1
|
Jena C, Chinnaraj S, Deolankar S, Matange N. Proteostasis modulates gene dosage evolution in antibiotic-resistant bacteria. eLife 2025; 13:RP99785. [PMID: 40073078 PMCID: PMC11903035 DOI: 10.7554/elife.99785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Evolution of gene expression frequently drives antibiotic resistance in bacteria. We had previously (Patel and Matange, eLife, 2021) shown that, in Escherichia coli, mutations at the mgrB locus were beneficial under trimethoprim exposure and led to overexpression of dihydrofolate reductase (DHFR), encoded by the folA gene. Here, we show that DHFR levels are further enhanced by spontaneous duplication of a genomic segment encompassing folA and spanning hundreds of kilobases. This duplication was rare in wild-type E. coli. However, its frequency was elevated in a lon-knockout strain, altering the mutational landscape early during trimethoprim adaptation. We then exploit this system to investigate the relationship between trimethoprim pressure and folA copy number. During long-term evolution, folA duplications were frequently reversed. Reversal was slower under antibiotic pressure, first requiring the acquisition of point mutations in DHFR or its promoter. Unexpectedly, despite resistance-conferring point mutations, some populations under high trimethoprim pressure maintained folA duplication to compensate for low abundance DHFR mutants. We find that evolution of gene dosage depends on expression demand, which is generated by antibiotic and exacerbated by proteolysis of drug-resistant mutants of DHFR. We propose a novel role for proteostasis as a determinant of copy number evolution in antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Chinmaya Jena
- Department of Biology, Indian Institute of Science Education and ResearchPuneIndia
| | - Saillesh Chinnaraj
- Department of Biology, Indian Institute of Science Education and ResearchPuneIndia
| | - Soham Deolankar
- Department of Biology, Indian Institute of Science Education and ResearchPuneIndia
| | - Nishad Matange
- Department of Biology, Indian Institute of Science Education and ResearchPuneIndia
| |
Collapse
|
2
|
Nasralddin NA, Haeili M, Karimzadeh S, Alsahlani F. Tetracycline and chloramphenicol exposure induce decreased susceptibility to tigecycline and genetic alterations in AcrAB-TolC efflux pump regulators in Escherichia coli and Klebsiella pneumoniae. PLoS One 2025; 20:e0315847. [PMID: 39841693 PMCID: PMC11753663 DOI: 10.1371/journal.pone.0315847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/02/2024] [Indexed: 01/30/2025] Open
Abstract
Tigecycline (Tgc), a third-generation tetracycline is found as the last line of defense against multi-drug resistant bacteria. Recent increased rate of resistance to tgc, a human-restricted agent among animal bacteria poses a significant global health challenge. Overuse of first generation tetracyclines (Tet) and phenicols in animals have been suggested to be associated with Tgc resistance development. In the current study we aimed to determine the effect of tetracycline (Tet) and chloramphenicol (Chl) overexposure on Tgc susceptibility. A Tet and Chl-susceptible isolate of K. pneumoniae and E. coli were exposed to successively increasing concentrations of tetracycline and chloramphenicol separately until a ≥4 times increase in Tet and Chl MICs was observed. Susceptibility changes to several antimicrobial agents were tested using disk diffusion and broth dilution methods. The genetic alterations of genes coding for major AcrAB regulators including acrR (repressor of acrAB), ramR (repressor of ramA), soxR (repressor of soxS) in K. pneumoniae and lon (proteolytic degradation of MarA), marR (repressor of marA), acrR and soxR in E. coli were investigated. The expression level of acrB was measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method. The excessive exposure (15 to 40 selection cycles) of studied bacteria to both antibiotics significantly decreased susceptibility of Tet-resistant (R) and Chl-R variants of E. coli (n = 6) and K. pneumoniae (n = 6) to several groups of antibiotics including tigecycline (4-16 and 8-64 times respectively) and quinolones. About 58% of variants (n = 7) carried genetic alterations in AcrAB regulators including ramR (frameshift mutations/locus deletion), MarR (L33R, A70T, G15S amino acid substitutions) and Lon (L630F change, frameshift mutation) which were associated with acrB upregulation. Our study demonstrated the capacity of chloramphenicol and tetracycline exposure for selection of mutants which revealed tigecycline resistance/decreased susceptibility mostly mediated by active efflux mechanism. Unaltered acrB expression level in some strains indicates possible contribution of other efflux pumps or non-efflux-based mechanisms in the development of multiple- antibiotic resistance phenotype.
Collapse
Affiliation(s)
- Nian Anwar Nasralddin
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Sasan Karimzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Fatemeh Alsahlani
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Ripandelli RA, van Oijen AM, Robinson A. Single-Cell Microfluidics: A Primer for Microbiologists. J Phys Chem B 2024; 128:10311-10328. [PMID: 39400277 PMCID: PMC11514030 DOI: 10.1021/acs.jpcb.4c02746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 10/15/2024]
Abstract
Recent advances in microfluidic technology have made it possible to image live bacterial cells with a high degree of precision and control. In particular, single-cell microfluidic designs have created new opportunities to study phenotypic variation in bacterial populations. However, the development and use of microfluidic devices require specialized resources, and these can be practical barriers to entry for microbiologists. With this review, our intentions are to help demystify the design, construction, and application of microfluidics. Our approach is to present design elements as building blocks from which a multitude of microfluidics applications can be imagined by the microbiologist.
Collapse
|
4
|
Qi W, Jonker MJ, Katsavelis D, de Leeuw W, Wortel M, Ter Kuile BH. The Effect of the Stringent Response and Oxidative Stress Response on Fitness Costs of De Novo Acquisition of Antibiotic Resistance. Int J Mol Sci 2024; 25:2582. [PMID: 38473832 DOI: 10.3390/ijms25052582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Resistance evolution during exposure to non-lethal levels of antibiotics is influenced by various stress responses of bacteria which are known to affect growth rate. Here, we aim to disentangle how the interplay between resistance development and associated fitness costs is affected by stress responses. We performed de novo resistance evolution of wild-type strains and single-gene knockout strains in stress response pathways using four different antibiotics. Throughout resistance development, the increase in minimum inhibitory concentration (MIC) is accompanied by a gradual decrease in growth rate, most pronounced in amoxicillin or kanamycin. By measuring biomass yield on glucose and whole-genome sequences at intermediate and final time points, we identified two patterns of how the stress responses affect the correlation between MIC and growth rate. First, single-gene knockout E. coli strains associated with reactive oxygen species (ROS) acquire resistance faster, and mutations related to antibiotic permeability and pumping out occur earlier. This increases the metabolic burden of resistant bacteria. Second, the ΔrelA knockout strain, which has reduced (p)ppGpp synthesis, is restricted in its stringent response, leading to diminished growth rates. The ROS-related mutagenesis and the stringent response increase metabolic burdens during resistance development, causing lower growth rates and higher fitness costs.
Collapse
Affiliation(s)
- Wenxi Qi
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Martijs J Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Drosos Katsavelis
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Wim de Leeuw
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Meike Wortel
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Benno H Ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
5
|
Iwasawa J, Maeda T, Shibai A, Kotani H, Kawada M, Furusawa C. Analysis of the evolution of resistance to multiple antibiotics enables prediction of the Escherichia coli phenotype-based fitness landscape. PLoS Biol 2022; 20:e3001920. [PMID: 36512529 PMCID: PMC9746992 DOI: 10.1371/journal.pbio.3001920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
The fitness landscape represents the complex relationship between genotype or phenotype and fitness under a given environment, the structure of which allows the explanation and prediction of evolutionary trajectories. Although previous studies have constructed fitness landscapes by comprehensively studying the mutations in specific genes, the high dimensionality of genotypic changes prevents us from developing a fitness landscape capable of predicting evolution for the whole cell. Herein, we address this problem by inferring the phenotype-based fitness landscape for antibiotic resistance evolution by quantifying the multidimensional phenotypic changes, i.e., time-series data of resistance for eight different drugs. We show that different peaks of the landscape correspond to different drug resistance mechanisms, thus supporting the validity of the inferred phenotype-fitness landscape. We further discuss how inferred phenotype-fitness landscapes could contribute to the prediction and control of evolution. This approach bridges the gap between phenotypic/genotypic changes and fitness while contributing to a better understanding of drug resistance evolution.
Collapse
Affiliation(s)
- Junichiro Iwasawa
- Department of Physics, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Tomoya Maeda
- Graduate School of Agriculture Research, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Atsushi Shibai
- Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| | - Hazuki Kotani
- Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| | - Masako Kawada
- Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| | - Chikara Furusawa
- Department of Physics, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
- Universal Biology Institute, Graduate School of Science, University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
6
|
Kerr R, Jabbari S, Blair JMA, Johnston IG. Dynamic Boolean modelling reveals the influence of energy supply on bacterial efflux pump expression. J R Soc Interface 2022; 19:20210771. [PMID: 35078338 PMCID: PMC8790346 DOI: 10.1098/rsif.2021.0771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global health issue. One key factor contributing to AMR is the ability of bacteria to export drugs through efflux pumps, which relies on the ATP-dependent expression and interaction of several controlling genes. Recent studies have shown that significant cell-to-cell ATP variability exists within clonal bacterial populations, but the contribution of intrinsic cell-to-cell ATP heterogeneity is generally overlooked in understanding efflux pumps. Here, we consider how ATP variability influences gene regulatory networks controlling expression of efflux pump genes in two bacterial species. We develop and apply a generalizable Boolean modelling framework, developed to incorporate the dependence of gene expression dynamics on available cellular energy supply. Theoretical results show that differences in energy availability can cause pronounced downstream heterogeneity in efflux gene expression. Cells with higher energy availability have a superior response to stressors. Furthermore, in the absence of stress, model bacteria develop heterogeneous pulses of efflux pump gene expression which contribute to a sustained sub-population of cells with increased efflux expression activity, potentially conferring a continuous pool of intrinsically resistant bacteria. This modelling approach thus reveals an important source of heterogeneity in cell responses to antimicrobials and sheds light on potentially targetable aspects of efflux pump-related antimicrobial resistance.
Collapse
Affiliation(s)
- Ryan Kerr
- School of Mathematics, University of Birmingham, Birmingham, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Sara Jabbari
- School of Mathematics, University of Birmingham, Birmingham, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Iain G Johnston
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway.,Computational Biology Unit, University of Bergen, Bergen, Norway.,CAMRIA Centre for Antimicrobial Resistance, Vestland, Norway
| |
Collapse
|
7
|
Seo S, Disney-McKeethen S, Prabhakar RG, Song X, Mehta HH, Shamoo Y. Identification of Evolutionary Trajectories Associated with Antimicrobial Resistance Using Microfluidics. ACS Infect Dis 2022; 8:242-254. [PMID: 34962128 PMCID: PMC10022597 DOI: 10.1021/acsinfecdis.1c00564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vitro experimental evolution of pathogens to antibiotics is commonly used for the identification of clinical biomarkers associated with antibiotic resistance. Microdroplet emulsions allow exquisite control of spatial structure, species complexity, and selection microenvironments for such studies. We investigated the use of monodisperse microdroplets in experimental evolution. Using Escherichia coli adaptation to doxycycline, we examined how changes in environmental conditions such as droplet size, starting lambda value, selection strength, and incubation method affected evolutionary outcomes. We also examined the extent to which emulsions could reveal potentially new evolutionary trajectories and dynamics associated with antimicrobial resistance. Interestingly, we identified both expected and unexpected evolutionary trajectories including large-scale chromosomal rearrangements and amplification that were not observed in suspension culture methods. As microdroplet emulsions are well-suited for automation and provide exceptional control of conditions, they can provide a high-throughput approach for biomarker identification as well as preclinical evaluation of lead compounds.
Collapse
Affiliation(s)
- Seokju Seo
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | | | | | - Xinhao Song
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Heer H Mehta
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Yousif Shamoo
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
8
|
Role of the SOS Response in the Generation of Antibiotic Resistance In Vivo. Antimicrob Agents Chemother 2021; 65:e0001321. [PMID: 33875437 DOI: 10.1128/aac.00013-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The SOS response to DNA damage is a conserved stress response in Gram-negative and Gram-positive bacteria. Although this pathway has been studied for years, its relevance is still not familiar to many working in the fields of clinical antibiotic resistance and stewardship. Under some conditions, the SOS response favors DNA repair and preserves the genetic integrity of the organism. On the other hand, the SOS response also includes induction of error-prone DNA polymerases, which can increase the rate of mutation, called the mutator phenotype or "hypermutation." As a result, mutations can occur in genes conferring antibiotic resistance, increasing the acquisition of resistance to antibiotics. Almost all of the work on the SOS response has been on bacteria exposed to stressors in vitro. In this study, we sought to quantitate the effects of SOS-inducing drugs in vivo, in comparison with the same drugs in vitro. We used a rabbit model of intestinal infection with enteropathogenic Escherichia coli strain E22. SOS-inducing drugs triggered the mutator phenotype response in vivo as well as in vitro. Exposure of E. coli strain E22 to ciprofloxacin or zidovudine, both of which induce the SOS response in vitro, resulted in increased antibiotic resistance to 3 antibiotics: rifampin, minocycline, and fosfomycin. Zinc was able to inhibit the SOS-induced emergence of antibiotic resistance in vivo, as previously observed in vitro. Our findings may have relevance in reducing the emergence of resistance to new antimicrobial drugs.
Collapse
|
9
|
Connolly JPR, Roe AJ, O'Boyle N. Prokaryotic life finds a way: insights from evolutionary experimentation in bacteria. Crit Rev Microbiol 2020; 47:126-140. [PMID: 33332206 DOI: 10.1080/1040841x.2020.1854172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
While evolution proceeds through the generation of random variant alleles, the application of selective pressures can select for subsets of mutations that confer fitness-improving physiological benefits. This, in essence, defines the process of adaptive evolution. The rapid replication rate of bacteria has allowed for the design of experiments to study these processes over a reasonable timeframe within a laboratory setting. This has been greatly assisted by advances in tractability of diverse microorganisms, next generation sequencing technologies and bioinformatic analysis pipelines. Examining the processes by which organisms adapt their genetic code to cope with sub-optimal growth conditions has yielded a wealth of molecular insight into diverse biological processes. Here we discuss how the study of adaptive evolutionary trajectories in bacteria has allowed for improved understanding of stress responses, revealed important insight into microbial physiology, allowed for the production of highly optimised strains for use in biotechnology and increased our knowledge of the role of genomic plasticity in chronic infections.
Collapse
Affiliation(s)
- James P R Connolly
- Newcastle University Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Nicky O'Boyle
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
10
|
Cattoir V, Pourbaix A, Magnan M, Chau F, de Lastours V, Felden B, Fantin B, Guérin F. Novel Chromosomal Mutations Responsible for Fosfomycin Resistance in Escherichia coli. Front Microbiol 2020; 11:575031. [PMID: 33193186 PMCID: PMC7607045 DOI: 10.3389/fmicb.2020.575031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Fosfomycin resistance in Escherichia coli results from chromosomal mutations or acquisition of plasmid-mediated genes. Because these mechanisms may be absent in some resistant isolates, we aimed at decipher the genetic basis of fosfomycin resistance in E. coli. Different groups of isolates were studied: fosfomycin-resistant mutants selected in vitro from E. coli CFT073 (MIC = 1 mg/L) and two groups (wildtype and non-wildtype) of E. coli clinical isolates. Single-nucleotide allelic replacement was performed to confirm the implication of novel mutations into resistance. Induction of uhpT expression by glucose-6-phosphate (G6P) was assessed by RT-qPCR. The genome of all clinical isolates was sequenced by MiSeq (Illumina). Two first-step mutants were obtained in vitro from CFT073 (MICs, 128 mg/L) with single mutations: G469R in uhpB (M3); F384L in uhpC (M4). Second-step mutants (MICs, 256 mg/L) presented additional mutations: R282V in galU (M7 from M3); Q558∗ in lon (M8 from M4). Introduction of uhpB or uhpC mutations by site-directed mutagenesis conferred a 128-fold increase in fosfomycin MICs, whereas single mutations in galU or lon were only responsible for a 2-fold increase. Also, these mutations abolished the induction of uhpT expression by G6P. All 14 fosfomycin-susceptible clinical isolates (MICs, 0.5-8 mg/L) were devoid of any mutation. At least one genetic change was detected in all but one fosfomycin-resistant clinical isolates (MICs, 32 - >256 mg/L) including 8, 17, 18, 5, and 8 in uhpA, uhpB, uhpC, uhpT, and glpT genes, respectively. In conclusion, novel mutations in uhpB and uhpC are associated with fosfomycin resistance in E. coli clinical isolates.
Collapse
Affiliation(s)
- Vincent Cattoir
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France.,Centre National de Référence sur la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France.,Inserm, Bacterial Regulatory RNAs and Medicine - UMR_S 1230, Rennes, France
| | | | - Mélanie Magnan
- IAME, UMR-1137, Inserm and Université de Paris Diderot, Paris, France
| | - Françoise Chau
- IAME, UMR-1137, Inserm and Université de Paris Diderot, Paris, France
| | - Victoire de Lastours
- IAME, UMR-1137, Inserm and Université de Paris Diderot, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Brice Felden
- Inserm, Bacterial Regulatory RNAs and Medicine - UMR_S 1230, Rennes, France
| | - Bruno Fantin
- IAME, UMR-1137, Inserm and Université de Paris Diderot, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - François Guérin
- CHU de Caen, Service de Microbiologie, Caen, France.,Université de Caen Normandie, EA4655, Caen, France
| |
Collapse
|
11
|
Rosini R, Nicchi S, Pizza M, Rappuoli R. Vaccines Against Antimicrobial Resistance. Front Immunol 2020; 11:1048. [PMID: 32582169 PMCID: PMC7283535 DOI: 10.3389/fimmu.2020.01048] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 12/29/2022] Open
Abstract
In the last century, life expectancy has increased considerably, thanks to the introduction of antibiotics, hygiene and vaccines that have contributed to the cure and prevention of many infectious diseases. The era of antimicrobial therapy started in the nineteenth century with the identification of chemical compounds with antimicrobial properties. However, immediately after the introduction of these novel drugs, microorganisms started to become resistant through different strategies. Although resistance mechanisms were already present before antibiotic introduction, their large-scale use and mis-use have increased the number of resistant microorganisms. Rapid spreading of mobile elements by horizontal gene transfer such as plasmids and integrative conjugative elements (ICE) carrying multiple resistance genes has dramatically increased the worldwide prevalence of relevant multi drug-resistant human pathogens such as Staphylococcus aureus, Neisseria gonorrhoeae, and Enterobacteriaceae. Today, antimicrobial resistance (AMR) remains one of the major global concerns to be addressed and only global efforts could help in finding a solution. In terms of magnitude the economic impact of AMR is estimated to be comparable to that of climate global change in 2030. Although antibiotics continue to be essential to treat such infections, non-antibiotic therapies will play an important role in limiting the increase of antibiotic resistant microorganisms. Among non-antibiotic strategies, vaccines and therapeutic monoclonal antibodies (mAbs) play a strategic role. In this review, we will summarize the evolution and the mechanisms of antibiotic resistance, and the impact of AMR on life expectancy and economics.
Collapse
Affiliation(s)
| | - Sonia Nicchi
- GSK, Siena, Italy
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | - Rino Rappuoli
- GSK, Siena, Italy
- vAMRes Lab, Toscana Life Sciences, Siena, Italy
- Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Baishya S, Kangsa Banik S, Das Talukdar A, Anbarasu A, Bhattacharjee A, Dutta Choudhury M. Full title: Identification of potential drug targets against carbapenem resistant Enterobacteriaceae (CRE) strains using in silico gene network analysis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2018.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Hoeksema M, Jonker MJ, Bel K, Brul S, Ter Kuile BH. Genome rearrangements in Escherichia coli during de novo acquisition of resistance to a single antibiotic or two antibiotics successively. BMC Genomics 2018; 19:973. [PMID: 30591014 PMCID: PMC6307192 DOI: 10.1186/s12864-018-5353-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022] Open
Abstract
Background The ability of bacteria to acquire resistance to antibiotics relies to a large extent on their capacity for genome modification. Prokaryotic genomes are highly plastic and can utilize horizontal gene transfer, point mutations, and gene deletions or amplifications to realize genome expansion and rearrangements. The contribution of point mutations to de novo acquisition of antibiotic resistance is well-established. In this study, the internal genome rearrangement of Escherichia coli during to de novo acquisition of antibiotic resistance was investigated using whole-genome sequencing. Results Cells were made resistant to one of the four antibiotics and subsequently to one of the three remaining. This way the initial genetic rearrangements could be documented together with the effects of an altered genetic background on subsequent development of resistance. A DNA fragment including ampC was amplified by a factor sometimes exceeding 100 as a result of exposure to amoxicillin. Excision of prophage e14 was observed in many samples with a double exposure history, but not in cells exposed to a single antibiotic, indicating that the activation of the SOS stress response alone, normally the trigger for excision, was not sufficient to cause excision of prophage e14. Partial deletion of clpS and clpA occurred in strains exposed to enrofloxacin and tetracycline. Other deletions were observed in some strains, but not in replicates with the exact same exposure history. Various insertion sequence transpositions correlated with exposure to specific antibiotics. Conclusions Many of the genome rearrangements have not been reported before to occur during resistance development. The observed correlation between genome rearrangements and specific antibiotic pressure, as well as their presence in independent replicates indicates that these events do not occur randomly. Taken together, the observed genome rearrangements illustrate the plasticity of the E. coli genome when exposed to antibiotic stress. Electronic supplementary material The online version of this article (10.1186/s12864-018-5353-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marloes Hoeksema
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijs J Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Keshia Bel
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Benno H Ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands. .,Netherlands Food and Consumer Product Safety Authority, Office for Risk Assessment, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Loss of Bacitracin Resistance Due to a Large Genomic Deletion among Bacillus anthracis Strains. mSystems 2018; 3:mSystems00182-18. [PMID: 30417107 PMCID: PMC6208641 DOI: 10.1128/msystems.00182-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022] Open
Abstract
Anthrax is caused by Bacillus anthracis, an endospore-forming soil bacterium. The genetic diversity of B. anthracis is known to be low compared with that of Bacillus species. In this study, we performed whole-genome sequencing of Zambian isolates of B. anthracis to understand the genetic diversity between closely related strains. Comparison of genomic sequences revealed that closely related strains were separated into three groups based on single nucleotide polymorphisms distributed throughout the genome. A large genomic deletion was detected in the region containing a bacitracin resistance gene cluster flanked by rRNA operons, resulting in the loss of bacitracin resistance. The structure of the deleted region, which was also conserved among species of the Bacillus cereus group, has the potential for both deletion and amplification and thus might be enabling the species to flexibly control the level of bacitracin resistance for adaptive evolution. Bacillus anthracis is a Gram-positive endospore-forming bacterial species that causes anthrax in both humans and animals. In Zambia, anthrax cases are frequently reported in both livestock and wildlife, with occasional transmission to humans, causing serious public health problems in the country. To understand the genetic diversity of B. anthracis strains in Zambia, we sequenced and compared the genomic DNA of B. anthracis strains isolated across the country. Single nucleotide polymorphisms clustered these strains into three groups. Genome sequence comparisons revealed a large deletion in strains belonging to one of the groups, possibly due to unequal crossing over between a pair of rRNA operons. The deleted genomic region included genes conferring resistance to bacitracin, and the strains with the deletion were confirmed with loss of bacitracin resistance. Similar deletions between rRNA operons were also observed in a few B. anthracis strains phylogenetically distant from Zambian strains. The structure of bacitracin resistance genes flanked by rRNA operons was conserved only in members of the Bacillus cereus group. The diversity and genomic characteristics of B. anthracis strains determined in this study would help in the development of genetic markers and treatment of anthrax in Zambia. IMPORTANCE Anthrax is caused by Bacillus anthracis, an endospore-forming soil bacterium. The genetic diversity of B. anthracis is known to be low compared with that of Bacillus species. In this study, we performed whole-genome sequencing of Zambian isolates of B. anthracis to understand the genetic diversity between closely related strains. Comparison of genomic sequences revealed that closely related strains were separated into three groups based on single nucleotide polymorphisms distributed throughout the genome. A large genomic deletion was detected in the region containing a bacitracin resistance gene cluster flanked by rRNA operons, resulting in the loss of bacitracin resistance. The structure of the deleted region, which was also conserved among species of the Bacillus cereus group, has the potential for both deletion and amplification and thus might be enabling the species to flexibly control the level of bacitracin resistance for adaptive evolution.
Collapse
|
15
|
Abstract
Antibiotic-resistant bacteria represent a major threat to our ability to treat bacterial infections. Two factors that determine the evolutionary success of antibiotic resistance mutations are their impact on resistance level and the fitness cost. Recent studies suggest that resistance mutations commonly show epistatic interactions, which would complicate predictions of their stability in bacterial populations. We analyzed 13 different chromosomal resistance mutations and 10 host strains of Salmonella enterica and Escherichia coli to address two main questions. (i) Are there epistatic interactions between different chromosomal resistance mutations? (ii) How does the strain background and genetic distance influence the effect of chromosomal resistance mutations on resistance and fitness? Our results show that the effects of combined resistance mutations on resistance and fitness are largely predictable and that epistasis remains rare even when up to four mutations were combined. Furthermore, a majority of the mutations, especially target alteration mutations, demonstrate strain-independent phenotypes across different species. This study extends our understanding of epistasis among resistance mutations and shows that interactions between different resistance mutations are often predictable from the characteristics of the individual mutations. The spread of antibiotic-resistant bacteria imposes an urgent threat to public health. The ability to forecast the evolutionary success of resistant mutants would help to combat dissemination of antibiotic resistance. Previous studies have shown that the phenotypic effects (fitness and resistance level) of resistance mutations can vary substantially depending on the genetic context in which they occur. We conducted a broad screen using many different resistance mutations and host strains to identify potential epistatic interactions between various types of resistance mutations and to determine the effect of strain background on resistance phenotypes. Combinations of several different mutations showed a large amount of phenotypic predictability, and the majority of the mutations displayed strain-independent phenotypes. However, we also identified a few outliers from these patterns, illustrating that the choice of host organism can be critically important when studying antibiotic resistance mutations.
Collapse
|
16
|
Weston N, Sharma P, Ricci V, Piddock LJV. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res Microbiol 2017; 169:425-431. [PMID: 29128373 DOI: 10.1016/j.resmic.2017.10.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
Abstract
Bacterial multidrug efflux systems are a major mechanism of antimicrobial resistance and are fundamental to the physiology of Gram-negative bacteria. The resistance-nodulation-division (RND) family of efflux pumps is the most clinically significant, as it is associated with multidrug resistance. Expression of efflux systems is subject to multiple levels of regulation, involving local and global transcriptional regulation as well as post-transcriptional and post-translational regulation. The best-characterised RND system is AcrAB-TolC, which is present in Enterobacteriaceae. This review describes the current knowledge and new data about the regulation of the acrAB and tolC genes in Escherichia coli and Salmonella enterica.
Collapse
Affiliation(s)
- Natasha Weston
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Prateek Sharma
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Vito Ricci
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Laura J V Piddock
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
17
|
Schlegel S, Genevaux P, de Gier JW. Isolating Escherichia coli strains for recombinant protein production. Cell Mol Life Sci 2016; 74:891-908. [PMID: 27730255 PMCID: PMC5306230 DOI: 10.1007/s00018-016-2371-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/22/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Escherichia coli has been widely used for the production of recombinant proteins. To improve protein production yields in E. coli, directed engineering approaches have been commonly used. However, there are only few reported examples of the isolation of E. coli protein production strains using evolutionary approaches. Here, we first give an introduction to bacterial evolution and mutagenesis to set the stage for discussing how so far selection- and screening-based approaches have been used to isolate E. coli protein production strains. Finally, we discuss how evolutionary approaches may be used in the future to isolate E. coli strains with improved protein production characteristics.
Collapse
Affiliation(s)
- Susan Schlegel
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrheniusväg 16C, 106 91, Stockholm, Sweden.
| |
Collapse
|
18
|
Swain SS, Padhy RN. Isolation of ESBL-producing gram-negative bacteria and in silico inhibition of ESBLs by flavonoids. J Taibah Univ Med Sci 2016. [DOI: 10.1016/j.jtumed.2016.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
19
|
Roles of Lon protease and its substrate MarA during sodium salicylate-mediated growth reduction and antibiotic resistance in Escherichia coli. Microbiology (Reading) 2016; 162:764-776. [DOI: 10.1099/mic.0.000271] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Abstract
Tetracyclines possess many properties considered ideal for antibiotic drugs, including activity against Gram-positive and -negative pathogens, proven clinical safety, acceptable tolerability, and the availability of intravenous (IV) and oral formulations for most members of the class. As with all antibiotic classes, the antimicrobial activities of tetracyclines are subject to both class-specific and intrinsic antibiotic-resistance mechanisms. Since the discovery of the first tetracyclines more than 60 years ago, ongoing optimization of the core scaffold has produced tetracyclines in clinical use and development that are capable of thwarting many of these resistance mechanisms. New chemistry approaches have enabled the creation of synthetic derivatives with improved in vitro potency and in vivo efficacy, ensuring that the full potential of the class can be explored for use against current and emerging multidrug-resistant (MDR) pathogens, including carbapenem-resistant Enterobacteriaceae, MDR Acinetobacter species, and Pseudomonas aeruginosa.
Collapse
|
21
|
Prediction of antibiotic resistance by gene expression profiles. Nat Commun 2014; 5:5792. [PMID: 25517437 PMCID: PMC4351646 DOI: 10.1038/ncomms6792] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/07/2014] [Indexed: 12/22/2022] Open
Abstract
Although many mutations contributing to antibiotic resistance have been identified, the relationship between the mutations and the related phenotypic changes responsible for the resistance has yet to be fully elucidated. To better characterize phenotype–genotype mapping for drug resistance, here we analyse phenotypic and genotypic changes of antibiotic-resistant Escherichia coli strains obtained by laboratory evolution. We demonstrate that the resistances can be quantitatively predicted by the expression changes of a small number of genes. Several candidate mutations contributing to the resistances are identified, while phenotype–genotype mapping is suggested to be complex and includes various mutations that cause similar phenotypic changes. The integration of transcriptome and genome data enables us to extract essential phenotypic changes for drug resistances. The relationship between mutations and phenotypic changes associated with drug resistance in bacteria remains unclear. Here, the authors use antibiotic-resistant E. coli strains, obtained by laboratory evolution, to show that resistance profiles can be predicted by changes in expression of a few genes.
Collapse
|
22
|
Wannarat W, Motoyama S, Masuda K, Kawamura F, Inaoka T. Tetracycline tolerance mediated by gene amplification in Bacillus subtilis. MICROBIOLOGY-SGM 2014; 160:2474-2480. [PMID: 25169108 DOI: 10.1099/mic.0.081505-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacillus subtilis can acquire a higher tolerance to tetracycline by increasing the gene dosage of its resistance gene tetB. In this study, we estimated the multiplication effect of tetB on tetracycline tolerance. Cells harbouring multiple copies of tetB were found to comprise approximately 30 % of the total tetracycline-resistant cell population when selected on medium containing 10 µg tetracycline ml(-1). Disruption of recA resulted in a significant decrease in the frequency of tetB amplification. Although four direct repeats exist around tetB, the majority of tetB amplicons were found to be flanked by non-homologous sequences, indicating that the initial duplication of tetB can occur largely through RecA-independent recombination. The correlation between the tetB copy number and the MIC values for tetracycline indicated that more than three copies of tetB were required for tolerance to 10 µg tetracycline ml(-1). Thus, the RecA-dependent expansion step appears to be necessary for developing significant tetracycline tolerance mediated by tetB amplification.
Collapse
Affiliation(s)
- Wannasiri Wannarat
- Nanotechnology and Biotechnology Unit, Kasetsart Agricultural and Agro-Industrial Production Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand.,Microbial Function Laboratory, National Food Research Institute, National Agriculture Research Organization, Tsukuba, Ibaraki, Japan
| | - Shiori Motoyama
- Microbial Function Laboratory, National Food Research Institute, National Agriculture Research Organization, Tsukuba, Ibaraki, Japan
| | - Kenta Masuda
- Rikkyo University, Department of Life Science, College of Science, Toshima-ku, Tokyo, Japan
| | - Fujio Kawamura
- Rikkyo University, Department of Life Science, College of Science, Toshima-ku, Tokyo, Japan
| | - Takashi Inaoka
- Microbial Function Laboratory, National Food Research Institute, National Agriculture Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
23
|
Laehnemann D, Peña-Miller R, Rosenstiel P, Beardmore R, Jansen G, Schulenburg H. Genomics of rapid adaptation to antibiotics: convergent evolution and scalable sequence amplification. Genome Biol Evol 2014; 6:1287-301. [PMID: 24850796 PMCID: PMC4079197 DOI: 10.1093/gbe/evu106] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Evolutionary adaptation can be extremely fast, especially in response to high selection intensities. A prime example is the surge of antibiotic resistance in bacteria. The genomic underpinnings of such rapid changes may provide information on the genetic processes that enhance fast responses and the particular trait functions under selection. Here, we use experimentally evolved Escherichia coli for a detailed dissection of the genomics of rapid antibiotic resistance evolution. Our new analyses demonstrate that amplification of a sequence region containing several known antibiotic resistance genes represents a fast genomic response mechanism under high antibiotic stress, here exerted by drug combination. In particular, higher dosage of such antibiotic combinations coincided with higher copy number of the sequence region. The amplification appears to be evolutionarily costly, because amplification levels rapidly dropped after removal of the drugs. Our results suggest that amplification is a scalable process, as copy number rapidly changes in response to the selective pressure encountered. Moreover, repeated patterns of convergent evolution were found across the experimentally evolved bacterial populations, including those with lower antibiotic selection intensities. Intriguingly, convergent evolution was identified on different organizational levels, ranging from the above sequence amplification, high variant frequencies in specific genes, prevalence of individual nonsynonymous mutations to the unusual repeated occurrence of a particular synonymous mutation in Glycine codons. We conclude that constrained evolutionary trajectories underlie rapid adaptation to antibiotics. Of the identified genomic changes, sequence amplification seems to represent the most potent, albeit costly genomic response mechanism to high antibiotic stress.
Collapse
Affiliation(s)
- David Laehnemann
- Department of Evolutionary Ecology and Genetics, University of Kiel, Germany
| | - Rafael Peña-Miller
- Biosciences, Geoffrey Pope Building, University of Exeter, United KingdomDepartment of Zoology, University of Oxford, United Kingdom
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, University of Kiel, Germany
| | - Robert Beardmore
- Biosciences, Geoffrey Pope Building, University of Exeter, United Kingdom
| | - Gunther Jansen
- Department of Evolutionary Ecology and Genetics, University of Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, University of Kiel, Germany
| |
Collapse
|
24
|
Watanabe R, Doukyu N. Improvement of organic solvent tolerance by disruption of the lon gene in Escherichia coli. J Biosci Bioeng 2014; 118:139-44. [PMID: 24571965 DOI: 10.1016/j.jbiosc.2014.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/20/2013] [Accepted: 01/21/2014] [Indexed: 11/25/2022]
Abstract
The Lon ATP-dependent protease plays an important role in regulating many biological processes in bacteria. In this study, we examined the organic solvent tolerance of a Δlon mutant of Escherichia coli K-12 and found that the mutant showed remarkably higher organic solvent tolerance than the parent strain. Δlon mutants are known to overproduce capsular polysaccharide, resulting in the formation of mucoid colonies. We considered that this increase in capsular polysaccharide production might be involved in the organic solvent tolerance in E. coli. However, a ΔlonΔwcaJ double-gene mutant displaying a nonmucoid phenotype was as tolerant to organic solvents as the Δlon mutant, suggesting that capsular polysaccharide is not involved in organic solvent tolerance. On the other hand, the Lon protease is known to exhibit proteolytic activity against the transcriptional activators MarA and SoxS, which can enhance the expression level of the AcrAB-TolC efflux pump. We found that the Δlon mutant showed a higher expression level of AcrB than the parent strain. In addition, the ΔlonΔacrB double-gene mutant showed a significant decrease in organic solvent tolerance. Thus, it was shown that organic solvent tolerance in the Δlon mutant depends on the AcrAB-TolC pump but not capsular polysaccharide. E. coli strain JA300 acrRIS marR overexpresses the AcrAB-TolC pump and exhibits high-level solvent tolerance. In an attempt to further improve the solvent tolerance of JA300 acrRIS marR, a lon gene disruptant of this strain was constructed. However, the resulting mutant JA300 acrRIS marR Δlon showed lower solvent tolerance than JA300 acrRIS marR.
Collapse
Affiliation(s)
- Rei Watanabe
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan; Bio-Nano Electronic Research Center, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Noriyuki Doukyu
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan; Bio-Nano Electronic Research Center, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan; Department of Life Science, Toyo University, 1-1-1 Izumino, Itakura-machi, Gunma 374-0193, Japan.
| |
Collapse
|
25
|
Tavío MM, Aquili VD, Vila J, Poveda JB. Resistance to ceftazidime in Escherichia coli associated with AcrR, MarR and PBP3 mutations and overexpression of sdiA. J Med Microbiol 2014; 63:56-65. [DOI: 10.1099/jmm.0.063727-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanisms responsible for the increase in ceftazidime MIC in two Escherichia coli in vitro selected mutants, Caz/20-1 and Caz/20-2, were studied. OmpF loss and overexpression of acrB, acrD and acrF that were associated with acrR and marR mutations and sdiA overexpression, together with mutations A233T and I332V in FtSI (PBP3) resulted in ceftazidime resistance in Caz/20-2, multiplying by 128-fold the ceftazidime MIC in the parental clinical isolate PS/20. Absence of detectable β-lactamase hydrolytic activity in the crude extract of Caz/20-2 was observed, and coincided with Q191K and P209S mutations in AmpC and a nucleotide substitution at −28 in the ampC promoter, whereas β-lactamase hydrolytic activity in crude extracts of PS/20 and Caz/20-1 strains was detected. Nevertheless, a fourfold increase in ceftazidime MIC in Caz/20-1 compared with that in PS/20 was due to the increased transcript level of acrB derived from acrR mutation. The two Caz mutants and PS/20 showed the same mutations in AmpG and ParE.
Collapse
Affiliation(s)
- María M. Tavío
- Unidad de Epidemiología y Medicina Preventiva, Instituto Universitario de Sanidad Animal (IUSA), Universidad de Las Palmas de Gran Canaria, Arucas, Spain
- Microbiología, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Virginia D. Aquili
- Microbiología, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Jordi Vila
- Departamento de Microbiología, IDIBAPS, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain
| | - José B. Poveda
- Unidad de Epidemiología y Medicina Preventiva, Instituto Universitario de Sanidad Animal (IUSA), Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| |
Collapse
|
26
|
Nicoloff H, Andersson DI. Lon protease inactivation, or translocation of thelongene, potentiate bacterial evolution to antibiotic resistance. Mol Microbiol 2013; 90:1233-48. [DOI: 10.1111/mmi.12429] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Hervé Nicoloff
- Department of Medical Biochemistry and Microbiology; Uppsala University; SE-751 23 Uppsala Sweden
| | - Dan I. Andersson
- Department of Medical Biochemistry and Microbiology; Uppsala University; SE-751 23 Uppsala Sweden
| |
Collapse
|
27
|
Linkevicius M, Sandegren L, Andersson DI. Mechanisms and fitness costs of tigecycline resistance in Escherichia coli. J Antimicrob Chemother 2013; 68:2809-19. [DOI: 10.1093/jac/dkt263] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
28
|
Involvement of MarR and YedS in carbapenem resistance in a clinical isolate of Escherichia coli from China. Antimicrob Agents Chemother 2013; 57:1935-7. [PMID: 23318808 DOI: 10.1128/aac.02445-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A carbapenem-resistant clinical isolate of Escherichia coli, which lacked OmpF and OmpC porins, carried a marR mutation and expressed a functional yedS, a normally nontranslated gene. MarR and YedS are described here as having effects on the ability of this strain to resist carbapenems. Additionally, expression of YedS was regulated by the small RNA MicF in a MarA-dependent way. These findings illustrate how broadly bacteria can mutate within a selective clinical setting, in this case, resistance to carbapenems, by altering three porin genes and one regulatory gene.
Collapse
|
29
|
SoxS increases the expression of the zinc uptake system ZnuACB in an Escherichia coli murine pyelonephritis model. J Bacteriol 2011; 194:1177-85. [PMID: 22210763 DOI: 10.1128/jb.05451-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Paralogous transcriptional regulators MarA, Rob, and SoxS act individually and together to control expression of more than 80 Escherichia coli genes. Deletion of marA, rob, and soxS from an E. coli clinical isolate prevents persistence beyond 2 days postinfection in a mouse model of pyelonephritis. We used microarray analysis to identify 242 genes differentially expressed between the triple deletion mutant and its parent strain at 2 days postinfection in the kidney. One of these, znuC of the zinc transport system ZnuACB, displayed decreased expression in the triple mutant compared to that in the parental strain, and deletion of znuC from the parental strain reduced persistence. The marA rob soxS triple deletion mutant was less viable in vitro under limited-Zn and Zn-depleted conditions, while disruption of znuC caused a reduction in the growth rates for the parental and triple mutant strains to equally low levels under limited-Zn or Zn-depleted conditions. Complementation of the triple mutant with soxS, but not marA or rob, restored the parental growth rate in Zn-depleted medium, while deletion of only soxS from the parental strain led to low growth in Zn-depleted medium. Both results suggested that SoxS is a major regulator responsible for growth under Zn-depleted conditions. Gel shift experiments failed to show direct binding of SoxS to the znuCB promoter, thus suggesting indirect control of znuCB expression by SoxS. While SoxS expression in the triple mutant fully restored persistence, increased expression of znuACB via a plasmid in this mutant only partially restored wild-type levels of persistence in the kidney. This work implicates SoxS control of znuCB expression as a key factor in persistence of E. coli in murine pyelonephritis.
Collapse
|
30
|
Seaton SC, Elliott KT, Cuff LE, Laniohan NS, Patel PR, Neidle EL. Genome-wide selection for increased copy number in Acinetobacter baylyi ADP1: locus and context-dependent variation in gene amplification. Mol Microbiol 2011; 83:520-35. [DOI: 10.1111/j.1365-2958.2011.07945.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M, Chaba R, Lee S, Kazmierczak KM, Lee KJ, Wong A, Shales M, Lovett S, Winkler ME, Krogan NJ, Typas A, Gross CA. Phenotypic landscape of a bacterial cell. Cell 2011; 144:143-56. [PMID: 21185072 PMCID: PMC3060659 DOI: 10.1016/j.cell.2010.11.052] [Citation(s) in RCA: 520] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/07/2010] [Accepted: 11/24/2010] [Indexed: 01/09/2023]
Abstract
The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs.
Collapse
Affiliation(s)
- Robert J. Nichols
- Oral and Craniofacial Sciences Graduate Program, University of California at San Francisco, 513 Parnassus Ave, CA-94143
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, 600 16 Street, CA-94158
| | - Saunak Sen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA-94107
| | - Yoe Jin Choo
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, 600 16 Street, CA-94158
| | - Pedro Beltrao
- Department of Cellular and Molecular Pharmacology & The California Institute for Quantitative Biomedical Research, University of California at San Francisco, San Francisco, 1700 4 Street, CA-94158
| | - Matylda Zietek
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, 600 16 Street, CA-94158
| | - Rachna Chaba
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, 600 16 Street, CA-94158
| | - Sueyoung Lee
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, 600 16 Street, CA-94158
| | | | - Karis J. Lee
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, 600 16 Street, CA-94158
| | - Angela Wong
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, 600 16 Street, CA-94158
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology & The California Institute for Quantitative Biomedical Research, University of California at San Francisco, San Francisco, 1700 4 Street, CA-94158
| | - Susan Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110
| | | | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology & The California Institute for Quantitative Biomedical Research, University of California at San Francisco, San Francisco, 1700 4 Street, CA-94158
| | - Athanasios Typas
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, 600 16 Street, CA-94158
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, 600 16 Street, CA-94158
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California 94158
| |
Collapse
|
32
|
Tavio MM, Aquili VD, Poveda JB, Antunes NT, Sanchez-Cespedes J, Vila J. Quorum-sensing regulator sdiA and marA overexpression is involved in in vitro-selected multidrug resistance of Escherichia coli. J Antimicrob Chemother 2010; 65:1178-86. [DOI: 10.1093/jac/dkq112] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
33
|
Warner DM, Levy SB. Different effects of transcriptional regulators MarA, SoxS and Rob on susceptibility of Escherichia coli to cationic antimicrobial peptides (CAMPs): Rob-dependent CAMP induction of the marRAB operon. MICROBIOLOGY (READING, ENGLAND) 2010; 156:570-578. [PMID: 19926649 PMCID: PMC2890090 DOI: 10.1099/mic.0.033415-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/05/2009] [Accepted: 11/18/2009] [Indexed: 11/18/2022]
Abstract
Cationic antimicrobial peptides (CAMPs), a component of the mammalian immune system, protect the host from bacterial infections. The roles of the Escherichia coli transcriptional regulators MarA, SoxS and Rob in susceptibility to these peptides were examined. Overexpression of marA, either in an antibiotic-resistant marR mutant or from a plasmid, decreased bacterial susceptibility to CAMPs. Overexpression of the soxS gene from a plasmid, which decreased susceptibility to antibiotics, unexpectedly caused no decrease in CAMP susceptibility; instead it produced increased susceptibility to different CAMPs. Deletion or overexpression of rob had little effect on CAMP susceptibility. The marRAB operon was upregulated when E. coli was incubated in sublethal amounts of CAMPs polymyxin B, LL-37 or human beta-defensin-1; however, this upregulation required Rob. Deletion of acrAB increased bacterial susceptibility to polymyxin B, LL-37 and human beta-defensin-1 peptides. Deletion of tolC yielded an even greater increase in susceptibility to these peptides and also led to increased susceptibility to human alpha-defensin-2. Inhibition of cellular proton-motive force increased peptide susceptibility for wild-type and acrAB deletion strains; however, it decreased susceptibility of tolC mutants. These findings demonstrate that CAMPs are both inducers of marA-mediated drug resistance through interaction with Rob and also substrates for efflux in E. coli. The three related transcriptional regulators show different effects on bacterial cell susceptibility to CAMPs.
Collapse
Affiliation(s)
- Douglas M. Warner
- Center for Adaptation Genetics and Drug Resistance, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stuart B. Levy
- Center for Adaptation Genetics and Drug Resistance, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
34
|
Abstract
Gene duplication-amplification (GDA) processes are highly relevant biologically because they generate extensive and reversible genetic variation on which adaptive evolution can act. Whenever cellular growth is restricted, escape from these growth restrictions often occurs by GDA events that resolve the selective problem. In addition, GDA may facilitate subsequent genetic change by allowing a population to grow and increase in number, thereby increasing the probability for subsequent adaptive mutations to occur in the amplified genes or in unrelated genes. Mathematical modeling of the effect of GDA on the rate of adaptive evolution shows that GDA will facilitate adaptation, especially when the supply of mutations in the population is rate-limiting. GDA can form via several mechanisms, both RecA-dependent and RecA-independent, including rolling-circle amplification and nonequal crossing over between sister chromatids. Due to the high intrinsic instability and fitness costs associated with GDAs, they are generally transient in nature, and consequently their evolutionary and medical importance is often underestimated.
Collapse
Affiliation(s)
- Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala, S-751 23, Sweden.
| | | |
Collapse
|
35
|
GyrA interacts with MarR to reduce repression of the marRAB operon in Escherichia coli. J Bacteriol 2009; 192:942-8. [PMID: 19933356 DOI: 10.1128/jb.01259-09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial two-hybrid studies of randomly cloned Escherichia coli DNA identified a physical interaction between GyrA, subunit A of gyrase, and MarR, a repressor of the marRAB operon. GyrA-His immobilized on Ni-nitrilotriacetic acid (NiNTA) resin bound MarR, while MarR alone did not bind. GyrA interfered with MarR binding to marO, as detected by electrophoretic mobility assays. In a strain bearing the marRAB operon and a marO-lacZ reporter, overexpression of GyrA increased LacZ activity, indicating decreased repression of marO-lacZ by MarR. These results were confirmed by an increased survival of cells treated with quinolones and other antibiotics when GyrA was overexpressed. This work, like a previous study examining TktA (12), shows that unrelated proteins can regulate MarR activity. The findings reveal an unexpected regulatory function of GyrA in antibiotic resistance.
Collapse
|
36
|
Combined inactivation of lon and ycgE decreases multidrug susceptibility by reducing the amount of OmpF porin in Escherichia coli. Antimicrob Agents Chemother 2009; 53:4944-8. [PMID: 19721064 DOI: 10.1128/aac.00787-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposon inactivation of ycgE, a gene encoding a putative transcriptional regulator, led to decreased multidrug susceptibility in an Escherichia coli lon mutant. The multidrug susceptibility phenotype (e.g., to tetracycline and beta-lactam antibiotics) required the inactivation of both lon and ycgE. In this mutant, a decreased amount of OmpF porin contributes to the lowered drug susceptibility, with a greater effect at 26 degrees C than at 37 degrees C.
Collapse
|
37
|
Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol 2009; 7:578-88. [PMID: 19609259 DOI: 10.1038/nrmicro2174] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent data suggest that, in response to the presence of antibiotics, gene duplication and amplification (GDA) constitutes an important adaptive mechanism in bacteria. For example, resistance to sulphonamide, trimethoprim and beta-lactams can be conferred by increased gene dosage through GDA of antibiotic hydrolytic enzymes, target enzymes or efflux pumps. Furthermore, most types of antibiotic resistance mechanism are deleterious in the absence of antibiotics, and these fitness costs can be ameliorated by increased gene dosage of limiting functions. In this Review, we highlight the dynamic properties of gene amplifications and describe how they can facilitate adaptive evolution in response to toxic drugs.
Collapse
|
38
|
Contribution of gene amplification to evolution of increased antibiotic resistance in Salmonella typhimurium. Genetics 2009; 182:1183-95. [PMID: 19474201 DOI: 10.1534/genetics.109.103028] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The use of beta-lactam antibiotics has led to the evolution and global spread of a variety of resistance mechanisms, including beta-lactamases, a group of enzymes that degrade the beta-lactam ring. The evolution of increased beta-lactam resistance was studied by exposing independent lineages of Salmonella typhimurium to progressive increases in cephalosporin concentration. Each lineage carried a beta-lactamase gene (bla(TEM-1)) that provided very low resistance. In most lineages, the initial response to selection was an amplification of the bla(TEM-1) gene copy number. Amplification was followed in some lineages by mutations (envZ, cpxA, or nmpC) that reduced expression of the uptake functions, the OmpC, OmpD, and OmpF porins. The initial resistance provided by bla(TEM-1) amplification allowed the population to expand sufficiently to realize rare secondary point mutations. Mathematical modeling showed that amplification often is likely to be the initial response because events that duplicate or further amplify a gene are much more frequent than point mutations. These models show the importance of the population size to appearance of later point mutations. Transient gene amplification is likely to be a common initial mechanism and an intermediate in stable adaptive improvement. If later point mutations (allowed by amplification) provide sufficient adaptive improvement, the amplification may be lost.
Collapse
|
39
|
|
40
|
Martin RG, Bartlett ES, Rosner JL, Wall ME. Activation of the Escherichia coli marA/soxS/rob regulon in response to transcriptional activator concentration. J Mol Biol 2008; 380:278-84. [PMID: 18514222 PMCID: PMC2614912 DOI: 10.1016/j.jmb.2008.05.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/08/2008] [Accepted: 05/08/2008] [Indexed: 11/16/2022]
Abstract
The paralogous transcriptional activators MarA, SoxS, and Rob activate a common set of promoters, the marA/soxS/rob regulon of Escherichia coli, by binding a cognate site (marbox) upstream of each promoter. The extent of activation varies from one promoter to another and is only poorly correlated with the in vitro affinity of the activator for the specific marbox. Here, we examine the dependence of promoter activation on the level of activator in vivo by manipulating the steady-state concentrations of MarA and SoxS in Lon protease mutants and by measuring promoter activation using lacZ transcriptional fusions. We found that: (i) the MarA concentrations needed for half-maximal stimulation varied by at least 19-fold among the 10 promoters tested; (ii) most marboxes were not saturated when there were 24,000 molecules of MarA per cell; (iii) the correlation between the MarA concentration needed for half-maximal promoter activity in vivo and marbox binding affinity in vitro was poor; and (iv) the two activators differed in their promoter activation profiles. The marRAB and sodA promoters could both be saturated by MarA and SoxS in vivo. However, saturation by MarA resulted in greater marRAB and lesser sodA transcription than did saturation by SoxS, implying that the two activators interact with RNA polymerase in different ways at the different promoters. Thus, the concentration and nature of activator determine which regulon promoters are activated, as well as the extent of their activation.
Collapse
Affiliation(s)
- Robert G Martin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0560, USA.
| | | | | | | |
Collapse
|
41
|
Craven SH, Neidle EL. Double trouble: medical implications of genetic duplication and amplification in bacteria. Future Microbiol 2007; 2:309-21. [PMID: 17661705 DOI: 10.2217/17460913.2.3.309] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gene amplification allows organisms to adapt to changing environmental conditions. This type of increased gene dosage confers selectable benefits, typically by augmenting protein production. Gene amplification is a reversible process that does not require permanent genetic change. Although transient, altered gene dosage has significant medical impact. Recent examples of amplification in bacteria, described here, affect human disease by modifying antibiotic resistance, the virulence of pathogens, vaccine efficacy and antibiotic biosynthesis. Amplification is usually a two-step process whereby genetic duplication (step one) promotes further increases in copy number (step two). Both steps have important evolutionary significance for the emergence of innovative gene functions. Recent genome sequence analyses illustrate how genome plasticity can affect the evolution and immunogenic properties of bacterial pathogens.
Collapse
Affiliation(s)
- Sarah H Craven
- University of Georgia, Microbiology Department, Athens, GA 30602-2605, USA.
| | | |
Collapse
|
42
|
A naturally occurring gene amplification leading to sulfonamide and trimethoprim resistance in Streptococcus agalactiae. J Bacteriol 2007; 190:672-80. [PMID: 18024520 DOI: 10.1128/jb.01357-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene amplifications have been detected as a transitory phenomenon in bacterial cultures. They are predicted to contribute to rapid adaptation by simultaneously increasing the expression of genes clustered on the chromosome. However, genome amplifications have rarely been described in natural isolates. Through DNA array analysis, we have identified two Streptococcus agalactiae strains carrying tandem genome amplifications: a fourfold amplification of 13.5 kb and a duplication of 92 kb. Both amplifications were located close to the terminus of replication and originated independently from any long repeated sequence. They probably arose in the human host and showed different stabilities, the 13.5-kb amplification being lost at a frequency of 0.003 per generation and the 92-kb tandem duplication at a frequency of 0.035 per generation. The 13.5-kb tandem amplification carried the five genes required for dihydrofolate biosynthesis and led to both trimethoprim (TMP) and sulfonamide (SU) resistance. Resistance to SU probably resulted from the increased synthesis of dihydropteroate synthase, the target of this antibiotic, whereas the amplification of the whole pathway was responsible for TMP resistance. This revealed a new mechanism of resistance to TMP involving an increased dihydrofolate biosynthesis. This is, to our knowledge, the first reported case of naturally occurring antibiotic resistance resulting from genome amplification in bacteria. The low stability of DNA segment amplifications suggests that their role in antibiotic resistance might have been underestimated.
Collapse
|
43
|
Domain F, Bina XR, Levy SB. Retracted: Transketolase A, an enzyme in central metabolism, derepresses themarRABmultiple antibiotic resistance operon ofEscherichia coliby interaction with MarR. Mol Microbiol 2007; 66:383-94. [PMID: 17850260 DOI: 10.1111/j.1365-2958.2007.05928.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Escherichia coli marRAB operon specifies two regulatory proteins, MarR (which represses) and MarA (which activates expression of the operon). The latter controls expression of multiple other chromosomal genes implicated in cell physiology, multiple drug resistance and virulence. Using randomly cloned E. coli DNA fragments in the bacterial adenylate cyclase two-hybrid system, we found that transketolase A (TktA) interacts with MarR. Purified (6H)-TktA immobilized on NiNTA resin-bound MarR. Overexpression or deletion of tktA showed that TktA interfered with MarR repression of the marRAB operon. Deletion of tktA increased antibiotic and oxidative stress susceptibilities, while its overexpression decreased them. Hydrogen peroxide induced tktA at 1 h treatment, while an increase in marRAB expression occurred only after 3 h exposure. This increase was dependent on the presence of tktA. Two MarR mutations which eliminated MarR binding to the marRAB operator and one which decreased dimerization of MarR had no effect on MarR interaction with TktA in the two-hybrid system. However, the interaction was disrupted by one of the three tested superrepressor mutant MarR proteins known to increase MarR binding to DNA. TktA inhibition of repression by MarR demonstrates a previously unrecognized level of control of the expression of marRAB operon.
Collapse
Affiliation(s)
- Francis Domain
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
44
|
Abstract
Treatment of infections is compromised worldwide by the emergence of bacteria that are resistant to multiple antibiotics. Although classically attributed to chromosomal mutations, resistance is most commonly associated with extrachromosomal elements acquired from other bacteria in the environment. These include different types of mobile DNA segments, such as plasmids, transposons, and integrons. However, intrinsic mechanisms not commonly specified by mobile elements-such as efflux pumps that expel multiple kinds of antibiotics-are now recognized as major contributors to multidrug resistance in bacteria. Once established, multidrug-resistant organisms persist and spread worldwide, causing clinical failures in the treatment of infections and public health crises.
Collapse
|
45
|
Nicoloff H, Perreten V, Levy SB. Increased genome instability in Escherichia coli lon mutants: relation to emergence of multiple-antibiotic-resistant (Mar) mutants caused by insertion sequence elements and large tandem genomic amplifications. Antimicrob Agents Chemother 2007; 51:1293-303. [PMID: 17220404 PMCID: PMC1855481 DOI: 10.1128/aac.01128-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thirteen spontaneous multiple-antibiotic-resistant (Mar) mutants of Escherichia coli AG100 were isolated on Luria-Bertani (LB) agar in the presence of tetracycline (4 microg/ml). The phenotype was linked to insertion sequence (IS) insertions in marR or acrR or unstable large tandem genomic amplifications which included acrAB and which were bordered by IS3 or IS5 sequences. Five different lon mutations, not related to the Mar phenotype, were also found in 12 of the 13 mutants. Under specific selective conditions, most drug-resistant mutants appearing late on the selective plates evolved from a subpopulation of AG100 with lon mutations. That the lon locus was involved in the evolution to low levels of multidrug resistance was supported by the following findings: (i) AG100 grown in LB broth had an important spontaneous subpopulation (about 3.7x10(-4)) of lon::IS186 mutants, (ii) new lon mutants appeared during the selection on antibiotic-containing agar plates, (iii) lon mutants could slowly grow in the presence of low amounts (about 2x MIC of the wild type) of chloramphenicol or tetracycline, and (iv) a lon mutation conferred a mutator phenotype which increased IS transposition and genome rearrangements. The association between lon mutations and mutations causing the Mar phenotype was dependent on the medium (LB versus MacConkey medium) and the antibiotic used for the selection. A previously reported unstable amplifiable high-level resistance observed after the prolonged growth of Mar mutants in a low concentration of tetracycline or chloramphenicol can be explained by genomic amplification.
Collapse
Affiliation(s)
- Hervé Nicoloff
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | |
Collapse
|