1
|
Bhowmick T, Sarkar A, Islam KH, Karmakar S, Mukherjee J, Das R. Molecular insights into cobalt homeostasis in estuarine microphytobenthos: A meta-transcriptomics and biogeochemical approach. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137716. [PMID: 40024116 DOI: 10.1016/j.jhazmat.2025.137716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Meta-transcriptomics data supported by biofilm physico-chemical parameters unravelled the molecular and biochemical processes utilized by multicomponent intertidal biofilms to endure cobalt toxicity. Findings indicated activation of influx (BtuB, ABC-type transporters) and efflux pumps (RND, CZC) to maintain metal ion homeostasis. Enhanced specific activity of antioxidant enzymes namely catalases and peroxidases (KatG, SodA) mitigated oxidative damage. Heightened synthesis of capsular polysaccharide components, specifically uronic acid and carbohydrate via PEP-CTERM sorting system, wzy pathway and glycosyltransferases protected biofilms against cobalt exposure. Despite chlorophyll biosynthesis genes being upregulated, metal toxicity impeded chlorophyll replenishment. Principal pathways associated with iron acquisition (AfuA), energy metabolism (AtpG), general metabolic activities (FruK, NifD, coABC) and central dogma regulation (DPS, AsrR, RRM) were activated to combat cobalt toxicity. This investigation offered novel insights into the regulatory network employed by intertidal microphytobenthic communities for maintaining cobalt homeostasis and underlined the basis for their application as biomarkers for estuarine cobalt pollution.
Collapse
Affiliation(s)
- Tanaya Bhowmick
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology. Jadavpur University, Kolkata 700032, India
| | - Kazi Hamidul Islam
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology. Jadavpur University, Kolkata 700032, India
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Reshmi Das
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India; Earth Observatory of Singapore, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
2
|
Basharat Z, Foster LJ, Abbas S, Yasmin A. Comparative Proteomics of Bacteria Under Stress Conditions. Methods Mol Biol 2025; 2859:129-162. [PMID: 39436600 DOI: 10.1007/978-1-0716-4152-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Bacteria are unicellular organisms with the ability to exist in the harshest of climate and cope with sub-optimal fluctuating environmental conditions. They accomplish this by modification of their internal cellular environment. When external conditions are varied, change in the cell is triggered at the transcriptional level, which usually leads to proteolysis and rewiring of the proteome. Changes in cellular homeostasis, modifications in proteome, and dynamics of such survival mechanisms can be studied using various scientific techniques. Our focus in this chapter would be on comparative proteomics of bacteria under stress conditions using approaches like 2D electrophoresis accompanied by N-terminal sequencing and recently, mass spectrometry. More than 170 such studies on bacteria have been accomplished till to date and involve analysis of whole cells as well as that of cellular fractions, i.e., outer membrane, inner membrane, cell envelope, cytoplasm, thylakoid, lipid bodies, etc. Similar studies conducted on gram-negative and gram-positive model organism, i.e., Escherichia coli and Bacillus subtilis, respectively, have been summarized. Vital information, hypothesis about conservation of stress-specific proteome, and conclusions are also presented in the light of research conducted over the last decades.
Collapse
Affiliation(s)
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| | - Sidra Abbas
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Azra Yasmin
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan.
| |
Collapse
|
3
|
Ahator SD, Hegstad K, Lentz CS, Johannessen M. Deciphering Staphylococcus aureus-host dynamics using dual activity-based protein profiling of ATP-interacting proteins. mSystems 2024; 9:e0017924. [PMID: 38656122 PMCID: PMC11097646 DOI: 10.1128/msystems.00179-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host-pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratinocytes (HaCaT), during an intracellular infection. A snapshot of the various protein activity and function is provided using a desthiobiotin-ATP probe, which targets ATP-interacting proteins. In S. aureus, we observe enrichment in pathways required for nutrient acquisition, biosynthesis and metabolism of amino acids, and energy metabolism when located inside human cells. Additionally, the direct profiling of the protein activity revealed specific adaptations of S. aureus to the keratinocytes and macrophages. Mapping the differentially activated proteins to biochemical pathways in the human cells with intracellular bacteria revealed cell-type-specific adaptations to bacterial challenges where THP-1 cells prioritized immune defenses, autophagic cell death, and inflammation. In contrast, HaCaT cells emphasized barrier integrity and immune activation. We also observe bacterial modulation of host processes and metabolic shifts. These findings offer valuable insights into the dynamics of S. aureus-host cell interactions, shedding light on modulating host immune responses to S. aureus, which could involve developing immunomodulatory therapies. IMPORTANCE This study uses a chemoproteomic approach to target active ATP-interacting proteins and examines the dynamic proteomic interactions between Staphylococcus aureus and human cell lines THP-1 and HaCaT. It uncovers the distinct responses of macrophages and keratinocytes during bacterial infection. S. aureus demonstrated a tailored response to the intracellular environment of each cell type and adaptation during exposure to professional and non-professional phagocytes. It also highlights strategies employed by S. aureus to persist within host cells. This study offers significant insights into the human cell response to S. aureus infection, illuminating the complex proteomic shifts that underlie the defense mechanisms of macrophages and keratinocytes. Notably, the study underscores the nuanced interplay between the host's metabolic reprogramming and immune strategy, suggesting potential therapeutic targets for enhancing host defense and inhibiting bacterial survival. The findings enhance our understanding of host-pathogen interactions and can inform the development of targeted therapies against S. aureus infections.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian S. Lentz
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Podkowik M, Perault AI, Putzel G, Pountain A, Kim J, Dumont A, Zwack E, Ulrich RJ, Karagounis TK, Zhou C, Haag AF, Shenderovich J, Wasserman GA, Kwon J, Chen J, Richardson AR, Weiser JN, Nowosad CR, Lun DS, Parker D, Pironti A, Zhao X, Drlica K, Yanai I, Torres VJ, Shopsin B. Quorum-sensing agr system of Staphylococcus aureus primes gene expression for protection from lethal oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.544038. [PMID: 37333372 PMCID: PMC10274873 DOI: 10.1101/2023.06.08.544038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr increased both respiration and fermentation but decreased ATP levels and growth, suggesting that Δagr cells assume a hyperactive metabolic state in response to reduced metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived "memory" of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Nox2-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.
Collapse
Affiliation(s)
- Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Andrew I. Perault
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Gregory Putzel
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Microbial Computational Genomic Core Lab, NYU Grossman School of Medicine, New York, NY, USA
| | - Andrew Pountain
- Institute for Systems Genetics; NYU Grossman School of Medicine, New York, NY, USA
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Ashley Dumont
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Erin Zwack
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Robert J. Ulrich
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - Theodora K. Karagounis
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Ronald O. Perelman Department of Dermatology; NYU Grossman School of Medicine, New York, NY, USA
| | - Chunyi Zhou
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Andreas F. Haag
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Julia Shenderovich
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Junbeom Kwon
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anthony R. Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey N. Weiser
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Carla R. Nowosad
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Desmond S. Lun
- Center for Computational and Integrative Biology and Department of Computer Science, Rutgers University, Camden, NJ, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Alejandro Pironti
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Microbial Computational Genomic Core Lab, NYU Grossman School of Medicine, New York, NY, USA
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Itai Yanai
- Institute for Systems Genetics; NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Victor J. Torres
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
5
|
Gheorghe-Barbu I, Corbu VM, Vrancianu CO, Marinas IC, Popa M, Dumbravă AȘ, Niță-Lazăr M, Pecete I, Muntean AA, Popa MI, Marinescu L, Ficai D, Ficai A, Czobor Barbu I. Phenotypic and Genotypic Characterization of Recently Isolated Multidrug-Resistant Acinetobacter baumannii Clinical and Aquatic Strains and Demonstration of Silver Nanoparticle Potency. Microorganisms 2023; 11:2439. [PMID: 37894097 PMCID: PMC10609299 DOI: 10.3390/microorganisms11102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to demonstrate the effectiveness of silver nanoparticles (Ag NPs) on multidrug-resistant (MDR) Acinetobacter baumannii (AB) strains isolated from the clinical and aquatic environment. Three types of Ag NPs were investigated for their antimicrobial, antibiofilm, and antivirulence properties on a total number of 132 AB strains isolated in the same temporal sequence from intra-hospital infections (IHIs), wastewater (WW), and surface water (SW) samples between 2019 and 2022 from different Romanian locations and characterized at the phenotypic and genotypic levels. The comparative analysis of the antimicrobial resistance (AR) profiles according to the isolation source and the geographical location demonstrated a decrease in MDR level in AB recovered from WW samples in 2022 from north-eastern/central/southern regions (N-E/C-W/analyzed strains S): 87.5/60/32.5%. The AB strains were lecithinase, caseinase, amylase, and lipase producers, had variable biofilm formation ability, and belonged to six genotypes associated with the presence of different virulence genes (ompA, csuE, bap, and bfmS). The Ag NPs synthesized with the solvothermal method exhibited an inhibitory effect on microbial growth, the adherence capacity to the inert substratum, and on the production of soluble virulence factors. We report here the first description of a powerful antibacterial agent against MDR AB strains circulating between hospitals and anthropically polluted water in Romania.
Collapse
Affiliation(s)
- Irina Gheorghe-Barbu
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
| | - Viorica Maria Corbu
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031 Bucharest, Romania
| | - Ioana Cristina Marinas
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
| | - Marcela Popa
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
| | - Mihai Niță-Lazăr
- National Research and Development Institute for Industrial Ecology (INCD ECOIND), 050663 Bucharest, Romania;
| | - Ionut Pecete
- Central Reference Synevo-Medicover Laboratory, 021408 Bucharest, Romania;
| | - Andrei Alexandru Muntean
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania; (A.A.M.); (M.I.P.)
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mircea Ioan Popa
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania; (A.A.M.); (M.I.P.)
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Liliana Marinescu
- Faculty of Applied Chemistry and Materials Science, University Politechnica of Bucharest, Gh. Polizu, No. 1–7, 011061 Bucharest, Romania; (L.M.); (D.F.); (A.F.)
| | - Denisa Ficai
- Faculty of Applied Chemistry and Materials Science, University Politechnica of Bucharest, Gh. Polizu, No. 1–7, 011061 Bucharest, Romania; (L.M.); (D.F.); (A.F.)
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politechnica of Bucharest, Gh. Polizu, No. 1–7, 011061 Bucharest, Romania; (L.M.); (D.F.); (A.F.)
| | - Ilda Czobor Barbu
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
| |
Collapse
|
6
|
Arasimowicz-Jelonek M, Jagodzik P, Płóciennik A, Sobieszczuk-Nowicka E, Mattoo A, Polcyn W, Floryszak-Wieczorek J. Dynamics of nitration during dark-induced leaf senescence in Arabidopsis reveals proteins modified by tryptophan nitration. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6853-6875. [PMID: 35981877 DOI: 10.1093/jxb/erac341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO) is a critical molecule that links plant development with stress responses. Herein, new insights into the role of NO metabolism during leaf senescence in Arabidopsis are presented. A gradual decrease in NO emission accompanied dark-induced leaf senescence (DILS), and a transient wave of peroxynitrite (ONOO-) formation was detected by day 3 of DILS. The boosted ONOO- did not promote tryptophan (Trp) nitration, while the pool of 6-nitroTrp-containing proteins was depleted as senescence progressed. Immunoprecipitation combined with mass spectrometry was used to identify 63 and 4 characteristic 6-nitroTrp-containing proteins in control and individually darkened leaves, respectively. The potential in vivo targets of Trp nitration were mainly related to protein biosynthesis and carbohydrate metabolism. In contrast, nitration of tyrosine-containing proteins was intensified 2-fold on day 3 of DILS. Also, nitrative modification of RNA and DNA increased significantly on days 3 and 7 of DILS, respectively. Taken together, ONOO- can be considered a novel pro-senescence regulator that fine-tunes the redox environment for selective bio-target nitration. Thus, DILS-triggered nitrative changes at RNA and protein levels promote developmental shifts during the plant's lifespan and temporal adjustment in plant metabolism under suboptimal environmental conditions.
Collapse
Affiliation(s)
- Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Przemysław Jagodzik
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Artur Płóciennik
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Autar Mattoo
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA
| | - Władysław Polcyn
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | |
Collapse
|
7
|
Cyle KT, Klein AR, Aristilde L, Martínez CE. Dynamic utilization of low-molecular-weight organic substrates across a microbial growth rate gradient. J Appl Microbiol 2022; 133:1479-1495. [PMID: 35665577 DOI: 10.1111/jam.15652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
AIM Low-molecular-weight organic substances (LMWOSs) are at the nexus between microorganisms, plant roots, detritus, and the soil mineral matrix. Nominal oxidation state of carbon (NOSC) has been suggested a potential parameter for modeling microbial uptake rates of LMWOSs and the efficiency of carbon incorporation into new biomass. METHODS AND RESULTS In this study, we assessed the role of compound class and oxidation state on uptake kinetics and substrate-specific carbon use efficiency (SUE) during the growth of three model soil microorganisms, a fungal isolate (Penicillium spinulosum) and two bacterial isolates (Paraburkholderia solitsugae, and Ralstonia pickettii). Isolates were chosen that spanned a growth rate gradient (0.046-0.316 h-1 ) in media containing 34 common LMWOSs at realistically low initial concentrations (25 μM each). Clustered, co-utilization of LMWOSs occurred for all three organisms. Potential trends (p < 0.05) for early utilization of more oxidized substrates were present for the two bacterial isolates (P. solitsugae and R. pickettii), but high variability (R2 < 0.15) and a small effect of NOSC indicate these relationships are not useful for prediction. The SUEs of selected substrates ranged from 0.16-0.99 and there was no observed relationship between NOSC and SUE. CONCLUSION Our results do not provide compelling population-level support for NOSC as a predictive tool for either uptake kinetics or the efficiency of use of LMWOS in soil solution. SIGNIFICANCE AND IMPACT OF THE STUDY Metabolic strategies of organisms are likely more important than chemical identity in determining LMWOS cycling in soils. Previous community-level observations may be biased towards fast-responding bacterial community members.
Collapse
Affiliation(s)
- K Taylor Cyle
- Soil and Crop Sciences, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Annaleise R Klein
- Department of Biological and Environmental Engineering, Cornell University, Riley-Robb Hall, Ithaca, NY 14853.,Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, VIC 3168, Australia
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, Cornell University, Riley-Robb Hall, Ithaca, NY 14853.,Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - Carmen Enid Martínez
- Soil and Crop Sciences, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
8
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
9
|
Ecophysiological Study of Paraburkholderia sp. Strain 1N under Soil Solution Conditions: Dynamic Substrate Preferences and Characterization of Carbon Use Efficiency. Appl Environ Microbiol 2020; 86:AEM.01851-20. [PMID: 33008817 PMCID: PMC7688210 DOI: 10.1128/aem.01851-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
We used time-resolved metabolic footprinting, an important technical approach used to monitor changes in extracellular compound concentrations during microbial growth, to study the order of substrate utilization (i.e., substrate preferences) and kinetics of a fast-growing soil isolate, Paraburkholderia sp. strain 1N. The growth of Paraburkholderia sp. 1N was monitored under aerobic conditions in a soil-extracted solubilized organic matter medium, representing a realistic diversity of available substrates and gradient of initial concentrations. We combined multiple analytical approaches to track over 150 compounds in the medium and complemented this with bulk carbon and nitrogen measurements, allowing estimates of carbon use efficiency throughout the growth curve. Targeted methods allowed the quantification of common low-molecular-weight substrates: glucose, 20 amino acids, and 9 organic acids. All targeted compounds were depleted from the medium, and depletion followed a sigmoidal curve where sufficient data were available. Substrates were utilized in at least three distinct temporal clusters as Paraburkholderia sp. 1N produced biomass at a cumulative carbon use efficiency of 0.43. The two substrates with highest initial concentrations, glucose and valine, exhibited longer usage windows, at higher biomass-normalized rates, and later in the growth curve. Contrary to hypotheses based on previous studies, we found no clear relationship between substrate nominal oxidation state of carbon (NOSC) or maximal growth rate and the order of substrate depletion. Under soil solution conditions, the growth of Paraburkholderia sp. 1N induced multiauxic substrate depletion patterns that could not be explained by the traditional paradigm of catabolite repression.IMPORTANCE Exometabolomic footprinting methods have the capability to provide time-resolved observations of the uptake and release of hundreds of compounds during microbial growth. Of particular interest is microbial phenotyping under environmentally relevant soil conditions, consisting of relatively low concentrations and modeling pulse input events. Here, we show that growth of a bacterial soil isolate, Paraburkholderia sp. 1N, on a dilute soil extract resulted in a multiauxic metabolic response, characterized by discrete temporal clusters of substrate depletion and metabolite production. Our data did not support the hypothesis that compounds with lower energy content are used preferentially, as each cluster contained compounds with a range of nominal oxidation states of carbon. These new findings with Paraburkholderia sp. 1N, which belongs to a metabolically diverse genus, provide insights on ecological strategies employed by aerobic heterotrophs competing for low-molecular-weight substrates in soil solution.
Collapse
|
10
|
Grayczyk JP, Alonzo F. Staphylococcus aureus Lipoic Acid Synthesis Limits Macrophage Reactive Oxygen and Nitrogen Species Production To Promote Survival during Infection. Infect Immun 2019; 87:e00344-19. [PMID: 31308080 PMCID: PMC6759302 DOI: 10.1128/iai.00344-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/05/2019] [Indexed: 01/29/2023] Open
Abstract
Macrophages are critical mediators of innate immunity and must be overcome for bacterial pathogens to cause disease. The Gram-positive bacterium Staphylococcus aureus produces virulence factors that impede macrophages and other immune cells. We previously determined that production of the metabolic cofactor lipoic acid by the lipoic acid synthetase, LipA, blunts macrophage activation. A ΔlipA mutant was attenuated during infection and was more readily cleared from the host. We hypothesized that bacterial lipoic acid synthesis perturbs macrophage antimicrobial functions and therefore hinders the clearance of S. aureus Here, we found that enhanced innate immune cell activation after infection with a ΔlipA mutant was central to attenuation in vivo, whereas a growth defect imparted by the lipA mutation made a negligible contribution to overall clearance. Macrophages recruited to the site of infection with the ΔlipA mutant produced larger amounts of bactericidal reactive oxygen species (ROS) and reactive nitrogen species (RNS) than those recruited to the site of infection with the wild-type strain or the mutant strain complemented with lipA ROS derived from the NADPH phagocyte oxidase complex and RNS derived from the inducible nitric oxide synthetase, but not mitochondrial ROS, were critical for the restriction of bacterial growth under these conditions. Despite enhanced antimicrobial immunity upon primary infection with the ΔlipA mutant, we found that the host failed to mount an improved recall response to secondary infection. Our data suggest that lipoic acid synthesis in S. aureus promotes bacterial persistence during infection through limitation of ROS and RNS generation by macrophages. Broadly, this work furthers our understanding of the intersections between bacterial metabolism and immune responses to infection.
Collapse
Affiliation(s)
- James P Grayczyk
- Department of Microbiology and Immunology, Loyola University Chicago-Stritch School of Medicine, Maywood, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, Loyola University Chicago-Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
11
|
Tran V, Geraci K, Midili G, Satterwhite W, Wright R, Bonilla CY. Resilience to oxidative and nitrosative stress is mediated by the stressosome, RsbP and SigB in Bacillus subtilis. J Basic Microbiol 2019; 59:834-845. [PMID: 31210376 DOI: 10.1002/jobm.201900076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/10/2019] [Accepted: 05/11/2019] [Indexed: 01/19/2023]
Abstract
A bacterium's ability to thrive in the presence of multiple environmental stressors simultaneously determines its resilience. We showed that activation of the SigB-controlled general stress response by mild environmental or energy stress provided significant cross-protection to subsequent lethal oxidative, disulfide and nitrosative stress in Bacillus subtilis. SigB activation is mediated via the stressosome and RsbP, the main conduits of environmental and energy stress, respectively. Cells exposed to mild environmental stress while lacking the major stressosome components RsbT or RsbRA were highly sensitive to subsequent oxidative stress, whereas rsbRB, rsbRC, rsbRD, and ytvA null mutants showed a spectrum of sensitivity, confirming their redundant roles and suggesting they could modulate the signals generated by environmental or oxidative stress. By contrast, cells encountering stationary phase stress required RsbP but not RsbT to survive subsequent oxidative stress. Interestingly, optimum cross-protection against nitrosative stress caused by sodium nitropruside required SigB but not the known regulators, RsbT and RsbP, suggesting an additional and as yet uncharacterized route of SigB activation independent of the known regulators. Together, these results provide mechanistic information on how B. subtilis promotes enhanced resistance against lethal oxidative stress during mild environmental and energy stress conditions.
Collapse
Affiliation(s)
- Vina Tran
- Biology Department, Gonzaga University, Spokane, Washington
| | - Kara Geraci
- Biology Department, Gonzaga University, Spokane, Washington
| | | | | | - Rachel Wright
- Biology Department, Gonzaga University, Spokane, Washington
| | | |
Collapse
|
12
|
Mikheyeva IV, Thomas JM, Kolar SL, Corvaglia AR, Gaϊa N, Leo S, Francois P, Liu GY, Rawat M, Cheung AL. YpdA, a putative bacillithiol disulfide reductase, contributes to cellular redox homeostasis and virulence in Staphylococcus aureus. Mol Microbiol 2019; 111:1039-1056. [PMID: 30636083 DOI: 10.1111/mmi.14207] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2018] [Indexed: 11/28/2022]
Abstract
The intracellular redox environment of Staphylococcus aureus is mainly buffered by bacillithiol (BSH), a low molecular weight thiol. The identity of enzymes responsible for the recycling of oxidized bacillithiol disulfide (BSSB) to the reduced form (BSH) remains elusive. We examined YpdA, a putative bacillithiol reductase, for its role in maintaining intracellular redox homeostasis. The ypdA mutant showed increased levels of BSSB and a lower bacillithiol redox ratio vs. the isogenic parent, indicating a higher level of oxidative stress within the bacterial cytosol. We showed that YpdA consumed NAD(P)H; and YpdA protein levels were augmented in response to stress. Wild type strains overexpressing YpdA showed increased tolerance to oxidants and electrophilic agents. Importantly, YpdA overexpression in the parental strain caused an increase in BSH levels accompanied by a decrease in BSSB concentration in the presence of stress, resulting in an increase in bacillithiol redox ratio vs. the vector control. Additionally, the ypdA mutant exhibited decreased survival in human neutrophils (PMNs) as compared with the parent, while YpdA overexpression protected the resulting strain from oxidative stress in vitro and from killing by human neutrophils ex vivo. Taken together, these data present a new role for YpdA in S. aureus physiology and virulence through the bacillithiol system.
Collapse
Affiliation(s)
- Irina V Mikheyeva
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jason M Thomas
- Biology Department, California State University, Fresno, Fresno, CA 93740, USA
| | - Stacey L Kolar
- Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anna-Rita Corvaglia
- Genomic Research Laboratory, Service of Infectious Diseases, University Hospital of Geneva, 1205 Geneva 4, Switzerland
| | - Nadia Gaϊa
- Genomic Research Laboratory, Service of Infectious Diseases, University Hospital of Geneva, 1205 Geneva 4, Switzerland
| | - Stefano Leo
- Genomic Research Laboratory, Service of Infectious Diseases, University Hospital of Geneva, 1205 Geneva 4, Switzerland
| | - Patrice Francois
- Genomic Research Laboratory, Service of Infectious Diseases, University Hospital of Geneva, 1205 Geneva 4, Switzerland
| | - George Y Liu
- Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mamta Rawat
- Biology Department, California State University, Fresno, Fresno, CA 93740, USA
| | - Ambrose L Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
13
|
From the genome sequence via the proteome to cell physiology – Pathoproteomics and pathophysiology of Staphylococcus aureus. Int J Med Microbiol 2018; 308:545-557. [DOI: 10.1016/j.ijmm.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 02/01/2023] Open
|
14
|
Abstract
Despite all its apparent limitations proteome analysis based on two-dimensional protein gels combined with mass spectrometry is still the method of choice to study global protein synthesis activity in bacterial cells. Alterations in global protein synthesis play an important role during adaptation of bacteria to changing environmental conditions which are rather the role than the exception in their natural habitats. The protein synthesis pattern in response to a certain stimulus is highly specific and reflects the new challenges the bacterium has to meet. Here we present the techniques to analyze global protein synthesis in bacteria as exemplified by Staphylococcus aureus which is an important human pathogen and one main cause of nosocomial infections with severe outcome.
Collapse
|
15
|
Nitric Oxide as a Signaling Molecule in Plant-Bacterial Interactions. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Pezzotti G, Bock RM, McEntire BJ, Adachi T, Marin E, Boschetto F, Zhu W, Mazda O, Bal SB. In vitroantibacterial activity of oxide and non-oxide bioceramics for arthroplastic devices: I.In situtime-lapse Raman spectroscopy. Analyst 2018; 143:3708-3721. [DOI: 10.1039/c8an00233a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Raman spectroscopy proved why the antibacterial response of non-oxide Si3N4bioceramic is superior to those of alumina-based oxide bioceramics.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Orthopedic Surgery
| | | | | | - Tetsuya Adachi
- Department of Dental Medicine
- Graduate School of Medical Science
- Kyoto Prefectural University of Medicine
- Kyoto 602-8566
- Japan
| | - Elia Marin
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Dental Medicine
| | - Francesco Boschetto
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Immunology
| | - Wenliang Zhu
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Osam Mazda
- Department of Immunology
- Kyoto Prefectural University of Medicine
- Kamigyo-ku
- Japan
| | - Sonny B. Bal
- Amedica Corporation
- Salt Lake City
- USA
- Department of Orthopaedic Surgery
- University of Missouri
| |
Collapse
|
17
|
Carvalho SM, de Jong A, Kloosterman TG, Kuipers OP, Saraiva LM. The Staphylococcus aureus α-Acetolactate Synthase ALS Confers Resistance to Nitrosative Stress. Front Microbiol 2017; 8:1273. [PMID: 28744267 PMCID: PMC5504149 DOI: 10.3389/fmicb.2017.01273] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/26/2017] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is a worldwide pathogen that colonizes the human nasal cavity and is a major cause of respiratory and cutaneous infections. In the nasal cavity, S. aureus thrives with high concentrations of nitric oxide (NO) produced by the innate immune effectors and has available for growth slow-metabolizing free hexoses, such as galactose. Here, we have used deep sequencing transcriptomic analysis (RNA-Seq) and 1H-NMR to uncover how S. aureus grown on galactose, a major carbon source present in the nasopharynx, survives the deleterious action of NO. We observed that, like on glucose, S. aureus withstands high concentrations of NO when using galactose. Data indicate that this resistance is, most likely, achieved through a distinct metabolism that relies on the increased production of amino acids, such as glutamate, threonine, and branched-chain amino acids (BCAAs). Moreover, we found that under NO stress the S. aureus α-acetolactate synthase (ALS) enzyme, which converts pyruvate into α-acetolactate, plays an important role. ALS is proposed to prevent intracellular acidification, to promote the production of BCAAs and the activation of the TCA cycle. Additionally, ALS is shown to contribute to the successful infection of murine macrophages. Furthermore, ALS contributes to the resistance of S. aureus to beta-lactam antibiotics such as methicillin and oxacillin.
Collapse
Affiliation(s)
- Sandra M Carvalho
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de LisboaOeiras, Portugal
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Tomas G Kloosterman
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de LisboaOeiras, Portugal
| |
Collapse
|
18
|
Kint N, Janoir C, Monot M, Hoys S, Soutourina O, Dupuy B, Martin-Verstraete I. The alternative sigma factor σ B plays a crucial role in adaptive strategies of Clostridium difficile during gut infection. Environ Microbiol 2017; 19:1933-1958. [PMID: 28198085 DOI: 10.1111/1462-2920.13696] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 12/29/2022]
Abstract
Clostridium difficile is a major cause of diarrhoea associated with antibiotherapy. Exposed to stresses in the gut, C. difficile can survive by inducing protection, detoxification and repair systems. In several firmicutes, most of these systems are controlled by the general stress response involving σB . In this work, we studied the role of σB in the physiopathology of C. difficile. We showed that the survival of the sigB mutant during the stationary phase was reduced. Using a transcriptome analysis, we showed that σB controls the expression of ∼25% of genes including genes involved in sporulation, metabolism, cell surface biogenesis and the management of stresses. By contrast, σB does not control toxin gene expression. In agreement with the up-regulation of sporulation genes, the sporulation efficiency is higher in the sigB mutant than in the wild-type strain. sigB inactivation also led to increased sensitivity to acidification, cationic antimicrobial peptides, nitric oxide and ROS. In addition, we showed for the first time that σB also plays a crucial role in oxygen tolerance in this strict anaerobe. Finally, we demonstrated that the fitness of colonisation by the sigB mutant is greatly affected in a dixenic mouse model of colonisation when compared to the wild-type strain.
Collapse
Affiliation(s)
- Nicolas Kint
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Claire Janoir
- EA 4043, Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Marc Monot
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sandra Hoys
- EA 4043, Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Olga Soutourina
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogénese des Bactéries Anaérobies, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
19
|
Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK. PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 2016; 56:1274-1288. [PMID: 27439917 DOI: 10.1002/jobm.201600188] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/06/2016] [Indexed: 12/27/2022]
Abstract
Increasing evidence shows that nitric oxide (NO), a typical signaling molecule plays important role in development of plant and in bacteria-plant interaction. In the present study, we tested the effect of sodium nitroprusside (SNP)-a nitric oxide donor, on bacterial metabolism and its role in establishment of PGPR-plant interaction under salinity condition. In the present study, we adopted methods namely, biofilm formation assay, GC-MS analysis of bacterial volatiles, chemotaxis assay of root exudates (REs), measurement of electrolyte leakage and lipid peroxidation, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for gene expression. GC-MS analysis revealed that three new volatile organic compounds (VOCs) were expressed after treatment with SNP. Two VOCs namely, 4-nitroguaiacol and quinoline were found to promote soybean seed germination under 100 mM NaCl stress. Chemotaxis assay revealed that SNP treatment, altered root exudates profiling (SS-RE), found more attracted to Pseudomonas simiae bacterial cells as compared to non-treated root exudates (S-RE) under salt stress. Expression of Peroxidase (POX), catalase (CAT), vegetative storage protein (VSP), and nitrite reductase (NR) genes were up-regulated in T6 treatment seedlings, whereas, high affinity K+ transporter (HKT1), lipoxygenase (LOX), polyphenol oxidase (PPO), and pyrroline-5-carboxylate synthase (P5CS) genes were down-regulated under salt stress. The findings suggest that NO improves the efficiency and establishment of PGPR strain in the plant environment during salt condition. This strategy may be applied on soybean plants to increase their growth during salinity stress.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Department of Biological Science, College of Arts, Science and Humanities (CASH), Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| | - Sarita Kumari
- Department of Biological Science, College of Arts, Science and Humanities (CASH), Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| | - Shekhar Jain
- Department of Biological Science, College of Arts, Science and Humanities (CASH), Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| | - Ajit Varma
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| | - Narendra Tuteja
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| | - Devendra Kumar Choudhary
- Department of Biological Science, College of Arts, Science and Humanities (CASH), Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Amity Institute of Microbial Technology (AIMT), Amity University Campus, Gautam Buddha Nagar, Noida, Uttar Pradesh, India
| |
Collapse
|
20
|
Quinteros MA, Cano Aristizábal V, Dalmasso PR, Paraje MG, Páez PL. Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicol In Vitro 2016; 36:216-223. [PMID: 27530963 DOI: 10.1016/j.tiv.2016.08.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
Abstract
Oxidative stress is a condition caused by the high intracellular concentrations of reactive oxygen species (ROS) that includes superoxide anion radicals, hydroxyl radicals and hydrogen peroxide. Nanoparticles could cause rapid generation of free radicals by redox reactions. ROS can react directly with membrane lipids, proteins and DNA and are normally scavenged by antioxidants that are capable of neutralizing; however, elevated concentrations of ROS in bacterial cells can result in oxidative stress. The aim of this work was contribute to the knowledge of action mechanism of silver nanoparticles (Ag-NPs) and their relation to the generation of oxidative stress in bacteria. We demonstrated that Ag-NPs generated oxidative stress in Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa mediated by the increment of ROS and this increase correlated with a better antimicrobial activity. On the other hand, we showed that the oxidative stress caused by the Ag-NPs biosynthesized was associated to a variation in the level of reactive nitrogen intermediates (RNI). Oxidative stress in bacteria can result from disruption of the electronic transport chain due to the high affinity of Ag-NPs for the cell membrane. This imbalance in the oxidative stress was evidentiated by a macromolecular oxidation at level of DNA, lipids and proteins in E. coli exposed to Ag-NPs. The formation of ROS and RNI by Ag-NPs may also be considered to explain the bacterial death.
Collapse
Affiliation(s)
- M A Quinteros
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Dto. Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - V Cano Aristizábal
- Dto. Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - P R Dalmasso
- CITSE, INBIONATEC, CONICET, Universidad Nacional de Santiago del Estero, RN 9, Km 1125, 4206 Santiago del Estero, Argentina
| | - M G Paraje
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Cátedra de Microbiología, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Argentina
| | - P L Páez
- Dto. Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina; Unidad de Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
21
|
Resilience in the Face of Uncertainty: Sigma Factor B Fine-Tunes Gene Expression To Support Homeostasis in Gram-Positive Bacteria. Appl Environ Microbiol 2016; 82:4456-4469. [PMID: 27208112 DOI: 10.1128/aem.00714-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gram-positive bacteria are ubiquitous and diverse microorganisms that can survive and sometimes even thrive in continuously changing environments. The key to such resilience is the ability of members of a population to respond and adjust to dynamic conditions in the environment. In bacteria, such responses and adjustments are mediated, at least in part, through appropriate changes in the bacterial transcriptome in response to the conditions encountered. Resilience is important for bacterial survival in diverse, complex, and rapidly changing environments and requires coordinated networks that integrate individual, mechanistic responses to environmental cues to enable overall metabolic homeostasis. In many Gram-positive bacteria, a key transcriptional regulator of the response to changing environmental conditions is the alternative sigma factor σ(B) σ(B) has been characterized in a subset of Gram-positive bacteria, including the genera Bacillus, Listeria, and Staphylococcus Recent insight from next-generation-sequencing results indicates that σ(B)-dependent regulation of gene expression contributes to resilience, i.e., the coordination of complex networks responsive to environmental changes. This review explores contributions of σ(B) to resilience in Bacillus, Listeria, and Staphylococcus and illustrates recently described regulatory functions of σ(B).
Collapse
|
22
|
Regulatory Requirements for Staphylococcus aureus Nitric Oxide Resistance. J Bacteriol 2016; 198:2043-55. [PMID: 27185828 DOI: 10.1128/jb.00229-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED The ability of Staphylococcus aureus to resist host innate immunity augments the severity and pervasiveness of its pathogenesis. Nitric oxide (NO˙) is an innate immune radical that is critical for the efficient clearance of a wide range of microbial pathogens. Exposure of microbes to NO˙ typically results in growth inhibition and induction of stress regulons. S. aureus, however, induces a metabolic state in response to NO˙ that allows for continued replication and precludes stress regulon induction. The regulatory factors mediating this distinctive response remain largely undefined. Here, we employ a targeted transposon screen and transcriptomics to identify and characterize five regulons essential for NO˙ resistance in S. aureus: three virulence regulons not formerly associated with NO˙ resistance, SarA, CodY, and Rot, as well as two regulons with established roles, Fur and SrrAB. We provide new insights into the contributions of Fur and SrrAB during NO˙ stress and show that the S. aureus ΔsarA mutant, the most sensitive of the newly identified mutants, exhibits metabolic dysfunction and widespread transcriptional dysregulation following NO˙ exposure. Altogether, our results broadly characterize the regulatory requirements for NO˙ resistance in S. aureus and suggest an intriguing overlap between the regulation of NO˙ resistance and virulence in this well-adapted human pathogen. IMPORTANCE The prolific human pathogen Staphylococcus aureus is uniquely capable of resisting the antimicrobial radical nitric oxide (NO˙), a crucial component of the innate immune response. However, a complete understanding of how S. aureus regulates an effective response to NO˙ is lacking. Here, we implicate three central virulence regulators, SarA, CodY, and Rot, as major players in the S. aureus NO˙ response. Additionally, we elaborate on the contribution of two regulators, SrrAB and Fur, already known to play a crucial role in S. aureus NO˙ resistance. Our study sheds light on a unique facet of S. aureus pathogenicity and demonstrates that the transcriptional response of S. aureus to NO˙ is highly pleiotropic and intrinsically tied to metabolism and virulence regulation.
Collapse
|
23
|
Beavers WN, Skaar EP. Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus. Pathog Dis 2016; 74:ftw060. [PMID: 27354296 DOI: 10.1093/femspd/ftw060] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a ubiquitous, versatile and dangerous pathogen. It colonizes over 30% of the human population, and is one of the leading causes of death by an infectious agent. During S. aureus colonization and invasion, leukocytes are recruited to the site of infection. To combat S. aureus, leukocytes generate an arsenal of reactive species including superoxide, hydrogen peroxide, nitric oxide and hypohalous acids that modify and inactivate cellular macromolecules, resulting in growth defects or death. When S. aureus colonization cannot be cleared by the immune system, antibiotic treatment is necessary and can be effective. Yet, this organism quickly gains resistance to each new antibiotic it encounters. Therefore, it is in the interest of human health to acquire a deeper understanding of how S. aureus evades killing by the immune system. Advances in this field will have implications for the design of future S. aureus treatments that complement and assist the host immune response. In that regard, this review focuses on how S. aureus avoids host-generated oxidative stress, and discusses the mechanisms used by S. aureus to survive oxidative damage including antioxidants, direct repair of damaged proteins, sensing oxidant stress and transcriptional changes. This review will elucidate areas for studies to identify and validate future antimicrobial targets.
Collapse
Affiliation(s)
- William N Beavers
- Department of Pathology, Microbiology and Immunology, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Medical Center North, Nashville, TN 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Medical Center North, Nashville, TN 37232, USA Tennessee Valley Healthcare System, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA
| |
Collapse
|
24
|
Abstract
Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction.
Collapse
|
25
|
Omics Approaches for the Study of Adaptive Immunity to Staphylococcus aureus and the Selection of Vaccine Candidates. Proteomes 2016; 4:proteomes4010011. [PMID: 28248221 PMCID: PMC5217363 DOI: 10.3390/proteomes4010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/05/2016] [Accepted: 03/01/2016] [Indexed: 01/20/2023] Open
Abstract
Staphylococcus aureus is a dangerous pathogen both in hospitals and in the community. Due to the crisis of antibiotic resistance, there is an urgent need for new strategies to combat S. aureus infections, such as vaccination. Increasing our knowledge about the mechanisms of protection will be key for the successful prevention or treatment of S. aureus invasion. Omics technologies generate a comprehensive picture of the physiological and pathophysiological processes within cells, tissues, organs, organisms and even populations. This review provides an overview of the contribution of genomics, transcriptomics, proteomics, metabolomics and immunoproteomics to the current understanding of S. aureus‑host interaction, with a focus on the adaptive immune response to the microorganism. While antibody responses during colonization and infection have been analyzed in detail using immunoproteomics, the full potential of omics technologies has not been tapped yet in terms of T-cells. Omics technologies promise to speed up vaccine development by enabling reverse vaccinology approaches. In consequence, omics technologies are powerful tools for deepening our understanding of the “superbug” S. aureus and for improving its control.
Collapse
|
26
|
Spahich NA, Vitko NP, Thurlow LR, Temple B, Richardson AR. Staphylococcus aureus lactate- and malate-quinone oxidoreductases contribute to nitric oxide resistance and virulence. Mol Microbiol 2016; 100:759-73. [PMID: 26851155 DOI: 10.1111/mmi.13347] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 12/27/2022]
Abstract
Staphylococcus aureus is a Gram-positive pathogen that resists many facets of innate immunity including nitric oxide (NO·). Staphylococcus aureus NO-resistance stems from its ability to evoke a metabolic state that circumvents the negative effects of reactive nitrogen species. The combination of l-lactate and peptides promotes S. aureus growth at moderate NO-levels, however, neither nutrient alone suffices. Here, we investigate the staphylococcal malate-quinone and l-lactate-quinone oxidoreductases (Mqo and Lqo), both of which are critical during NO-stress for the combined utilization of peptides and l-lactate. We address the specific contributions of Lqo-mediated l-lactate utilization and Mqo-dependent amino acid consumption during NO-stress. We show that Lqo conversion of l-lactate to pyruvate is required for the formation of ATP, an essential energy source for peptide utilization. Thus, both Lqo and Mqo are essential for growth under these conditions making them attractive candidates for targeted therapeutics. Accordingly, we exploited a modelled Mqo/Lqo structure to define the catalytic and substrate-binding residues.We also compare the S. aureus Mqo/Lqo enzymes to their close relatives throughout the staphylococci and explore the substrate specificities of each enzyme. This study provides the initial characterization of the mechanism of action and the immunometabolic roles for a newly defined staphylococcal enzyme family.
Collapse
Affiliation(s)
- Nicole A Spahich
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nicholas P Vitko
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lance R Thurlow
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brenda Temple
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anthony R Richardson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
27
|
Perera VR, Newton GL, Pogliano K. Bacillithiol: a key protective thiol in Staphylococcus aureus. Expert Rev Anti Infect Ther 2015; 13:1089-107. [PMID: 26184907 DOI: 10.1586/14787210.2015.1064309] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacillithiol is a low-molecular-weight thiol analogous to glutathione and is found in several Firmicutes, including Staphylococcus aureus. Since its discovery in 2009, bacillithiol has been a topic of interest because it has been found to contribute to resistance during oxidative stress and detoxification of electrophiles, such as the antibiotic fosfomycin, in S. aureus. The rapid increase in resistance of methicillin-resistant Staphylococcus aureus (MRSA) to available therapeutic agents is a great health concern, and many research efforts are focused on identifying new drugs and targets to combat this organism. This review describes the discovery of bacillithiol, studies that have elucidated the physiological roles of this molecule in S. aureus and other Bacilli, and the contribution of bacillithiol to S. aureus fitness during pathogenesis. Additionally, the bacillithiol biosynthesis pathway is evaluated as a novel drug target that can be utilized in combination with existing therapies to treat S. aureus infections.
Collapse
Affiliation(s)
- Varahenage R Perera
- Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, Natural Sciences Building 4113, La Jolla, CA 92093-0377, USA
| | | | | |
Collapse
|
28
|
Durand S, Braun F, Lioliou E, Romilly C, Helfer AC, Kuhn L, Quittot N, Nicolas P, Romby P, Condon C. A nitric oxide regulated small RNA controls expression of genes involved in redox homeostasis in Bacillus subtilis. PLoS Genet 2015; 11:e1004957. [PMID: 25643072 PMCID: PMC4409812 DOI: 10.1371/journal.pgen.1004957] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/15/2014] [Indexed: 11/18/2022] Open
Abstract
RsaE is the only known trans-acting small regulatory RNA (sRNA) besides the ubiquitous 6S RNA that is conserved between the human pathogen Staphylococcus aureus and the soil-dwelling Firmicute Bacillus subtilis. Although a number of RsaE targets are known in S. aureus, neither the environmental signals that lead to its expression nor its physiological role are known. Here we show that expression of the B. subtilis homolog of RsaE is regulated by the presence of nitric oxide (NO) in the cellular milieu. Control of expression by NO is dependent on the ResDE two-component system in B. subtilis and we determined that the same is true in S. aureus. Transcriptome and proteome analyses revealed that many genes with functions related to oxidative stress and oxidation-reduction reactions were up-regulated in a B. subtilis strain lacking this sRNA. We have thus renamed it RoxS. The prediction of RoxS-dependent mRNA targets also suggested a significant enrichment for mRNAs related to respiration and electron transfer. Among the potential direct mRNA targets, we have validated the ppnKB mRNA, encoding an NAD+/NADH kinase, both in vivo and in vitro. RoxS controls both translation initiation and the stability of this transcript, in the latter case via two independent pathways implicating RNase Y and RNase III. Furthermore, RNase Y intervenes at an additional level by processing the 5′ end of the RoxS sRNA removing about 20 nucleotides. Processing of RoxS allows it to interact more efficiently with a second target, the sucCD mRNA, encoding succinyl-CoA synthase, thus expanding the repertoire of targets recognized by this sRNA. Bacteria have evolved various strategies to continually monitor the redox state of the internal and external environments to prevent cell damage and/or to protect them from host defense mechanisms. These signals modify the expression of genes, allowing bacteria to adapt to altered redox environments and to maintain homeostasis. Studies in Enterobacteriaceae have shown that sRNAs play central roles in adaptation to oxidative stress. We show here that the conserved sRNA, RoxS is induced by the presence of nitric oxide (NO) in the medium, through the ResDE and SrrAB two-component systems of Bacillus subtilis and Staphylococcus aureus, respectively. B. subtilis RoxS regulates functions related to oxidation-reduction reactions and acts as an antisense RNA to control translation initiation and the degradation of ppnKB mRNA, encoding an NAD+/NADH kinase. Interestingly, RNase Y processes the 5′ end of the RoxS sRNA leading to a truncated sRNA that in turn interacts more efficiently with a second target, the sucCD mRNA, encoding succinyl-CoA synthase. Taken together this work shows that RoxS is part of a complex regulatory network that allows the cell to sense and respond to redox perturbations, and revealed a novel process that allows an expansion of the repertoire of sRNA targets.
Collapse
Affiliation(s)
- Sylvain Durand
- CNRS FRE 3630 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Frédérique Braun
- CNRS FRE 3630 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
| | - Efthimia Lioliou
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Cédric Romilly
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Anne-Catherine Helfer
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Laurianne Kuhn
- Plateforme Protéomique Esplanade, IBMC, Strasbourg, France
| | - Noé Quittot
- Mathématique Informatique et Génome, INRA UR1077, Jouy en Josas, France
| | - Pierre Nicolas
- Mathématique Informatique et Génome, INRA UR1077, Jouy en Josas, France
| | - Pascale Romby
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
- * E-mail: (CC); (PR)
| | - Ciarán Condon
- CNRS FRE 3630 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, Paris, France
- * E-mail: (CC); (PR)
| |
Collapse
|
29
|
Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases. J Biol Inorg Chem 2015; 20:403-33. [DOI: 10.1007/s00775-014-1234-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/14/2014] [Indexed: 02/07/2023]
|
30
|
Vermassen A, de la Foye A, Loux V, Talon R, Leroy S. Transcriptomic analysis of Staphylococcus xylosus in the presence of nitrate and nitrite in meat reveals its response to nitrosative stress. Front Microbiol 2014; 5:691. [PMID: 25566208 PMCID: PMC4266091 DOI: 10.3389/fmicb.2014.00691] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/22/2014] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus xylosus is one of the major starter cultures used for meat fermentation because of its crucial role in the reduction of nitrate to nitrite which contributes to color and flavor development. Despite longstanding use of these additives, their impact on the physiology of S. xylosus has not yet been explored. We present the first in situ global gene expression profile of S. xylosus in meat supplemented with nitrate and nitrite at the levels used in the meat industry. More than 600 genes of S. xylosus were differentially expressed at 24 or 72 h of incubation. They represent more than 20% of the total genes and let us to suppose that addition of nitrate and nitrite to meat leads to a global change in gene expression. This profile revealed that S. xylosus is subject to nitrosative stress caused by reactive nitrogen species (RNS) generated from nitrate and nitrite. To overcome this stress, S. xylosus has developed several oxidative stress resistance mechanisms, such as modulation of the expression of several genes involved in iron homeostasis and in antioxidant defense. Most of which belong to the Fur and PerR regulons, respectively. S. xylosus has also counteracted this stress by developing DNA and protein repair. Furthermore, it has adapted its metabolic response—carbon and nitrogen metabolism, energy production and cell wall biogenesis—to the alterations produced by nitrosative stress.
Collapse
Affiliation(s)
- Aurore Vermassen
- Institut National de la Recherche Agronomique, UR454 Microbiologie Saint-Genès-Champanelle, France
| | - Anne de la Foye
- Institut National de la Recherche Agronomique, Plateforme d'Exploration du Métabolisme Saint-Genès-Champanelle, France
| | - Valentin Loux
- Institut National de la Recherche Agronomique, UR1077 Mathématique, Informatique et Génome Jouy-en-Josas, France
| | - Régine Talon
- Institut National de la Recherche Agronomique, UR454 Microbiologie Saint-Genès-Champanelle, France
| | - Sabine Leroy
- Institut National de la Recherche Agronomique, UR454 Microbiologie Saint-Genès-Champanelle, France
| |
Collapse
|
31
|
Luebke JL, Shen J, Bruce KE, Kehl-Fie TE, Peng H, Skaar EP, Giedroc DP. The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in Staphylococcus aureus. Mol Microbiol 2014; 94:1343-60. [PMID: 25318663 DOI: 10.1111/mmi.12835] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 12/20/2022]
Abstract
How cells regulate the bioavailability of utilizable sulfur while mitigating the effects of hydrogen sulfide toxicity is poorly understood. CstR [Copper-sensing operon repressor (CsoR)-like sulfurtransferase repressor] represses the expression of the cst operon encoding a putative sulfide oxidation system in Staphylococcus aureus. Here, we show that the cst operon is strongly and transiently induced by cellular sulfide stress in an acute phase and specific response and that cst-encoded genes are necessary to mitigate the effects of sulfide toxicity. Growth defects are most pronounced when S. aureus is cultured in chemically defined media with thiosulfate (TS) as a sole sulfur source, but are also apparent when cystine is used or in rich media. Under TS growth conditions, cells fail to grow as a result of either unregulated expression of the cst operon in a ΔcstR strain or transformation with a non-inducible C31A/C60A CstR that blocks cst induction. This suggests that the cst operon contributes to cellular sulfide homeostasis. Tandem high-resolution mass spectrometry reveals derivatization of CstR by both inorganic tetrasulfide and an organic persulfide, glutathione persulfide, to yield a mixture of Cys31-Cys60' interprotomer cross-links, including di-, tri- and tetrasulfide bonds, which allosterically inhibit cst operator DNA binding by CstR.
Collapse
Affiliation(s)
- Justin L Luebke
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
33
|
Bäsell K, Otto A, Junker S, Zühlke D, Rappen GM, Schmidt S, Hentschker C, Macek B, Ohlsen K, Hecker M, Becher D. The phosphoproteome and its physiological dynamics in Staphylococcus aureus. Int J Med Microbiol 2014; 304:121-32. [DOI: 10.1016/j.ijmm.2013.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
|
35
|
Fuchs S, Zühlke D, Pané-Farré J, Kusch H, Wolf C, Reiß S, Binh LTN, Albrecht D, Riedel K, Hecker M, Engelmann S. Aureolib - a proteome signature library: towards an understanding of staphylococcus aureus pathophysiology. PLoS One 2013; 8:e70669. [PMID: 23967085 PMCID: PMC3742771 DOI: 10.1371/journal.pone.0070669] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/21/2013] [Indexed: 11/19/2022] Open
Abstract
Gel-based proteomics is a powerful approach to study the physiology of Staphylococcus aureus under various growth restricting conditions. We analyzed 679 protein spots from a reference 2-dimensional gel of cytosolic proteins of S. aureus COL by mass spectrometry resulting in 521 different proteins. 4,692 time dependent protein synthesis profiles were generated by exposing S. aureus to nine infection-related stress and starvation stimuli (H2O2, diamide, paraquat, NO, fermentation, nitrate respiration, heat shock, puromycin, mupirocin). These expression profiles are stored in an online resource called Aureolib (http://www.aureolib.de). Moreover, information on target genes of 75 regulators and regulatory elements were included in the database. Cross-comparisons of this extensive data collection of protein synthesis profiles using the tools implemented in Aureolib lead to the identification of stress and starvation specific marker proteins. Altogether, 226 protein synthesis profiles showed induction ratios of 2.5-fold or higher under at least one of the tested conditions with 157 protein synthesis profiles specifically induced in response to a single stimulus. The respective proteins might serve as marker proteins for the corresponding stimulus. By contrast, proteins whose synthesis was increased or repressed in response to more than four stimuli are rather exceptional. The only protein that was induced by six stimuli is the universal stress protein SACOL1759. Most strikingly, cluster analyses of synthesis profiles of proteins differentially synthesized under at least one condition revealed only in rare cases a grouping that correlated with known regulon structures. The most prominent examples are the GapR, Rex, and CtsR regulon. In contrast, protein synthesis profiles of proteins belonging to the CodY and σ(B) regulon are widely distributed. In summary, Aureolib is by far the most comprehensive protein expression database for S. aureus and provides an essential tool to decipher more complex adaptation processes in S. aureus during host pathogen interaction.
Collapse
Affiliation(s)
- Stephan Fuchs
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Daniela Zühlke
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Jan Pané-Farré
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Harald Kusch
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Carmen Wolf
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Swantje Reiß
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Le Thi Nguyen Binh
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Dirk Albrecht
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Katharina Riedel
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Susanne Engelmann
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| |
Collapse
|
36
|
Kabisch J, Pratzka I, Meyer H, Albrecht D, Lalk M, Ehrenreich A, Schweder T. Metabolic engineering of Bacillus subtilis for growth on overflow metabolites. Microb Cell Fact 2013; 12:72. [PMID: 23886069 PMCID: PMC3728045 DOI: 10.1186/1475-2859-12-72] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/08/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The genome of the important industrial host Bacillus subtilis does not encode the glyoxylate shunt, which is necessary to utilize overflow metabolites, like acetate or acetoin, as carbon source. In this study, the operon encoding the isocitrate lyase (aceB) and malate synthase (aceA) from Bacillus licheniformis was transferred into the chromosome of B. subtilis. The resulting strain was examined in respect to growth characteristics and qualities as an expression host. RESULTS Our results show that the modified B. subtilis strain is able to grow on the C2 compound acetate. A combined transcript, protein and metabolite analysis indicated a functional expression of the native glyoxylate shunt of B. lichenifomis in B. subtilis. This metabolically engineered strain revealed better growth behavior and an improved activity of an acetoin-controlled expression system. CONCLUSIONS The glyoxylate shunt of B. licheniformis can be functionally transferred to B. subtilis. This novel strain offers improved properties for industrial applications, such as growth on additional carbon sources and a greater robustness towards excess glucose feeding.
Collapse
Affiliation(s)
- Johannes Kabisch
- Pharmaceutical Biotechnology, Institute of Pharmacy, Ernst-Moritz-Arndt-Universität, Felix-Hausdorff-Str, 3, D-17487 Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Meyer H, Weidmann H, Lalk M. Methodological approaches to help unravel the intracellular metabolome of Bacillus subtilis. Microb Cell Fact 2013; 12:69. [PMID: 23844891 PMCID: PMC3722095 DOI: 10.1186/1475-2859-12-69] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 07/01/2013] [Indexed: 11/16/2022] Open
Abstract
Background Bacillus subtilis (B. subtilis) has become widely accepted as a model organism for studies on Gram-positive bacteria. A deeper insight into the physiology of this prokaryote requires advanced studies of its metabolism. To provide a reliable basis for metabolome investigations, a validated experimental protocol is needed since the quality of the analytical sample and the final data are strongly affected by the sampling steps. To ensure that the sample analyzed precisely reflects the biological condition of interest, outside biases have to be avoided during sample preparation. Results Procedures for sampling, quenching, extraction of metabolites, cell disruption, as well as metabolite leakage were tested and optimized for B. subtilis. In particular the energy status of the bacterial cell, characterized by the adenylate energy charge, was used to evaluate sampling accuracy. Moreover, the results of the present study demonstrate that the cultivation medium can affect the efficiency of the developed sampling procedure. Conclusion The final workflow presented here allows for the reproducible and reliable generation of physiological data. The method with the highest qualitative and quantitative metabolite yield was chosen, and when used together with complementary bioanalytical methods (i.e., GC-MS, LC-MS and 1H-NMR) provides a solid basis to gather information on the metabolome of B. subtilis.
Collapse
Affiliation(s)
- Hanna Meyer
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | | | | |
Collapse
|
38
|
Pöther DC, Gierok P, Harms M, Mostertz J, Hochgräfe F, Antelmann H, Hamilton CJ, Borovok I, Lalk M, Aharonowitz Y, Hecker M. Distribution and infection-related functions of bacillithiol in Staphylococcus aureus. Int J Med Microbiol 2013; 303:114-23. [PMID: 23517692 DOI: 10.1016/j.ijmm.2013.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/24/2013] [Accepted: 01/27/2013] [Indexed: 12/17/2022] Open
Abstract
Bacillithiol (Cys-GlcN-malate, BSH) serves as a major low molecular weight thiol in low GC Gram-positive bacteria including Bacillus species and a variety of Staphylococcus aureus strains. These bacteria do not produce glutathione (GSH). In this study, HPLC analyses were used to determine BSH levels in different S. aureus strains. Furthermore, the role of BSH in the resistance against oxidants and antibiotics and its function in virulence was investigated. We and others (Newton, G.L., Fahey, R.C., Rawat, M., 2012. Microbiology 158, 1117-1126) found that BSH is not produced by members of the S. aureus NCTC8325 lineage, such as strains 8325-4 and SH1000. Using bioinformatics we show that the BSH-biosynthetic gene bshC is disrupted by an 8-bp duplication in S. aureus NCTC8325. The functional bshC-gene from BSH-producing S. aureus Newman (NWMN_1087) was expressed in S. aureus 8325-4 to reconstitute BSH-synthesis. Comparison of the BSH-producing and BSH-minus strains revealed higher resistance of the BSH-producing strain against the antibiotic fosfomycin and the oxidant hypochlorite but not against hydrogen peroxide or diamide. In addition, a higher bacterial load of the BSH-producing strain was detected in human upper-airway epithelial cells and murine macrophages. This indicates a potential role of BSH in protection of S. aureus during infection.
Collapse
Affiliation(s)
- Dierk-Christoph Pöther
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, 17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Thurlow LR, Joshi GS, Clark JR, Spontak JS, Neely CJ, Maile R, Richardson AR. Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe 2013; 13:100-7. [PMID: 23332159 DOI: 10.1016/j.chom.2012.11.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/20/2012] [Accepted: 11/26/2012] [Indexed: 12/29/2022]
Abstract
The USA300 community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) lineage causes the majority of skin and soft tissue infections (SSTIs) and is highly associated with the carriage of the arginine catabolic mobile element (ACME). However, the contribution of ACME to USA300's success in SSTIs is not completely understood. We show that the constitutive ACME-encoded arginine-deiminase system (Arc) allows USA300 to thrive in acidic environments that mimic human skin. Consequently, the ACME-Arc system drives excessive production of host polyamines, compounds uniquely toxic to S. aureus. To mitigate this, ACME also encodes SpeG, a polyamine-resistance enzyme that is essential for combating excess host polyamines in a murine SSTI model. Inhibiting host polyamine production not only restored ΔspeG persistence within infected wounds but also severely altered the host healing process, implying that polyamines play an integral role in coordinating the wound-healing response. Together, these data underscore the functional modularity of ACME and its contribution to the success of USA300 CA-MRSA.
Collapse
Affiliation(s)
- Lance R Thurlow
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
van Sorge NM, Beasley FC, Gusarov I, Gonzalez DJ, von Köckritz-Blickwede M, Anik S, Borkowski AW, Dorrestein PC, Nudler E, Nizet V. Methicillin-resistant Staphylococcus aureus bacterial nitric-oxide synthase affects antibiotic sensitivity and skin abscess development. J Biol Chem 2013; 288:6417-26. [PMID: 23322784 DOI: 10.1074/jbc.m112.448738] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus infections present an enormous global health concern complicated by an alarming increase in antibiotic resistance. S. aureus is among the few bacterial species that express nitric-oxide synthase (bNOS) and thus can catalyze NO production from L-arginine. Here we generate an isogenic bNOS-deficient mutant in the epidemic community-acquired methicillin-resistant S. aureus (MRSA) USA300 clone to study its contribution to virulence and antibiotic susceptibility. Loss of bNOS increased MRSA susceptibility to reactive oxygen species and host cathelicidin antimicrobial peptides, which correlated with increased MRSA killing by human neutrophils and within neutrophil extracellular traps. bNOS also promoted resistance to the pharmaceutical antibiotics that act on the cell envelope such as vancomycin and daptomycin. Surprisingly, bNOS-deficient strains gained resistance to aminoglycosides, suggesting that the role of bNOS in antibiotic susceptibility is more complex than previously observed in Bacillus species. Finally, the MRSA bNOS mutant showed reduced virulence with decreased survival and smaller abscess generation in a mouse subcutaneous infection model. Together, these data indicate that bNOS contributes to MRSA innate immune and antibiotic resistance phenotypes. Future development of specific bNOS inhibitors could be an attractive option to simultaneously reduce MRSA pathology and enhance its susceptibility to commonly used antibiotics.
Collapse
Affiliation(s)
- Nina M van Sorge
- Departments of Pediatrics, University of California, San Diego, California 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
CcpA-independent glucose regulation of lactate dehydrogenase 1 in Staphylococcus aureus. PLoS One 2013; 8:e54293. [PMID: 23342123 PMCID: PMC3544828 DOI: 10.1371/journal.pone.0054293] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/10/2012] [Indexed: 02/01/2023] Open
Abstract
Lactate Dehydrogenase 1 (Ldh1) is a key enzyme involved in Staphylococcus aureus NO·-resistance. Full ldh1-induction requires the presence of glucose, and mutants lacking the Carbon-Catabolite Protein (CcpA) exhibit decreased ldh1 transcription and diminished Ldh1 activity. The redox-regulator Rex represses ldh1 directly by binding to Rex-sites within the ldh1 promoter (Pldh1). In the absence of Rex, neither glucose nor CcpA affect ldh1 expression implying that glucose/CcpA-mediated activation requires Rex activity. Rex-mediated repression of ldh1 depends on cellular redox status and is maximal when NADH levels are low. However, compared to WT cells, the ΔccpA mutant exhibited impaired redox balance with relatively high NADH levels, yet ldh1 was still poorly expressed. Furthermore, CcpA did not drastically alter Rex transcript levels, nor did glucose or CcpA affect the expression of other Rex-regulated genes indicating that the glucose/CcpA effect is specific for Pldh1. A putative catabolite response element (CRE) is located ∼30 bp upstream of the promoter-distal Rex-binding site in Pldh1. However, CcpA had no affinity for Pldh1in vitro and a genomic mutation of CRE upstream of Pldh1 in S. aureus had no affect on Ldh1 expression in vivo. In contrast to WT, ΔccpA S. aureus preferentially consumes non-glycolytic carbon sources. However when grown in defined medium with glucose as the primary carbon source, ΔccpA mutants express high levels of Ldh1 compared to growth in media devoid of glucose. Thus, the actual consumption of glucose stimulates Ldh1 expression rather than direct CcpA interaction at Pldh1.
Collapse
|
42
|
Hall JW, Ji Y. Sensing and Adapting to Anaerobic Conditions by Staphylococcus aureus. ADVANCES IN APPLIED MICROBIOLOGY 2013; 84:1-25. [PMID: 23763757 DOI: 10.1016/b978-0-12-407673-0.00001-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A highly adaptive commensal organism, Staphylococcus aureus, possesses an array of genes that allow the bacterium to survive and grow in a wide variety of niches. Several of these niches are known to be or become anaerobic during the course of an infection; additionally, biofilms that develop, commonly on implanted medical devices, become anaerobic. The metabolic capability of S. aureus provides the organism with the essential nutrients needed to continue to grow, divide, and thwart the host immune system in the presence or absence of oxygen. In order to utilize the ATP-producing pathways and maintain cellular health S. aureus has evolved a series of regulatory systems that regulate these ATP-producing pathways. In this review, we discuss the protein signaling systems that sense, indirectly and directly, anaerobic conditions, their sensory mechanisms and signals, and outline the genes that are altered due to the absence of oxygen and the subsequent response by the bacterial cell. The switch from aerobic to anaerobic growth in S. aureus is complex and highly regulated, with some metabolic pathways regulated by multiple regulatory systems to ensure maximal utilization of each pathway and substrate.
Collapse
Affiliation(s)
- Jeffrey W Hall
- Department of Veterinary and Biomedical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, Minneapolis, Minnesota, USA
| | | |
Collapse
|
43
|
Abstract
SIGNIFICANCE In bacteria, transcriptional responses to reactive oxygen and nitrogen species (ROS and RNS, respectively) are typically coordinated by regulatory proteins that employ metal centers or reactive thiols to detect the presence of those species. This review is focused on the structure, function and mechanism of three regulatory proteins (Fur, PerR, and NorR) that contain non-heme iron and regulate the transcription of target genes in response to ROS and/or RNS. The targets for regulation include genes encoding detoxification activities, and genes encoding proteins involved in the repair of the damage caused by ROS and RNS. RECENT ADVANCES Three-dimensional structures of several Fur proteins and of PerR are revealing important details of the metal binding sites of these proteins, showing a surprising degree of structural diversity in the Fur family. CRITICAL ISSUES Discussion of the interaction of Fur with ROS and RNS will illustrate the difficulty that sometimes exists in distinguishing between true physiological responses and adventitious reactions of a regulatory protein with a reactive ligand. FUTURE DIRECTIONS Consideration of these three sensor proteins illuminates some of the key questions that remain unanswered, for example, the nature of the biochemical determinants that dictate the sensitivity and specificity of the interaction of the sensor proteins with their cognate signals.
Collapse
Affiliation(s)
- Stephen Spiro
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75080, USA.
| | | |
Collapse
|
44
|
Muntel J, Hecker M, Becher D. An exclusion list based label-free proteome quantification approach using an LTQ Orbitrap. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:701-709. [PMID: 22328225 DOI: 10.1002/rcm.6147] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RATIONALE Label-based mass spectrometry is a powerful tool for large-scale protein identification and quantification. However, it requires the chemical or metabolic incorporation of the labeled compound(s) which can be difficult to attain, e.g. for non-cultivable organisms or scarce sample, such as biopsies. Therefore, we set out to develop and validate an efficient label-free liquid chromatography/tandem mass spectrometry (LC/MS/MS) workflow based on optimized instrument settings and incremental exclusion lists. METHODS To increase the number of quantified peptides an incremental exclusion list was incorporated along with optimized instrument settings for the used LTQ Orbitrap. As a proof of concept, label-free quantification data from this optimized approach were compared to the results of control measurements without exclusion lists and of an in vivo metabolic labeling GeLC/MS/MS experiment. The data were drawn from Staphylococcus aureus whole cell lysates of non-stressed and nitric oxide (NO)-stressed cells. RESULTS Compared to MS analysis without exclusion lists the new approach resulted in an increased number of identified peptides, enabling label-free quantification of more than 990 S. aureus proteins. With respect to the number of quantified proteins and differences in protein levels between the control and NO-treated samples the results of the new method were consistent with those of the GeLC/MS/MS experiment. CONCLUSIONS The application of exclusion lists and optimized instrument settings in LC/MS/MS analysis significantly enhances the sensitivity and resolution of label-free protein identification and quantification. Therefore, the new workflow is a powerful alternative to label-based quantification methods.
Collapse
Affiliation(s)
- Jan Muntel
- Institute for Microbiology, Ernst Moritz Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489, Greifswald, Germany
| | | | | |
Collapse
|
45
|
Thurlow LR, Joshi GS, Richardson AR. Virulence strategies of the dominant USA300 lineage of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). ACTA ACUST UNITED AC 2012; 65:5-22. [PMID: 22309135 DOI: 10.1111/j.1574-695x.2012.00937.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 11/28/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious threat to worldwide health. Historically, MRSA clones have strictly been associated with hospital settings, and most hospital-associated MRSA (HA-MRSA) disease resulted from a limited number of virulent clones. Recently, MRSA has spread into the community causing disease in otherwise healthy people with no discernible contact with healthcare environments. These community-associated MRSA clones (CA-MRSA) are phylogenetically distinct from traditional HA-MRSA clones, and CA-MRSA strains seem to exhibit hypervirulence and more efficient host : host transmission. Consequently, CA-MRSA clones belonging to the USA300 lineage have become dominant sources of MRSA infections in North America. The rise of this successful USA300 lineage represents an important step in the evolution of emerging pathogens and a great deal of effort has been exerted to understand how these clones evolved. Here, we review much of the recent literature aimed at illuminating the source of USA300 success and broadly categorize these findings into three main categories: newly acquired virulence genes, altered expression of common virulence determinants and alterations in protein sequence that increase fitness. We argue that none of these evolutionary events alone account for the success of USA300, but rather their combination may be responsible for the rise and spread of CA-MRSA.
Collapse
Affiliation(s)
- Lance R Thurlow
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
46
|
Nitric oxide stress resistance in Porphyromonas gingivalis is mediated by a putative hydroxylamine reductase. J Bacteriol 2012; 194:1582-92. [PMID: 22247513 DOI: 10.1128/jb.06457-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Porphyromonas gingivalis, the causative agent of adult periodontitis, must maintain nitric oxide (NO) homeostasis and surmount nitric oxide stress from host immune responses or other oral bacteria to survive in the periodontal pocket. To determine the involvement of a putative hydroxylamine reductase (PG0893) and a putative nitrite reductase-related protein (PG2213) in P. gingivalis W83 NO stress resistance, genes encoding those proteins were inactivated by allelic exchange mutagenesis. The isogenic mutants P. gingivalis FLL455 (PG0893ermF) and FLL456 (PG2213ermF) were black pigmented and showed growth rates and gingipain and hemolytic activities similar to those of the wild-type strain. P. gingivalis FLL455 was more sensitive to NO than the wild type. Complementation of P. gingivalis FLL455 with the wild-type gene restored the level of NO sensitivity to a level similar to that of the parent strain. P. gingivalis FLL455 and FLL456 showed sensitivity to oxidative stress similar to that of the wild-type strain. DNA microarray analysis showed that PG0893 and PG2213 were upregulated 1.4- and 2-fold, respectively, in cells exposed to NO. In addition, 178 genes were upregulated and 201 genes downregulated more than 2-fold. The majority of these modulated genes were hypothetical or of unknown function. PG1181, predicted to encode a transcriptional regulator, was upregulated 76-fold. Transcriptome in silico analysis of the microarray data showed major metabolomic variations in key pathways. Collectively, these findings indicate that PG0893 and several other genes may play an important role in P. gingivalis NO stress resistance.
Collapse
|
47
|
Expression of Four Methionine Sulfoxide Reductases in Staphylococcus aureus. Int J Microbiol 2012; 2012:719594. [PMID: 22272204 PMCID: PMC3261475 DOI: 10.1155/2012/719594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 09/21/2011] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus possesses three MsrA enzymes (MsrA1, MsrA2, MsrA3) that reduce the S-epimer of methionine sulfoxide (MetO) and an MsrB enzyme that reduces R-MetO. The four msr genes are expressed from three different promoters. The msrA1/msrB genes are coexpressed. To determine the expression pattern of msr genes, three independent reporter strains were constructed where msr promoter was cloned in front of a promoterless lacZ and the resulting construct was integrated in the chromosome. Using these strains, it was determined that the msrA1/B expression is significantly higher in S. aureus compared to msrA2 or msrA3. Expression of msrA1/B was highest during stationary phase growth, but the expression of msrA2 and msrA3 was highest during the early to midexponential growth phase. Expression of msrA1/B was induced by oxacillin and the expression of msrA3 was upregulated by salt. Expression of msrA2 remained unchanged under all tested conditions.
Collapse
|
48
|
Fuller JR, Vitko NP, Perkowski EF, Scott E, Khatri D, Spontak JS, Thurlow LR, Richardson AR. Identification of a lactate-quinone oxidoreductase in Staphylococcus aureus that is essential for virulence. Front Cell Infect Microbiol 2011; 1:19. [PMID: 22919585 PMCID: PMC3417369 DOI: 10.3389/fcimb.2011.00019] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 12/05/2011] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen commonly infecting nearly every host tissue. The ability of S. aureus to resist innate immunity is critical to its success as a pathogen, including its propensity to grow in the presence of host nitric oxide (NO·). Upon exogenous NO· exposure, S. aureus immediately excretes copious amounts of L-lactate to maintain redox balance. However, after prolonged NO·-exposure, S. aureus reassimilates L-lactate specifically and in this work, we identify the enzyme responsible for this L-lactate-consumption as a L-lactate-quinone oxidoreductase (Lqo, SACOL2623). Originally annotated as Mqo2 and thought to oxidize malate, we show that this enzyme exhibits no affinity for malate but reacts specifically with L-lactate (KM = ∼330 μM). In addition to its requirement for reassimilation of L-lactate during NO·-stress, Lqo is also critical to respiratory growth on L-lactate as a sole carbon source. Moreover, Δlqo mutants exhibit attenuation in a murine model of sepsis, particularly in their ability to cause myocarditis. Interestingly, this cardiac-specific attenuation is completely abrogated in mice unable to synthesize inflammatory NO· (iNOS−/−). We demonstrate that S. aureus NO·-resistance is highly dependent on the availability of a glycolytic carbon sources. However, S. aureus can utilize the combination of peptides and L-lactate as carbon sources during NO·-stress in an Lqo-dependent fashion. Murine cardiac tissue has markedly high levels of L-lactate in comparison to renal or hepatic tissue consistent with the NO·-dependent requirement for Lqo in S. aureus myocarditis. Thus, Lqo provides S. aureus with yet another means of replicating in the presence of host NO·.
Collapse
Affiliation(s)
- James R Fuller
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Richardson AR, Payne EC, Younger N, Karlinsey JE, Thomas VC, Becker LA, Navarre WW, Castor ME, Libby SJ, Fang FC. Multiple targets of nitric oxide in the tricarboxylic acid cycle of Salmonella enterica serovar typhimurium. Cell Host Microbe 2011; 10:33-43. [PMID: 21767810 DOI: 10.1016/j.chom.2011.06.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/06/2011] [Accepted: 06/15/2011] [Indexed: 12/22/2022]
Abstract
Host nitric oxide (NO⋅) production is important for controlling intracellular bacterial pathogens, including Salmonella enterica serovar Typhimurium, but the underlying mechanisms are incompletely understood. S. Typhmurium 14028s is prototrophic for all amino acids but cannot synthesize methionine (M) or lysine (K) during nitrosative stress. Here, we show that NO⋅-induced MK auxotrophy results from reduced succinyl-CoA availability as a consequence of NO⋅ targeting of lipoamide-dependent lipoamide dehydrogenase (LpdA) activity. LpdA is an essential component of the pyruvate and α-ketoglutarate dehydrogenase complexes. Additional effects of NO⋅ on gene regulation prevent compensatory pathways of succinyl-CoA production. Microarray analysis indicates that over 50% of the transcriptional response of S. Typhimurium to nitrosative stress is attributable to LpdA inhibition. Bacterial methionine transport is essential for virulence in NO⋅-producing mice, demonstrating that NO⋅-induced MK auxotrophy occurs in vivo. These observations underscore the importance of metabolic targets for antimicrobial actions of NO⋅.
Collapse
Affiliation(s)
- Anthony R Richardson
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Treece E, Pinkham A, Kim T. Aminoguanidine down-regulates the expression of mreB-like protein in Bacillus subtilis. Curr Microbiol 2011; 64:112-7. [PMID: 22048160 DOI: 10.1007/s00284-011-0039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
Nitric oxide synthase (NOS), the enzyme responsible for the production of endogenous nitric oxide from arginine, has been recently discovered in a number of Gram-positive bacteria. While bacterial NOS has been implicated in mediating nitrosative stress, much remains unknown about the functional role of endogenous nitric oxide in bacteria. Using the known NOS inhibitor aminoguanidine, we examined changes in the protein expression profile using two-dimensional gel electrophoresis. Treatment with aminoguanidine induced several changes in protein expression in Bacillus subtilis. In particular, mreB-like protein (Mbl) was fully down-regulated in the aminoguanidine-treated samples. The expression of Mbl was also examined by reverse transcriptase-polymerase chain reaction and Mbl was found to be fully down-regulated at the transcriptional level as well. Given the role that Mbl plays in the maintenance of cytoskeletal structure, it appears that bacterial NOS may participate in specific biosynthetic pathways with ramifications toward the regulation of antibiotic resistance.
Collapse
Affiliation(s)
- Erin Treece
- Department of Chemistry, Rochester Institute of Technology, Rochester, NY, USA
| | | | | |
Collapse
|