1
|
Gan HM, Dailey L, Wengert P, Halliday N, Williams P, Hudson AO, Savka MA. Quorum sensing signals of the grapevine crown gall bacterium, Novosphingobium sp. Rr2-17: use of inducible expression and polymeric resin to sequester acyl-homoserine lactones. PeerJ 2024; 12:e18657. [PMID: 39735558 PMCID: PMC11674143 DOI: 10.7717/peerj.18657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/17/2024] [Indexed: 12/31/2024] Open
Abstract
Background A grapevine crown gall tumor strain, Novosphingobium sp. strain Rr2-17 was previously reported to accumulate copious amounts of diverse quorum sensing signals during growth. Genome sequencing identified a single luxI homolog in strain Rr2-17, suggesting that it may encode for a AHL synthase with broad substrate range, pending functional validation. The exact identity of the complete suite of AHLs formed by novIspR1 is largely unknown. Methods This study validates the function of novIspR1 through inducible expression in Escherichia coli and in the wild-type parental strain Rr2-17. We further enhanced the capture of acyl homoserine lactone (AHL) signals produced by novIspR1 using polymeric resin XAD-16 and separated the AHLs by one- and two-dimensional thin layer chromatography followed by detection using AHL-dependent whole cell biosensor strains. Lastly, the complete number of AHLs produced by novIspR1 in our system was identified by LC-MS/MS analyses. Results The single LuxI homolog of N. sp. Rr2-17, NovIspR1, is able to produce up to eleven different AHL signals, including AHLs: C8-, C10-, C12-, C14-homoserine lactone (HSL) as well as AHLs with OH substitutions at the third carbon and includes 3-OH-C6-, 3-OH-C8-, 3-OH-C10-, 3-OH-C12- and 3-OH-C14-HSL. The most abundant AHL produced was identified as 3-OH-C8-HSL and isopropyl-D-1-thiogalactopyranoside (IPTG) induction of novIspR1 expression in wild type parental Rr2-17 strain increased its concentration by 6.8-fold when compared to the same strain with the vector only control plasmid. Similar increases were identified with the next two most abundant AHLs, 3-OH-C10- and unsubstituted C8-HSL. The presence of 2% w/v of XAD-16 resin in the growth culture bound 99.3 percent of the major AHL (3-OH-C8-HSL) produced by IPTG-induced overexpression of novIspR1 in Rr2-17 strain. This study significantly adds to our understanding of the AHL class of quorum sensing system in a grapevine crown gall tumor associated Novosphingobium sp. Rr2-17 strain. The identity of nine AHL signals produced by this bacterium will provide a framework to identify the specific function(s) of the AHL-mediated quorum-sensing associated genes in this bacterium.
Collapse
Affiliation(s)
- Han Ming Gan
- Patriot Biotech Sdn Bhd, Subang Jaya, Selangor, Malaysia
- Department of Biological Sciences, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
| | - Lucas Dailey
- The Thomas H. Gosnell School of Life Sciences, Biotechnology and Molecular Bioscience Program, College of Science, Rochester Institute of Technology, Rochester, New York, United States
| | - Peter Wengert
- The Thomas H. Gosnell School of Life Sciences, Biotechnology and Molecular Bioscience Program, College of Science, Rochester Institute of Technology, Rochester, New York, United States
| | - Nigel Halliday
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - André O. Hudson
- The Thomas H. Gosnell School of Life Sciences, Biotechnology and Molecular Bioscience Program, College of Science, Rochester Institute of Technology, Rochester, New York, United States
| | - Michael A. Savka
- The Thomas H. Gosnell School of Life Sciences, Biotechnology and Molecular Bioscience Program, College of Science, Rochester Institute of Technology, Rochester, New York, United States
| |
Collapse
|
2
|
Xiao Y, Chen X, Lu H, Jiang T, Wang Y, Liang L, Dobretsov S, Huang Y. Regulation of quorum sensing activities by the stringent response gene rsh in sphingomonads is species-specific and culture condition dependent. Front Microbiol 2024; 15:1368499. [PMID: 38638897 PMCID: PMC11024222 DOI: 10.3389/fmicb.2024.1368499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Stringent response and quorum sensing (QS) are two essential mechanisms that control bacterial global metabolism for better survival. Sphingomonads are a clade of bacteria that survive successfully in diverse ecosystems. In silico survey indicated that 36 out of 79 investigated sphingomonads strains contained more than one luxI homolog, the gene responsible for the biosynthesis of QS signal acyl homoserine lactones (AHLs). Investigation of the regulatory effects of the stringent response gene rsh on QS related bioactivities were carried out using rsh mutants of Sphingobium japonicum UT26 and Sphingobium sp. SYK-6, both had three luxI homologs. Results indicated that deletion of rsh upregulated the overall production of AHLs and extracellular polymeric substances (EPS) in both UT26 and SYK-6 in rich medium, but affected expressions of these luxI/luxR homologs in different ways. In the poor medium (1% LB), rsh mutant of SYK-6 significantly lost AHLs production in broth cultivation but not in biofilm cultivation. The regulatory effects of rsh on QS activities were growth phase dependent in UT26 and culture condition dependent in SYK-6. Our results demonstrated the negative regulatory effect of rsh on QS activities in sphingomonads, which were very different from the positive effect found in sphingomonads containing only one luxI/R circuit. This study extends the current knowledge on the intricate networks between stringent response and QS system in sphingomonads, which would help to understand their survival advantage.
Collapse
Affiliation(s)
- Yue Xiao
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xin Chen
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Hang Lu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Tingting Jiang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yichun Wang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Luyi Liang
- National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou, China
| | - Sergey Dobretsov
- UNESCO Chair, Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Yili Huang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Garstecka Z, Antoszewski M, Mierek-Adamska A, Krauklis D, Niedojadło K, Kaliska B, Hrynkiewicz K, Dąbrowska GB. Trichoderma viride Colonizes the Roots of Brassica napus L., Alters the Expression of Stress-Responsive Genes, and Increases the Yield of Canola under Field Conditions during Drought. Int J Mol Sci 2023; 24:15349. [PMID: 37895028 PMCID: PMC10607854 DOI: 10.3390/ijms242015349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In this work, we present the results of the inoculation of canola seeds (Brassica napus L.) with Trichoderma viride strains that promote the growth of plants. Seven morphologically different strains of T. viride (TvI-VII) were shown to be capable of synthesizing auxins and exhibited cellulolytic and pectinolytic activities. To gain a deeper insight into the molecular mechanisms underlying canola-T. viride interactions, we analyzed the canola stress genes metallothioneins (BnMT1-3) and stringent response genes (BnRSH1-3 and BnCRSH). We demonstrated the presence of cis-regulatory elements responsive to fungal elicitors in the promoter regions of B. napus MT and RSH genes and observed changes in the levels of the transcripts of the above-mentioned genes in response to root colonization by the tested fungal strains. Of the seven tested strains, under laboratory conditions, T. viride VII stimulated the formation of roots and the growth of canola seedlings to the greatest extent. An experiment conducted under field conditions during drought showed that the inoculation of canola seeds with a suspension of T. viride VII spores increased yield by 16.7%. There was also a positive effect of the fungus on the height and branching of the plants, the number of siliques, and the mass of a thousand seeds. We suggest that the T. viride strain TvVII can be used in modern sustainable agriculture as a bioinoculant and seed coating to protect B. napus from drought.
Collapse
Affiliation(s)
- Zuzanna Garstecka
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (Z.G.); (M.A.); (A.M.-A.)
| | - Marcel Antoszewski
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (Z.G.); (M.A.); (A.M.-A.)
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (Z.G.); (M.A.); (A.M.-A.)
| | - Daniel Krauklis
- Research Centre for Cultivar Testing in Słupia Wielka, Chrząstowo 8, 89-100 Nakło nad Notecią, Poland
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Beata Kaliska
- Research Centre for Cultivar Testing in Słupia Wielka, Chrząstowo 8, 89-100 Nakło nad Notecią, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Grażyna B. Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (Z.G.); (M.A.); (A.M.-A.)
| |
Collapse
|
4
|
Cardoni M, Fernández-González AJ, Valverde-Corredor A, Fernández-López M, Mercado-Blanco J. Co-occurrence network analysis unveils the actual differential impact on the olive root microbiota by two Verticillium wilt biocontrol rhizobacteria. ENVIRONMENTAL MICROBIOME 2023; 18:21. [PMID: 36949520 PMCID: PMC10035242 DOI: 10.1186/s40793-023-00480-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Verticillium wilt of olive (VWO), caused by Verticillium dahliae Kleb, is one of the most threatening diseases affecting olive cultivation. An integrated disease management strategy is recommended for the effective control of VWO. Within this framework, the use of biological control agents (BCAs) is a sustainable and environmentally friendly approach. No studies are available on the impact that the introduction of BCAs has on the resident microbiota of olive roots. Pseudomonas simiae PICF7 and Paenibacillus polymyxa PIC73 are two BCAs effective against VWO. We examined the effects of the introduction of these BCAs on the structure, composition and co-occurrence networks of the olive (cv. Picual) root-associated microbial communities. The consequences of the subsequent inoculation with V. dahliae on BCA-treated plants were also assessed. RESULTS Inoculation with any of the BCAs did not produce significant changes in the structure or the taxonomic composition of the 'Picual' root-associated microbiota. However, significant and distinctive alterations were observed in the topologies of the co-occurrence networks. The introduction of PIC73 provoked a diminution of positive interactions within the 'Picual' microbial community; instead, PICF7 inoculation increased the microbiota's compartmentalization. Upon pathogen inoculation, the network of PIC73-treated plants decreased the number of interactions and showed a switch of keystone species, including taxa belonging to minor abundant phyla (Chloroflexi and Planctomycetes). Conversely, the inoculation of V. dahliae in PICF7-treated plants significantly increased the complexity of the network and the number of links among their modules, suggestive of a more stable network. No changes in their keystone taxa were detected. CONCLUSION The absence of significant modifications on the structure and composition of the 'Picual' belowground microbiota due to the introduction of the tested BCAs underlines the low/null environmental impact of these rhizobacteria. These findings may have important practical consequences regarding future field applications of these BCAs. Furthermore, each BCA altered the interactions among the components of the olive belowground microbiota in idiosyncratic ways (i.e. PIC73 strongly modified the number of positive relations in the 'Picual' microbiota whereas PICF7 mostly affected the network stability). These modifications may provide clues on the biocontrol strategies used by these BCAs.
Collapse
Affiliation(s)
- Martina Cardoni
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas [CSIC], Córdoba, Spain
| | | | - Antonio Valverde-Corredor
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas [CSIC], Córdoba, Spain
| | - Manuel Fernández-López
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas [CSIC], Córdoba, Spain.
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| |
Collapse
|
5
|
Hossain MS, DeLaune PB, Gentry TJ. Microbiome analysis revealed distinct microbial communities occupying different sized nodules in field-grown peanut. Front Microbiol 2023; 14:1075575. [PMID: 36937276 PMCID: PMC10017544 DOI: 10.3389/fmicb.2023.1075575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Legume nodulation is the powerhouse of biological nitrogen fixation (BNF) where host-specific rhizobia dominate the nodule microbiome. However, other rhizobial or non-rhizobial inhabitants can also colonize legume nodules, and it is unclear how these bacteria interact, compete, or combinedly function in the nodule microbiome. Under such context, to test this hypothesis, we conducted 16S-rRNA based nodule microbiome sequencing to characterize microbial communities in two distinct sized nodules from field-grown peanuts inoculated with a commercial inoculum. We found that microbial communities diverged drastically in the two types of peanut nodules (big and small). Core microbial analysis revealed that the big nodules were inhabited by Bradyrhizobium, which dominated composition (>99%) throughout the plant life cycle. Surprisingly, we observed that in addition to Bradyrhizobium, the small nodules harbored a diverse set of bacteria (~31%) that were not present in big nodules. Notably, these initially less dominant bacteria gradually dominated in small nodules during the later plant growth phases, which suggested that native microbial communities competed with the commercial inoculum in the small nodules only. Conversely, negligible or no competition was observed in the big nodules. Based on the prediction of KEGG pathway analysis for N and P cycling genes and the presence of diverse genera in the small nodules, we foresee great potential of future studies of these microbial communities which may be crucial for peanut growth and development and/or protecting host plants from various biotic and abiotic stresses.
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, College Station, TX, United States
| | | | - Terry J Gentry
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, College Station, TX, United States
| |
Collapse
|
6
|
Wang Z, Zeng Y, Cheng K, Cai Z, Zhou J. The quorum sensing system of Novosphingobium sp. ERN07 regulates aggregate formation that promotes cyanobacterial growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158354. [PMID: 36041622 DOI: 10.1016/j.scitotenv.2022.158354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Microbial aggregates play key roles in cyanobacterial blooms. Being a bacterial communication mechanism, quorum sensing (QS) synchronizes gene expression in a density-dependent manner and regulates bacterial physiological behavior. However, the regulatory role of QS in the formation of cyanobacteria-associated bacterial aggregates remains poorly understood. Here, we present insight into the role of QS in regulating bacterial aggregate formation in a representative bacterial strain, Novosphingobium sp. ERN07, which was isolated from Microcystis blooms in Lake Taihu. A biosensor assay showed that ERN07 exhibits significant AHL-producing capacity. Biochemical and microscopic analysis revealed that this strain possesses the ability to form aggregated communities. Gene knockout experiments indicated that the AHL-mediated QS system positively regulates bacterial aggregation. The aggregated communities possess the ability to enhance the production of extracellular polymeric substances (EPS), alter EPS composition ratios, and affect biofilm formation. The addition of aggregated substances also has a significant growth-promoting effect on M. aeruginosa. Transcriptomic analysis revealed that the aggregated substances positively regulate photosynthetic efficiency and energy metabolism of M. aeruginosa. These findings show that QS can mediate the aggregation phenotype and associated substrate spectrum composition, contributing to a better understanding of microalgal-bacterial interactions and mechanisms of Microcystis bloom maintenance in the natural environment.
Collapse
Affiliation(s)
- Zhaoyi Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Yanhua Zeng
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, Hainan Province, PR China
| | - Keke Cheng
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Zhonghua Cai
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
7
|
Thomas SG, Abajorga M, Glover MA, Wengert PC, Parthasarathy A, Savka MA, Wadsworth CB, Shipman PA, Hudson AO. Aeromonas hydrophila RIT668 and Citrobacter portucalensis RIT669-Potential Zoonotic Pathogens Isolated from Spotted Turtles. Microorganisms 2020; 8:microorganisms8111805. [PMID: 33212916 PMCID: PMC7698337 DOI: 10.3390/microorganisms8111805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the biggest challenges of the 21st century, and biofilm formation enables bacteria to resist antibiotic at much higher concentrations than planktonic cells. Earlier, we showed that the Gram-negative Aeromonas hydrophila RIT668 and Citrobacter portucalensis RIT669 (closely related to C. freundii NBRC 12681) from infected spotted turtles (Clemmys guttata), formed biofilms and upregulated toxin expression on plastic surfaces, and were predicted to possess multiple antibiotic resistance genes. Here, we show that they each resist several antibiotics in the planktonic phase, but were susceptible to neomycin, and high concentrations of tetracycline and cotrimoxazole. The susceptibility of their biofilms to neomycin and cotrimoxazole was tested using the Calgary device. For A. hydrophila, the minimum inhibitory concentration (MIC) = 500-1000, and the minimum biofilm eradication concentration (MBEC) > 1000 μg/mL, using cotrimoxazole, and MIC = 32.3-62.5, and MBEC > 1000 μg/mL, using neomycin. For C. freundii MIC = 7.8-15.6, and, MBEC > 1000 μg/mL, using cotrimoxazole, and MIC = 7.8, and MBEC > 1000 μg/mL, using neomycin. Both A. hydrophila and C. portucalensis activated an acyl homoserine lactone (AHL) dependent biosensor, suggesting that quorum sensing could mediate biofilm formation. Their multidrug resistance in the planktonic form, and weak biofilm eradication even with neomycin and cotrimoxazole, indicate that A. hydrophila and C. portucalensis are potential zoonotic pathogens, with risks for patients living with implants.
Collapse
|
8
|
Zeng YH, Cai ZH, Zhu JM, Du XP, Zhou J. Two hierarchical LuxR-LuxI type quorum sensing systems in Novosphingobium activate microcystin degradation through transcriptional regulation of the mlr pathway. WATER RESEARCH 2020; 183:116092. [PMID: 32622230 DOI: 10.1016/j.watres.2020.116092] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Microcystins (MCs) are the most common cyanotoxins produced by harmful cyanobacterial blooms and pose an increasing global threat to human health and ecosystems. Microbial degradation represents an efficient and sustainable approach for the removal of MCs. Although the enzymatic pathway for biodegradation of MCs has been characterized, the regulatory mechanisms underlying the degradation processes remain unclear. Quorum sensing (QS) is a cell-density-dependent regulatory mechanism that enables bacteria to orchestrate collective behaviors. The acyl-homoserine lactone (AHL)-mediated QS system regulates the biodegradation of many organic pollutants. However, it is not known whether this QS system is involved in the degradation of MCs. This study aimed to fill this knowledge gap. In this study, the proportion of culturable AHL-producers increased significantly after enrichment of MCs, and AHL-based QS systems were present in all genome-sequenced MC-degrading strains, supporting the hypothesis that QS participates in the degradation of MCs. Two bifunctional Novosphingobium strains (with MC-degrading and AHL-producing abilities) were isolated using a novel primer pair targeting mlrA, the marker gene of mlr degradation pathway. Biochemical and genetic analysis revealed that the MC-degrading bacterium Novosphingobium sp. ERW19 encodes two hierarchical regulatory QS systems designated novR1/novI1 and novR2/novI2. Gene knockout and complementation experiments indicated that both systems were required for efficient degradation of MCs. Transcriptomic analyses revealed that the QS systems positively regulate degradation of MCs through transcriptional activation of MC-degrading genes, especially mlrA. Given that QS may be a common trait within mlr pathway-dependent MC-degrading bacterial strains and the degradation activity is directly regulated by QS, manipulation of the QS systems may be a promising strategy to control biodegradation of MCs.
Collapse
Affiliation(s)
- Yan-Hua Zeng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Jian-Ming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Xiao-Peng Du
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong Province, PR China.
| |
Collapse
|
9
|
Gan HM, Austin CM. Nanopore long reads enable the first complete genome assembly of a Malaysian Vibrio parahaemolyticus isolate bearing the pVa plasmid associated with acute hepatopancreatic necrosis disease. F1000Res 2019. [DOI: 10.12688/f1000research.21570.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: The genome of Vibrio parahaemolyticus MVP1, isolated from a Malaysian aquaculture farm with shrimp acute hepatopancreatic necrosis disease (AHPND), was previously sequenced using Illumina MiSeq and assembled de novo, producing a relatively fragmented assembly. Despite identifying the binary toxin genes in the MVP1 draft genome that were linked to AHPND, the toxin genes were localized on a very small contig precluding proper analysis of gene neighbourhood. Methods: The genome of MVP1 was sequenced on Nanopore MinION to obtain long reads to improve genome contiguity. De novo genome assembly was performed using long-read only assembler followed by genome polishing and hybrid assembler. Results: Long-read assembly produced three complete circular MVP1 contigs: chromosome 1, chromosome 2 and the pVa plasmid encoding pirABvp binary toxin genes. Polishing of the long-read assembly with Illumina short reads was necessary to remove indel errors. Complete assembly of the pVa plasmid could not be achieved using Illumina reads due to identical repetitive elements flanking the binary toxin genes leading to multiple contigs. These regions were fully spanned by the Nanopore long-reads resulting in a single contig. Alignment of Illumina reads to the complete genome assembly indicated there is sequencing bias as read depth was lowest in low-GC genomic regions. Comparative genomic analysis revealed a gene cluster coding for additional insecticidal toxins in chromosome 2 of MVP1 that may further contribute to host pathogenesis pending functional validation. Scanning of publicly available V. parahaemolyticus genomes revealed the presence of a single AinS-family quorum-sensing system that can be targeted for future microbial management. Conclusions: We generated the first chromosome-scale genome assembly of a Malaysian pirABVp-bearing V. parahaemolyticus isolate. Structural variations identified from comparative genomic analysis provide new insights into the genomic features of V. parahaemolyticus MVP1 that may be associated with host colonization and pathogenicity.
Collapse
|
10
|
Gan HM, Szegedi E, Fersi R, Chebil S, Kovács L, Kawaguchi A, Hudson AO, Burr TJ, Savka MA. Insight Into the Microbial Co-occurrence and Diversity of 73 Grapevine ( Vitis vinifera) Crown Galls Collected Across the Northern Hemisphere. Front Microbiol 2019; 10:1896. [PMID: 31456792 PMCID: PMC6700373 DOI: 10.3389/fmicb.2019.01896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
Crown gall (CG) is a globally distributed and economically important disease of grapevine and other important crop plants. The causal agent of CG is Agrobacterium or Allorhizobium strains that harbor a tumor-inducing plasmid (pTi). The microbial community within the CG tumor has not been widely elucidated and it is not known if certain members of this microbial community promote or inhibit CG. This study investigated the microbiotas of grapevine CG tumor tissues from seven infected vineyards located in Hungary, Japan, Tunisia, and the United States. Heavy co-amplification of grapevine chloroplast and mitochondrial ribosomal RNA genes was observed with the widely used Illumina V3-V4 16S rRNA gene primers, requiring the design of a new reverse primer to enrich for bacterial 16S rRNA from CG tumors. The operational taxonomic unit (OTU) clustering approach is not suitable for CG microbiota analysis as it collapsed several ecologically distinct Agrobacterium species into a single OTU due to low interspecies genetic divergence. The CG microbial community assemblages were significantly different across sampling sites (ANOSIM global R = 0.63, p-value = 0.001) with evidence of site-specific differentially abundant ASVs. The presence of Allorhizobium vitis in the CG microbiota is almost always accompanied by Xanthomonas and Novosphingobium, the latter may promote the spread of pTi plasmid by way of acyl-homoserine lactone signal production, whereas the former may take advantage of the presence of substrates associated with plant cell wall growth and repair. The technical and biological insights gained from this study will contribute to the understanding of complex interaction between the grapevine and its microbial community and may facilitate better management of CG disease in the future.
Collapse
Affiliation(s)
- Han Ming Gan
- Deakin Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ernõ Szegedi
- National Agricultural Research and Innovation Centre, Research Institute for Viticulture and Enology, Kecskemét, Hungary
| | - Rabeb Fersi
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cédria, Hammam-Lif, Tunisia
| | - Samir Chebil
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cédria, Hammam-Lif, Tunisia
| | - László Kovács
- Department of Biology, Missouri State University, Springfield, MO, United States
| | - Akira Kawaguchi
- Western Region Agricultural Research Center, National Agricultural and Food Research Organization, Fukuyama, Japan
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Thomas J. Burr
- Section of Plant Pathology, School of Integrative Plant Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Michael A. Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
11
|
Parthasarathy A, Gan HM, Wong NH, Savka MA, Steiner KK, Henry KR, Hudson AO. Isolation and genomic characterization of six endophytic bacteria isolated from Saccharum sp (sugarcane): Insights into antibiotic, secondary metabolite and quorum sensing metabolism. J Genomics 2018; 6:117-121. [PMID: 30310525 PMCID: PMC6170322 DOI: 10.7150/jgen.28335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/05/2018] [Indexed: 11/05/2022] Open
Abstract
Six endophytic bacteria were isolated from Saccharum sp (sugarcane) grown in the parish of Westmoreland on the island of Jamaica located in the West Indies. Whole genome sequence and annotation of the six bacteria show that three were from the genus Pseudomonas and the other three were from the genera Pantoea, Pseudocitrobacter, and Enterobacter. A scan of each genome using the antibiotics and secondary metabolite analysis shell (antiSMASH4.0) webserver showed evidence that the bacteria were able to produce a variety of secondary metabolites. In addition, we were able to show that one of the organisms, Enterobacter sp RIT418 produces N-acyl-homoserine lactones (AHLs), which is indicative of cell-cell communication via quorum sensing (QS).
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester NY, USA
| | - Han Ming Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Narayan H Wong
- The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester NY, USA
| | - Michael A Savka
- The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester NY, USA
| | - KayLee K Steiner
- The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester NY, USA
| | - Kurtis R Henry
- The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester NY, USA
| | - André O Hudson
- The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester NY, USA
| |
Collapse
|
12
|
Transcriptome Analysis of Novosphingobium pentaromativorans US6-1 Reveals the Rsh Regulon and Potential Molecular Mechanisms of N-acyl-l-homoserine Lactone Accumulation. Int J Mol Sci 2018; 19:ijms19092631. [PMID: 30189641 PMCID: PMC6163740 DOI: 10.3390/ijms19092631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/27/2018] [Accepted: 09/02/2018] [Indexed: 11/17/2022] Open
Abstract
In most bacteria, a bifunctional Rsh responsible for (p)ppGpp metabolism is the key player in stringent response. To date, no transcriptome-wide study has been conducted to investigate the Rsh regulon, and the molecular mechanism of how Rsh affects the accumulation of N-acyl-l-homoserine lactone (AHL) remains unknown in sphingomonads. In this study, we identified an rshUS6–1 gene by sequence analysis in Novosphingobium pentaromativorans US6-1, a member of the sphingomonads. RNA-seq was used to determine transcription profiles of the wild type and the ppGpp-deficient rshUS6–1 deletion mutant (∆rsh). There were 1540 genes in the RshUS6–1 regulon, including those involved in common traits of sphingomonads such as exopolysaccharide biosynthesis. Furthermore, both RNA-seq and quantitative real-time polymerase chain reaction (qRT-PCR) showed essential genes for AHL production (novI and novR) were positively regulated by RshUS6–1 during the exponential growth phase. A degradation experiment indicated the reason for the AHL absence in ∆rsh was unrelated to the AHL degradation. According to RNA-seq, we proposed σE, DksA, Lon protease and RNA degradation enzymes might be involved in the RshUS6–1-dependent expression of novI and novR. Here, we report the first transcriptome-wide analysis of the Rsh regulon in sphingomonads and investigate the potential mechanisms regulating AHL accumulation, which is an important step towards understanding the regulatory system of stringent response in sphingomonads.
Collapse
|
13
|
Comparative Genomic Analysis Reveals Habitat-Specific Genes and Regulatory Hubs within the Genus Novosphingobium. mSystems 2017; 2:mSystems00020-17. [PMID: 28567447 PMCID: PMC5443232 DOI: 10.1128/msystems.00020-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/17/2017] [Indexed: 11/24/2022] Open
Abstract
This study highlights the significant role of the genetic repertoire of a microorganism in the similarity between Novosphingobium strains. The results suggest that the phylogenetic relationships were mostly influenced by metabolic trait enrichment, which is possibly governed by the microenvironment of each microbe’s respective niche. Using core genome analysis, the enrichment of a certain set of genes specific to a particular habitat was determined, which provided insights on the influence of habitat on the distribution of metabolic traits for Novosphingobium strains. We also identified habitat-specific protein hubs, which suggested delineation of Novosphingobium strains based on their habitat. Examining the available genomes of ecologically diverse bacterial species and analyzing the habitat-specific genes are useful for understanding the distribution and evolution of functional and phylogenetic diversity in the genus Novosphingobium. Species belonging to the genus Novosphingobium are found in many different habitats and have been identified as metabolically versatile. Through comparative genomic analysis, we identified habitat-specific genes and regulatory hubs that could determine habitat selection for Novosphingobium spp. Genomes from 27 Novosphingobium strains isolated from diverse habitats such as rhizosphere soil, plant surfaces, heavily contaminated soils, and marine and freshwater environments were analyzed. Genome size and coding potential were widely variable, differing significantly between habitats. Phylogenetic relationships between strains were less likely to describe functional genotype similarity than the habitat from which they were isolated. In this study, strains (19 out of 27) with a recorded habitat of isolation, and at least 3 representative strains per habitat, comprised four ecological groups—rhizosphere, contaminated soil, marine, and freshwater. Sulfur acquisition and metabolism were the only core genomic traits to differ significantly in proportion between these ecological groups; for example, alkane sulfonate (ssuABCD) assimilation was found exclusively in all of the rhizospheric isolates. When we examined osmolytic regulation in Novosphingobium spp. through ectoine biosynthesis, which was assumed to be marine habitat specific, we found that it was also present in isolates from contaminated soil, suggesting its relevance beyond the marine system. Novosphingobium strains were also found to harbor a wide variety of mono- and dioxygenases, responsible for the metabolism of several aromatic compounds, suggesting their potential to act as degraders of a variety of xenobiotic compounds. Protein-protein interaction analysis revealed β-barrel outer membrane proteins as habitat-specific hubs in each of the four habitats—freshwater (Saro_1868), marine water (PP1Y_AT17644), rhizosphere (PMI02_00367), and soil (V474_17210). These outer membrane proteins could play a key role in habitat demarcation and extend our understanding of the metabolic versatility of the Novosphingobium species. IMPORTANCE This study highlights the significant role of a microorganism’s genetic repertoire in structuring the similarity between Novosphingobium strains. The results suggest that the phylogenetic relationships were mostly influenced by metabolic trait enrichment, which is possibly governed by the microenvironment of each microbe’s respective niche. Using core genome analysis, the enrichment of a certain set of genes specific to a particular habitat was determined, which provided insights on the influence of habitat on the distribution of metabolic traits in Novosphingobium strains. We also identified habitat-specific protein hubs, which suggested delineation of Novosphingobium strains based on their habitat. Examining the available genomes of ecologically diverse bacterial species and analyzing the habitat-specific genes are useful for understanding the distribution and evolution of functional and phylogenetic diversity in the genus Novosphingobium.
Collapse
|
14
|
Gan HM, Dailey LK, Halliday N, Williams P, Hudson AO, Savka MA. Genome sequencing-assisted identification and the first functional validation of N-acyl-homoserine-lactone synthases from the Sphingomonadaceae family. PeerJ 2016; 4:e2332. [PMID: 27635318 PMCID: PMC5012321 DOI: 10.7717/peerj.2332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/15/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Members of the genus Novosphingobium have been isolated from a variety of environmental niches. Although genomics analyses have suggested the presence of genes associated with quorum sensing signal production e.g., the N-acyl-homoserine lactone (AHL) synthase (luxI) homologs in various Novosphingobium species, to date, no luxI homologs have been experimentally validated. METHODS In this study, we report the draft genome of the N-(AHL)-producing bacterium Novosphingobium subterraneum DSM 12447 and validate the functions of predicted luxI homologs from the bacterium through inducible heterologous expression in Agrobacterium tumefaciens strain NTL4. We developed a two-dimensional thin layer chromatography bioassay and used LC-ESI MS/MS analyses to separate, detect and identify the AHL signals produced by the N. subterraneum DSM 12447 strain. RESULTS Three predicted luxI homologs were annotated to the locus tags NJ75_2841 (NovINsub1), NJ75_2498 (NovINsub2), and NJ75_4146 (NovINsub3). Inducible heterologous expression of each luxI homologs followed by LC-ESI MS/MS and two-dimensional reverse phase thin layer chromatography bioassays followed by bioluminescent ccd camera imaging indicate that the three LuxI homologs are able to produce a variety of medium-length AHL compounds. New insights into the LuxI phylogeny was also gleemed as inferred by Bayesian inference. DISCUSSION This study significantly adds to our current understanding of quorum sensing in the genus Novosphingobium and provide the framework for future characterization of the phylogenetically interesting LuxI homologs from members of the genus Novosphingobium and more generally the family Sphingomonadaceae.
Collapse
Affiliation(s)
- Han Ming Gan
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Genomics Facility, Tropical Medicine Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Lucas K Dailey
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology , Rochester , NY , USA
| | - Nigel Halliday
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - Paul Williams
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - André O Hudson
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology , Rochester , NY , USA
| | - Michael A Savka
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology , Rochester , NY , USA
| |
Collapse
|
15
|
Hudson AO, Harkness TCM, Savka MA. Functional Complementation Analysis (FCA): A Laboratory Exercise Designed and Implemented to Supplement the Teaching of Biochemical Pathways. J Vis Exp 2016:53850. [PMID: 27403640 PMCID: PMC4993271 DOI: 10.3791/53850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Functional complementation assay (FCA) is an in vivo assay that is widely used to elucidate the function/role of genes/enzymes. This technique is very common in biochemistry, genetics and many other disciplines. A comprehensive overview of the technique to supplement the teaching of biochemical pathways pertaining to amino acids, peptidoglycan and the bacterial stringent response is reported in this manuscript. Two cDNAs from the model plant organism Arabidopsis thaliana that are involved in the metabolism of lysine (L,L-diaminopimelate aminotransferase (dapL) and tyrosine aminotransferase (tyrB) involved in the metabolism of tyrosine and phenylalanine are highlighted. In addition, the bacterial peptidoglycan anabolic pathway is highlighted through the analysis of the UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-meso-2,6-diaminopimelate ligase (murE) gene from the bacterium Verrucomicrobium spinosum involved in the cross-linking of peptidoglycan. The bacterial stringent response is also reported through the analysis of the rsh (relA/spoT homolog) bifunctional gene responsible for a hyper-mucoid phenotype in the bacterium Novosphingobium sp. Four examples of FCA are presented. The video will focus on three of them, namely lysine, peptidoglycan and the stringent response.
Collapse
Affiliation(s)
- André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology;
| | - Taylor C M Harkness
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology
| |
Collapse
|
16
|
Gan HM, Gan HY, Ahmad NH, Aziz NA, Hudson AO, Savka MA. Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family. Front Cell Infect Microbiol 2015; 4:188. [PMID: 25621282 PMCID: PMC4288048 DOI: 10.3389/fcimb.2014.00188] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022] Open
Abstract
Here we report the draft genomes and annotation of four N-acyl homoserine lactone (AHL)-producing members from the family Sphingomonadaceae. Comparative genomic analyses of 62 Sphingomonadaceae genomes were performed to gain insights into the distribution of the canonical luxI/R-type quorum sensing (QS) network within this family. Forty genomes contained at least one luxR homolog while the genome of Sphingobium yanoikuyae B1 contained seven Open Reading Frames (ORFs) that have significant homology to that of luxR. Thirty-three genomes contained at least one luxI homolog while the genomes of Sphingobium sp. SYK6, Sphingobium japonicum, and Sphingobium lactosutens contained four luxI. Using phylogenetic analysis, the sphingomonad LuxR homologs formed five distinct clades with two minor clades located near the plant associated bacteria (PAB) LuxR solo clade. This work for the first time shows that 13 Sphingobium and one Sphingomonas genome(s) contain three convergently oriented genes composed of two tandem luxR genes proximal to one luxI (luxR-luxR-luxI). Interestingly, luxI solos were identified in two Sphingobium species and may represent species that contribute to AHL-based QS system by contributing AHL molecules but are unable to perceive AHLs as signals. This work provides the most comprehensive description of the luxI/R circuitry and genome-based taxonomical description of the available sphingomonad genomes to date indicating that the presence of luxR solos and luxI solos are not an uncommon feature in members of the Sphingomonadaceae family.
Collapse
Affiliation(s)
- Han Ming Gan
- School of Science, Monash University Malaysia Petaling Jaya, Malaysia ; Genomics Facility, Monash University Malaysia Petaling Jaya, Malaysia
| | - Huan You Gan
- School of Science, Monash University Malaysia Petaling Jaya, Malaysia ; Genomics Facility, Monash University Malaysia Petaling Jaya, Malaysia
| | - Nurul H Ahmad
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - Nazrin A Aziz
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| |
Collapse
|
17
|
Huang Y, Zeng Y, Yu Z, Zhang J, Feng H, Lin X. In silico and experimental methods revealed highly diverse bacteria with quorum sensing and aromatics biodegradation systems--a potential broad application on bioremediation. BIORESOURCE TECHNOLOGY 2013; 148:311-316. [PMID: 24055974 DOI: 10.1016/j.biortech.2013.08.155] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 08/24/2013] [Accepted: 08/27/2013] [Indexed: 06/02/2023]
Abstract
Phylogenetic overlaps between aromatics-degrading bacteria and acyl-homoserine-lactone (AHL) or autoinducer (AI) based quorum-sensing (QS) bacteria were evident in literatures; however, the diversity of bacteria with both activities had never been finely described. In-silico searching in NCBI genome database revealed that more than 11% of investigated population harbored both aromatic ring-hydroxylating-dioxygenase (RHD) gene and AHL/AI-synthetase gene. These bacteria were distributed in 10 orders, 15 families, 42 genus and 78 species. Horizontal transfers of both genes were common among them. Using enrichment and culture dependent method, 6 Sphingomonadales and 4 Rhizobiales with phenanthrene- or pyrene-degrading ability and AHL-production were isolated from marine, wetland and soil samples. Thin-layer-chromatography and gas-chromatography-mass-spectrum revealed that these Sphingomonads produced various AHL molecules. This is the first report of highly diverse bacteria that harbored both aromatics-degrading and QS systems. QS regulation may have broad impacts on aromatics biodegradation, and would be a new angle for developing bioremediation technology.
Collapse
Affiliation(s)
- Yili Huang
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | | | | | | | | | | |
Collapse
|
18
|
Gan HM, Hudson AO, Rahman AYA, Chan KG, Savka MA. Comparative genomic analysis of six bacteria belonging to the genus Novosphingobium: insights into marine adaptation, cell-cell signaling and bioremediation. BMC Genomics 2013; 14:431. [PMID: 23809012 PMCID: PMC3704786 DOI: 10.1186/1471-2164-14-431] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/17/2013] [Indexed: 12/03/2022] Open
Abstract
Background Bacteria belonging to the genus Novosphingobium are known to be metabolically versatile and occupy different ecological niches. In the absence of genomic data and/or analysis, knowledge of the bacteria that belong to this genus is currently limited to biochemical characteristics. In this study, we analyzed the whole genome sequencing data of six bacteria in the Novosphingobium genus and provide evidence to show the presence of genes that are associated with salt tolerance, cell-cell signaling and aromatic compound biodegradation phenotypes. Additionally, we show the taxonomic relationship between the sequenced bacteria based on phylogenomic analysis, average amino acid identity (AAI) and genomic signatures. Results The taxonomic clustering of Novosphingobium strains is generally influenced by their isolation source. AAI and genomic signature provide strong support the classification of Novosphingobium sp. PP1Y as Novosphingobium pentaromaticivorans PP1Y. The identification and subsequent functional annotation of the unique core genome in the marine Novosphingobium bacteria show that ectoine synthesis may be the main contributing factor in salt water adaptation. Genes coding for the synthesis and receptor of the cell-cell signaling molecules, of the N-acyl-homoserine lactones (AHL) class are identified. Notably, a solo luxR homolog was found in strain PP1Y that may have been recently acquired via horizontal gene transfer as evident by the presence of multiple mobile elements upstream of the gene. Additionally, phylogenetic tree analysis and sequence comparison with functionally validated aromatic ring hydroxylating dioxygenases (ARDO) revealed the presence of several ARDOs (oxygenase) in Novosphingobium bacteria with the majority of them belonging to the Groups II and III of the enzyme. Conclusions The combination of prior knowledge on the distinctive phenotypes of Novosphingobium strains and meta-analysis of their whole genomes enables the identification of several genes that are relevant in industrial applications and bioremediation. The results from such targeted but comprehensive comparative genomics analysis have the potential to contribute to the understanding of adaptation, cell-cell communication and bioremediation properties of bacteria belonging to the genus Novosphingobium.
Collapse
Affiliation(s)
- Han Ming Gan
- Science Vision SB, Shah Alam, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
19
|
Genome sequence of Novosphingobium sp. strain Rr 2-17, a nopaline crown gall-associated bacterium isolated from Vitis vinifera L. grapevine. J Bacteriol 2012; 194:5137-8. [PMID: 22933764 DOI: 10.1128/jb.01159-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novosphingobium sp. strain Rr 2-17 is an N-acyl homoserine lactone (AHL)-producing bacterium isolated from the crown gall tumor of a grapevine. To our knowledge, this is the first draft genome announcement of a plant-associated strain from the genus Novosphingobium.
Collapse
|
20
|
Bulman Z, Le P, Hudson AO, Savka MA. A novel property of propolis (bee glue): anti-pathogenic activity by inhibition of N-acyl-homoserine lactone mediated signaling in bacteria. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:788-797. [PMID: 22063726 DOI: 10.1016/j.jep.2011.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/24/2011] [Accepted: 10/23/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE An alternative approach to antibiotics is the development of anti-pathogenic agents to control the bacterial virulome. Such anti-pathogenic agents could target a phenomena known as quorum sensing (QS). MATERIALS AND METHODS Six bacterial N-acyl-homoserine lactone (AHL)-dependent bioreporter strains were used to evaluate if bee hive glue also known as propolis contains constituents capable of inhibiting QS-controlled AHL signaling. In addition, the effect of propolis on the QS-dependent swarming motility was evaluated with the opportunisitic pathogen, Pseudomonas aeruginosa. RESULTS Differences in the propolis tincture samples were identified by physiochemical profiles and absorption spectra. Propolis tinctures at 0.0005% (v/v) that do not affect bacteria biosensor growth or the reporter system monitored were exposed to biosensors with and without the addition an AHL. No AHL signal mimics were found to be present in the propolis tinctures. However, when propolis and an inducer AHL signal were together exposed to five Escherichia coli and a Chromobacterium violaceum biosensor, propolis disrupted the QS bacterial signaling system in liquid- and agar-based bioassays and in C(18) reverse-phase thin-layer plate assays. Swarming motility in the opportunistic pathogen, Pseudomonas aeruginosa PAO1 and its AHL-dependent LasR- and RhlR-based QS behaviors were also inhibited by propolis. CONCLUSIONS Together, we present evidence that propolis contain compounds that suppress QS responses. In this regard, anti-pathogenic compounds from bee harvested propolis could be identified and isolated and thus will be valuable for the further development of therapeutics to disrupt QS signaling systems which regulate the virulome in many pathogenic bacteria.
Collapse
Affiliation(s)
- Zackery Bulman
- Molecular Bioscience and Biotechnology Program, School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | | | | | | |
Collapse
|
21
|
Krol E, Becker A. ppGpp in Sinorhizobium meliloti: biosynthesis in response to sudden nutritional downshifts and modulation of the transcriptome. Mol Microbiol 2011; 81:1233-54. [PMID: 21696469 DOI: 10.1111/j.1365-2958.2011.07752.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sinorhizobium meliloti Rm2011 responds to sudden shifts to nitrogen or carbon starvation conditions by an accumulation of the stringent response alarmone ppGpp and remodelling of the transcriptome. The gene product of relA, Rel(Sm) , responsible for synthesis of ppGpp, shows functional similarities to E. coli SpoT. Using promoter-egfp gene fusions, we showed that in Rm2011 relA is expressed at a low rate, as a readthrough from the rpoZ promoter and from its own weak promoter. The low level of relA expression is physiologically relevant, since overexpression of Rel(Sm) inhibits ppGpp accumulation. The N-terminal portion of Rel(Sm) is required for ppGpp degradation in nutrient-sufficient cells and might be involved in regulation of the ppGpp synthase and hydrolase activities of the protein. Expression profiling of S. meliloti subjected to sudden nitrogen or carbon downshifts revealed that repression of 'house-keeping' genes is largely dependent on relA whereas activation of gene targets of the stress sigma factor RpoE2 occurred independently of relA. The regulatory genes nifA, ntrB, aniA and sinR, as well as genes related to modulation of protein biosynthesis and nucleotide catabolism, were induced in a relA-dependent manner. dksA was required for the majority of the relA-dependent regulations.
Collapse
Affiliation(s)
- Elizaveta Krol
- Faculty of Biology and Center for Systems Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | | |
Collapse
|
22
|
LasR Receptor for Detection of Long-Chain Quorum-Sensing Signals: Identification of N-Acyl-homoserine Lactones Encoded by the avsI Locus of Agrobacterium vitis. Curr Microbiol 2010; 62:101-10. [DOI: 10.1007/s00284-010-9679-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
|
23
|
Abstract
Like for all microbes, the goal of every pathogen is to survive and replicate. However, to overcome the formidable defenses of their hosts, pathogens are also endowed with traits commonly associated with virulence, such as surface attachment, cell or tissue invasion, and transmission. Numerous pathogens couple their specific virulence pathways with more general adaptations, like stress resistance, by integrating dedicated regulators with global signaling networks. In particular, many of nature's most dreaded bacteria rely on nucleotide alarmones to cue metabolic disturbances and coordinate survival and virulence programs. Here we discuss how components of the stringent response contribute to the virulence of a wide variety of pathogenic bacteria.
Collapse
Affiliation(s)
- Zachary D. Dalebroux
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah L. Svensson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin C. Gaynor
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michele S. Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
McIntosh M, Meyer S, Becker A. NovelSinorhizobium melilotiquorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability. Mol Microbiol 2009; 74:1238-56. [DOI: 10.1111/j.1365-2958.2009.06930.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|