1
|
Stoltzfus MJ, Workman RE, Keith NC, Modell JW. A dynamic subpopulation of CRISPR-Cas overexpressers allows Streptococcus pyogenes to rapidly respond to phage. Nat Microbiol 2024; 9:2410-2421. [PMID: 38997519 PMCID: PMC11983678 DOI: 10.1038/s41564-024-01748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024]
Abstract
Many CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein) systems, which provide bacteria with adaptive immunity against phages, are transcriptionally repressed in their native hosts. How CRISPR-Cas expression is induced as needed, for example, during a bacteriophage infection, remains poorly understood. In Streptococcus pyogenes, a non-canonical guide RNA tracr-L directs Cas9 to autorepress its own promoter. Here we describe a dynamic subpopulation of cells harbouring single mutations that disrupt Cas9 binding and cause CRISPR-Cas overexpression. Cas9 actively expands this population by elevating mutation rates at the tracr-L target site. Overexpressers show higher rates of memory formation, stronger potency of old memories and a larger memory storage capacity relative to wild-type cells, which are surprisingly vulnerable to phage infection. However, in the absence of phage, CRISPR-Cas overexpression reduces fitness. We propose that CRISPR-Cas overexpressers are critical players in phage defence, enabling bacterial populations to mount rapid transcriptional responses to phage without requiring transient changes in any one cell.
Collapse
Affiliation(s)
- Marie J Stoltzfus
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachael E Workman
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas C Keith
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua W Modell
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Pell ME, Blankenship HM, Gaddy JA, Davies HD, Manning SD. Intrapartum antibiotic prophylaxis selects for mutators in group B streptococci among persistently colonized patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587590. [PMID: 38617326 PMCID: PMC11014637 DOI: 10.1101/2024.04.01.587590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Through vaginal colonization, GBS causes severe pregnancy outcomes including neonatal sepsis and meningitis. Although intrapartum antibiotic prophylaxis (IAP) has reduced early-onset disease rates, persistent GBS colonization has been observed in patients following prophylaxis. To determine whether IAP selects for genomic signatures that enhance GBS survival and persistence in the vaginal tract, whole-genome sequencing was performed on 97 isolates from 58 patients before (prenatal) and after (postpartum) IAP/childbirth. Core-gene mutation analysis identified 7,025 mutations between the paired isolates. Three postpartum isolates accounted for 98% of mutations and were classified as "mutators" because of point mutations within DNA repair systems. In vitro assays revealed stronger biofilms in two mutators. These findings suggest that antibiotics select for mutations that promote survival in vivo, which increases the likelihood of transmission to neonates. They also demonstrate how mutators can provide a reservoir of beneficial mutations that enhance fitness and genetic diversity in the GBS population.
Collapse
Affiliation(s)
- Macy E Pell
- Michigan State University, Department of Microbiology, Genetics, and Immunology (MGI), E. Lansing, MI
| | - Heather M Blankenship
- Michigan Department of Health and Human Services, Bureau of Laboratories, Division of Infectious Diseases, Lansing, MI
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN
| | | | - Shannon D Manning
- Michigan State University, Department of Microbiology, Genetics, and Immunology (MGI), E. Lansing, MI
| |
Collapse
|
3
|
Charubin K, Hill JD, Papoutsakis ET. DNA transfer between two different species mediated by heterologous cell fusion in Clostridium coculture. mBio 2024; 15:e0313323. [PMID: 38214507 PMCID: PMC10865971 DOI: 10.1128/mbio.03133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
Prokaryotic evolution is driven by random mutations and horizontal gene transfer (HGT). HGT occurs via transformation, transduction, or conjugation. We have previously shown that in syntrophic cocultures of Clostridium acetobutylicum and Clostridium ljungdahlii, heterologous cell fusion leads to a large-scale exchange of proteins and RNA between the two organisms. Here, we present evidence that heterologous cell fusion facilitates the exchange of DNA between the two organisms. Using selective subculturing, we isolated C. acetobutylicum cells which acquired and integrated into their genome portions of plasmid DNA from a plasmid-carrying C. ljungdahlii strain. Limiting-dilution plating and DNA methylation data based on PacBio Single-Molecule Real Time (SMRT) sequencing support the existence of hybrid C. acetobutylicum/C. ljungdahlii cells. These findings expand our understanding of multi-species microbiomes, their survival strategies, and evolution.IMPORTANCEInvestigations of natural multispecies microbiomes and synthetic microbial cocultures are attracting renewed interest for their potential application in biotechnology, ecology, and medical fields. Previously, we have shown the syntrophic coculture of C. acetobutylicum and C. ljungdahlii undergoes heterologous cell-to-cell fusion, which facilitates the exchange of cytoplasmic protein and RNA between the two organisms. We now show that heterologous cell fusion between the two Clostridium organisms can facilitate the exchange of DNA. By applying selective pressures to this coculture system, we isolated clones of wild-type C. acetobutylicum which acquired the erythromycin resistance (erm) gene from the C. ljungdahlii strain carrying a plasmid with the erm gene. Single-molecule real-time sequencing revealed that the erm gene was integrated into the genome in a mosaic fashion. Our data also support the persistence of hybrid C. acetobutylicum/C. ljungdahlii cells displaying hybrid DNA-methylation patterns.
Collapse
Affiliation(s)
- Kamil Charubin
- Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - John D. Hill
- Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
4
|
Juhas M. Gene Transfer. BRIEF LESSONS IN MICROBIOLOGY 2023:51-63. [DOI: 10.1007/978-3-031-29544-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Butala M, Dragoš A. Unique relationships between phages and endospore-forming hosts. Trends Microbiol 2022; 31:498-510. [PMID: 36535834 DOI: 10.1016/j.tim.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
As part of their survival strategy under harsh environmental conditions, endospore-forming bacteria can trigger a sporulation developmental program. Although the regulatory cascades that precisely control the transformation of vegetative bacteria into mother cells and resilient spores have been described in detail, less is known about how bacteriophages that prey on endospore-formers exploit sporulation. Herein, we argue that phages infecting these bacteria have evolved several specific molecular mechanisms, not yet known in other bacteria, that manifest from the phage-driven alliance to negative effects on the host. We anticipate that the relationships between phages and endospore-formers outlined here will inspire studies on phage ecology and evolution, and could facilitate important advances in the development of phage therapies against pathogenic spore-formers.
Collapse
Affiliation(s)
- Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anna Dragoš
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Benler S, Koonin EV. Recruitment of Mobile Genetic Elements for Diverse Cellular Functions in Prokaryotes. Front Mol Biosci 2022; 9:821197. [PMID: 35402511 PMCID: PMC8987985 DOI: 10.3389/fmolb.2022.821197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Prokaryotic genomes are replete with mobile genetic elements (MGE) that span a continuum of replication autonomy. On numerous occasions during microbial evolution, diverse MGE lose their autonomy altogether but, rather than being quickly purged from the host genome, assume a new function that benefits the host, rendering the immobilized MGE subject to purifying selection, and resulting in its vertical inheritance. This mini-review highlights the diversity of the repurposed (exapted) MGE as well as the plethora of cellular functions that they perform. The principal contribution of the exaptation of MGE and their components is to the prokaryotic functional systems involved in biological conflicts, and in particular, defense against viruses and other MGE. This evolutionary entanglement between MGE and defense systems appears to stem both from mechanistic similarities and from similar evolutionary predicaments whereby both MGEs and defense systems tend to incur fitness costs to the hosts and thereby evolve mechanisms for survival including horizontal mobility, causing host addiction, and exaptation for functions beneficial to the host. The examples discussed demonstrate that the identity of an MGE, overall mobility and relationship with the host cell (mutualistic, symbiotic, commensal, or parasitic) are all factors that affect exaptation.
Collapse
Affiliation(s)
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Mutators Enhance Adaptive Micro-Evolution in Pathogenic Microbes. Microorganisms 2022; 10:microorganisms10020442. [PMID: 35208897 PMCID: PMC8875331 DOI: 10.3390/microorganisms10020442] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Adaptation to the changing environmental conditions experienced within a host requires genetic diversity within a microbial population. Genetic diversity arises from mutations which occur due to DNA damage from exposure to exogenous environmental stresses or generated endogenously through respiration or DNA replication errors. As mutations can be deleterious, a delicate balance must be obtained between generating enough mutations for micro-evolution to occur while maintaining fitness and genomic integrity. Pathogenic microorganisms can actively modify their mutation rate to enhance adaptive micro-evolution by increasing expression of error-prone DNA polymerases or by mutating or decreasing expression of genes required for DNA repair. Strains which exhibit an elevated mutation rate are termed mutators. Mutators are found in varying prevalence in clinical populations where large-effect beneficial mutations enhance survival and are predominately caused by defects in the DNA mismatch repair (MMR) pathway. Mutators can facilitate the emergence of antibiotic resistance, allow phenotypic modifications to prevent recognition and destruction by the host immune system and enable switching to metabolic and cellular morphologies better able to survive in the given environment. This review will focus on recent advances in understanding the phenotypic and genotypic changes occurring in MMR mutators in both prokaryotic and eukaryotic pathogens.
Collapse
|
8
|
Marshall CW, Gloag ES, Lim C, Wozniak DJ, Cooper VS. Rampant prophage movement among transient competitors drives rapid adaptation during infection. SCIENCE ADVANCES 2021; 7:7/29/eabh1489. [PMID: 34272240 PMCID: PMC8284892 DOI: 10.1126/sciadv.abh1489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/03/2021] [Indexed: 05/11/2023]
Abstract
Interactions between bacteria, their close competitors, and viral parasites are common in infections, but understanding of these eco-evolutionary dynamics is limited. Most examples of adaptations caused by phage lysogeny are through the acquisition of new genes. However, integrated prophages can also insert into functional genes and impart a fitness benefit by disrupting their expression, a process called active lysogeny. Here, we show that active lysogeny can fuel rapid, parallel adaptations in establishing a chronic infection. These recombination events repeatedly disrupted genes encoding global regulators, leading to increased cyclic di-GMP levels and elevated biofilm production. The implications of prophage-mediated adaptation are broad, as even transient members of microbial communities can alter the course of evolution and generate persistent phenotypes associated with poor clinical outcomes.
Collapse
Affiliation(s)
| | - Erin S Gloag
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Christina Lim
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Remmington A, Haywood S, Edgar J, Green LR, de Silva T, Turner CE. Cryptic prophages within a Streptococcus pyogenes genotype emm4 lineage. Microb Genom 2021; 7:mgen000482. [PMID: 33245690 PMCID: PMC8115907 DOI: 10.1099/mgen.0.000482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/04/2020] [Indexed: 01/27/2023] Open
Abstract
The major human pathogen Streptococcus pyogenes shares an intimate evolutionary history with mobile genetic elements, which in many cases carry genes encoding bacterial virulence factors. During recent whole-genome sequencing of a longitudinal sample of S. pyogenes isolates in England, we identified a lineage within emm4 that clustered with the reference genome MEW427. Like MEW427, this lineage was characterized by substantial gene loss within all three prophage regions, compared to MGAS10750 and isolates outside of the MEW427-like lineage. Gene loss primarily affected lysogeny, replicative and regulatory modules, and to a lesser and more variable extent, structural genes. Importantly, prophage-encoded superantigen and DNase genes were retained in all isolates. In isolates where the prophage elements were complete, like MGAS10750, they could be induced experimentally, but not in MEW427-like isolates with degraded prophages. We also found gene loss within the chromosomal island SpyCIM4 of MEW427-like isolates, although surprisingly, the SpyCIM4 element could not be experimentally induced in either MGAS10750-like or MEW427-like isolates. This did not, however, appear to abolish expression of the mismatch repair operon, within which this element resides. The inclusion of further emm4 genomes in our analyses ratified our observations and revealed an international emm4 lineage characterized by prophage degradation. Intriguingly, the USA population of emm4 S. pyogenes appeared to constitute predominantly MEW427-like isolates, whereas the UK population comprised both MEW427-like and MGAS10750-like isolates. The degraded and cryptic nature of these elements may have important phenotypic and fitness ramifications for emm4 S. pyogenes, and the geographical distribution of this lineage raises interesting questions on the population dynamics of the genotype.
Collapse
Affiliation(s)
- Alex Remmington
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
| | - Samuel Haywood
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
| | - Julia Edgar
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Luke R. Green
- Department of Infection, Immunity and Cardiovascular Disease, Florey Institute, University of Sheffield, Sheffield, UK
| | - Thushan de Silva
- Department of Infection, Immunity and Cardiovascular Disease, Florey Institute, University of Sheffield, Sheffield, UK
| | - Claire E. Turner
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Rudenko O, Engelstädter J, Barnes AC. Evolutionary epidemiology of Streptococcus iniae: Linking mutation rate dynamics with adaptation to novel immunological landscapes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104435. [PMID: 32569744 DOI: 10.1016/j.meegid.2020.104435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
Pathogens continuously adapt to changing host environments where variation in their virulence and antigenicity is critical to their long-term evolutionary success. The emergence of novel variants is accelerated in microbial mutator strains (mutators) deficient in DNA repair genes, most often from mismatch repair and oxidized-guanine repair systems (MMR and OG respectively). Bacterial MMR/OG mutants are abundant in clinical samples and show increased adaptive potential in experimental infection models, yet the role of mutators in the epidemiology and evolution of infectious disease is not well understood. Here we investigated the role of mutation rate dynamics in the evolution of a broad host range pathogen, Streptococcus iniae, using a set of 80 strains isolated globally over 40 years. We have resolved phylogenetic relationships using non-recombinant core genome variants, measured in vivo mutation rates by fluctuation analysis, identified variation in major MMR/OG genes and their regulatory regions, and phenotyped the major traits determining virulence in streptococci. We found that both mutation rate and MMR/OG genotype are remarkably conserved within phylogenetic clades but significantly differ between major phylogenetic lineages. Further, variation in MMR/OG loci correlates with occurrence of atypical virulence-associated phenotypes, infection in atypical hosts (mammals), and atypical (osseous) tissue of a vaccinated primary host. These findings suggest that mutators are likely to facilitate adaptations preceding major diversification events and may promote emergence of variation permitting colonization of a novel host tissue, novel host taxa (host jumps), and immune-escape in the vaccinated host.
Collapse
Affiliation(s)
- Oleksandra Rudenko
- The University of Queensland, School of Biological Sciences, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Jan Engelstädter
- The University of Queensland, School of Biological Sciences, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Andrew C Barnes
- The University of Queensland, School of Biological Sciences, St Lucia Campus, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
11
|
Mageeney CM, Lau BY, Wagner JM, Hudson CM, Schoeniger JS, Krishnakumar R, Williams KP. New candidates for regulated gene integrity revealed through precise mapping of integrative genetic elements. Nucleic Acids Res 2020; 48:4052-4065. [PMID: 32182341 PMCID: PMC7192596 DOI: 10.1093/nar/gkaa156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Integrative genetic elements (IGEs) are mobile multigene DNA units that integrate into and excise from host bacterial genomes. Each IGE usually targets a specific site within a conserved host gene, integrating in a manner that preserves target gene function. However, a small number of bacterial genes are known to be inactivated upon IGE integration and reactivated upon excision, regulating phenotypes of virulence, mutation rate, and terminal differentiation in multicellular bacteria. The list of regulated gene integrity (RGI) cases has been slow-growing because IGEs have been challenging to precisely and comprehensively locate in genomes. We present software (TIGER) that maps IGEs with unprecedented precision and without attB site bias. TIGER uses a comparative genomic, ping-pong BLAST approach, based on the principle that the IGE integration module (i.e. its int-attP region) is cohesive. The resultant IGEs from 2168 genomes, along with integrase phylogenetic analysis and gene inactivation tests, revealed 19 new cases of genes whose integrity is regulated by IGEs (including dut, eccCa1, gntT, hrpB, merA, ompN, prkA, tqsA, traG, yifB, yfaT and ynfE), as well as recovering previously known cases (in sigK, spsM, comK, mlrA and hlb genes). It also recovered known clades of site-promiscuous integrases and identified possible new ones.
Collapse
Affiliation(s)
- Catherine M Mageeney
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Britney Y Lau
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Julian M Wagner
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Corey M Hudson
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Joseph S Schoeniger
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Raga Krishnakumar
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Kelly P Williams
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| |
Collapse
|
12
|
McShan WM, McCullor KA, Nguyen SV. The Bacteriophages of Streptococcus pyogenes. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0059-2018. [PMID: 31111820 PMCID: PMC11314938 DOI: 10.1128/microbiolspec.gpp3-0059-2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
The bacteriophages of Streptococcus pyogenes (group A streptococcus) play a key role in population shaping, genetic transfer, and virulence of this bacterial pathogen. Lytic phages like A25 can alter population distributions through elimination of susceptible serotypes but also serve as key mediators for genetic transfer of virulence genes and antibiotic resistance via generalized transduction. The sequencing of multiple S. pyogenes genomes has uncovered a large and diverse population of endogenous prophages that are vectors for toxins and other virulence factors and occupy multiple attachment sites in the bacterial genomes. Some of these sites for integration appear to have the potential to alter the bacterial phenotype through gene disruption. Remarkably, the phage-like chromosomal islands (SpyCI), which share many characteristics with endogenous prophages, have evolved to mediate a growth-dependent mutator phenotype while acting as global transcriptional regulators. The diverse population of prophages appears to share a large pool of genetic modules that promotes novel combinations that may help disseminate virulence factors to different subpopulations of S. pyogenes. The study of the bacteriophages of this pathogen, both lytic and lysogenic, will continue to be an important endeavor for our understanding of how S. pyogenes continues to be a significant cause of human disease.
Collapse
Affiliation(s)
- W Michael McShan
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117
| | - Kimberly A McCullor
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117
| | - Scott V Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117
| |
Collapse
|
13
|
Chen YY, Wang JT, Lin TL, Gong YN, Li TH, Huang YY, Hsieh YC. Prophage Excision in Streptococcus pneumoniae Serotype 19A ST320 Promote Colonization: Insight Into Its Evolution From the Ancestral Clone Taiwan 19F-14 (ST236). Front Microbiol 2019; 10:205. [PMID: 30800118 PMCID: PMC6375853 DOI: 10.3389/fmicb.2019.00205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae 19A ST320, a multidrug-resistant strain with high disease severity that notoriously spread before the use of expanded pneumococcal conjugate vaccines, was derived from a capsular switching event between an international strain Taiwan 19F-14 (ST236) and a serotype 19A strain. However, the molecular mechanisms underlying the adaptive evolution of 19F ST236 to 19A ST320 are unknown. In this study, we compared 19A ST320 to its ancestral clone, 19F ST236, in terms of adherence to respiratory epithelial cells, whole transcriptome, and ability to colonize a young mouse model. Serotype 19A ST320 showed five-fold higher adherence to A549 cells than serotype 19F ST236. High-throughput mRNA sequencing identified a prophage region located between dnaN and ychF in both strains; however, the genes in this region were expressed at significantly higher levels in 19A ST320 than in 19F ST236. Analysis by polymerase chain reaction (PCR) showed that the prophage is able to spontaneously excise from the chromosome and form a circular episome in 19A ST320, but not in 19F ST236. Deletion of the integrase in the prophage of 19A ST320 decreased spontaneous excision and cell adherence, which were restored by complementation. Competition experiments in mice showed that the integrase mutant was six-fold less competitive than the 19A ST320 parent (competitive index [CI]: 0.16; p = 0.02). The 19A ST320 prophage-deleted strain did not change cell adherence capacity, whereas prophage integration strains (integrase mutant and 19F) had decreased expression of the down-stream ychF gene compared to that of 19A ST320. Further deletion of ychF significantly reduced cell adherence. In conclusions, these findings suggest that spontaneous prophage induction confers a competitive advantage to virulent pneumococci.
Collapse
Affiliation(s)
- Yi-Yin Chen
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Hsuan Li
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Yu Huang
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chia Hsieh
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
14
|
Abstract
Bacteriophages, discovered about a century ago, have been pivotal as models for understanding the fundamental principles of molecular biology. While interest in phage biology declined after the phage "golden era," key recent developments, including advances in phage genomics, microscopy, and the discovery of the CRISPR-Cas anti-phage defense system, have sparked a renaissance in phage research in the past decade. This review highlights recently discovered unexpected complexities in phage biology, describes a new arsenal of phage genes that help them overcome bacterial defenses, and discusses advances toward documentation of the phage biodiversity on a global scale.
Collapse
Affiliation(s)
- Gal Ofir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
15
|
Role of phage ϕ1 in two strains of Salmonella Rissen, sensitive and resistant to phage ϕ1. BMC Microbiol 2018; 18:208. [PMID: 30526475 PMCID: PMC6286511 DOI: 10.1186/s12866-018-1360-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
Background The study describes the Salmonella Rissen phage ϕ1 isolated from the ϕ1-sensitive Salmonella Rissen strain RW. The same phage was then used to select the resistant strain RRϕ1+, which can harbour or not ϕ1. Results Following this approach, we found that ϕ1, upon excision from RW cells with mitomycin, behaves as a temperate phage: lyses host cells and generates phage particles; instead, upon spontaneous excision from RRϕ1+ cells, it does not generate phage particles; causes loss of phage resistance; switches the O-antigen from the smooth to the rough phenotype, and favors the transition of Salmonella Rissen from the planktonic to the biofilm growth. The RW and RRϕ1+ strains differ by 10 genes; of these, only two (phosphomannomutase_1 and phosphomannomutase_2; both involved in the mannose synthesis pathway) display significant differences at the expression levels. This result suggests that phage resistance is associated with these two genes. Conclusions Phage ϕ1 displays the unusual property of behaving as template as well as lytic phage. This feature was used by the phage to modulate several phases of Salmonella Rissen lifestyle. Electronic supplementary material The online version of this article (10.1186/s12866-018-1360-z) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Wang H, Xing X, Wang J, Pang B, Liu M, Larios-Valencia J, Liu T, Liu G, Xie S, Hao G, Liu Z, Kan B, Zhu J. Hypermutation-induced in vivo oxidative stress resistance enhances Vibrio cholerae host adaptation. PLoS Pathog 2018; 14:e1007413. [PMID: 30376582 PMCID: PMC6226196 DOI: 10.1371/journal.ppat.1007413] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/09/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023] Open
Abstract
Bacterial pathogens are highly adaptable organisms, a quality that enables them to overcome changing hostile environments. For example, Vibrio cholerae, the causative agent of cholera, is able to colonize host small intestines and combat host-produced reactive oxygen species (ROS) during infection. To dissect the molecular mechanisms utilized by V. cholerae to overcome ROS in vivo, we performed a whole-genome transposon sequencing analysis (Tn-seq) by comparing gene requirements for colonization using adult mice with and without the treatment of the antioxidant, N-acetyl cysteine. We found that mutants of the methyl-directed mismatch repair (MMR) system, such as MutS, displayed significant colonization advantages in untreated, ROS-rich mice, but not in NAC-treated mice. Further analyses suggest that the accumulation of both catalase-overproducing mutants and rugose colony variants in NAC- mice was the leading cause of mutS mutant enrichment caused by oxidative stress during infection. We also found that rugose variants could revert back to smooth colonies upon aerobic, in vitro culture. Additionally, the mutation rate of wildtype colonized in NAC- mice was significantly higher than that in NAC+ mice. Taken together, these findings support a paradigm in which V. cholerae employs a temporal adaptive strategy to battle ROS during infection, resulting in enriched phenotypes. Moreover, ΔmutS passage and complementation can be used to model hypermuation in diverse pathogens to identify novel stress resistance mechanisms. Cholera is a devastating diarrheal disease that is still endemic to many developing nations, with the worst outbreak in history having occurred recently in Yemen. Vibrio cholerae, the causative agent of cholera, transitions from aquatic reservoirs to the human gastrointestinal tract, where it expresses virulence factors to facilitate colonization of the small intestines and to combat host innate immune effectors, such as reactive oxygen species (ROS). We applied a genome-wide transposon screen (Tn-seq) and identified that deletion of mutS, which is part of DNA mismatch repair system, drastically increased colonization in ROS-rich mice. The deletion of mutS led to the accumulation of catalase-overproducing mutants and a high frequency rugose phenotype when exposed to ROS selective pressures in vivo. Additionally, ROS elevated mutation frequency in wildtype, both in vitro and in vivo. Our data imply that V. cholerae may modulate mutation frequency as a temporal adaptive strategy to overcome oxidative stress and to enhance infectivity.
Collapse
Affiliation(s)
- Hui Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
- * E-mail: (HW); (JH)
| | - Xiaolin Xing
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Jipeng Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Bo Pang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ming Liu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Jessie Larios-Valencia
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Tao Liu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Ge Liu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Saijun Xie
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Guijuan Hao
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China
| | - Zhi Liu
- Department of Biotechnology, Huazhong University of Science and Technology, Wuhan, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
- * E-mail: (HW); (JH)
| |
Collapse
|
17
|
Bessen DE, Smeesters PR, Beall BW. Molecular Epidemiology, Ecology, and Evolution of Group A Streptococci. Microbiol Spectr 2018; 6:10.1128/microbiolspec.cpp3-0009-2018. [PMID: 30191802 PMCID: PMC11633622 DOI: 10.1128/microbiolspec.cpp3-0009-2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 12/27/2022] Open
Abstract
The clinico-epidemiological features of diseases caused by group A streptococci (GAS) is presented through the lens of the ecology, population genetics, and evolution of the organism. The serological targets of three typing schemes (M, T, SOF) are themselves GAS cell surface proteins that have a myriad of virulence functions and a diverse array of structural forms. Horizontal gene transfer expands the GAS antigenic cell surface repertoire by generating numerous combinations of M, T, and SOF antigens. However, horizontal gene transfer of the serotype determinant genes is not unconstrained, and therein lies a genetic organization that may signify adaptations to a narrow ecological niche, such as the primary tissue reservoirs of the human host. Adaptations may be further shaped by selection pressures such as herd immunity. Understanding the molecular evolution of GAS on multiple levels-short, intermediate, and long term-sheds insight on mechanisms of host-pathogen interactions, the emergence and spread of new clones, rational vaccine design, and public health interventions.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Pierre R Smeesters
- Department of Pediatrics, Queen Fabiola Children's University Hospital, and Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, 1020, Belgium
| | - Bernard W Beall
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333
| |
Collapse
|
18
|
Deutsch DR, Utter B, Verratti KJ, Sichtig H, Tallon LJ, Fischetti VA. Extra-Chromosomal DNA Sequencing Reveals Episomal Prophages Capable of Impacting Virulence Factor Expression in Staphylococcus aureus. Front Microbiol 2018; 9:1406. [PMID: 30013526 PMCID: PMC6036120 DOI: 10.3389/fmicb.2018.01406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/07/2018] [Indexed: 01/20/2023] Open
Abstract
Staphylococcus aureus is a major human pathogen with well-characterized bacteriophage contributions to its virulence potential. Recently, we identified plasmidial and episomal prophages in S. aureus strains using an extra-chromosomal DNA (exDNA) isolation and sequencing approach, uncovering the plasmidial phage ϕBU01, which was found to encode important virulence determinants. Here, we expanded our extra-chromosomal sequencing of S. aureus, selecting 15 diverse clinical isolates with known chromosomal sequences for exDNA isolation and next-generation sequencing. We uncovered the presence of additional episomal prophages in 5 of 15 samples, but did not identify any plasmidial prophages. exDNA isolation was found to enrich for circular prophage elements, and qPCR characterization of the strains revealed that such prophage enrichment is detectable only in exDNA samples and would likely be missed in whole-genome DNA preparations (e.g., detection of episomal prophages did not correlate with higher prophage excision rates nor higher excised prophage copy numbers in qPCR experiments using whole-genome DNA). In S. aureus MSSA476, we found that enrichment and excision of the prophage ϕSa4ms into the cytoplasm was temporal and that episomal prophage localization did not appear to be a precursor to lytic cycle replication, suggesting ϕSa4ms excision into the cytoplasm may be part of a novel lysogenic switch. For example, we show that ϕSa4ms excision alters the promoter and transcription of htrA2 , encoding a stress-response serine protease, and that alternative promotion of htrA2 confers increased heat-stress survival in S. aureus COL. Overall, exDNA isolation and focused sequencing may offer a more complete genomic picture for bacterial pathogens, offering insights into important chromosomal dynamics likely missed with whole-genome DNA-based approaches.
Collapse
Affiliation(s)
- Douglas R Deutsch
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
| | - Bryan Utter
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
| | - Kathleen J Verratti
- Applied Physics Laboratory, National Security Systems Biology Center, Johns Hopkins University, Laurel, MD, United States
| | - Heike Sichtig
- Center for Devices and Radiological Health, Office of In Vitro Diagnostics, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Luke J Tallon
- Genomics Resource Center, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
19
|
Novick RP, Ram G. Staphylococcal pathogenicity islands-movers and shakers in the genomic firmament. Curr Opin Microbiol 2017; 38:197-204. [PMID: 29100762 DOI: 10.1016/j.mib.2017.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 01/21/2023]
Abstract
The staphylococcal pathogenicity islands (SaPIs) are highly mobile 15kb genomic islands that carry superantigen genes and other virulence factors and are mobilized by helper phages. Helper phages counteract the SaPI repressor to induce the SaPI replication cycle, resulting in encapsidation in phage like particles, enabling high frequency transfer. The SaPIs split from a protophage lineage in the distant past, have evolved a variety of novel and salient features, and have become an invaluable component of the staphylococcal genome. This review focuses on recent studies describing three different mechanisms of SaPI interference with helper phage reproduction and other studies demonstrating that helper phage mutations to resistance against this interference impact phage evolution. Also described are recent results showing that SaPIs contribute in a major way to lateral transfer of host genes as well as enabling their own transfer. SaPI-like elements, readily identifiable in the bacterial genome, are widespread throughout the Gram-positive cocci, though functionality has thus far been demonstrated for only a single one of these.
Collapse
Affiliation(s)
- Richard P Novick
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, Departments of Medicine and Microbiology, 540 First Ave., New York, NY 10016, USA.
| | - Geeta Ram
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, Departments of Medicine and Microbiology, 540 First Ave., New York, NY 10016, USA
| |
Collapse
|
20
|
Bao YJ, Li Y, Liang Z, Agrahari G, Lee SW, Ploplis VA, Castellino FJ. Comparative pathogenomic characterization of a non-invasive serotype M71 strain Streptococcus pyogenes NS53 reveals incongruent phenotypic implications from distinct genotypic markers. Pathog Dis 2017; 75:3829887. [PMID: 28520869 PMCID: PMC5808649 DOI: 10.1093/femspd/ftx056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/16/2017] [Indexed: 11/15/2022] Open
Abstract
The strains serotyped as M71 from group A Streptococcus are common causes of pharyngeal and skin diseases worldwide. Here we characterize the genome of a unique non-invasive M71 human isolate, NS53. The genome does not contain structural rearrangements or large-scale gene gains/losses, but encodes a full set of non-truncated known virulence factors, thus providing an ideal reference for comparative studies. However, the NS53 genome showed incongruent phenotypic implications from distinct genotypic markers. NS53 is characterized as an emm pattern D and FCT (fibronectin-collagen-T antigen) type-3 strain, typical of skin tropic strains, but is phylogenetically close to emm pattern E strains with preference for both skin and pharyngeal infections. We propose that this incongruence could result from recombination within the emm gene locus, or, alternatively, selection has been against those genetic alterations. Combined with the inability to select for CovS switching, a process is indicated whereby NS53 has been pre-adapted to specific host niches selecting against variations in CovS and many other genes. This may allow the strain to attain successful colonization and long-term survival. A balance between genetic variations and fitness may exist for this bacterium to form a stabilized genome optimized for survival in specific host environments.
Collapse
Affiliation(s)
- Yun-Juan Bao
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yang Li
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhong Liang
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Garima Agrahari
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shaun W. Lee
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A. Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J. Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
21
|
Beyond the canonical strategies of horizontal gene transfer in prokaryotes. Curr Opin Microbiol 2017; 38:95-105. [PMID: 28600959 DOI: 10.1016/j.mib.2017.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/16/2023]
Abstract
Efforts to identify and characterize strategies for horizontal gene transfer (HGT) in prokaryotes could have overlooked some mechanisms that do not entirely fit in with the canonical ones most often described (conjugation of plasmids, phage transduction and transformation). The difficulty in distinguishing the different HGT strategies could have contributed to underestimate their real extent. Here we review non classical HGT strategies: some that require mobile genetic elements (MGEs) and others independent of MGE. Among those strategies that require MGEs, there is a range of newly reported, hybrid and intermediate MGEs mobilizing only their own DNA, others that mobilize preferentially bacterial DNA, or both. Considering HGT strategies independent of MGE, a few are even not restricted to DNA transfer, but can also mobilize other molecules. This review considers those HGT strategies that are less commonly dealt with in the literature. The real impact of these elements could, in some conditions, be more relevant than previously thought.
Collapse
|
22
|
Characterization and interstrain transfer of prophage pp3 of Pseudomonas aeruginosa. PLoS One 2017; 12:e0174429. [PMID: 28346467 PMCID: PMC5367828 DOI: 10.1371/journal.pone.0174429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/08/2017] [Indexed: 01/16/2023] Open
Abstract
Prophages are major contributors to horizontal gene transfer and drive the evolution and diversification of bacteria. Here, we describe the characterization of a prophage element designated pp3 in the clinical Pseudomonas aeruginosa isolate PA1. pp3 spontaneously excises from the PA1 genome and circularizes at a very high frequency of 25%. pp3 is likely to be a defective prophage due to its inability to form plaques on P. aeruginosa indicator strains, and no phage particles could be detected in PA1 supernatants. The pp3-encoded integrase is essential for excision by mediating site-specific recombination at the 26-bp attachment sequence. Using a filter mating experiment, we demonstrated that pp3 can transfer into P. aeruginosa recipient strains that do not possess this element naturally. Upon transfer, pp3 integrates into the same attachment site as in PA1 and maintains the ability to excise and circularize. Furthermore, pp3 significantly promotes biofilm formation in the recipient. Sequence alignment reveals that the 26-bp attachment site recognized by pp3 is conserved in all P. aeruginosa strains sequenced to date, making it possible that pp3 could be extensively disseminated in P. aeruginosa. This work improves our understanding of the ways in which prophages influence bacterial behavior and evolution.
Collapse
|
23
|
Abstract
Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome, the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria. DNA mutations are a double-edged sword. Most mutations are harmful; they can scramble precise genetic sequences honed over thousands of generations. But in rare cases, mutations also produce beneficial new traits that allow populations to adapt to changing environments. Recent evidence suggests that some bacteria balance this trade-off by altering their mutation rates to suit their environment. To date, however, we know of few mechanisms that allow bacteria to change their mutation rates. We describe one such mechanism, driven by the action of a mobile element, in the marine bacterium Vibrio splendidus 12B01. We also found similar mobile genetic sequences in the mutS genes of many different bacteria, including clinical and agricultural pathogens. These mobile elements might play an as yet unknown role in the evolution of these important bacteria.
Collapse
|
24
|
Rahman M, Nguyen SV, McCullor KA, King CJ, Jorgensen JH, McShan WM. Comparative Genome Analysis of the Daptomycin-Resistant Streptococcus anginosus Strain J4206 Associated with Breakthrough Bacteremia. Genome Biol Evol 2016; 8:3446-3459. [PMID: 27678123 PMCID: PMC5203781 DOI: 10.1093/gbe/evw241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Streptococcus anginosus is a member of the normal oral flora that can become a pathogen causing pyogenic infections in humans. The genome of daptomycin-resistant strain J4206, originally isolated from a patient suffering from breakthrough bacteremia and septic shock at the University of Texas Health Science Center at San Antonio, was determined. The circular genome is 2,001,352 bp long with a GC content of 38.62% and contains multiple mobile genetic elements, including the phage-like chromosomal island SanCI that mediates a mutator phenotype, transposons, and integrative conjugative elements. Daptomycin resistance involves multiple alterations in the cell membrane and cell wall, and unique features were identified in J4206 that may contribute to resistance. A cluster of capsular polysaccharide (CPS) genes for choline metabolism and transport are present that may help neutralize cell surface charges, destabilizing daptomycin binding. Further, unique J4206 genes encoding sortases and LPXTG-target proteins that are involved in cell wall modification were present. The J4206 genome is phylogenetically closely related to the recently reported vancomycin-resistant SA1 strain; however, these genomes differ with SNPs in cardiolipin synthetase, histidine kinase yycG, teichoic acid modification genes, and other genes involved in cell surface modification. Transmission electron microscopy showed that the cell walls of both strains J4206 and SA1 were significantly thicker and more electron dense than daptomycin- and vancomycin-sensitive strain J4211. This comparative genomic study has identified unique genes as well as allelic variants in the J4206 genome that are involved in cell surface modification and thus might contribute to the acquisition of daptomycin resistance.
Collapse
Affiliation(s)
- Maliha Rahman
- Department of Pharmaceutical Sciences, The University of Oklahoma College of PharmacyOklahoma, OK
| | - Scott V Nguyen
- Department of Pharmaceutical Sciences, The University of Oklahoma College of PharmacyOklahoma, OK.,Present address: U.S. Meat Animal Research Center, Clay Center, NE
| | - Kimberly A McCullor
- Department of Pharmaceutical Sciences, The University of Oklahoma College of PharmacyOklahoma, OK
| | - Catherine J King
- Department of Pharmaceutical Sciences, The University of Oklahoma College of PharmacyOklahoma, OK
| | - James H Jorgensen
- Department of Pathology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX.,Department of Medicine, University of Texas Health Sciences Center at San Antonio, San Antonio, TX
| | - W Michael McShan
- Department of Pharmaceutical Sciences, The University of Oklahoma College of PharmacyOklahoma, OK
| |
Collapse
|
25
|
Martínez-Rubio R, Quiles-Puchalt N, Martí M, Humphrey S, Ram G, Smyth D, Chen J, Novick RP, Penadés JR. Phage-inducible islands in the Gram-positive cocci. ISME JOURNAL 2016; 11:1029-1042. [PMID: 27959343 DOI: 10.1038/ismej.2016.163] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 08/29/2016] [Accepted: 09/20/2016] [Indexed: 12/24/2022]
Abstract
The SaPIs are a cohesive subfamily of extremely common phage-inducible chromosomal islands (PICIs) that reside quiescently at specific att sites in the staphylococcal chromosome and are induced by helper phages to excise and replicate. They are usually packaged in small capsids composed of phage virion proteins, giving rise to very high transfer frequencies, which they enhance by interfering with helper phage reproduction. As the SaPIs represent a highly successful biological strategy, with many natural Staphylococcus aureus strains containing two or more, we assumed that similar elements would be widespread in the Gram-positive cocci. On the basis of resemblance to the paradigmatic SaPI genome, we have readily identified large cohesive families of similar elements in the lactococci and pneumococci/streptococci plus a few such elements in Enterococcus faecalis. Based on extensive ortholog analyses, we found that the PICI elements in the four different genera all represent distinct but parallel lineages, suggesting that they represent convergent evolution towards a highly successful lifestyle. We have characterized in depth the enterococcal element, EfCIV583, and have shown that it very closely resembles the SaPIs in functionality as well as in genome organization, setting the stage for expansion of the study of elements of this type. In summary, our findings greatly broaden the PICI family to include elements from at least three genera of cocci.
Collapse
Affiliation(s)
- Roser Martínez-Rubio
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Moncada, Spain
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Miguel Martí
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Castellón, Spain
| | - Suzanne Humphrey
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Geeta Ram
- Skirball Institute Program in Molecular Pathogenesis and Departments of Microbiology and Medicine, Skirball Institute, New York University Medical Center, New York, NY, USA
| | - Davida Smyth
- Skirball Institute Program in Molecular Pathogenesis and Departments of Microbiology and Medicine, Skirball Institute, New York University Medical Center, New York, NY, USA
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Richard P Novick
- Skirball Institute Program in Molecular Pathogenesis and Departments of Microbiology and Medicine, Skirball Institute, New York University Medical Center, New York, NY, USA
| | - José R Penadés
- Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Moncada, Spain.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
26
|
Bao YJ, Shapiro BJ, Lee SW, Ploplis VA, Castellino FJ. Phenotypic differentiation of Streptococcus pyogenes populations is induced by recombination-driven gene-specific sweeps. Sci Rep 2016; 6:36644. [PMID: 27821851 PMCID: PMC5099688 DOI: 10.1038/srep36644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/13/2016] [Indexed: 01/05/2023] Open
Abstract
Genomic recombination plays an important role in driving adaptive evolution and population differentiation in bacteria. However, controversy exists as to the effects of recombination on population diversity and differentiation, i.e., recombination is frequent enough to sweep through the population at selected gene loci (gene-specific sweeps), or the recombination rate is low without interfering genome-wide selective sweeps. Observations supporting either view are sparse. Pathogenic bacteria causing infectious diseases are promising candidates to provide observations of recombination. However, phenotype-associated differentiations are usually vague among them due to diverse disease manifestations. Here we report a population genomic study of the group A Streptococcus pyogenes (GAS), a human pathogen with highly recombining genomes. By employing a genome-wide association study on single nucleotide polymorphisms (SNPs), we demonstrate a phenotypic differentiation of GAS, represented by separate clustering of two sublineages associated with niche-specific infections, i.e., skin infection and pharyngitis-induced acute rheumatic fever. By quantifying SNPs associated with the differentiation in a statistical and phylogenetic context, we propose that the phenotype-associated differentiation arose through recombination-driven gene-specific sweeps, rather than genome-wide sweeps. Our work provides a novel paradigm of phenotype-associated differentiation induced by gene-specific sweeps in a human pathogen and has implications for understanding of driving forces of bacterial evolution.
Collapse
Affiliation(s)
- Yun-Juan Bao
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - B Jesse Shapiro
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Shaun W Lee
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
27
|
Penadés JR, Christie GE. The Phage-Inducible Chromosomal Islands: A Family of Highly Evolved Molecular Parasites. Annu Rev Virol 2016; 2:181-201. [PMID: 26958912 DOI: 10.1146/annurev-virology-031413-085446] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The phage-inducible chromosomal islands (PICIs) are a family of highly mobile genetic elements that contribute substantively to horizontal gene transfer, host adaptation, and virulence. Initially identified in Staphylococcus aureus, these elements are now thought to occur widely in gram-positive bacteria. They are molecular parasites that exploit certain temperate phages as helpers, using a variety of elegant strategies to manipulate the phage life cycle and promote their own spread, both intra- and intergenerically. At the same time, these PICI-encoded mechanisms severely interfere with helper phage reproduction, thereby enhancing survival of the bacterial population. In this review we discuss the genetics and the life cycle of these elements, with special emphasis on how they interact and interfere with the helper phage machinery for their own benefit. We also analyze the role that these elements play in driving bacterial and viral evolution.
Collapse
Affiliation(s)
- José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, United Kingdom;
| | - Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298;
| |
Collapse
|
28
|
Bao YJ, Liang Z, Mayfield JA, McShan WM, Lee SW, Ploplis VA, Castellino FJ. Novel genomic rearrangements mediated by multiple genetic elements in Streptococcus pyogenes M23ND confer potential for evolutionary persistence. MICROBIOLOGY (READING, ENGLAND) 2016; 162:1346-1359. [PMID: 27329479 PMCID: PMC5903213 DOI: 10.1099/mic.0.000326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/20/2016] [Indexed: 12/19/2022]
Abstract
Symmetric genomic rearrangements around replication axes in genomes are commonly observed in prokaryotic genomes, including Group A Streptococcus (GAS). However, asymmetric rearrangements are rare. Our previous studies showed that the hypervirulent invasive GAS strain, M23ND, containing an inactivated transcriptional regulator system, covRS, exhibits unique extensive asymmetric rearrangements, which reconstructed a genomic structure distinct from other GAS genomes. In the current investigation, we identified the rearrangement events and examined the genetic consequences and evolutionary implications underlying the rearrangements. By comparison with a close phylogenetic relative, M18-MGAS8232, we propose a molecular model wherein a series of asymmetric rearrangements have occurred in M23ND, involving translocations, inversions and integrations mediated by multiple factors, viz., rRNA-comX (factor for late competence), transposons and phage-encoded gene segments. Assessments of the cumulative gene orientations and GC skews reveal that the asymmetric genomic rearrangements did not affect the general genomic integrity of the organism. However, functional distributions reveal re-clustering of a broad set of CovRS-regulated actively transcribed genes, including virulence factors and metabolic genes, to the same leading strand, with high confidence (p-value ~10-10). The re-clustering of the genes suggests a potential selection advantage for the spatial proximity to the transcription complexes, which may contain the global transcriptional regulator, CovRS, and other RNA polymerases. Their proximities allow for efficient transcription of the genes required for growth, virulence and persistence. A new paradigm of survival strategies of GAS strains is provided through multiple genomic rearrangements, while, at the same time, maintaining genomic integrity.
Collapse
Affiliation(s)
- Yun-Juan Bao
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeffrey A. Mayfield
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - William M. McShan
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shaun W. Lee
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
29
|
Genomic Characterization of a Pattern D Streptococcus pyogenes emm53 Isolate Reveals a Genetic Rationale for Invasive Skin Tropicity. J Bacteriol 2016; 198:1712-24. [PMID: 27044623 DOI: 10.1128/jb.01019-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/25/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The genome of an invasive skin-tropic strain (AP53) of serotype M53 group A Streptococcus pyogenes (GAS) is composed of a circular chromosome of 1,860,554 bp and carries genetic markers for infection at skin locales, viz, emm gene family pattern D and FCT type 3. Through genome-scale comparisons of AP53 with other GAS genomes, we identified 596 candidate single-nucleotide polymorphisms (SNPs) that reveal a potential genetic basis for skin tropism. The genome of AP53 differed by ∼30 point mutations from a noninvasive pattern D serotype M53 strain (Alab49), 4 of which are located in virulence genes. One pseudogene, yielding an inactive sensor kinase (CovS(-)) of the two-component transcriptional regulator CovRS, a major determinant for invasiveness, severely attenuated the expression of the secreted cysteine protease SpeB and enhanced the expression of the hyaluronic acid capsule compared to the isogenic noninvasive AP53/CovS(+) strain. The collagen-binding protein transcript sclB differed in the number of 5'-pentanucleotide repeats in the signal peptides of AP53 and Alab49 (9 versus 15), translating into different lengths of their signal peptides, which nonetheless maintained a full-length translatable coding frame. Furthermore, GAS strain AP53 acquired two phages that are absent in Alab49. One such phage (ΦAP53.2) contains the known virulence factor superantigen exotoxin gene tandem speK-slaA Overall, we conclude that this bacterium has evolved in multiple ways, including mutational variations of regulatory genes, short-tandem-repeat polymorphisms, large-scale genomic alterations, and acquisition of phages, all of which may be involved in shaping the adaptation of GAS in specific infectious environments and contribute to its enhanced virulence. IMPORTANCE Infectious strains of S. pyogenes (GAS) are classified by their serotypes, relating to the surface M protein, the emm-like subfamily pattern, and their tropicity toward the nasopharynx and/or skin. It is generally agreed that M proteins from pattern D strains, which also directly bind human host plasminogen, are skin tropic. We have sequenced and characterized the genome of an invasive pattern D GAS strain (AP53) in comparison to a very similar strain (Alab49) that is noninvasive and developed a genomic rationale as to possible reasons for the skin tropicity of these two strains and the greater invasiveness of AP53.
Collapse
|
30
|
Deutsch DR, Utter B, Fischetti VA. Uncovering novel mobile genetic elements and their dynamics through an extra-chromosomal sequencing approach. Mob Genet Elements 2016; 6:e1189987. [PMID: 27581613 DOI: 10.1080/2159256x.2016.1189987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/03/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022] Open
Abstract
Staphylococcus aureus is a major clinically important pathogen with well-studied phage contributions to its virulence potential. In this commentary, we describe our method to enrich and sequence stealth extra-chromosomal DNA elements in the bacterial cell, allowing the identification of novel extra-chromosomal prophages in S. aureus clinical strains. Extra-chromosomal sequencing is a useful and broadly applicable tool to study bacterial genomics, giving a temporal glance at the extra-chromosomal compartment of the cell and allowing researchers to uncover lower-copy plasmidial elements (e.g., prophages) as well as gain a greater understanding of mobile genetic elements that shuffle on and off the chromosome. Here, we describe how episomal and plasmidial DNA elements can have profound downstream effects on the host cell and surrounding bacterial population, and discuss specific examples of their importance in Gram-positive bacteria. We also offer potential avenues of future research where extra-chromosomal sequencing may play a key role in our understanding of the complete virulence potential of infectious bacteria.
Collapse
Affiliation(s)
- Douglas R Deutsch
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University , New York, NY, USA
| | - Bryan Utter
- Global Analytical Development - Cell and Gene Therapies, Novartis Pharmaceuticals Corporation , Morris Plains, NJ, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University , New York, NY, USA
| |
Collapse
|
31
|
Novick RP, Ram G. The Floating (Pathogenicity) Island: A Genomic Dessert. Trends Genet 2016; 32:114-126. [PMID: 26744223 PMCID: PMC4733582 DOI: 10.1016/j.tig.2015.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 12/30/2022]
Abstract
Among the prokaryotic genomic islands (GIs) involved in horizontal gene transfer (HGT) are the classical pathogenicity islands, including the integrative and conjugative elements (ICEs), the gene-transfer agents (GTAs), and the staphylococcal pathogenicity islands (SaPIs), the primary focus of this review. While the ICEs and GTAs mediate HGT autonomously, the SaPIs are dependent on specific phages. The ICEs transfer primarily their own DNA, the GTAs exclusively transfer unlinked host DNA, and the SaPIs combine the capabilities of both. Thus the SaPIs derive their importance from the genes they carry (their genetic cargo) and the genes they move. They act not only as versatile high-frequency mobilizers but also as mediators of phage interference and consequently are major benefactors of their host bacteria.
Collapse
Affiliation(s)
- Richard P Novick
- Department of Medicine, Skirball Institute, New York University Medical School, New York, NY 10016, USA; Department of Microbiology, Skirball Institute, New York University Medical School, New York, NY 10016, USA.
| | - Geeta Ram
- Department of Medicine, Skirball Institute, New York University Medical School, New York, NY 10016, USA; Department of Microbiology, Skirball Institute, New York University Medical School, New York, NY 10016, USA
| |
Collapse
|
32
|
Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol 2016; 13:641-50. [PMID: 26373372 DOI: 10.1038/nrmicro3527] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Unlike lytic phages, temperate phages that enter lysogeny maintain a long-term association with their bacterial host. In this context, mutually beneficial interactions can evolve that support efficient reproduction of both phages and bacteria. Temperate phages are integrated into the bacterial chromosome as large DNA insertions that can disrupt gene expression, and they may pose a fitness burden on the cell. However, they have also been shown to benefit their bacterial hosts by providing new functions in a bacterium-phage symbiotic interaction termed lysogenic conversion. In this Opinion article, we discuss another type of bacterium-phage interaction, active lysogeny, in which phages or phage-like elements are integrated into the bacterial chromosome within critical genes or operons and serve as switches that regulate bacterial genes via genome excision.
Collapse
Affiliation(s)
- Ron Feiner
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Argov
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lev Rabinovich
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nadejda Sigal
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anat A Herskovits
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
33
|
Euler CW, Juncosa B, Ryan PA, Deutsch DR, McShan WM, Fischetti VA. Targeted Curing of All Lysogenic Bacteriophage from Streptococcus pyogenes Using a Novel Counter-selection Technique. PLoS One 2016; 11:e0146408. [PMID: 26756207 PMCID: PMC4710455 DOI: 10.1371/journal.pone.0146408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/16/2015] [Indexed: 01/21/2023] Open
Abstract
Streptococcus pyogenes is a human commensal and a bacterial pathogen responsible for a wide variety of human diseases differing in symptoms, severity, and tissue tropism. The completed genome sequences of >37 strains of S. pyogenes, representing diverse disease-causing serotypes, have been published. The greatest genetic variation among these strains is attributed to numerous integrated prophage and prophage-like elements, encoding several virulence factors. A comparison of isogenic strains, differing in prophage content, would reveal the effects of these elements on streptococcal pathogenesis. However, curing strains of prophage is often difficult and sometimes unattainable. We have applied a novel counter-selection approach to identify rare S. pyogenes mutants spontaneously cured of select prophage. To accomplish this, we first inserted a two-gene cassette containing a gene for kanamycin resistance (KanR) and the rpsL wild-type gene, responsible for dominant streptomycin sensitivity (SmS), into a targeted prophage on the chromosome of a streptomycin resistant (SmR) mutant of S. pyogenes strain SF370. We then applied antibiotic counter-selection for the re-establishment of the KanS/SmR phenotype to select for isolates cured of targeted prophage. This methodology allowed for the precise selection of spontaneous phage loss and restoration of the natural phage attB attachment sites for all four prophage-like elements in this S. pyogenes chromosome. Overall, 15 mutants were constructed that encompassed every permutation of phage knockout as well as a mutant strain, named CEM1ΔΦ, completely cured of all bacteriophage elements (a ~10% loss of the genome); the only reported S. pyogenes strain free of prophage-like elements. We compared CEM1ΔΦ to the WT strain by analyzing differences in secreted DNase activity, as well as lytic and lysogenic potential. These mutant strains should allow for the direct examination of bacteriophage relationships within S. pyogenes and further elucidate how the presence of prophage may affect overall streptococcal survival, pathogenicity, and evolution.
Collapse
Affiliation(s)
- Chad W. Euler
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, NY, NY, 10065, United States of America
- Department of Medical Laboratory Sciences, Belfer Research Building, Hunter College, CUNY, New York, NY, 10065, United States of America
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, United States of America
- * E-mail: ;
| | - Barbara Juncosa
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, NY, NY, 10065, United States of America
| | - Patricia A. Ryan
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, NY, NY, 10065, United States of America
| | - Douglas R. Deutsch
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, NY, NY, 10065, United States of America
| | - W. Michael McShan
- Department of Pharmaceutical Sciences and Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, United States of America
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, NY, NY, 10065, United States of America
| |
Collapse
|
34
|
Hendrickson C, Euler CW, Nguyen SV, Rahman M, McCullor KA, King CJ, Fischetti VA, McShan WM. Elimination of Chromosomal Island SpyCIM1 from Streptococcus pyogenes Strain SF370 Reverses the Mutator Phenotype and Alters Global Transcription. PLoS One 2015; 10:e0145884. [PMID: 26701803 PMCID: PMC4689407 DOI: 10.1371/journal.pone.0145884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/09/2015] [Indexed: 02/04/2023] Open
Abstract
Streptococcus pyogenes chromosomal island M1 (SpyCIM1) integrates by site-specific recombination into the 5’ end of DNA mismatch repair (MMR) gene mutL in strain SF370SmR, blocking transcription of it and the downstream operon genes. During exponential growth, SpyCIM1 excises from the chromosome and replicates as an episome, restoring mutL transcription. This process is reversed in stationary phase with SpyCIM1 re-integrating into mutL, returning the cells to a mutator phenotype. Here we show that elimination of SpyCIM1 relieves this mutator phenotype. The downstream MMR operon genes, multidrug efflux pump lmrP, Holliday junction resolution helicase ruvA, and DNA base excision repair glycosylase tag, are also restored to constitutive expression by elimination of SpyCIM1. The presence of SpyCIM1 alters global transcription patterns in SF370SmR. RNA sequencing (RNA-Seq) demonstrated that loss of SpyCIM1 in the SpyCIM1 deletion mutant, CEM1Δ4, impacted the expression of over 100 genes involved in virulence and metabolism both in early exponential phase, when the SpyCIM1 is episomal, as well as at the onset of stationary phase, when SpyCIM1 has reintegrated into mutL. Among these changes, the up-regulation of the genes for the antiphagocytic M protein (emm1), streptolysin O (slo), capsule operon (hasABC), and streptococcal pyrogenic exotoxin (speB), are particularly notable. The expression pattern of the MMR operon confirmed our earlier observations that these genes are transcribed in early exponential phase but silenced as stationary phase is approached. Thus, the direct role of SpyCIM1 in causing the mutator phenotype is confirmed, and further, its influence upon the biology of S. pyogenes was found to impact multiple genes in addition to the MMR operon, which is a novel function for a mobile genetic element. We suggest that such chromosomal islands are a remarkable evolutionary adaptation to promote the survival of its S. pyogenes host cell in changing environments.
Collapse
Affiliation(s)
- Christina Hendrickson
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- The Biology Department, The University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Chad W. Euler
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, United States of America
- Department of Medical Laboratory Sciences, Belfer Research Building, Hunter College, CUNY, New York, New York, United States of America
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Scott V. Nguyen
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Maliha Rahman
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Kimberly A. McCullor
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Catherine J. King
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, United States of America
| | - W. Michael McShan
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
35
|
Bessen DE, McShan WM, Nguyen SV, Shetty A, Agrawal S, Tettelin H. Molecular epidemiology and genomics of group A Streptococcus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 33:393-418. [PMID: 25460818 PMCID: PMC4416080 DOI: 10.1016/j.meegid.2014.10.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 12/15/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) is a strict human pathogen with a very high prevalence worldwide. This review highlights the genetic organization of the species and the important ecological considerations that impact its evolution. Recent advances are presented on the topics of molecular epidemiology, population biology, molecular basis for genetic change, genome structure and genetic flux, phylogenomics and closely related streptococcal species, and the long- and short-term evolution of GAS. The application of whole genome sequence data to addressing key biological questions is discussed.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA.
| | - W Michael McShan
- University of Oklahoma Health Sciences Center, Department of Pharmaceutical Sciences, College of Pharmacy, Oklahoma City, OK 73117, USA.
| | - Scott V Nguyen
- University of Oklahoma Health Sciences Center, Department of Pharmaceutical Sciences, College of Pharmacy, Oklahoma City, OK 73117, USA.
| | - Amol Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Sonia Agrawal
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
36
|
Abstract
![]()
Bacteria
possess a remarkable ability to rapidly adapt and evolve
in response to antibiotics. Acquired antibiotic resistance can arise
by multiple mechanisms but commonly involves altering the target site
of the drug, enzymatically inactivating the drug, or preventing the
drug from accessing its target. These mechanisms involve new genetic
changes in the pathogen leading to heritable resistance. This recognition
underscores the importance of understanding how such
genetic changes can arise. Here, we review recent advances in our
understanding of the processes that contribute to the evolution of
antibiotic resistance, with a particular focus on hypermutation mediated
by the SOS pathway and horizontal gene transfer. We explore the molecular
mechanisms involved in acquired resistance and discuss their viability
as potential targets. We propose that additional studies into these
adaptive mechanisms not only can provide insights into evolution but
also can offer a strategy for potentiating our current antibiotic
arsenal.
Collapse
|
37
|
|
38
|
Unique genomic arrangements in an invasive serotype M23 strain of Streptococcus pyogenes identify genes that induce hypervirulence. J Bacteriol 2014; 196:4089-102. [PMID: 25225265 DOI: 10.1128/jb.02131-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first genome sequence of a group A Streptococcus pyogenes serotype M23 (emm23) strain (M23ND), isolated from an invasive human infection, has been completed. The genome of this opacity factor-negative (SOF(-)) strain is composed of a circular chromosome of 1,846,477 bp. Gene profiling showed that this strain contained six phage-encoded and 24 chromosomally inherited well-known virulence factors, as well as 11 pseudogenes. The bacterium has acquired four large prophage elements, ΦM23ND.1 to ΦM23ND.4, harboring genes encoding streptococcal superantigen (ssa), streptococcal pyrogenic exotoxins (speC, speH, and speI), and DNases (spd1 and spd3), with phage integrase genes being present at one flank of each phage insertion, suggesting that the phages were integrated by horizontal gene transfer. Comparative analyses revealed unique large-scale genomic rearrangements that result in genomic rearrangements that differ from those of previously sequenced GAS strains. These rearrangements resulted in an imbalanced genomic architecture and translocations of chromosomal virulence genes. The covS sensor in M23ND was identified as a pseudogene, resulting in the attenuation of speB function and increased expression of the genes for the chromosomal virulence factors multiple-gene activator (mga), M protein (emm23), C5a peptidase (scpA), fibronectin-binding proteins (sfbI and fbp54), streptolysin O (slo), hyaluronic acid capsule (hasA), streptokinase (ska), and DNases (spd and spd3), which were verified by PCR. These genes are responsible for facilitating host epithelial cell binding and and/or immune evasion, thus further contributing to the virulence of M23ND. In conclusion, strain M23ND has become highly pathogenic as the result of a combination of multiple genetic factors, particularly gene composition and mutations, prophage integrations, unique genomic rearrangements, and regulated expression of critical virulence factors.
Collapse
|
39
|
Nguyen SV, McShan WM. Chromosomal islands of Streptococcus pyogenes and related streptococci: molecular switches for survival and virulence. Front Cell Infect Microbiol 2014; 4:109. [PMID: 25161960 PMCID: PMC4129442 DOI: 10.3389/fcimb.2014.00109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/25/2014] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pyogenes is a significant pathogen of humans, annually causing over 700,000,000 infections and 500,000 deaths. Virulence in S. pyogenes is closely linked to mobile genetic elements like phages and chromosomal islands (CI). S. pyogenes phage-like chromosomal islands (SpyCI) confer a complex mutator phenotype on their host. SpyCI integrate into the 5′ end of DNA mismatch repair (MMR) gene mutL, which also disrupts downstream operon genes lmrP, ruvA, and tag. During early logarithmic growth, SpyCI excise from the bacterial chromosome and replicate as episomes, relieving the mutator phenotype. As growth slows and the cells enter stationary phase, SpyCI reintegrate into the chromosome, again silencing the MMR operon. This system creates a unique growth-dependent and reversible mutator phenotype. Additional CI using the identical attachment site in mutL have been identified in related species, including Streptococcus dysgalactiae subsp. equisimilis, Streptococcus anginosus, Streptococcus intermedius, Streptococcus parauberis, and Streptococcus canis. These CI have small genomes, which range from 13 to 20 kB, conserved integrase and DNA replication genes, and no identifiable genes encoding capsid proteins. SpyCI may employ a helper phage for packaging and dissemination in a fashion similar to the Staphylococcus aureus pathogenicity islands (SaPI). Outside of the core replication and integration genes, SpyCI and related CI show considerable diversity with the presence of many indels that may contribute to the host cell phenotype or fitness. SpyCI are a subset of a larger family of streptococcal CI who potentially regulate the expression of other host genes. The biological and phylogenetic analysis of streptococcal chromosomal islands provides important clues as to how these chromosomal islands help S. pyogenes and other streptococcal species persist in human populations in spite of antibiotic therapy and immune challenges.
Collapse
Affiliation(s)
- Scott V Nguyen
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center Oklahoma City, OK, USA
| | - William M McShan
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center Oklahoma City, OK, USA ; Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center Oklahoma City, OK, USA
| |
Collapse
|
40
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
41
|
Abstract
Antibiotic resistance is a major threat to human health and well-being. To effectively combat this problem we need to understand the range of different resistance genes that allow bacteria to resist antibiotics. To do this the whole microbiota needs to be investigated. As most bacteria cannot be cultivated in the laboratory, the reservoir of antibiotic resistance genes in the non-cultivatable majority remains relatively unexplored. Currently the only way to study antibiotic resistance in these organisms is to use metagenomic approaches. Furthermore, the only method that does not require any prior knowledge about the resistance genes is functional metagenomics, which involves expressing genes from metagenomic clones in surrogate hosts. In this review the methods and limitations of functional metagenomics to isolate new antibiotic resistance genes and the mobile genetic elements that mediate their spread are explored.
Collapse
Affiliation(s)
- Peter Mullany
- Department of Microbial Diseases; UCL Eastman Dental Institute; University College London; London, UK
| |
Collapse
|
42
|
Abstract
Horizontal gene transfer has a tremendous impact on the genome plasticity, adaptation and evolution of bacteria. Horizontally transferred mobile genetic elements are involved in the dissemination of antibiotic resistance and virulence genes, thus contributing to the emergence of novel "superbugs". This review provides update on various mechanisms of horizontal gene transfer and examines how horizontal gene transfer contributes to the evolution of pathogenic bacteria. Special focus is paid to the role horizontal gene transfer plays in pathogenicity of the emerging human pathogens: hypervirulent Clostridium difficile and Escherichia coli (including the most recent haemolytic uraemic syndrome outbreak strain) and methicillin-resistant Staphylococcus aureus (MRSA), which have been associated with largest outbreaks of infection recently.
Collapse
Affiliation(s)
- Mario Juhas
- Department of Pathology, University of Cambridge , Cambridge , UK
| |
Collapse
|
43
|
Matos RC, Lapaque N, Rigottier-Gois L, Debarbieux L, Meylheuc T, Gonzalez-Zorn B, Repoila F, Lopes MDF, Serror P. Enterococcus faecalis prophage dynamics and contributions to pathogenic traits. PLoS Genet 2013; 9:e1003539. [PMID: 23754962 PMCID: PMC3675006 DOI: 10.1371/journal.pgen.1003539] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/18/2013] [Indexed: 12/25/2022] Open
Abstract
Polylysogeny is frequently considered to be the result of an adaptive evolutionary process in which prophages confer fitness and/or virulence factors, thus making them important for evolution of both bacterial populations and infectious diseases. The Enterococcus faecalis V583 isolate belongs to the high-risk clonal complex 2 that is particularly well adapted to the hospital environment. Its genome carries 7 prophage-like elements (V583-pp1 to -pp7), one of which is ubiquitous in the species. In this study, we investigated the activity of the V583 prophages and their contribution to E. faecalis biological traits. We systematically analyzed the ability of each prophage to excise from the bacterial chromosome, to replicate and to package its DNA. We also created a set of E. faecalis isogenic strains that lack from one to all six non-ubiquitous prophages by mimicking natural excision. Our work reveals that prophages of E. faecalis V583 excise from the bacterial chromosome in the presence of a fluoroquinolone, and are able to produce active phage progeny. Intricate interactions between V583 prophages were also unveiled: i) pp7, coined EfCIV583 for E. faecalis chromosomal island of V583, hijacks capsids from helper phage 1, leading to the formation of distinct virions, and ii) pp1, pp3 and pp5 inhibit excision of pp4 and pp6. The hijacking exerted by EfCIV583 on helper phage 1 capsids is the first example of molecular piracy in Gram positive bacteria other than staphylococci. Furthermore, prophages encoding platelet-binding-like proteins were found to be involved in adhesion to human platelets, considered as a first step towards the development of infective endocarditis. Our findings reveal not only a role of E. faecalis V583 prophages in pathogenicity, but also provide an explanation for the correlation between antibiotic usage and E. faecalis success as a nosocomial pathogen, as fluoriquinolone may provoke release of prophages and promote gene dissemination among isolates. Enterococcus faecalis is a member of the core-microbiome of the human gastrointestinal tract. In the last decades however, this bacterial species has emerged as a major cause of hospital-acquired infections worldwide. Some isolates are particularly adapted to the hospital environment, and this adaptation was recently linked with enrichment in mobile genetic elements including prophages, which are chromosomal integrated genomes of bacterial viruses. We characterized the biological prophage activity in an E. faecalis strain of clinical origin that harbors 7 prophages. Six active prophages exhibit intricate interactions, one of which is involved in a molecular piracy phenomenon. We also established, for the first time, a direct correlation between prophage and adhesion to human platelets, an initial step towards infective endocarditis. Finally, we showed that fluoroquinolone increases prophage activity and can thus contribute to horizontal gene spreading. Overall, we provide evidence that prophages are key players in E. faecalis evolution towards pathogenicity.
Collapse
Affiliation(s)
- Renata C. Matos
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- ITQB, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Nicolas Lapaque
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Lionel Rigottier-Gois
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Laurent Debarbieux
- Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Department of Microbiology, Paris, France
| | - Thierry Meylheuc
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Bruno Gonzalez-Zorn
- Dpto. de Sanidad Animal, Facultad de Veterinaria and VISAVET, Universidad Complutense de Madrid, Madrid, Spain
| | - Francis Repoila
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | - Pascale Serror
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
44
|
Cornejo OE, Lefébure T, Pavinski Bitar PD, Lang P, Richards VP, Eilertson K, Do T, Beighton D, Zeng L, Ahn SJ, Burne RA, Siepel A, Bustamante CD, Stanhope MJ. Evolutionary and population genomics of the cavity causing bacteria Streptococcus mutans. Mol Biol Evol 2013; 30:881-93. [PMID: 23228887 PMCID: PMC3603310 DOI: 10.1093/molbev/mss278] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Streptococcus mutans is widely recognized as one of the key etiological agents of human dental caries. Despite its role in this important disease, our present knowledge of gene content variability across the species and its relationship to adaptation is minimal. Estimates of its demographic history are not available. In this study, we generated genome sequences of 57 S. mutans isolates, as well as representative strains of the most closely related species to S. mutans (S. ratti, S. macaccae, and S. criceti), to identify the overall structure and potential adaptive features of the dispensable and core components of the genome. We also performed population genetic analyses on the core genome of the species aimed at understanding the demographic history, and impact of selection shaping its genetic variation. The maximum gene content divergence among strains was approximately 23%, with the majority of strains diverging by 5-15%. The core genome consisted of 1,490 genes and the pan-genome approximately 3,296. Maximum likelihood analysis of the synonymous site frequency spectrum (SFS) suggested that the S. mutans population started expanding exponentially approximately 10,000 years ago (95% confidence interval [CI]: 3,268-14,344 years ago), coincidental with the onset of human agriculture. Analysis of the replacement SFS indicated that a majority of these substitutions are under strong negative selection, and the remainder evolved neutrally. A set of 14 genes was identified as being under positive selection, most of which were involved in either sugar metabolism or acid tolerance. Analysis of the core genome suggested that among 73 genes present in all isolates of S. mutans but absent in other species of the mutans taxonomic group, the majority can be associated with metabolic processes that could have contributed to the successful adaptation of S. mutans to its new niche, the human mouth, and with the dietary changes that accompanied the origin of agriculture.
Collapse
Affiliation(s)
- Omar E. Cornejo
- Department of Genetics, School of Medicine, Stanford University
| | - Tristan Lefébure
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University
| | - Paulina D. Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University
| | - Ping Lang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University
| | - Vincent P. Richards
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University
| | - Kirsten Eilertson
- Department of Biological Statistics and Computational Biology, Cornell University
| | - Thuy Do
- Department of Microbiology, King’s College London Dental Institute and NIHR Biomedical Research Centre at Guy's and St. Thomas’s NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - David Beighton
- Department of Microbiology, King’s College London Dental Institute and NIHR Biomedical Research Centre at Guy's and St. Thomas’s NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Lin Zeng
- Department of Oral Biology, University of Florida
| | | | | | - Adam Siepel
- Department of Biological Statistics and Computational Biology, Cornell University
| | | | - Michael J. Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University
| |
Collapse
|
45
|
Le Bars H, Bousarghin L, Bonnaure-Mallet M, Jolivet-Gougeon A. Role of a short tandem leucine/arginine repeat in strong mutator phenotype acquisition in a clinical isolate ofSalmonellaTyphimurium. FEMS Microbiol Lett 2012; 338:101-6. [DOI: 10.1111/1574-6968.12039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Latifa Bousarghin
- Equipe Microbiologie; EA 1254; SFR BIOSIT; Université Européenne de Bretagne; Rennes; France
| | | | | |
Collapse
|
46
|
Scott J, Nguyen SV, King CJ, Hendrickson C, McShan WM. Phage-Like Streptococcus pyogenes Chromosomal Islands (SpyCI) and Mutator Phenotypes: Control by Growth State and Rescue by a SpyCI-Encoded Promoter. Front Microbiol 2012; 3:317. [PMID: 22969756 PMCID: PMC3430984 DOI: 10.3389/fmicb.2012.00317] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/13/2012] [Indexed: 11/13/2022] Open
Abstract
We recently showed that a prophage-like Streptococcus pyogenes chromosomal island (SpyCI) controls DNA mismatch repair and other repair functions in M1 genome strain SF370 by dynamic excision and reintegration into the 5' end of mutL in response to growth, causing the cell to alternate between a wild type and mutator phenotype. Nine of the 16 completed S. pyogenes genomes contain related SpyCI integrated into the identical attachment site in mutL, and in this study we examined a number of these strains to determine whether they also had a mutator phenotype as in SF370. With the exception of M5 genome strain Manfredo, all demonstrated a mutator phenotype as compared to SpyCI-free strain NZ131. The integrase gene (int) in the SpyCIM5 contains a deletion that rendered it inactive, and this deletion predicts that Manfredo would have a pronounced mutator phenotype. Remarkably, this was found not to be the case, but rather a cryptic promoter within the int ORF was identified that ensured constitutive expression of mutL and the downstream genes encoded on the same mRNA, providing a striking example of rescue of gene function following decay of a mobile genetic element. The frequent occurrence of SpyCI in the group A streptococci may facilitate bacterial survival by conferring an inducible mutator phenotype that promotes adaptation in the face of environmental challenges or host immunity.
Collapse
Affiliation(s)
- Julie Scott
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Scott V. Nguyen
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Catherine J. King
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - Christina Hendrickson
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| | - W. Michael McShan
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences CenterOklahoma City, OK, USA
| |
Collapse
|
47
|
Prophage Excision Activates Listeria Competence Genes that Promote Phagosomal Escape and Virulence. Cell 2012; 150:792-802. [DOI: 10.1016/j.cell.2012.06.036] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 03/03/2012] [Accepted: 06/25/2012] [Indexed: 11/23/2022]
|
48
|
Savic DJ, McShan WM. Long-term survival of Streptococcus pyogenes in rich media is pH-dependent. MICROBIOLOGY-SGM 2012; 158:1428-1436. [PMID: 22361943 DOI: 10.1099/mic.0.054478-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanisms that allow Streptococcus pyogenes to survive and persist in the human host, often in spite of antibiotic therapy, remain poorly characterized. Therefore, the determination of culture conditions for long-term studies is crucial to advancement in this field. Stationary cultures of S. pyogenes strain NZ131 and its spontaneous small-colony variant OK171 were found to survive in rich medium for less than 2 weeks, and this inability to survive resulted from the acidification of the medium to below pH 5.5, which the cells did not tolerate for longer than 6-7 days. The growth of NZ131 resulted in acidification of the culture to below pH 5.5 by the onset of stationary phase, and the loss of viability occurred in a linear fashion. These results were also found to be true for M49 strain CS101 and for M1 strain SF370. The S. pyogenes strains could be protected from killing by the addition of a buffer that stabilized the pH of the medium at pH 6.5, ensuring bacterial survival to at least 70 days. By contrast, increasing the glucose added to the medium accelerated the loss of culture viability in strain NZ131 but not OK171, suggesting that the small-colony variant is altered in glucose uptake or metabolism. Similarly, acidification of the medium prior to inoculation or at the middle of exponential phase resulted in growth inhibition of all strains. These results suggest that control of the pH is crucial for establishing long-term cultures of S. pyogenes.
Collapse
Affiliation(s)
- Dragutin J Savic
- Department of Pharmaceutical Sciences, The University of Oklahoma College of Pharmacy, PO Box 26901, Oklahoma City, OK 73190, USA
| | - William M McShan
- Department of Pharmaceutical Sciences, The University of Oklahoma College of Pharmacy, PO Box 26901, Oklahoma City, OK 73190, USA
| |
Collapse
|
49
|
Kumar R, Sabareesh V, Mukhopadhyay AK, Rao DN. Mutations in hpyAVIBM, C⁵ cytosine DNA methyltransferase from Helicobacter pylori result in relaxed specificity. FEBS J 2012; 279:1080-92. [PMID: 22269034 DOI: 10.1111/j.1742-4658.2012.08502.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genome of Helicobacter pylori is rich in restriction-modification (RM) systems. Approximately 4% of the genome codes for components of RM systems. hpyAVIBM, which codes for a phase-variable C(5) cytosine methyltransferase (MTase) from H. pylori, lacks a cognate restriction enzyme. Over-expression of M.HpyAVIB in Escherichia coli enhances the rate of mutations. However, when the catalytically inactive F9N or C82W mutants of M.HpyAVIB were expressed in E. coli, mutations were not observed. The M.HpyAVIB gene itself was mutated to give rise to different variants of the MTase. M.HpyAVIB variants were purified and differences in kinetic properties and specificity were observed. Intriguingly, purified MTase variants showed relaxed substrate specificity. Homologues of hpyAVIBM homologues amplified and sequenced from different clinical isolates showed similar variations in sequence. Thus, hpyAVIBM presents an interesting example of allelic variations in H. pylori where changes in the nucleotide sequence result in proteins with new properties.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
50
|
Korczynska JE, Turkenburg JP, Taylor EJ. The structural characterization of a prophage-encoded extracellular DNase from Streptococcus pyogenes. Nucleic Acids Res 2011; 40:928-38. [PMID: 21948797 PMCID: PMC3258162 DOI: 10.1093/nar/gkr789] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The pathogenic bacterium Group A Streptococcus pyogenes produces several extracellular DNases that have been shown to facilitate invasive infection by evading the human host immune system. DNases degrade the chromatin in neutrophil extracellular traps, enabling the bacterium to evade neutrophil capture. Spd1 is a type I, nonspecific ββα/metal-dependent nuclease from Streptococcus pyogenes, which is encoded by the SF370.1 prophage and is likely to be expressed as a result of prophage induction. We present here the X-ray structure of this DNase in the wild-type and Asn145Ala mutant form. Through structural and sequence alignments as well as mutagenesis studies, we have identified the key residues His121, Asn145 and Glu164, which are crucial for Spd1 nucleolytic activity and shown the active site constellation. Our wild-type structure alludes to the possibility of a catalytically blocked dimeric form of the protein. We have investigated the multimeric nature of Spd1 using size-exclusion chromatography with multi-angle light scattering (SEC-MALLS) in the presence and absence of the divalent metal ion Mg(2+), which suggests that Spd1 exists in a monomeric form in solution.
Collapse
Affiliation(s)
- Justyna E Korczynska
- Department of Chemistry, Structural Biology Laboratory, The University of York, YO10 5YW, UK
| | | | | |
Collapse
|