleoprotein complex that includes the putative promoter region. Lrp-DNA interaction in this region was fully consistent with the observed repression of lrp transcription by this protein. Leucine was found to modulate Lrp-mediated autorepression by remodelling the Lrp-DNA nucleoprotein complex.
Collapse
Affiliation(s)
- Kirsty A McFarland
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| |
Collapse
|
36
|
Salmonella enterica serovar Enteritidis genes induced during oviduct colonization and egg contamination in laying hens. Appl Environ Microbiol 2008; 74:6616-22. [PMID: 18776023 DOI: 10.1128/aem.01087-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is the predominant serovar associated with salmonellosis worldwide, which is in part due to its ability to contaminate the internal contents of the hen's egg. It has been shown that S. enterica serovar Enteritidis has an unusual tropism for the avian reproductive tract and an ability to persist in the oviduct and ovary. Factors allowing S. enterica serovar Enteritidis strains to contaminate eggs could be a specific interaction with the oviduct tissue, leading to persisting oviduct colonization. In vivo expression technology, a promoter-trap strategy, was used to identify genes expressed during oviduct colonization and egg contamination with S. enterica serovar Enteritidis. A total of 25 clones with in vivo-induced promoters were isolated from the oviduct tissue and from laid eggs. Among the 25 clones, 7 were isolated from both the oviducts and the eggs. DNA sequencing of the cloned promoters revealed that genes involved in amino acid and nucleic acid metabolism, motility, cell wall integrity, and stress responses were highly expressed in the reproductive tract tissues of laying hens.
Collapse
|
37
|
Chuang YC, Wang KC, Chen YT, Yang CH, Men SC, Fan CC, Chang LH, Yeh KS. Identification of the genetic determinants of Salmonella enterica serotype Typhimurium that may regulate the expression of the type 1 fimbriae in response to solid agar and static broth culture conditions. BMC Microbiol 2008; 8:126. [PMID: 18652702 PMCID: PMC2527010 DOI: 10.1186/1471-2180-8-126] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Accepted: 07/25/2008] [Indexed: 12/29/2022] Open
Abstract
Background Type 1 fimbriae are the most commonly found fimbrial appendages on the outer membrane of Salmonella enterica serotype Typhimurium. Previous investigations indicate that static broth culture favours S. Typhimurium to produce type 1 fimbriae, while non-fimbriate bacteria are obtained by growth on solid agar media. The phenotypic expression of type 1 fimbriae in S. Typhimurium is the result of the interaction and cooperation of several genes in the fim gene cluster. Other gene products that may also participate in the regulation of type 1 fimbrial expression remain uncharacterized. Results In the present study, transposon insertion mutagenesis was performed on S. Typhimurium to generate a library to screen for those mutants that would exhibit different type 1 fimbrial phenotypes than the parental strain. Eight-two mutants were obtained from 7,239 clones screened using the yeast agglutination test. Forty-four mutants produced type 1 fimbriae on both solid agar and static broth media, while none of the other 38 mutants formed type 1 fimbriae in either culture condition. The flanking sequences of the transposons from 54 mutants were cloned and sequenced. These mutants can be classified according to the functions or putative functions of the open reading frames disrupted by the transposon. Our current results indicate that the genetic determinants such as those involved in the fimbrial biogenesis and regulation, global regulators, transporter proteins, prophage-derived proteins, and enzymes of different functions, to name a few, may play a role in the regulation of type 1 fimbrial expression in response to solid agar and static broth culture conditions. A complementation test revealed that transforming a recombinant plasmid possessing the coding sequence of a NAD(P)H-flavin reductase gene ubiB restored an ubiB mutant to exhibit the type 1 fimbrial phenotype as its parental strain. Conclusion Genetic determinants other than the fim genes may involve in the regulation of type 1 fimbrial expression in S. Typhimurium. How each gene product may influence type 1 fimbrial expression is an interesting research topic which warrants further investigation.
Collapse
Affiliation(s)
- Yin-Ching Chuang
- Department of Medical Research, Chi Mei Medical Center, 901 Chung Hwa Road, Yong Kang City, Tainan 710, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|