1
|
Bakhti S, Ahmadi MH, Owlia P. Inducing programmed cell death trough MazEF system to combat Staphylococcus aureus: A non-antibiotic treatment candidate. PLoS One 2024; 19:e0314867. [PMID: 39637174 PMCID: PMC11620692 DOI: 10.1371/journal.pone.0314867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
The aim of the present study was to evaluate the role of extracellular death factor (EDF) derived from Escherichia coli in the induction of programmed cell death (PCD) in methicillin-resistant and -susceptible Staphylococcus aureus (MRSA and MSSA). The confirmation of bacterial strains as well as the minimum inhibitory concentration (MIC) test were performed according to CLSI, 2022. The extraction and efficacy determination of EDF as well as the CFU assessment were done. The expression of mazE and mazF gens in different conditions was evaluated by Real-time PCR. The likely formation of persister cells from MRSA and MSSA, and the possible synthesis of EDF in old cultures of these pathogens was evaluated, as well. The combination of EDF of two E. coli strains and sub-MIC rifampin reduced the CFUs of MRSA and MSSA strains in mid-logarithmic growth phase while increased the expression of mazF several times more than mazE gene. The expression of these genes in different conditions were unlike. EDF was produced in the old cultures of MRSA and MSSA. The supernatant of E. coli 25922 was more powerful than the clinical strain ones to decrease the CFUs of the MRSA and MSSA. The EDF derived from E. coli in combination with sub-MIC rifampin could induce PCD in MRSA and MSSA through activation of the MazEF system. This phenomenon could be exploited as a non-antibiotic treatment candidate to combat the infections caused by the antibiotic-resistant pathogens. However, more studies should be performed in this regard.
Collapse
Affiliation(s)
- Shahriar Bakhti
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Parviz Owlia
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
2
|
Moll I, Engelberg-Kulka H. Escherichia coli Stress, Multi-cellularity, and the Generation of the Quorum Sensing Peptide EDF. ARCHIVES OF MOLECULAR BIOLOGY AND GENETICS 2022; 1:8-11. [PMID: 39639996 PMCID: PMC7616896 DOI: 10.33696/genetics.1.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Bacterial communication via quorum sensing (QS) molecules, as well as toxin-antitoxin (TA) gene modules located on bacterial chromosomes are well-studied mechanisms. Escherichia coli mazEF is a stress-induced TA system mediating cell death requiring a QS extracellular death factor (EDF), the pentapeptide NNWNN. MazF is an endoribonuclease specific for ACA sites. During adverse conditions, the activated MazF generates a stress induced translation machinery, composed of MazF-processed mRNAs and selective ribosomes that specifically translate these processed mRNAs. Moreover, we identified the molecular mechanism underlying the formation of EDF from the zwf mRNA that involves distinct steps comprising the activity of MazF, the trans-translation system as well as the protease ClpPX. Bacterial trans-translation is generally known as a quality control process that rescues stalled translation complexes at the 3'-terminus of non-stop mRNAs. Our results indicate that trans-translation has a similar role in EDF generation from zwf mRNA. However, our data reveal that the trans-translation system may also provide a regulatory mechanism to attenuate EDF generation in the single cells. Thereby, the required threshold of EDF molecules is only achieved by the entire bacterial population, as expected for a genuine QS process.
Collapse
Affiliation(s)
- Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter (VBC), Vienna, Austria
| | - Hanna Engelberg-Kulka
- Departmen of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Hadassah Medical School, Ein Karem Jerusalem, Israel
| |
Collapse
|
3
|
Wadie B, Abdel-Fattah MA, Yousef A, Mouftah SF, Elhadidy M, Salem TZ. In Silico Characterization of Toxin-Antitoxin Systems in Campylobacter Isolates Recovered from Food Sources and Sporadic Human Illness. Genes (Basel) 2021; 12:genes12010072. [PMID: 33430508 PMCID: PMC7826846 DOI: 10.3390/genes12010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
Campylobacter spp. represents the most common cause of gastroenteritis worldwide with the potential to cause serious sequelae. The ability of Campylobacter to survive stressful environmental conditions has been directly linked with food-borne illness. Toxin-antitoxin (TA) modules play an important role as defense systems against antimicrobial agents and are considered an invaluable strategy harnessed by bacterial pathogens to survive in stressful environments. Although TA modules have been extensively studied in model organisms such as Escherichia coli K12, the TA landscape in Campylobacter remains largely unexplored. Therefore, in this study, a comprehensive in silico screen of 111 Campylobacter (90 C.
jejuni and 21 C.
coli) isolates recovered from different food and clinical sources was performed. We identified 10 type II TA systems belonging to four TA families predicted in Campylobacter genomes. Furthermore, there was a significant association between the clonal population structure and distribution of TA modules; more specifically, most (12/13) of the Campylobacter isolates belonging to ST-21 isolates possess HicB-HicA TA modules. Finally, we observed a high degree of shared synteny among isolates bearing certain TA systems or even coexisting pairs of TA systems. Collectively, these findings provide useful insights about the distribution of TA modules in a heterogeneous pool of Campylobacter isolates from different sources, thus developing a better understanding regarding the mechanisms by which these pathogens survive stressful environmental conditions, which will further aid in the future designing of more targeted antimicrobials.
Collapse
Affiliation(s)
- Bishoy Wadie
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt; (B.W.); (A.Y.); (S.F.M.)
| | - Mohamed A. Abdel-Fattah
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Alshymaa Yousef
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt; (B.W.); (A.Y.); (S.F.M.)
| | - Shaimaa F. Mouftah
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt; (B.W.); (A.Y.); (S.F.M.)
| | - Mohamed Elhadidy
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt; (B.W.); (A.Y.); (S.F.M.)
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (M.E.); (T.Z.S.); Tel.: +20-1220786861 (M.E.); +20-1014114122 (T.Z.S.)
| | - Tamer Z. Salem
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt; (B.W.); (A.Y.); (S.F.M.)
- Department of Microbial Genetics, AGERI, ARC, Giza 12619, Egypt
- Correspondence: (M.E.); (T.Z.S.); Tel.: +20-1220786861 (M.E.); +20-1014114122 (T.Z.S.)
| |
Collapse
|
4
|
Abstract
The current TB treatment regimen involves a combination of drugs administered for an extended duration that could last for 6 months to 2 years. This could lead to noncompliance and the emergence of newer drug resistance strains. The worldwide increase in the frequency of multidrug-resistant and extensively drug-resistant cases of tuberculosis is mainly due to therapeutic noncompliance associated with a lengthy treatment regimen. Depending on the drug susceptibility profile, the treatment duration can extend from 6 months to 2 years. This protracted regimen is attributed to a supposedly nonreplicating and metabolically inert subset of the Mycobacterium tuberculosis population, called “persisters.” The mechanism underlying stochastic generation and enrichment of persisters is not fully known. We have previously reported that the utilization of host cholesterol is essential for mycobacterial persistence. In this study, we have demonstrated that cholesterol-induced activation of a RNase toxin (VapC12) inhibits translation by targeting proT tRNA in M. tuberculosis. This results in cholesterol-specific growth modulation that increases the frequency of generation of the persisters in a heterogeneous M. tuberculosis population. Also, a null mutant strain of this toxin (ΔvapC12) demonstrated an enhanced growth phenotype in a guinea pig model of M. tuberculosis infection, depicting its role in disease persistence. Thus, we have identified a novel strategy through which cholesterol-specific activation of a toxin-antitoxin module in M. tuberculosis enhances persister formation during infection. The current findings provide an opportunity to target persisters, a new paradigm facilitating tuberculosis drug development. IMPORTANCE The current TB treatment regimen involves a combination of drugs administered for an extended duration that could last for 6 months to 2 years. This could lead to noncompliance and the emergence of newer drug resistance strains. It is widely perceived that the major culprits are the so-called nonreplicating and metabolically inactive “persister” bacteria. The importance of cholesterol utilization during the persistence stage of M. tuberculosis infection and its potential role in the generation of persisters is very intriguing. We explored the mechanism involved in the cholesterol-mediated generation of persisters in mycobacteria. In this study, we have identified a toxin-antitoxin (TA) system essential for the generation of persisters during M. tuberculosis infection. This study verified that M. tuberculosis strain devoid of the VapBC12 TA system failed to persist and showed a hypervirulent phenotype in a guinea pig infection model. Our studies indicate that the M. tuberculosis VapBC12 TA system acts as a molecular switch regulating persister generation during infection. VapBC12 TA system as a drug target offers opportunities to develop shorter and more effective treatment regimens against tuberculosis.
Collapse
|
5
|
Verderosa AD, Dhouib R, Fairfull-Smith KE, Totsika M. Profluorescent Fluoroquinolone-Nitroxides for Investigating Antibiotic⁻Bacterial Interactions. Antibiotics (Basel) 2019; 8:antibiotics8010019. [PMID: 30836686 PMCID: PMC6466543 DOI: 10.3390/antibiotics8010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/13/2023] Open
Abstract
Fluorescent probes are widely used for imaging and measuring dynamic processes in living cells. Fluorescent antibiotics are valuable tools for examining antibiotic⁻bacterial interactions, antimicrobial resistance and elucidating antibiotic modes of action. Profluorescent nitroxides are 'switch on' fluorescent probes used to visualize and monitor intracellular free radical and redox processes in biological systems. Here, we have combined the inherent fluorescent and antimicrobial properties of the fluoroquinolone core structure with the fluorescence suppression capabilities of a nitroxide to produce the first example of a profluorescent fluoroquinolone-nitroxide probe. Fluoroquinolone-nitroxide (FN) 14 exhibited significant suppression of fluorescence (>36-fold), which could be restored via radical trapping (fluoroquinolone-methoxyamine 17) or reduction to the corresponding hydroxylamine 20. Importantly, FN 14 was able to enter both Gram-positive and Gram-negative bacterial cells, emitted a measurable fluorescence signal upon cell entry (switch on), and retained antibacterial activity. In conclusion, profluorescent nitroxide antibiotics offer a new powerful tool for visualizing antibiotic⁻bacterial interactions and researching intracellular chemical processes.
Collapse
Affiliation(s)
- Anthony D Verderosa
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia.
| | - Rabeb Dhouib
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia.
| | - Kathryn E Fairfull-Smith
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia.
| |
Collapse
|
6
|
Nikolic N. Autoregulation of bacterial gene expression: lessons from the MazEF toxin-antitoxin system. Curr Genet 2019; 65:133-138. [PMID: 30132188 PMCID: PMC6343021 DOI: 10.1007/s00294-018-0879-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 11/30/2022]
Abstract
Autoregulation is the direct modulation of gene expression by the product of the corresponding gene. Autoregulation of bacterial gene expression has been mostly studied at the transcriptional level, when a protein acts as the cognate transcriptional repressor. A recent study investigating dynamics of the bacterial toxin-antitoxin MazEF system has shown how autoregulation at both the transcriptional and post-transcriptional levels affects the heterogeneity of Escherichia coli populations. Toxin-antitoxin systems hold a crucial but still elusive part in bacterial response to stress. This perspective highlights how these modules can also serve as a great model system for investigating basic concepts in gene regulation. However, as the genomic background and environmental conditions substantially influence toxin activation, it is important to study (auto)regulation of toxin-antitoxin systems in well-defined setups as well as in conditions that resemble the environmental niche.
Collapse
Affiliation(s)
- Nela Nikolic
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria.
| |
Collapse
|
7
|
Nickerson KP, Senger S, Zhang Y, Lima R, Patel S, Ingano L, Flavahan WA, Kumar DKV, Fraser CM, Faherty CS, Sztein MB, Fiorentino M, Fasano A. Salmonella Typhi Colonization Provokes Extensive Transcriptional Changes Aimed at Evading Host Mucosal Immune Defense During Early Infection of Human Intestinal Tissue. EBioMedicine 2018; 31:92-109. [PMID: 29735417 PMCID: PMC6013756 DOI: 10.1016/j.ebiom.2018.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 12/29/2022] Open
Abstract
Commensal microorganisms influence a variety of host functions in the gut, including immune response, glucose homeostasis, metabolic pathways and oxidative stress, among others. This study describes how Salmonella Typhi, the pathogen responsible for typhoid fever, uses similar strategies to escape immune defense responses and survive within its human host. To elucidate the early mechanisms of typhoid fever, we performed studies using healthy human intestinal tissue samples and "mini-guts," organoids grown from intestinal tissue taken from biopsy specimens. We analyzed gene expression changes in human intestinal specimens and bacterial cells both separately and after colonization. Our results showed mechanistic strategies that S. Typhi uses to rearrange the cellular machinery of the host cytoskeleton to successfully invade the intestinal epithelium, promote polarized cytokine release and evade immune system activation by downregulating genes involved in antigen sampling and presentation during infection. This work adds novel information regarding S. Typhi infection pathogenesis in humans, by replicating work shown in traditional cell models, and providing new data that can be applied to future vaccine development strategies.
Collapse
Affiliation(s)
- K P Nickerson
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States.
| | - S Senger
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Y Zhang
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - R Lima
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - S Patel
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - L Ingano
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - W A Flavahan
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - D K V Kumar
- Department for the Neuroscience of Genetics and Aging, Massachusetts General Hospital, Boston, MA, United States
| | - C M Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - C S Faherty
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States
| | - M B Sztein
- Center for Vaccine Development, Department of Pediatrics, University of Maryland, Baltimore, MD, United States
| | - M Fiorentino
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States
| | - A Fasano
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States.
| |
Collapse
|
8
|
Ahn DH, Lee KY, Lee SJ, Park SJ, Yoon HJ, Kim SJ, Lee BJ. Structural analyses of the MazEF4 toxin-antitoxin pair in Mycobacterium tuberculosis provide evidence for a unique extracellular death factor. J Biol Chem 2017; 292:18832-18847. [PMID: 28972145 DOI: 10.1074/jbc.m117.807974] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
The bacterial toxin-antitoxin MazEF system in the tuberculosis (TB)-causing bacterium Mycobacterium tuberculosis is activated under unfavorable conditions, including starvation, antibiotic exposure, and oxidative stress. This system contains the ribonucleolytic enzyme MazF and has emerged as a promising drug target for TB treatments targeting the latent stage of M. tuberculosis infection and reportedly mediates a cell death process via a peptide called extracellular death factor (EDF). Although it is well established that the increase in EDF-mediated toxicity of MazF drives a cell-killing phenomenon, the molecular details are poorly understood. Moreover, the divergence in sequences among reported EDFs suggests that each bacterial species has a unique EDF. To address these open questions, we report here the structures of MazF4 and MazEF4 complexes from M. tuberculosis, representing the first MazEF structures from this organism. We found that MazF4 possesses a negatively charged MazE4-binding pocket in contrast to the positively charged MazE-binding pockets in homologous MazEF complex structures from other bacteria. Moreover, using NMR spectroscopy and biochemical assays, we unraveled the molecular interactions of MazF4 with its RNA substrate and with a new EDF homolog originating from M. tuberculosis The EDF homolog discovered here possesses a positively charged residue at the C terminus, making this EDF distinct from previously reported EDFs. Overall, our results suggest that M. tuberculosis evolved a unique MazF and EDF and that the distinctive EDF sequence could serve as a starting point for designing new anti-tuberculosis drugs. We therefore conclude that this study might contribute to the development of a new line of anti-tuberculosis agents.
Collapse
Affiliation(s)
- Do-Hwan Ahn
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742
| | - Ki-Young Lee
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742
| | - Sang Jae Lee
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742
| | - Sung Jean Park
- the College of Pharmacy, Gachon University, 534-2 Yeonsu-dong, Yeonsu-gu, Incheon
| | - Hye-Jin Yoon
- the Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 151-742, and
| | - Soon-Jong Kim
- the Department of Chemistry, Mokpo National University, Chonnam 534-729, Republic of Korea
| | - Bong-Jin Lee
- From the Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742,
| |
Collapse
|
9
|
Oron-Gottesman A, Sauert M, Moll I, Engelberg-Kulka H. A Stress-Induced Bias in the Reading of the Genetic Code in Escherichia coli. mBio 2016; 7:e01855-16. [PMID: 27935840 PMCID: PMC5111409 DOI: 10.1128/mbio.01855-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/20/2016] [Indexed: 01/30/2023] Open
Abstract
Escherichia coli mazEF is an extensively studied stress-induced toxin-antitoxin (TA) system. The toxin MazF is an endoribonuclease that cleaves RNAs at ACA sites. Thereby, under stress, the induced MazF generates a stress-induced translation machinery (STM), composed of MazF-processed mRNAs and selective ribosomes that specifically translate the processed mRNAs. Here, we further characterized the STM system, finding that MazF cleaves only ACA sites located in the open reading frames of processed mRNAs, while out-of-frame ACAs are resistant. This in-frame ACA cleavage of MazF seems to depend on MazF binding to an extracellular-death-factor (EDF)-like element in ribosomal protein bS1 (bacterial S1), apparently causing MazF to be part of STM ribosomes. Furthermore, due to the in-frame MazF cleavage of ACAs under stress, a bias occurs in the reading of the genetic code causing the amino acid threonine to be encoded only by its synonym codon ACC, ACU, or ACG, instead of by ACA. IMPORTANCE The genetic code is a universal characteristic of all living organisms. It defines the set of rules by which nucleotide triplets specify which amino acid will be incorporated into a protein. Our results represent the first existing report on a stress-induced bias in the reading of the genetic code. We found that in E. coli, under stress, the amino acid threonine is encoded only by its synonym codon ACC, ACU, or ACG, instead of by ACA. This is because under stress, MazF generates a stress-induced translation machinery (STM) in which MazF cleaves in-frame ACA sites of the processed mRNAs.
Collapse
Affiliation(s)
- Adi Oron-Gottesman
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Martina Sauert
- Department of Microbiology, Max F. Perutz Laboratories, Center for Molecular Biology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Isabella Moll
- Department of Microbiology, Max F. Perutz Laboratories, Center for Molecular Biology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Hanna Engelberg-Kulka
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
10
|
Sauert M, Wolfinger MT, Vesper O, Müller C, Byrgazov K, Moll I. The MazF-regulon: a toolbox for the post-transcriptional stress response in Escherichia coli. Nucleic Acids Res 2016; 44:6660-75. [PMID: 26908653 PMCID: PMC5001579 DOI: 10.1093/nar/gkw115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
Flexible adaptation to environmental stress is vital for bacteria. An energy-efficient post-transcriptional stress response mechanism in Escherichia coli is governed by the toxin MazF. After stress-induced activation the endoribonuclease MazF processes a distinct subset of transcripts as well as the 16S ribosomal RNA in the context of mature ribosomes. As these 'stress-ribosomes' are specific for the MazF-processed mRNAs, the translational program is changed. To identify this 'MazF-regulon' we employed Poly-seq (polysome fractionation coupled with RNA-seq analysis) and analyzed alterations introduced into the transcriptome and translatome after mazF overexpression. Unexpectedly, our results reveal that the corresponding protein products are involved in all cellular processes and do not particularly contribute to the general stress response. Moreover, our findings suggest that translational reprogramming serves as a fast-track reaction to harsh stress and highlight the so far underestimated significance of selective translation as a global regulatory mechanism in gene expression. Considering the reported implication of toxin-antitoxin (TA) systems in persistence, our results indicate that MazF acts as a prime effector during harsh stress that potentially introduces translational heterogeneity within a bacterial population thereby stimulating persister cell formation.
Collapse
Affiliation(s)
- Martina Sauert
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Michael T Wolfinger
- Max F. Perutz Laboratories, Department of Biochemistry and Molecular Cell Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/5, A-1030 Vienna, Austria Max F. Perutz Laboratories, Center for Integrative Bioinformatics Vienna, University of Vienna, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Oliver Vesper
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Christian Müller
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Konstantin Byrgazov
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Isabella Moll
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| |
Collapse
|
11
|
Duggirala S, Napoleon JV, Nankar RP, Senu Adeeba V, Manheri MK, Doble M. FtsZ inhibition and redox modulation with one chemical scaffold: Potential use of dihydroquinolines against mycobacteria. Eur J Med Chem 2016; 123:557-567. [PMID: 27517804 DOI: 10.1016/j.ejmech.2016.07.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 12/15/2022]
Abstract
The dual effect of FtsZ inhibition and oxidative stress by a group of 1,2-dihydroquinolines that culminate in bactericidal effect on mycobacterium strains is demonstrated. They inhibited the non-pathogenic Mycobacterium smegmatis mc(2) 155 with MIC as low as 0.9 μg/mL and induced filamentation. Detailed studies revealed their ability to inhibit polymerization and GTPase activity of MtbFtsZ (Mycobacterial filamentous temperature sensitive Z) with an IC50 value of ∼40 μM. In addition to such target specific effects, these compounds exerted a global cellular effect by causing redox-imbalance that was evident from overproduction of ROS in treated cells. Such multi-targeting effect with one chemical scaffold has considerable significance in this era of emerging drug resistance and could offer promise in the development of new therapeutic agents against tuberculosis.
Collapse
Affiliation(s)
- Sridevi Duggirala
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - John Victor Napoleon
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Rakesh P Nankar
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - V Senu Adeeba
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India
| | | | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, India.
| |
Collapse
|
12
|
Patel SJ, Dao S, Darie CC, Clarkson BD. Defective quorum sensing of acute lymphoblastic leukemic cells: evidence of collective behavior of leukemic populations as semi-autonomous aberrant ecosystems. Am J Cancer Res 2016; 6:1177-230. [PMID: 27429840 PMCID: PMC4937729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/04/2016] [Indexed: 06/06/2023] Open
Abstract
Quorum sensing (QS) is a generic term used to describe cell-cell communication and collective decision making by bacterial and social insects to regulate the expression of specific genes in controlling cell density and other properties of the populations in response to nutrient supply or changes in the environment. QS mechanisms also have a role in higher organisms in maintaining homeostasis, regulation of the immune system and collective behavior of cancer cell populations. In the present study, we used a p190(BCR-ABL) driven pre-B acute lymphoblastic leukemia (ALL3) cell line derived from the pleural fluid of a terminally ill patient with ALL to test the QS hypothesis in leukemia. ALL3 cells don't grow at low density (LD) in liquid media but grow progressively faster at increasingly high cell densities (HD) in contrast to other established leukemic cell lines that grow well at very low starting cell densities. The ALL3 cells at LD are poised to grow but shortly die without additional stimulation. Supernates of ALL3 cells (HDSN) and some other primary cells grown at HD stimulate the growth of the LD ALL3 cells without which they won't survive. To get further insight into the activation processes we performed microarray analysis of the LD ALL3 cells after stimulation with ALL3 HDSN at days 1, 3, and 6. This screen identified several candidate genes, and we linked them to signaling networks and their functions. We observed that genes involved in lipid, cholesterol, fatty acid metabolism, and B cell activation are most up- or down-regulated upon stimulation of the LD ALL3 cells using HDSN. We also discuss other pathways that are differentially expressed upon stimulation of the LD ALL3 cells. Our findings suggest that the Ph+ ALL population achieves dominance by functioning as a collective aberrant ecosystem subject to defective quorum-sensing regulatory mechanisms.
Collapse
Affiliation(s)
- Sapan J Patel
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program1275 York Avenue, Box #96, New York, NY 10065, USA
- Department of Chemistry and Biomolecular Science, Biochemistry and Proteomics Group, Clarkson University8 Clarkson Avenue, Potsdam, NY 13699-5810, USA
| | - Su Dao
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program1275 York Avenue, Box #96, New York, NY 10065, USA
| | - Costel C Darie
- Department of Chemistry and Biomolecular Science, Biochemistry and Proteomics Group, Clarkson University8 Clarkson Avenue, Potsdam, NY 13699-5810, USA
| | - Bayard D Clarkson
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program1275 York Avenue, Box #96, New York, NY 10065, USA
| |
Collapse
|
13
|
Escherichia coli Quorum-Sensing EDF, A Peptide Generated by Novel Multiple Distinct Mechanisms and Regulated by trans-Translation. mBio 2016; 7:e02034-15. [PMID: 26814184 PMCID: PMC4742708 DOI: 10.1128/mbio.02034-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Eshcerichia coli mazEF is a stress-induced toxin-antitoxin module mediating cell death and requiring a quorum-sensing (QS) extracellular death factor (EDF), the pentapeptide NNWNN. Here we uncovered several distinct molecular mechanisms involved in its generation from the zwf mRNA encoding glucose-6-phosphate dehydrogenase. In particular, we show that, under stress conditions, the endoribonuclease MazF cleaves specific ACA sites, thereby generating a leaderless zwf mRNA which is truncated 30 codons after the EDF-encoding region. Since the nascent ribosome peptide exit tunnel can accommodate up to 40 amino acids, this arrangement allows the localization of the EDF residues inside the tunnel when the ribosome is stalled at the truncation site. Moreover, ribosome stalling activates the trans-translation system, which provides a means for the involvement of ClpPX in EDF generation. Furthermore, the trans-translation is described as a regulatory system that attenuated the generation of EDF, leading to low levels of EDF in the single cell. Therefore, the threshold EDF molecule concentration required is achieved only by the whole population, as expected for QS. Bacteria communicate with one another via quorum-sensing (QS) signal molecules. QS provides a mechanism for bacteria to monitor each other’s presence and to modulate gene expression in response to population density. Previously, we added E. coli pentapeptide EDF to this list of QS molecules. We showed that, under stress conditions, the induced MazF, an endoribonuclease cleaving at ACA sites, generates EDF from zwf. Here we studied the mechanism of EDF generation and asked whether it is related to EDF density dependency. We illustrated that, under stress conditions, multiple distinct complex mechanisms are involved in EDF generation. This includes formation of leaderless truncated zwf mRNA by MazF, configuration of a length corresponding to the nascent ribosome peptide exit tunnel, rescue performed by the trans-translation system, and cleavage by ClpPX protease. trans-Translation is described as a regulatory system attenuating EDF generation and leading to low levels of EDF in the single cell, as expected for QS.
Collapse
|
14
|
Choi H, Hwang JS, Lee DG. Coprisin exerts antibacterial effects by inducing apoptosis-like death inEscherichia coli. IUBMB Life 2015; 68:72-8. [DOI: 10.1002/iub.1463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/23/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Hyemin Choi
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences; Kyungpook National University; Buk-Gu Daegu Republic of Korea
| | - Jae-Sam Hwang
- National Academy of Agricultural Science, RDA; Suwon Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences; Kyungpook National University; Buk-Gu Daegu Republic of Korea
| |
Collapse
|
15
|
Harris KD, Barzilai A, Zahavi A. An evolutionary perspective on signaling peptides: toxic peptides are selected to provide information regarding the processing of the propeptide, which represents the phenotypic state of the signaling cell. F1000Res 2015; 4:512. [PMID: 26594342 PMCID: PMC4648229 DOI: 10.12688/f1000research.6874.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2015] [Indexed: 11/23/2022] Open
Abstract
Structurally similar short peptides often serve as signals in diverse signaling systems. Similar peptides affect diverse physiological pathways in different species or even within the same organism. Assuming that signals provide information, and that this information is tested by the structure of the signal, it is curious that highly similar signaling peptides appear to provide information relevant to very different metabolic processes. Here we suggest a solution to this problem: the synthesis of the propeptide, and its post-translational modifications that are required for its cleavage and the production of the mature peptide, provide information on the phenotypic state of the signaling cell. The mature peptide, due to its chemical properties which render it harmful, serves as a stimulant that forces cells to respond to this information. To support this suggestion, we present cases of signaling peptides in which the sequence and structure of the mature peptide is similar yet provides diverse information. The sequence of the propeptide and its post-translational modifications, which represent the phenotypic state of the signaling cell, determine the quantity and specificity of the information. We also speculate on the evolution of signaling peptides. We hope that this perspective will encourage researchers to reevaluate pathological conditions in which the synthesis of the mature peptide is abnormal.
Collapse
Affiliation(s)
| | - Ari Barzilai
- Department of Neurobiology, Tel Aviv University, Tel Aviv, 69978, Israel ; Sagol School of Neuroscience, Tel Aviv, 69978, Israel
| | - Amotz Zahavi
- Department of Zoology, Tel-Aviv University, Tel Aviv, 69978, Israel ; Sagol School of Neuroscience, Tel Aviv, 69978, Israel
| |
Collapse
|
16
|
Leiser OP, Merkley ED, Clowers BH, Deatherage Kaiser BL, Lin A, Hutchison JR, Melville AM, Wagner DM, Keim PS, Foster JT, Kreuzer HW. Investigation of Yersinia pestis Laboratory Adaptation through a Combined Genomics and Proteomics Approach. PLoS One 2015; 10:e0142997. [PMID: 26599979 PMCID: PMC4658026 DOI: 10.1371/journal.pone.0142997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
The bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a parallel serial passage experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing, LC-MS/MS proteomic analysis, and GC/MS metabolomics. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS/MS proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism and cell envelope biogenesis. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.
Collapse
Affiliation(s)
- Owen P. Leiser
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Eric D. Merkley
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA, 99354, United States of America
| | - Brooke L. Deatherage Kaiser
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Andy Lin
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Janine R. Hutchison
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Angela M. Melville
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - David M. Wagner
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Paul S. Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Jeffrey T. Foster
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Helen W. Kreuzer
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
- * E-mail:
| |
Collapse
|
17
|
Angel Villegas N, Baronetti J, Albesa I, Etcheverría A, Becerra MC, Padola NL, Paraje MG. Effect of antibiotics on cellular stress generated in Shiga toxin-producing Escherichia coli O157:H7 and non-O157 biofilms. Toxicol In Vitro 2015; 29:1692-700. [PMID: 26130220 DOI: 10.1016/j.tiv.2015.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 11/28/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens, with the main virulence factor of this bacterium being its capacity to secrete Shiga toxins (Stxs). Therefore, the use of certain antibiotics for the treatment of this infection, which induces the liberation of Stxs, is controversial. Reactive oxygen and nitrogen species are also involved in the pathogenesis of different diseases. The purpose of this study was to analyze the effects of antibiotics on biofilms of STEC and the relationships between cellular stress and the release of Stx. To this end, biofilms of reference and clinical strains were treated with antibiotics (ciprofloxacin, fosfomycin and rifaximin) and the production of oxidants, the antioxidant defense system and toxin release were evaluated. Ciprofloxacin altered the prooxidant-antioxidant balance, with a decrease of oxidant metabolites and an increase of superoxide dismutase and catalase activity, being associated with high-levels of Stx production. Furthermore, inhibition of oxidative stress by exogenous antioxidants was correlated with a reduction in the liberation of Stx, indicating the participation of this phenomenon in the release of this toxin. In contrast, fosfomycin and rifaximin produced less alteration with a minimal production of Stx. Our data show that treatment of biofilm-STEC with these antibiotics induces oxidative stress-mediated release of Stx.
Collapse
Affiliation(s)
- Natalia Angel Villegas
- IMBIV-CONICET y Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - José Baronetti
- IMBIV-CONICET y Cátedra de Microbiología, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Argentina
| | - Inés Albesa
- IMBIV-CONICET y Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Analía Etcheverría
- Laboratorio de Inmunoquímica y Biotecnología, Dpto. SAMP, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - M Cecilia Becerra
- IMBIV-CONICET y Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Nora L Padola
- Laboratorio de Inmunoquímica y Biotecnología, Dpto. SAMP, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - M Gabriela Paraje
- IMBIV-CONICET y Cátedra de Microbiología, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
18
|
Yan Z, Li G, Gao Y, Zhai W, Qi Y, Zhai M. The extracellular death factor (EDF) protects Escherichia coli by scavenging hydroxyl radicals induced by bactericidal antibiotics. SPRINGERPLUS 2015; 4:182. [PMID: 25932369 PMCID: PMC4411399 DOI: 10.1186/s40064-015-0968-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/06/2015] [Indexed: 01/17/2023]
Abstract
The newly discovered extracellular death factor (EDF) is a pentapeptide with the sequence NNWNN in Escherichia coli. It was reported that it participated in the cell death process mediated by toxin-antitoxin system mazEF. Reactive oxygen species (ROS) are recently considered as common factors for bactericidal antibiotics-mediated cell death. Previous study indicated that EDF could scavenge hydroxyl radicals and might act as a signal molecule with dual effects, "death" and "survival". But the structure-activity relationship of EDF and the effects of EDF on the activity of antibiotics remain unclear. In the present study, our results indicated that tryptophan could be the key residue to the hydroxyl radicals-scavenging activity of EDF, and EDF could protect Escherichia coli from killing by bactericidal antibiotics, but not by DNA-damaging or bacteriostatic antibiotics. Our results could provide novel evidence to understand the role of EDF in drug-resistance.
Collapse
Affiliation(s)
- Zhongyi Yan
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| | - Guodong Li
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| | - Mingxia Zhai
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China
| |
Collapse
|
19
|
Kalderon Z, Kumar S, Engelberg-Kulka H. The SOS response is permitted in Escherichia coli strains deficient in the expression of the mazEF pathway. PLoS One 2014; 9:e114380. [PMID: 25470502 PMCID: PMC4255059 DOI: 10.1371/journal.pone.0114380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/07/2014] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli (E. coli) SOS response is the largest, most complex, and best characterized bacterial network induced by DNA damage. It is controlled by a complex network involving the RecA and LexA proteins. We have previously shown that the SOS response to DNA damage is inhibited by various elements involved in the expression of the E. coli toxin-antitoxin mazEF pathway. Since the mazEF module is present on the chromosomes of most E. coli strains, here we asked: Why is the SOS response found in so many E. coli strains? Is the mazEF module present but inactive in those strains? We examined three E. coli strains used for studies of the SOS response, strains AB1932, BW25113, and MG1655. We found that each of these strains is either missing or inhibiting one of several elements involved in the expression of the mazEF-mediated death pathway. Thus, the SOS response only takes place in E. coli cells in which one or more elements of the E. coli toxin-antitoxin module mazEF or its downstream pathway is not functioning.
Collapse
Affiliation(s)
- Ziva Kalderon
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University- Hadassah Medical School, Jerusalem, Israel
| | - Sathish Kumar
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University- Hadassah Medical School, Jerusalem, Israel
| | - Hanna Engelberg-Kulka
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University- Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
20
|
Kang MH, Hong YJ, Attri P, Sim GB, Lee GJ, Panngom K, Kwon GC, Choi EH, Uhm HS, Park G. Analysis of the antimicrobial effects of nonthermal plasma on fungal spores in ionic solutions. Free Radic Biol Med 2014; 72:191-9. [PMID: 24794411 DOI: 10.1016/j.freeradbiomed.2014.04.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/20/2014] [Accepted: 04/21/2014] [Indexed: 11/28/2022]
Abstract
The antimicrobial efficiency of reactive species-based control strategies is significantly affected by the dynamics of reactive species in the biological environment. Atmospheric-pressure nonthermal plasma is an ionized gas in which various reactive species are produced. The various levels of antimicrobial activity may result from the dynamic interaction of the plasma-generated reactive species with the environment. However, the nature of the interaction between plasma and environments is poorly understood. In this study, we analyzed the influence of the ionic strength of surrounding solutions (environment) on the antimicrobial activity of plasma in relation to the plasma-generated reactive species using a model filamentous fungus, Neurospora crassa. Our data revealed that the presence of sodium chloride (NaCl) in the background solution attenuated the deleterious effects of plasma on germination, internal structure, and genomic DNA of fungal spores. The protective effects of NaCl were not explained exclusively by pH, osmotic stability, or the level of reactive species in the solution. These were strongly associated with the ionic strength of the background solution. The presence of ions reduced plasma toxicity, which might be due to a reduced access of reactive species to fungal spores, and fungal spores were inactivated by plasma in a background fluid of nonionic osmolytes despite the low level of reactive species. Our results suggest that the surrounding environment may affect the behavior of reactive species, which leads to different biological consequences regardless of their quantity. Moreover, the microbicidal effect of plasma can be synergistically regulated through control of the microenvironment.
Collapse
Affiliation(s)
- Min Ho Kang
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701, Korea
| | - Young June Hong
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701, Korea
| | - Pankaj Attri
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701, Korea
| | - Geon Bo Sim
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701, Korea
| | - Geon Joon Lee
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701, Korea; Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701, Korea
| | - Kamonporn Panngom
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701, Korea
| | - Gi Chung Kwon
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701, Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701, Korea; Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701, Korea
| | - Han S Uhm
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701, Korea; Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701, Korea.
| | - Gyungsoon Park
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701, Korea; Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701, Korea.
| |
Collapse
|
21
|
Abstract
Genetically programmed death of an organism, or phenoptosis, can be found not only in animals and plants, but also in bacteria. Taking into account intrapopulational relations identified in bacteria, it is easy to imagine the importance of phenoptosis in the regulation of a multicellular bacterial community in the real world of its existence. For example, autolysis of part of the population limits the spread of viral infection. Destruction of cells with damaged DNA contributes to the maintenance of low level of mutations. Phenoptosis can facilitate the exchange of genetic information in a bacterial population as a result of release of DNA from lysed cells. Bacteria use a special "language" to transmit signals in a population; it is used for coordinated regulation of gene expression. This special type of regulation of bacterial gene expression is usually active at high densities of bacteria populations, and it was named "quorum sensing" (QS). Different molecules can be used for signaling purposes. Phenoptosis, which is carried out by toxin-antitoxin systems, was found to depend on the density of the population; it requires a QS factor, which is called the extracellular death factor. The study of phenoptosis in bacteria is of great practical importance. The components that make up the systems ensuring the programmed cell death, including QS factor, may be used for the development of drugs that will activate mechanisms of phenoptosis and promote the destruction of pathogenic bacteria. Comparative genomic analysis revealed that the genes encoding several key enzymes involved in apoptosis of eukaryotes, such as paracaspases and metacaspases, apoptotic ATPases, proteins containing NACHT leucine-rich repeat, and proteases similar to mitochondrial HtrA-like protease, have homologs in bacteria. Proteomics techniques have allowed for the first time to identify the proteins formed during phenoptosis that participate in orderly liquidation of Streptomyces coelicolor and Escherichia coli cells. Among these proteins enzymes have been found that are involved in the degradation of cellular macromolecules, regulatory proteins, and stress-induced proteins. Future studies involving methods of biochemistry, genetics, genomics, proteomics, transcriptomics, and metabolomics should support a better understanding of the "mystery" of bacterial programmed cell death; this knowledge might be used to control bacterial populations.
Collapse
Affiliation(s)
- O A Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
22
|
Abstract
Discoveries in cytogenetics, molecular biology, and genomics have revealed that genome change is an active cell-mediated physiological process. This is distinctly at variance with the pre-DNA assumption that genetic changes arise accidentally and sporadically. The discovery that DNA changes arise as the result of regulated cell biochemistry means that the genome is best modelled as a read-write (RW) data storage system rather than a read-only memory (ROM). The evidence behind this change in thinking and a consideration of some of its implications are the subjects of this article. Specific points include the following: cells protect themselves from accidental genome change with proofreading and DNA damage repair systems; localized point mutations result from the action of specialized trans-lesion mutator DNA polymerases; cells can join broken chromosomes and generate genome rearrangements by non-homologous end-joining (NHEJ) processes in specialized subnuclear repair centres; cells have a broad variety of natural genetic engineering (NGE) functions for transporting, diversifying and reorganizing DNA sequences in ways that generate many classes of genomic novelties; natural genetic engineering functions are regulated and subject to activation by a range of challenging life history events; cells can target the action of natural genetic engineering functions to particular genome locations by a range of well-established molecular interactions, including protein binding with regulatory factors and linkage to transcription; and genome changes in cancer can usefully be considered as consequences of the loss of homeostatic control over natural genetic engineering functions.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Zaitseva YV, Popova AA, Khmel IA. Quorum sensing regulation in bacteria of the family enterobacteriaceae. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414030120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Sijbrandij T, Kaman WE, Ligtenberg AJM, Nazmi K, Veerman ECI, Bikker FJ. Bacillus globigii cell size is influenced by variants of the quorum sensing peptide extracellular death factor. Antonie van Leeuwenhoek 2013; 105:221-8. [PMID: 24198119 DOI: 10.1007/s10482-013-0068-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/26/2013] [Indexed: 11/29/2022]
Abstract
Toxin-antitoxin modules are necessary for the mode of action of several antibiotics. One of the most studied toxin-antitoxin modules is the quorum sensing-dependent MazEF system in Escherichia coli. The quorum sensing factor in this system is called the extracellular death factor (EDF), a linear pentapeptide with the sequence NNWNN. In spite of the extensive research on the mazEF system and the involvement of the quorum sensing factor EDF, the effect of EDF itself on bacteria has not yet been studied. In this research, we determined the effect of EDF and variants on cell growth in the Gram-negative bacterium E. coli and the Gram-positive Bacillus globigii. By aligning the zwf gene (from where EDF originates) of different bacterial species, we found 27 new theoretical variants of the peptide. By evaluating growth curves and light microscopy we found that three EDF variants reduced bacterial cell size in B. globigii, but not in E. coli. The D-peptides did not affect cell size, indicating that the effect is stereospecific. Peptides wherein tryptophan was substituted by alanine also did not affect cell size, which indicates that the effect seen is mediated by an intracellular target.
Collapse
Affiliation(s)
- T Sijbrandij
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2013; 71:1799-828. [PMID: 24064983 PMCID: PMC3997798 DOI: 10.1007/s00018-013-1472-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022]
Abstract
The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process. Studies of E. coli and B. subtilis, species separated by 3 billion years of evolution, have revealed the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different has given way to new models that can be resumed by "different enzymes-similar strategies". The recent characterization of key ribonucleases sheds light on an impressive case of convergent evolution that illustrates that the surprisingly similar functions of these totally unrelated enzymes are of general importance to RNA metabolism in bacteria. We now know that the major mRNA decay pathways initiate with an endonucleolytic cleavage in E. coli and B. subtilis and probably in many of the currently known bacteria for which these organisms are considered representative. We will discuss here the different pathways of eubacterial mRNA decay, describe the major players and summarize the events that can precede and/or favor nucleolytic inactivation of a mRNA, notably the role of the 5' end and translation initiation. Finally, we will discuss the role of subcellular compartmentalization of transcription, translation, and the RNA degradation machinery.
Collapse
|
26
|
Unterholzner SJ, Poppenberger B, Rozhon W. Toxin-antitoxin systems: Biology, identification, and application. Mob Genet Elements 2013; 3:e26219. [PMID: 24251069 PMCID: PMC3827094 DOI: 10.4161/mge.26219] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 02/07/2023] Open
Abstract
Toxin–antitoxin (TA) systems are small genetic elements composed of a toxin gene and its cognate antitoxin. The toxins of all known TA systems are proteins while the antitoxins are either proteins or non-coding RNAs. Based on the molecular nature of the antitoxin and its mode of interaction with the toxin the TA modules are currently grouped into five classes. In general, the toxin is more stable than the antitoxin but the latter is expressed to a higher level. If supply of the antitoxin stops, for instance under special growth conditions or by plasmid loss in case of plasmid encoded TA systems, the antitoxin is rapidly degraded and can no longer counteract the toxin. Consequently, the toxin becomes activated and can act on its cellular targets. Typically, TA toxins act on crucial cellular processes including translation, replication, cytoskeleton formation, membrane integrity, and cell wall biosynthesis. TA systems and their components are also versatile tools for a multitude of purposes in basic research and biotechnology. Currently, TA systems are frequently used for selection in cloning and for single protein expression in living bacterial cells. Since several TA toxins exhibit activity in yeast and mammalian cells they may be useful for applications in eukaryotic systems. TA modules are also considered as promising targets for the development of antibacterial drugs and their potential to combat viral infection may aid in controlling infectious diseases.
Collapse
Affiliation(s)
- Simon J Unterholzner
- 1 Biotechnology of Horticultural Crops; Technische Universität München; Freising, Germany
| | | | | |
Collapse
|
27
|
Wen J, Karthikeyan S, Hawkins J, Anantheswaran RC, Knabel SJ. Listeria monocytogenes responds to cell density as it transitions to the long-term-survival phase. Int J Food Microbiol 2013; 165:326-31. [PMID: 23810956 DOI: 10.1016/j.ijfoodmicro.2013.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 05/06/2013] [Accepted: 05/11/2013] [Indexed: 11/15/2022]
Abstract
Listeria monocytogenes was recently found to enter a long-term-survival (LTS) phase, which may help explain its persistence in natural environments and within food processing plants. The purpose of this study was to investigate the effects of initial cell density, initial pH and type of broth (fresh vs. spent) on the transition of L. monocytogenes to the LTS phase and model the change in viable population density with time. Initial cell density (~10(6)-~10(10)CFU/ml) and initial pH (5.36-6.85) both significantly affected the transition of L. monocytogenes to the LTS phase (P<0.001) with initial cell density being the main determining factor. In contrast, type of broth did not significantly affect cell density change during the transition of stationary-phase cells at high initial density to the LTS phase (P>0.05). After 30-d incubation no significant differences in cell densities were observed between either type of broth or between any of the initial cell density/pH treatment combinations (P>0.05), where the mean viable cell density was 4.3±1.1×10(8)CFU/ml. L. monocytogenes responded to viable cell density in accordance with the logistic equation during transition to the LTS phase. The Agr quorum-sensing system does not appear to play a role in the transition to the LTS phase. Further research is needed to better understand the control mechanisms utilized by L. monocytogenes as it transitions to a coccoid, resistant and stable density state in the LTS phase.
Collapse
Affiliation(s)
- Jia Wen
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | |
Collapse
|
28
|
Vatansever F, de Melo WCMA, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP, Hamblin MR. Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 2013; 37:955-89. [PMID: 23802986 DOI: 10.1111/1574-6976.12026] [Citation(s) in RCA: 626] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction in molecular oxygen. Four major ROS are recognized comprising superoxide (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen ((1)O2), but they display very different kinetics and levels of activity. The effects of O2•- and H2O2 are less acute than those of •OH and (1)O2, because the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and nonenzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or (1)O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics and nonpharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma, and medicinal honey. A brief final section covers reactive nitrogen species and related therapeutics, such as acidified nitrite and nitric oxide-releasing nanoparticles.
Collapse
Affiliation(s)
- Fatma Vatansever
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ramisetty BCM, Natarajan B, Santhosh RS. mazEF-mediated programmed cell death in bacteria: "what is this?". Crit Rev Microbiol 2013; 41:89-100. [PMID: 23799870 DOI: 10.3109/1040841x.2013.804030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toxin-antitoxin (TA) systems consist of a bicistronic operon, encoding a toxin and an antitoxin. They are widely distributed in the prokaryotic kingdom, often in multiple numbers. TAs are implicated in contradicting phenomena of persistence and programmed cell death (PCD) in bacteria. mazEF TA system, one of the widely distributed type II toxin-antitoxin systems, is particularly implicated in PCD of Escherichia coli. Nutrient starvation, antibiotic stress, heat shock, DNA damage and other kinds of stresses are shown to elicit mazEF-mediated-PCD. ppGpp and extracellular death factor play a central role in regulating mazEF-mediated PCD. The activation of mazEF system is achieved through inhibition of transcription or translation of mazEF loci. Upon activation, MazF cleaves RNA in a ribosome-independent fashion and subsequent processes result in cell death. It is hypothesized that PCD aids in perseverance of the population during stress; the surviving minority of the cells can scavenge the nutrients released by the dead cells, a kind of "nutritional-altruism." Issues regarding the strains, reproducibility of experimental results and ecological plausibility necessitate speculation. We review the molecular mechanisms of the activation of mazEF TA system, the consequences leading to cell death and the pros and cons of the altruism hypothesis from an ecological perspective.
Collapse
|
30
|
Abstract
Escherichia coli mazEF is a toxin-antitoxin stress-induced module mediating cell death. It requires the quorum-sensing signal (QS) “extracellular death factor” (EDF), the penta-peptide NNWNN (EcEDF), enhancing the endoribonucleolytic activity of E. coli toxin MazF. Here we discovered that E. coli mazEF-mediated cell death could be triggered by QS peptides from the supernatants (SN) of the Gram-positive bacterium Bacillus subtilis and the Gram-negative bacterium Pseudomonas aeruginosa. In the SN of B. subtilis, we found one EDF, the hexapeptide RGQQNE, called BsEDF. In the SN of P. aeruginosa, we found three EDFs: the nonapeptide INEQTVVTK, called PaEDF-1, and two hexadecapeptides, VEVSDDGSGGNTSLSQ, called PaEDF-2, and APKLSDGAAAGYVTKA, called PaEDF-3. When added to a diluted E. coli cultures, each of these peptides acted as an interspecies EDF that triggered mazEF-mediated death. Furthermore, though their sequences are very different, each of these EDFs amplified the endoribonucleolytic activity of E. coli MazF, probably by interacting with different sites on E. coli MazF. Finally, we suggest that EDFs may become the basis for a new class of antibiotics that trigger death from outside the bacterial cells. Bacteria communicate with one another via quorum-sensing signal (QS) molecules. QS provides a mechanism for bacteria to monitor each other’s presence and to modulate gene expression in response to population density. Previously, we added E. coli EDF (EcEDF), the peptide NNWNN, to this list of QS molecules. Here we extended the group of QS peptides to several additional different peptides. The new EDFs are produced by two other bacteria, Bacillus subtilis and Pseudomonas aeruginosa. Thus, in this study we established a “new family of EDFs.” This family provides the first example of quorum-sensing molecules participating in interspecies bacterial cell death. Furthermore, each of these peptides provides the basis of a new class of antibiotics triggering death by acting from outside the cell.
Collapse
|
31
|
Ribonucleases in bacterial toxin-antitoxin systems. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:523-31. [PMID: 23454553 DOI: 10.1016/j.bbagrm.2013.02.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/05/2013] [Accepted: 02/14/2013] [Indexed: 11/21/2022]
Abstract
Toxin-antitoxin (TA) systems are widespread in bacteria and archaea and play important roles in a diverse range of cellular activities. TA systems have been broadly classified into 5 types and the targets of the toxins are diverse, but the most frequently used cellular target is mRNA. Toxins that target mRNA to inhibit translation can be classified as ribosome-dependent or ribosome-independent RNA interferases. These RNA interferases are sequence-specific endoribonucleases that cleave RNA at specific sequences. Despite limited sequence similarity, ribosome-independent RNA interferases belong to a limited number of structural classes. The MazF structural family includes MazF, Kid, ParE and CcdB toxins. MazF members cleave mRNA at 3-, 5- or 7-base recognition sequences in different bacteria and have been implicated in controlling cell death (programmed) and cell growth, and cellular responses to nutrient starvation, antibiotics, heat and oxidative stress. VapC endoribonucleases belong to the PIN-domain family and inhibit translation by either cleaving tRNA(fMet) in the anticodon stem loop, cleaving mRNA at -AUA(U/A)-hairpin-G- sequences or by sequence-specific RNA binding. VapC has been implicated in controlling bacterial growth in the intracellular environment and in microbial adaptation to nutrient limitation (nitrogen, carbon) and heat shock. ToxN shows structural homology to MazF and is also a sequence-specific endoribonuclease. ToxN confers phage resistance by causing cell death upon phage infection by cleaving cellular and phage RNAs, thereby interfering with bacterial and phage growth. Notwithstanding our recent progress in understanding ribonuclease action and function in TA systems, the environmental triggers that cause release of the toxin from its cognate antitoxin and the precise cellular function of these systems in many bacteria remain to be discovered. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
32
|
Butt A, Müller C, Harmer N, Titball RW. Identification of type II toxin-antitoxin modules in Burkholderia pseudomallei. FEMS Microbiol Lett 2012; 338:86-94. [PMID: 23082999 DOI: 10.1111/1574-6968.12032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 11/30/2022] Open
Abstract
Type II toxin-antitoxin (TA) systems are believed to be widely distributed amongst bacteria although their biological functions are not clear. We have identified eight candidate TA systems in the genome of the human pathogen Burkholderia pseudomallei. Five of these were located in genome islands. Of the candidate toxins, BPSL0175 (RelE1) or BPSS1060 (RelE2) caused growth to cease when expressed in Escherichia coli, whereas expression of BPSS0390 (HicA) or BPSS1584 (HipA) (in an E. coli ΔhipBA background) caused a reduction in the number of culturable bacteria. The cognate antitoxins could restore growth and culturability of cells.
Collapse
Affiliation(s)
- Aaron Butt
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | | |
Collapse
|
33
|
BapE DNA endonuclease induces an apoptotic-like response to DNA damage in Caulobacter. Proc Natl Acad Sci U S A 2012; 109:18096-101. [PMID: 23074244 DOI: 10.1073/pnas.1213332109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the presence of extensive DNA damage, eukaryotes activate endonucleases to fragment their chromosomes and induce apoptotic cell death. Apoptotic-like responses have recently been described in bacteria, but primarily in specialized mutant backgrounds, and the factors responsible for DNA damage-induced chromosome fragmentation and death have not been identified. Here we find that wild-type Caulobacter cells induce apoptotic-like cell death in response to extensive DNA damage. The bacterial apoptosis endonuclease (BapE) protein is induced by damage but not involved in DNA repair itself, and mediates this cell fate decision. BapE fragments chromosomes by cleaving supercoiled DNA in a sequence-nonspecific manner, thereby perturbing chromosome integrity both in vivo and in vitro. This damage-induced chromosome fragmentation pathway resembles that of eukaryotic apoptosis. We propose that damage-induced programmed cell death can be a primary stress response for some bacterial species, providing isogenic bacterial communities with advantages similar to those that apoptosis provides to multicellular organisms.
Collapse
|
34
|
Moll I, Engelberg-Kulka H. Selective translation during stress in Escherichia coli. Trends Biochem Sci 2012; 37:493-8. [PMID: 22939840 DOI: 10.1016/j.tibs.2012.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/18/2022]
Abstract
The bacterial stress response, a strategy to cope with environmental changes, is generally known to operate on the transcriptional level. Here, we discuss a novel paradigm for stress adaptation at the post-transcriptional level, based on the recent discovery of a stress-induced modified form of the translation machinery in Escherichia coli that is generated by MazF, the toxin component of the toxin-antitoxin (TA) module mazEF. Under stress, the induced endoribonuclease MazF removes the 3'-terminal 43 nucleotides of the 16S rRNA of ribosomes and, concomitantly, the 5'-untranslated regions (UTRs) of specific transcripts. This elegant mechanism enables selective translation due to the complementary effect of MazF on ribosomes and mRNAs, and also represents the first example of functional ribosome heterogeneity based on rRNA alteration.
Collapse
Affiliation(s)
- Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria.
| | | |
Collapse
|
35
|
Williams JJ, Hergenrother PJ. Artificial activation of toxin-antitoxin systems as an antibacterial strategy. Trends Microbiol 2012; 20:291-8. [PMID: 22445361 DOI: 10.1016/j.tim.2012.02.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/31/2012] [Accepted: 02/13/2012] [Indexed: 11/18/2022]
Abstract
Toxin-antitoxin (TA) systems are unique modules that effect plasmid stabilization via post-segregational killing of the bacterial host. The genes encoding TA systems also exist on bacterial chromosomes, and it has been speculated that these are involved in a variety of cellular processes. Interest in TA systems has increased dramatically over the past 5 years as the ubiquitous nature of TA genes on bacterial genomes has been revealed. The exploitation of TA systems as an antibacterial strategy via artificial activation of the toxin has been proposed and has considerable potential; however, efforts in this area remain in the early stages and several major questions remain. This review investigates the tractability of targeting TA systems to kill bacteria, including fundamental requirements for success, recent advances, and challenges associated with artificial toxin activation.
Collapse
Affiliation(s)
- Julia J Williams
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
36
|
Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol 2012; 10:e1001281. [PMID: 22412352 PMCID: PMC3295820 DOI: 10.1371/journal.pbio.1001281] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 01/26/2012] [Indexed: 12/17/2022] Open
Abstract
A newly discovered apoptotic-like death is inhibited by the previously described mazEF-mediated death pathway, revealing two programmed cell death systems in Escherichia coli. In eukaryotes, the classical form of programmed cell death (PCD) is apoptosis, which has as its specific characteristics DNA fragmentation and membrane depolarization. In Escherichia coli a different PCD system has been reported. It is mediated by the toxin–antitoxin system module mazEF. The E. coli mazEF module is one of the most thoroughly studied toxin–antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. mazEF-mediated cell death is a population phenomenon requiring the quorum-sensing pentapeptide NNWNN designated Extracellular Death Factor (EDF). mazEF is triggered by several stressful conditions, including severe damage to the DNA. Here, using confocal microscopy and FACS analysis, we show that under conditions of severe DNA damage, the triggered mazEF-mediated cell death pathway leads to the inhibition of a second cell death pathway. The latter is an apoptotic-like death (ALD); ALD is mediated by recA and lexA. The mazEF-mediated pathway reduces recA mRNA levels. Based on these results, we offer a molecular model for the maintenance of an altruistic characteristic in cell populations. In our model, the ALD pathway is inhibited by the altruistic EDF-mazEF-mediated death pathway. The enteric bacterium Escherichia coli, like most other bacteria, carries on its chromosome a pair of genes, mazE and mazF (mazEF): mazF specifies a toxin, and mazE specifies an antitoxin. Previously, we have shown that E. coli mazEF is responsible for bacterial programmed cell death in response to stressors such as DNA damage. Here, we report that extensive DNA damage can induce a second mode of cell death, which we call apoptotic-like death (ALD). ALD is like apoptosis—a mode of cell death that has previously been recorded only in eukaryotes. During ALD, the cell membrane is depolarized, and the DNA is fragmented and can be detected using the classical TUNEL assay. The MazEF death pathway, however, shows neither of those features, yet also kills the cell. We show that ALD is mediated by two proteins, RecA and LexA, which are noteworthy because LexA is an inhibitor of the SOS response (which is a global response to DNA damage in which the cell cycle is arrested and DNA repair is induced). This defines ALD as a form of SOS response. Furthermore, MazEF and its downstream components cause reduction of recA mRNA levels, which could explain how the MazEF pathway inhibits the ALD pathway. We conclude that the E. coli ALD pathway is a back-up system for the traditional mazEF cell death pathway. Should one of the components of the mazEF pathway be inactivated, bacterial cell death would occur through ALD. These findings also have implications for the mechanisms of “altruistic” cell death among bacterial populations.
Collapse
|
37
|
RelE-mediated dormancy is enhanced at high cell density in Escherichia coli. J Bacteriol 2011; 194:1169-76. [PMID: 22210768 DOI: 10.1128/jb.06628-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria show remarkable adaptability under several stressful conditions by shifting themselves into a dormant state. Less is known, however, about the mechanism underlying the cell transition to dormancy. Here, we report that the transition to dormant states is mediated by one of the major toxin-antitoxin systems, RelEB, in a cell density-dependent manner in Escherichia coli K-12 MG1655. We constructed a strain, IKA121, which expresses the toxin RelE in the presence of rhamnose and lacks chromosomal relBE and rhaBAD. With this strain, we demonstrated that RelE-mediated dormancy is enhanced at high cell densities compared to that at low cell densities. The initiation of expression of the antitoxin RelB from a plasmid, pCA24N, reversed RelE-mediated dormancy in bacterial cultures. The activation of RelE increased the appearance of persister cells against β-lactams, quinolones, and aminoglycosides, and more persister cells appeared at high cell densities than at low cell densities. Further analysis indicated that amino acid starvation and an uncharacterized extracellular heat-labile substance promote RelE-mediated dormancy. This is a first report on the induction of RelE-mediated dormancy by high cell density. This work establishes a population-based dormancy mechanism to help explain E. coli survival in stressful environments.
Collapse
|
38
|
Yamaguchi Y, Inouye M. Regulation of growth and death in Escherichia coli by toxin–antitoxin systems. Nat Rev Microbiol 2011; 9:779-90. [DOI: 10.1038/nrmicro2651] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Hayes F, Van Melderen L. Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol 2011; 46:386-408. [PMID: 21819231 DOI: 10.3109/10409238.2011.600437] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genes for toxin-antitoxin (TA) complexes are widespread in prokaryote genomes, and species frequently possess tens of plasmid and chromosomal TA loci. The complexes are categorized into three types based on genetic organization and mode of action. The toxins universally are proteins directed against specific intracellular targets, whereas the antitoxins are either proteins or small RNAs that neutralize the toxin or inhibit toxin synthesis. Within the three types of complex, there has been extensive evolutionary shuffling of toxin and antitoxin genes leading to considerable diversity in TA combinations. The intracellular targets of the protein toxins similarly are varied. Numerous toxins, many of which are sequence-specific endoribonucleases, dampen protein synthesis levels in response to a range of stress and nutritional stimuli. Key resources are conserved as a result ensuring the survival of individual cells and therefore the bacterial population. The toxin effects generally are transient and reversible permitting a set of dynamic, tunable responses that reflect environmental conditions. Moreover, by harboring multiple toxins that intercede in protein synthesis in response to different physiological cues, bacteria potentially sense an assortment of metabolic perturbations that are channeled through different TA complexes. Other toxins interfere with the action of topoisomersases, cell wall assembly, or cytoskeletal structures. TAs also play important roles in bacterial persistence, biofilm formation and multidrug tolerance, and have considerable potential both as new components of the genetic toolbox and as targets for novel antibacterial drugs.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, UK.
| | | |
Collapse
|
40
|
Hayes F. Moving in for the kill: activation of an endoribonuclease toxin by a quorum-sensing peptide. Mol Cell 2011; 41:617-8. [PMID: 21419335 DOI: 10.1016/j.molcel.2011.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular death factor is a quorum-sensing pentapeptide that relays cell density information to an intracellular toxin-antitoxin complex. In this issue of Molecular Cell, Belitsky et al. (2011) demonstrate that the peptide competes with the antitoxin for toxin binding and directly activates the latter's endoribonuclease activity.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M17DN, UK.
| |
Collapse
|
41
|
The Escherichia coli Extracellular Death Factor EDF Induces the Endoribonucleolytic Activities of the Toxins MazF and ChpBK. Mol Cell 2011; 41:625-35. [DOI: 10.1016/j.molcel.2011.02.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 10/17/2010] [Accepted: 12/24/2010] [Indexed: 01/15/2023]
|
42
|
Etchuuya R, Ito M, Kitano S, Shigi F, Sobue R, Maeda S. Cell-to-cell transformation in Escherichia coli: a novel type of natural transformation involving cell-derived DNA and a putative promoting pheromone. PLoS One 2011; 6:e16355. [PMID: 21283723 PMCID: PMC3024429 DOI: 10.1371/journal.pone.0016355] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/27/2010] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli is not assumed to be naturally transformable. However, several recent reports have shown that E. coli can express modest genetic competence in certain conditions that may arise in its environment. We have shown previously that spontaneous lateral transfer of non-conjugative plasmids occurs in a colony biofilm of mixed E. coli strains (a set of a donor strain harbouring a plasmid and a plasmid-free recipient strain). In this study, with high-frequency combinations of strains and a plasmid, we constructed the same lateral plasmid transfer system in liquid culture. Using this system, we demonstrated that this lateral plasmid transfer was DNase-sensitive, indicating that it is a kind of transformation in which DNase-accessible extracellular naked DNA is essential. However, this transformation did not occur with purified plasmid DNA and required a direct supply of plasmid from co-existing donor cells. Based on this feature, we have termed this transformation type as 'cell-to-cell transformation'. Analyses using medium conditioned with the high-frequency strain revealed that this strain released a certain factor(s) that promoted cell-to-cell transformation and arrested growth of the other strains. This factor is heat-labile and protease-sensitive, and its roughly estimated molecular mass was between ∼9 kDa and ∼30 kDa, indicating that it is a polypeptide factor. Interestingly, this factor was effective even when the conditioned medium was diluted 10(-5)-10(-6), suggesting that it acts like a pheromone with high bioactivity. Based on these results, we propose that cell-to-cell transformation is a novel natural transformation mechanism in E. coli that requires cell-derived DNA and is promoted by a peptide pheromone. This is the first evidence that suggests the existence of a peptide pheromone-regulated transformation mechanism in E. coli and in Gram-negative bacteria.
Collapse
Affiliation(s)
- Rika Etchuuya
- Faculty of Human Life and Environment, Nara Women's University, Nara, Japan
| | - Miki Ito
- Faculty of Human Life and Environment, Nara Women's University, Nara, Japan
| | - Seiko Kitano
- Faculty of Human Life and Environment, Nara Women's University, Nara, Japan
| | - Fukiko Shigi
- Faculty of Human Life and Environment, Nara Women's University, Nara, Japan
| | - Rina Sobue
- Faculty of Human Life and Environment, Nara Women's University, Nara, Japan
| | - Sumio Maeda
- Faculty of Human Life and Environment, Nara Women's University, Nara, Japan
- * E-mail:
| |
Collapse
|
43
|
Recent advancements in toxin and antitoxin systems involved in bacterial programmed cell death. Int J Microbiol 2010; 2010:781430. [PMID: 21253538 PMCID: PMC3021852 DOI: 10.1155/2010/781430] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/14/2010] [Accepted: 11/21/2010] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death (PCD) systems have been extensively studied for their significant role in a variety of biological processes in eukaryotic organisms. Recently, more and more researches have revealed the existence of similar systems employed by bacteria in response to various environmental stresses. This paper summarized the recent researching advancements in toxin/antitoxin systems located on plasmids or chromosomes and their regulatory roles in bacterial PCD. The most studied yet disputed mazEF system was discussed in depth, and possible roles and status of such a special bacterial death and TA systems were also reviewed from the ecological and evolutionary perspectives.
Collapse
|
44
|
Antibiotics promoting oxidative stress inhibit formation of Escherichia coli biofilm via indole signalling. Res Microbiol 2010; 161:847-53. [DOI: 10.1016/j.resmic.2010.09.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/04/2010] [Indexed: 01/06/2023]
|
45
|
Han X, Geng J, Zhang L, Lu T. The role of Escherichia coli YrbB in the lethal action of quinolones. J Antimicrob Chemother 2010; 66:323-31. [PMID: 21098540 DOI: 10.1093/jac/dkq427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To explore bacterial cellular factors that protect against the lethal effect of antimicrobial stress as potential targets of antimicrobial potentiators, the role of Escherichia coli YrbB in protecting cells from quinolone-mediated cell death was studied. METHODS A set of isogenic strains containing different mutations in stress response genes of E. coli was constructed by P1-mediated transduction. The susceptibility of these strains to the lethal action of quinolones was determined by measuring viable colony counts on agar plates after treatment with quinolones under various conditions. RESULTS A yrbB mutation rendered E. coli cells more susceptible to the lethal action of quinolones under conditions in which bacteriostatic susceptibility was unaffected. YrbB worked in both lethal pathways of quinolone action. Hydroxyl radical accumulation was required for nalidixic acid-mediated killing; however, in the absence of functional YrbB there was an additional mechanism through which nalidixic acid could kill cells independently of hydroxyl radical action. The E. coli chromosomal toxin-antitoxin system ChpB, but not the SOS system, was found to be involved in the hydroxyl radical-independent lethal mechanism. In addition, proteases ClpP and Lon were also involved in the action of YrbB. Besides quinolones, YrbB also played a protective role in cellular responses to other stressors, such as mitomycin C, ultraviolet light and hydrogen peroxide. CONCLUSIONS YrbB played a protective role in the lethal action of quinolones through a hydroxyl radical-independent and toxin-antitoxin-dependent mechanism, which makes it a potential target for antimicrobial enhancement.
Collapse
Affiliation(s)
- Xiulin Han
- Yunnan Institute of Microbiology, Yunnan University, 2 Cui Hu Bei Lu, Kunming, Yunnan 650091, China
| | | | | | | |
Collapse
|
46
|
Gao Y, Chen K, Zhang B, Li X, Chen L, Li Y, Jia X, Lei Y, Yan Z, Kong L, Wang N, Liu W, Qi Y. Antioxidant and free radical-scavenging activity of the extracellular death factor in Escherichia coli. Peptides 2010; 31:1821-5. [PMID: 20621143 DOI: 10.1016/j.peptides.2010.06.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/30/2010] [Accepted: 06/30/2010] [Indexed: 11/19/2022]
Abstract
The extracellular death factor (EDF) is a newly discovered linear pentapeptide with the sequence of H-Asn-Asn-Trp-Asn-Asn-OH (NNWNN). It could act as a quorum-sensing molecule and participate in the mazEF-mediated cell death in Escherichia coli. In the present study, we firstly studied the antioxidant and free radical-scavenging activities of EDF. EDF could scavenge hydroxyl radicals in vitro and protect protein, lipid and DNA from being damaged by hydroxyl radicals. Our results indicated that this extracellular death factor might have dual effects during the programmed cell death process of Escherichia coli.
Collapse
Affiliation(s)
- Yanfeng Gao
- Department of Bioengineering, Zhengzhou University, Zhengzhou 450001, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nedelcu AM, Driscoll WW, Durand PM, Herron MD, Rashidi A. On the paradigm of altruistic suicide in the unicellular world. Evolution 2010; 65:3-20. [PMID: 20722725 DOI: 10.1111/j.1558-5646.2010.01103.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Altruistic suicide is best known in the context of programmed cell death (PCD) in multicellular individuals, which is understood as an adaptive process that contributes to the development and functionality of the organism. After the realization that PCD-like processes can also be induced in single-celled lineages, the paradigm of altruistic cell death has been extended to include these active cell death processes in unicellular organisms. Here, we critically evaluate the current conceptual framework and the experimental data used to support the notion of altruistic suicide in unicellular lineages, and propose new perspectives. We argue that importing the paradigm of altruistic cell death from multicellular organisms to explain active death in unicellular lineages has the potential to limit the types of questions we ask, thus biasing our understanding of the nature, origin, and maintenance of this trait. We also emphasize the need to distinguish between the benefits and the adaptive role of a trait. Lastly, we provide an alternative framework that allows for the possibility that active death in single-celled organisms is a maladaptive trait maintained as a byproduct of selection on pro-survival functions, but that could-under conditions in which kin/group selection can act-be co-opted into an altruistic trait.
Collapse
Affiliation(s)
- Aurora M Nedelcu
- University of New Brunswick, Department of Biology, Fredericton, NB, Canada.
| | | | | | | | | |
Collapse
|
48
|
Broekman S, Pohlmann O, Beardwood ES, de Meulenaer EC. Ultrasonic treatment for microbiological control of water systems. ULTRASONICS SONOCHEMISTRY 2010; 17:1041-1048. [PMID: 20083420 DOI: 10.1016/j.ultsonch.2009.11.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/13/2009] [Accepted: 11/22/2009] [Indexed: 05/28/2023]
Abstract
A combination treatment of shear, micro-bubbles, and high-frequency low-power ultrasound introduced via side-stream treatment of industrial water systems has shown excellent results in controlling bacteria and algae. Through the physical, high-stress environment created by ultrasonic waves, sessile and planktonic biological populations, some of which may undergo programmed cell death (PCD), can be controlled. Additionally, the instability and reduction of biofilm have been observed in systems treated by ultrasound and may be attributed to starvation-stress and lack of available cross-linking cations in the biofilm.
Collapse
Affiliation(s)
- S Broekman
- Ashland Hercules Water Technologies, Krefeld, Germany.
| | | | | | | |
Collapse
|
49
|
Diago-Navarro E, Hernandez-Arriaga AM, López-Villarejo J, Muñoz-Gómez AJ, Kamphuis MB, Boelens R, Lemonnier M, Díaz-Orejas R. parD toxin-antitoxin system of plasmid R1 - basic contributions, biotechnological applications and relationships with closely-related toxin-antitoxin systems. FEBS J 2010; 277:3097-117. [DOI: 10.1111/j.1742-4658.2010.07722.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Abstract
Toxin-antitoxin (TA) systems are plasmid- or chromosome-encoded protein complexes composed of a stable toxin and a short-lived inhibitor of the toxin. In cultures of Escherichia coli, transcription of toxin-antitoxin genes was induced in a nondividing subpopulation of bacteria that was tolerant to bactericidal antibiotics. Along with transcription of known toxin-antitoxin operons, transcription of mqsR and ygiT, two adjacent genes with multiple TA-like features, was induced in this cell population. Here we show that mqsR and ygiT encode a toxin-antitoxin system belonging to a completely new family which is represented in several groups of bacteria. The mqsR gene encodes a toxin, and ectopic expression of this gene inhibits growth and induces rapid shutdown of protein synthesis in vivo. ygiT encodes an antitoxin, which protects cells from the effects of MqsR. These two genes constitute a single operon which is transcriptionally repressed by the product of ygiT. We confirmed that transcription of this operon is induced in the ampicillin-tolerant fraction of a growing population of E. coli and in response to activation of the HipA toxin. Expression of the MqsR toxin does not kill bacteria but causes reversible growth inhibition and elongation of cells.
Collapse
|