1
|
Kavanaugh LG, Hinrichsen ME, Dunham CM, Conn GL. Regulation, structure, and activity of the Pseudomonas aeruginosa MexXY efflux system. Antimicrob Agents Chemother 2025; 69:e0182524. [PMID: 40192483 PMCID: PMC12057347 DOI: 10.1128/aac.01825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
The current crisis in bacterial antibiotic resistance can be attributed to the overuse (or misuse) of these essential medicines in healthcare and agriculture, coupled with the slowed progression of new drug development. In the versatile, opportunistic pathogen Pseudomonas aeruginosa, the Resistance-Nodulation-Division (RND) efflux pump MexXY plays critical roles in both cell physiology and the acquisition of multidrug resistance. The mexXY operon is not constitutively expressed, but this process is instead controlled by a complex network of multiple interconnected regulatory mechanisms. These include induction by several of the pump's ribosome-targeting antibiotic substrates and transcriptional repression and anti-repression processes that are themselves influenced by various cellular factors, processes, or stresses. Although extensive studies of the MexXY complex are currently lacking as compared to other RND efflux pumps such as Escherichia coli AcrAB-TolC, recent studies have provided valuable insights into the MexXY architecture and substrate profiles, including its contribution to clinical resistance. Furthermore, while MexXY primarily associates with the outer membrane protein OprM, emerging evidence suggests that this transporter-periplasmic adaptor pair may also partner with other outer membrane proteins, potentially to alter the efflux substrate profile and activity under specific environmental conditions. In this minireview, we summarize current understanding of MexXY regulation, structure, and substrate selectivity within the context of clinical resistance and as a framework for future efflux pump inhibitor development.
Collapse
Affiliation(s)
- Logan G. Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Megan E. Hinrichsen
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | - Christine M. Dunham
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Karakozova MV, Sorochkina AI, Nazarov PA. Two-faced Janus SkQ1/SkQR1: patterns and molecular volume threshold for substrate recognition by the AcrAB-TolC pump. Front Pharmacol 2025; 16:1480955. [PMID: 40115260 PMCID: PMC11922890 DOI: 10.3389/fphar.2025.1480955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/03/2025] [Indexed: 03/23/2025] Open
Affiliation(s)
- Marina V Karakozova
- Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Laboratory of Genomics and Biochemistry of Medicinal Plants, All-Russian Scientific Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Alexandra I Sorochkina
- Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel A Nazarov
- Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Gerry M, Kirby D, Alexandrov BS, Segal D, Zilman A. Specificity and tunability of efflux pumps: A new role for the proton gradient? PLoS Comput Biol 2025; 21:e1012772. [PMID: 39869656 PMCID: PMC11798531 DOI: 10.1371/journal.pcbi.1012772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/05/2025] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps. We developed a set of mathematical models describing operation of efflux pumps as a discrete cyclic stochastic process across a network of states characterizing pump conformations and the presence/absence of bound ligands and protons. These include a minimal three-state model that lends itself to clear analytic calculations as well as a five-state model that relaxes some of the simpler model's most strict assumptions. We found that the pump specificity is determined not solely by the drug affinity to the pump-as is commonly assumed-but it is also directly affected by the periplasmic pH and the transmembrane potential. Therefore, changes to the proton concentration gradient and voltage drop across the membrane can influence how effective the pump is at extruding a particular drug molecule. Furthermore, we found that while both the proton concentration gradient across the membrane and the transmembrane potential contribute to the thermodynamic force driving the pump, their effects on the efflux enter not strictly in a combined proton motive force. Rather, they have two distinguishable effects on the overall throughput. These results highlight the unexpected effects of thermodynamic driving forces out of equilibrium and illustrate how efflux pump structure and function are conducive to the emergence of multidrug resistance.
Collapse
Affiliation(s)
- Matthew Gerry
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Duncan Kirby
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Boian S. Alexandrov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Dvira Segal
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Chemical Physics Theory Group, Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Makhamadjamonov F, Karolak ME, Smyth L, Ababou A. Insights into substrate recognition and export tunnel preferences in the efflux transporter AcrB. Protein Sci 2025; 34:e5252. [PMID: 39673478 PMCID: PMC11645668 DOI: 10.1002/pro.5252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024]
Abstract
In Escherichia coli AcrB is a major multidrug exporter, which confers the bacterium resistance to many antibiotics with diverse structural and chemical proprieties. Studies have identified three possible tunnels (or channels) within AcrB that different substrates use before reaching the distal pocket, from which they are subsequently extruded. Recently, we reported that mutations in the AcrB gate loop may affect the conformational change kinetics involved in substrate export rather than directly affecting molecular interactions with this loop, and we highlighted the distinct export tunnel preferences between erythromycin and doxorubicin. To further understand the gate loop's role in AcrB's export activity and the rationale behind substrate preferences among the three possible export tunnels, namely tunnel-1, -2, and -3, we investigated the structural and functional effects of several single and multiple mutations in the gate loop of AcrB. Our findings indicate that all three tunnels are energetically favorable for the substrates studied, with the majority forming more hydrogen bonds in any tunnel compared to the distal pocket. Moreover, our experimental and computational data revealed that some substrates with high molecular similarity exhibited different export tunnel preferences, as strongly suggested by their MIC values. To explain this unexpected outcome, we propose a generalized explanation that the conformational change kinetics in AcrB is substrate-dependent.
Collapse
Affiliation(s)
| | | | - Lesley Smyth
- School of Medicine and BiosciencesUniversity of West LondonLondonUK
| | - Abdessamad Ababou
- School of Health, Sport and BioscienceUniversity of East LondonLondonUK
- School of Cardiovascular Medicine and Sciences & Randall CentreKing's College LondonLondonUK
| |
Collapse
|
5
|
Klenotic PA, Yu EW. Structural analysis of resistance-nodulation cell division transporters. Microbiol Mol Biol Rev 2024; 88:e0019823. [PMID: 38551344 PMCID: PMC11332337 DOI: 10.1128/mmbr.00198-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
SUMMARYInfectious bacteria have both intrinsic and acquired mechanisms to combat harmful biocides that enter the cell. Through adaptive pressures, many of these pathogens have become resistant to many, if not all, of the current antibiotics used today to treat these often deadly infections. One prominent mechanism is the upregulation of efflux systems, especially the resistance-nodulation-cell division class of exporters. These tripartite systems consist of an inner membrane transporter coupled with a periplasmic adaptor protein and an outer membrane channel to efficiently transport a diverse array of substrates from inside the cell to the extracellular space. Detailed mechanistic insight into how these inner membrane transporters recognize and shuttle their substrates can ultimately inform both new antibiotic and efflux pump inhibitor design. This review examines the structural basis of substrate recognition of these pumps and the molecular mechanisms underlying multidrug extrusion, which in turn mediate antimicrobial resistance in bacterial pathogens.
Collapse
Affiliation(s)
- Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Jang S. AcrAB-TolC, a major efflux pump in Gram negative bacteria: toward understanding its operation mechanism. BMB Rep 2023; 56:326-334. [PMID: 37254571 PMCID: PMC10315565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023] Open
Abstract
Antibiotic resistance (AR) is a silent pandemic that kills millions worldwide. Although the development of new therapeutic agents against antibiotic resistance is in urgent demand, this has presented a great challenge, especially for Gram-negative bacteria that have inherent drug-resistance mediated by impermeable outer membranes and multidrug efflux pumps that actively extrude various drugs from the bacteria. For the last two decades, multidrug efflux pumps, including AcrAB-TolC, the most clinically important efflux pump in Gram-negative bacteria, have drawn great attention as strategic targets for re-sensitizing bacteria to the existing antibiotics. This article aims to provide a concise overview of the AcrAB-TolC operational mechanism, reviewing its architecture and substrate specificity, as well as the recent development of AcrAB-TolC inhibitors. [BMB Reports 2023; 56(6): 326-334].
Collapse
Affiliation(s)
- Soojin Jang
- Department of Discovery Biology, Antibacterial Resistance Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| |
Collapse
|
7
|
Jang S. AcrAB-TolC, a major efflux pump in Gram negative bacteria: toward understanding its operation mechanism. BMB Rep 2023; 56:326-334. [PMID: 37254571 PMCID: PMC10315565 DOI: 10.5483/bmbrep.2023-0070] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance (AR) is a silent pandemic that kills millions worldwide. Although the development of new therapeutic agents against antibiotic resistance is in urgent demand, this has presented a great challenge, especially for Gram-negative bacteria that have inherent drug-resistance mediated by impermeable outer membranes and multidrug efflux pumps that actively extrude various drugs from the bacteria. For the last two decades, multidrug efflux pumps, including AcrAB-TolC, the most clinically important efflux pump in Gram-negative bacteria, have drawn great attention as strategic targets for re-sensitizing bacteria to the existing antibiotics. This article aims to provide a concise overview of the AcrAB-TolC operational mechanism, reviewing its architecture and substrate specificity, as well as the recent development of AcrAB-TolC inhibitors. [BMB Reports 2023; 56(6): 326-334].
Collapse
Affiliation(s)
- Soojin Jang
- Department of Discovery Biology, Antibacterial Resistance Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| |
Collapse
|
8
|
Athar M, Gervasoni S, Catte A, Basciu A, Malloci G, Ruggerone P, Vargiu AV. Tripartite efflux pumps of the RND superfamily: what did we learn from computational studies? MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36972322 DOI: 10.1099/mic.0.001307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Bacterial resistance to antibiotics has been long recognized as a priority to address for human health. Among all micro-organisms, the so-called multi-drug resistant (MDR) bacteria, which are resistant to most, if not all drugs in our current arsenal, are particularly worrisome. The World Health Organization has prioritized the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species) pathogens, which include four Gram-negative bacterial species. In these bacteria, active extrusion of antimicrobial compounds out of the cell by means of 'molecular guns' known as efflux pumps is a main determinant of MDR phenotypes. The resistance-nodulation-cell division (RND) superfamily of efflux pumps connecting the inner and outer membrane in Gram-negative bacteria is crucial to the onset of MDR and virulence, as well as biofilm formation. Thus, understanding the molecular basis of the interaction of antibiotics and inhibitors with these pumps is key to the design of more effective therapeutics. With the aim to contribute to this challenge, and complement and inspire experimental research, in silico studies on RND efflux pumps have flourished in recent decades. Here, we review a selection of such investigations addressing the main determinants behind the polyspecificity of these pumps, the mechanisms of substrate recognition, transport and inhibition, as well as the relevance of their assembly for proper functioning, and the role of protein-lipid interactions. The journey will end with a perspective on the role of computer simulations in addressing the challenges posed by these beautifully complex machineries and in supporting the fight against the spread of MDR bacteria.
Collapse
Affiliation(s)
- Mohd Athar
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Silvia Gervasoni
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Catte
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Basciu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Giuliano Malloci
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Paolo Ruggerone
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Attilio Vittorio Vargiu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| |
Collapse
|
9
|
Cryo-EM Structures of AcrD Illuminate a Mechanism for Capturing Aminoglycosides from Its Central Cavity. mBio 2023; 14:e0338322. [PMID: 36625574 PMCID: PMC9973356 DOI: 10.1128/mbio.03383-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Escherichia coli acriflavine resistance protein D (AcrD) is an efflux pump that belongs to the resistance-nodulation-cell division (RND) superfamily. Its primary function is to provide resistance to aminoglycoside-based drugs by actively extruding these noxious compounds out of E. coli cells. AcrD can also mediate resistance to a limited range of other amphiphilic agents, including bile acids, novobiocin, and fusidic acids. As there is no structural information available for any aminoglycoside-specific RND pump, here we describe cryo-electron microscopy (cryo-EM) structures of AcrD in the absence and presence of bound gentamicin. These structures provide new information about the RND superfamily of efflux pumps, specifically, that three negatively charged residues central to the aminoglycoside-binding site are located within the ceiling of the central cavity of the AcrD trimer. Thus, it is likely that AcrD is capable of picking up aminoglycosides via this central cavity. Through the combination of cryo-EM structural determination, mutagenesis analysis, and molecular simulation, we show that charged residues are critically important for this pump to shuttle drugs directly from the central cavity to the funnel of the AcrD trimer for extrusion. IMPORTANCE Here, we report cryo-EM structures of the AcrD aminoglycoside efflux pump in the absence and presence of bound gentamicin, posing the possibility that this pump is capable of capturing aminoglycosides from the central cavity of the AcrD trimer. The results indicate that AcrD utilizes charged residues to bind and export drugs, mediating resistance to these antibiotics.
Collapse
|
10
|
Catte A, K. Ramaswamy V, Vargiu AV, Malloci G, Bosin A, Ruggerone P. Common recognition topology of mex transporters of Pseudomonas aeruginosa revealed by molecular modelling. Front Pharmacol 2022; 13:1021916. [PMID: 36438787 PMCID: PMC9691783 DOI: 10.3389/fphar.2022.1021916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
The secondary transporters of the resistance-nodulation-cell division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria like Pseudomonas aeruginosa. Among these RND transporters, MexB, MexF, and MexY, with partly overlapping specificities, have been implicated in pathogenicity. Only the structure of the former has been resolved experimentally, which together with the lack of data about the functional dynamics of the full set of transporters, limited a systematic investigation of the molecular determinants defining their peculiar and shared features. In a previous work (Ramaswamy et al., Front. Microbiol., 2018, 9, 1144), we compared at an atomistic level the two main putative recognition sites (named access and deep binding pockets) of MexB and MexY. In this work, we expand the comparison by performing extended molecular dynamics (MD) simulations of these transporters and the pathologically relevant transporter MexF. We employed a more realistic model of the inner phospholipid membrane of P. aeruginosa and more accurate force-fields. To elucidate structure/dynamics-activity relationships we performed physico-chemical analyses and mapped the binding propensities of several organic probes on all transporters. Our data revealed the presence, also in MexF, of a few multifunctional sites at locations equivalent to the access and deep binding pockets detected in MexB. Furthermore, we report for the first time about the multidrug binding abilities of two out of five gates of the channels deputed to peripheral (early) recognition of substrates. Overall, our findings help to define a common “recognition topology” characterizing Mex transporters, which can be exploited to optimize transport and inhibition propensities of antimicrobial compounds.
Collapse
|
11
|
Zwama M, Nishino K. Ever-Adapting RND Efflux Pumps in Gram-Negative Multidrug-Resistant Pathogens: A Race against Time. Antibiotics (Basel) 2021; 10:774. [PMID: 34201908 PMCID: PMC8300642 DOI: 10.3390/antibiotics10070774] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/13/2023] Open
Abstract
The rise in multidrug resistance (MDR) is one of the greatest threats to human health worldwide. MDR in bacterial pathogens is a major challenge in healthcare, as bacterial infections are becoming untreatable by commercially available antibiotics. One of the main causes of MDR is the over-expression of intrinsic and acquired multidrug efflux pumps, belonging to the resistance-nodulation-division (RND) superfamily, which can efflux a wide range of structurally different antibiotics. Besides over-expression, however, recent amino acid substitutions within the pumps themselves-causing an increased drug efflux efficiency-are causing additional worry. In this review, we take a closer look at clinically, environmentally and laboratory-evolved Gram-negative bacterial strains and their decreased drug sensitivity as a result of mutations directly in the RND-type pumps themselves (from Escherichia coli, Salmonella enterica, Neisseria gonorrhoeae, Pseudomonas aeruginosa, Acinetobacter baumannii and Legionella pneumophila). We also focus on the evolution of the efflux pumps by comparing hundreds of efflux pumps to determine where conservation is concentrated and where differences in amino acids can shed light on the broad and even broadening drug recognition. Knowledge of conservation, as well as of novel gain-of-function efflux pump mutations, is essential for the development of novel antibiotics and efflux pump inhibitors.
Collapse
Affiliation(s)
- Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Marshall RL, Bavro VN. Mutations in the TolC Periplasmic Domain Affect Substrate Specificity of the AcrAB-TolC Pump. Front Mol Biosci 2020; 7:166. [PMID: 32850959 PMCID: PMC7396618 DOI: 10.3389/fmolb.2020.00166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
TolC and the other members of the outer membrane factor (OMF) family are outer membrane proteins forming trimeric channels that serve as a conduit for most actively effluxed substrates in Gram-negative bacteria by providing a key component in a multitude of tripartite efflux-pumps. Current models of tripartite pump assembly ascribe substrate selection to the inner-membrane transporter and periplasmic-adapter protein (PAP) assembly, suggesting that TolC is a passive, non-selective channel. While the membrane-embedded portion of the protein adopts a porin-like fold, the periplasmic domain of TolC presents a unique "alpha-barrel" architecture. This alpha-barrel consists of pseudo-continuous α-helices forming curved coiled-coils, whose tips form α-helical hairpins, relaxation of which results in a transition of TolC from a closed to an open-aperture state allowing effective efflux of substrates through its channel. Here, we analyzed the effects of site-directed mutations targeting the alpha-barrel of TolC, of the principal tripartite efflux-pump Escherichia coli AcrAB-TolC, on the activity and specificity of efflux. Live-cell functional assays with these TolC mutants revealed that positions both at the periplasmic tip of, and partway up the TolC coiled-coil alpha-barrel domain are involved in determining the functionality of the complex. We report that mutations affecting the electrostatic properties of the channel, particularly the D371V mutation, significantly impact growth even in the absence of antibiotics, causing hyper-susceptibility to all tested efflux-substrates. These results suggest that inhibition of TolC functionality is less well-tolerated than deletion of tolC, and such inhibition may have an antibacterial effect. Significantly and unexpectedly, we identified antibiotic-specific phenotypes associated with novel TolC mutations, suggesting that substrate specificity may not be determined solely by the transporter protein or the PAP, but may reside at least partially with the TolC-channel. Furthermore, some of the effects of mutations are difficult to reconcile with the currently prevalent tip-to-tip model of PAP-TolC interaction due to their location higher-up on the TolC alpha-barrel relative to the proposed PAP-docking sites. Taken together our results suggest a possible new role for TolC in vetting of efflux substrates, alongside its established role in tripartite complex assembly.
Collapse
Affiliation(s)
- Robert L. Marshall
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Vassiliy N. Bavro
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
13
|
Baral B, Mozafari MR. Strategic Moves of "Superbugs" Against Available Chemical Scaffolds: Signaling, Regulation, and Challenges. ACS Pharmacol Transl Sci 2020; 3:373-400. [PMID: 32566906 PMCID: PMC7296549 DOI: 10.1021/acsptsci.0c00005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 12/12/2022]
Abstract
Superbugs' resistivity against available natural products has become an alarming global threat, causing a rapid deterioration in public health and claiming tens of thousands of lives yearly. Although the rapid discovery of small molecules from plant and microbial origin with enhanced bioactivity has provided us with some hope, a rapid hike in the resistivity of superbugs has proven to be the biggest therapeutic hurdle of all times. Moreover, several distinct mechanisms endowed by these notorious superbugs make them immune to these antibiotics subsequently causing our antibiotic wardrobe to be obsolete. In this unfortunate situation, though the time frame for discovering novel "hit molecules" down the line remains largely unknown, our small hope and untiring efforts injected in hunting novel chemical scaffolds with unique molecular targets using high-throughput technologies may safeguard us against these life-threatening challenges to some extent. Amid this crisis, the current comprehensive review highlights the present status of knowledge, our search for bacteria Achilles' heel, distinct molecular signaling that an opportunistic pathogen bestows to trespass the toxicity of antibiotics, and facile strategies and appealing therapeutic targets of novel drugs. Herein, we also discuss multidimensional strategies to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Bikash Baral
- Department
of Biochemistry, University of Turku, Tykistökatu 6, Turku, Finland
| | - M. R. Mozafari
- Australasian
Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia
| |
Collapse
|
14
|
Molecular basis for the different interactions of congeneric substrates with the polyspecific transporter AcrB. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1397-1408. [DOI: 10.1016/j.bbamem.2019.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/20/2022]
|
15
|
Zwama M, Yamaguchi A. Molecular mechanisms of AcrB-mediated multidrug export. Res Microbiol 2018; 169:372-383. [PMID: 29807096 DOI: 10.1016/j.resmic.2018.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/07/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
The over-expression of multidrug efflux pumps belonging to the Resistance-Nodulation-Division (RND) superfamily is one of the main causes of multidrug-resistance (MDR) in Gram-negative pathogenic bacteria. AcrB is the most thoroughly studied RND transporter and has functioned as a model for our understanding of efflux-mediated MDR. This multidrug-exporter can recognize and transport a wide range of structurally unrelated compounds (including antibiotics, dyes, bile salts and detergents), while it shows a strict inhibitor specificity. Here we discuss our current knowledge of AcrB, and include recent advances, regarding its structure, mechanism of drug transport, substrate recognition, different intramolecular entry pathways and the drug export driven by remote conformational coupling.
Collapse
Affiliation(s)
- Martijn Zwama
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan; Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akihito Yamaguchi
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
16
|
Vargiu AV, Ramaswamy VK, Malloci G, Malvacio I, Atzori A, Ruggerone P. Computer simulations of the activity of RND efflux pumps. Res Microbiol 2018; 169:384-392. [PMID: 29407044 DOI: 10.1016/j.resmic.2017.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022]
Abstract
The putative mechanism by which bacterial RND-type multidrug efflux pumps recognize and transport their substrates is a complex and fascinating enigma of structural biology. How a single protein can recognize a huge number of unrelated compounds and transport them through one or just a few mechanisms is an amazing feature not yet completely unveiled. The appearance of cooperativity further complicates the understanding of structure-dynamics-activity relationships in these complex machineries. Experimental techniques may have limited access to the molecular determinants and to the energetics of key processes regulating the activity of these pumps. Computer simulations are a complementary approach that can help unveil these features and inspire new experiments. Here we review recent computational studies that addressed the various molecular processes regulating the activity of RND efflux pumps.
Collapse
Affiliation(s)
- Attilio Vittorio Vargiu
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato (CA), Italy.
| | - Venkata Krishnan Ramaswamy
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato (CA), Italy
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato (CA), Italy
| | - Ivana Malvacio
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato (CA), Italy
| | - Alessio Atzori
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato (CA), Italy
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato (CA), Italy.
| |
Collapse
|
17
|
Zwama M, Yamasaki S, Nakashima R, Sakurai K, Nishino K, Yamaguchi A. Multiple entry pathways within the efflux transporter AcrB contribute to multidrug recognition. Nat Commun 2018; 9:124. [PMID: 29317622 PMCID: PMC5760665 DOI: 10.1038/s41467-017-02493-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 12/04/2017] [Indexed: 11/13/2022] Open
Abstract
AcrB is the major multidrug exporter in Escherichia coli. Although several substrate-entrances have been identified, the specificity of these various transport paths remains unclear. Here we present evidence for a substrate channel (channel 3) from the central cavity of the AcrB trimer, which is connected directly to the deep pocket without first passing the switch-loop and the proximal pocket . Planar aromatic cations, such as ethidium, prefer channel 3 to channels 1 and 2. The efflux through channel 3 increases by targeted mutations and is not in competition with the export of drugs such as minocycline and erythromycin through channels 1 and 2. A switch-loop mutant, in which the pathway from the proximal to the deep pocket is hindered, can export only channel 3-utilizing drugs. The usage of multiple entrances thus contributes to the recognition and transport of a wide range of drugs with different physicochemical properties. Multidrug transporters possess several drug binding sites. Here the authors describe a transport path specific for planar aromatic cations in the E. coli multi-drug transporter AcrB.
Collapse
Affiliation(s)
- Martijn Zwama
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan.,Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Seiji Yamasaki
- Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Ryosuke Nakashima
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Keisuke Sakurai
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Kunihiko Nishino
- Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Akihito Yamaguchi
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
18
|
Ramaswamy VK, Vargiu AV, Malloci G, Dreier J, Ruggerone P. Molecular Rationale behind the Differential Substrate Specificity of Bacterial RND Multi-Drug Transporters. Sci Rep 2017; 7:8075. [PMID: 28808284 PMCID: PMC5556075 DOI: 10.1038/s41598-017-08747-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022] Open
Abstract
Resistance-Nodulation-cell Division (RND) transporters AcrB and AcrD of Escherichia coli expel a wide range of substrates out of the cell in conjunction with AcrA and TolC, contributing to the onset of bacterial multidrug resistance. Despite sharing an overall sequence identity of ~66% (similarity ~80%), these RND transporters feature distinct substrate specificity patterns whose underlying basis remains elusive. We performed exhaustive comparative analyses of the putative substrate binding pockets considering crystal structures, homology models and conformations extracted from multi-copy μs-long molecular dynamics simulations of both AcrB and AcrD. The impact of physicochemical and topographical properties (volume, shape, lipophilicity, electrostatic potential, hydration and distribution of multi-functional sites) within the pockets on their substrate specificities was quantitatively assessed. Differences in the lipophilic and electrostatic potentials among the pockets were identified. In particular, the deep pocket of AcrB showed the largest lipophilicity convincingly pointing out its possible role as a lipophilicity-based selectivity filter. Furthermore, we identified dynamic features (not inferable from sequence analysis or static structures) such as different flexibilities of specific protein loops that could potentially influence the substrate recognition and transport profile. Our findings can be valuable for drawing structure (dynamics)-activity relationship to be employed in drug design.
Collapse
Affiliation(s)
- Venkata Krishnan Ramaswamy
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, I-09042, Monserrato, CA, Italy
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, I-09042, Monserrato, CA, Italy
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, I-09042, Monserrato, CA, Italy
| | - Jürg Dreier
- Basilea Pharmaceutica International Ltd., Grenzacherstrasse 487, 4058, Basel, Switzerland
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu km 0.700, I-09042, Monserrato, CA, Italy.
| |
Collapse
|
19
|
Xianwei T, Diannan L, Boxiong W. Substrate transport pathway inside outward open conformation of EmrD: a molecular dynamics simulation study. MOLECULAR BIOSYSTEMS 2017; 12:2634-41. [PMID: 27327574 DOI: 10.1039/c6mb00348f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The EmrD transporter, which is a classical major facilitator superfamily (MFS) protein, can extrude a range of drug molecules out of E. coil. The drug molecules transport through the channel of MFS in an outward open state, an important issue in research about bacterial drug resistance, which however, is still unknown. In this paper, we construct a starting outward-open model of the EmrD transporter using a state transition method. The starting model is refined by a conventional molecular dynamics simulation. Locally enhanced sampling simulation (LES) is used to validate the outward-open model of EmrD. In the locally enhanced sampling simulation, ten substrates are placed along the channel of the outward-open EmrD, and these substrates are sampled in the outward-open center cavity. It is found that the translocation pathway of these substrates from the inside to the outside of the cell through the EmrD transporter is composed of two sub-pathways, one sub-pathway, including H2, H4, and H5, and another sub-pathway, including H8, H10, and H11. The results give us have a further insight to the ways of substrate translocation of an MFS protein. The model method is based on common features of an MFS protein, so this modeling method can be used to construct various MFS protein models which have a desired state with other conformations not known in the alternating-access mechanism.
Collapse
Affiliation(s)
- Tan Xianwei
- School of Life Sciences, Tsinghua University, Beijing, China.
| | - Lu Diannan
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Wang Boxiong
- Department of Precision Instrument, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
The role played by drug efflux pumps in bacterial multidrug resistance. Essays Biochem 2017; 61:127-139. [DOI: 10.1042/ebc20160064] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/22/2017] [Accepted: 01/24/2017] [Indexed: 01/19/2023]
Abstract
Antimicrobial resistance is a current major challenge in chemotherapy and infection control. The ability of bacterial and eukaryotic cells to recognize and pump toxic compounds from within the cell to the environment before they reach their targets is one of the important mechanisms contributing to this phenomenon. Drug efflux pumps are membrane transport proteins that require energy to export substrates and can be selective for a specific drug or poly-specific that can export multiple structurally diverse drug compounds. These proteins can be classified into seven groups based on protein sequence homology, energy source and overall structure. Extensive studies on efflux proteins have resulted in a wealth of knowledge that has made possible in-depth understanding of the structures and mechanisms of action, substrate profiles, regulation and possible inhibition of many clinically important efflux pumps. This review focuses on describing known families of drug efflux pumps using examples that are well characterized structurally and/or biochemically.
Collapse
|
21
|
Stepwise substrate translocation mechanism revealed by free energy calculations of doxorubicin in the multidrug transporter AcrB. Sci Rep 2015; 5:13905. [PMID: 26365278 PMCID: PMC4595977 DOI: 10.1038/srep13905] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/10/2015] [Indexed: 01/05/2023] Open
Abstract
AcrB is the inner membrane transporter of the tripartite multidrug efflux pump AcrAB-TolC in E. coli, which poses a major obstacle to the treatment of bacterial infections. X-ray structures have identified two types of substrate-binding pockets in the porter domains of AcrB trimer: the proximal binding pocket (PBP) and the distal binding pocket (DBP), and suggest a functional rotating mechanism in which each protomer cycles consecutively through three distinct conformational states (access, binding and extrusion). However, the details of substrate binding and translocation between the binding pockets remain elusive. In this work, we performed atomic simulations to obtain the free energy profile of the translocation of an antibiotic drug doxorubicin (DOX) inside AcrB. Our simulation indicates that DOX binds at the PBP and DBP with comparable affinities in the binding state protomer, and overcomes a 3 kcal/mol energy barrier to transit between them. Obvious conformational changes including closing of the PC1/PC2 cleft and shrinking of the DBP were observed upon DOX binding in the PBP, resulting in an intermediate state between the access and binding states. Taken together, the simulation results reveal a detailed stepwise substrate binding and translocation process in the framework of functional rotating mechanism.
Collapse
|
22
|
Reversal of the Drug Binding Pocket Defects of the AcrB Multidrug Efflux Pump Protein of Escherichia coli. J Bacteriol 2015; 197:3255-64. [PMID: 26240069 DOI: 10.1128/jb.00547-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/28/2015] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The AcrB protein of Escherichia coli, together with TolC and AcrA, forms a contiguous envelope conduit for the capture and extrusion of diverse antibiotics and cellular metabolites. In this study, we sought to expand our knowledge of AcrB by conducting genetic and functional analyses. We began with an AcrB mutant bearing an F610A substitution in the drug binding pocket and obtained second-site substitutions that overcame the antibiotic hypersusceptibility phenotype conferred by the F610A mutation. Five of the seven unique single amino acid substitutions--Y49S, V127A, V127G, D153E, and G288C--mapped in the periplasmic porter domain of AcrB, with the D153E and G288C mutations mapping near and at the distal drug binding pocket, respectively. The other two substitutions--F453C and L486W--were mapped to transmembrane (TM) helices 5 and 6, respectively. The nitrocefin efflux kinetics data suggested that all periplasmic suppressors significantly restored nitrocefin binding affinity impaired by the F610A mutation. Surprisingly, despite increasing MICs of tested antibiotics and the efflux of N-phenyl-1-naphthylamine, the TM suppressors did not improve the nitrocefin efflux kinetics. These data suggest that the periplasmic substitutions act by influencing drug binding affinities for the distal binding pocket, whereas the TM substitutions may indirectly affect the conformational dynamics of the drug binding domain. IMPORTANCE The AcrB protein and its homologues confer multidrug resistance in many important human bacterial pathogens. A greater understanding of how these efflux pump proteins function will lead to the development of effective inhibitors against them. The research presented in this paper investigates drug binding pocket mutants of AcrB through the isolation and characterization of intragenic suppressor mutations that overcome the drug susceptibility phenotype of mutations affecting the drug binding pocket. The data reveal a remarkable structure-function plasticity of the AcrB protein pertaining to its drug efflux activity.
Collapse
|
23
|
Anes J, McCusker MP, Fanning S, Martins M. The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol 2015; 6:587. [PMID: 26113845 PMCID: PMC4462101 DOI: 10.3389/fmicb.2015.00587] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/28/2015] [Indexed: 11/13/2022] Open
Abstract
Infectious diseases remain one of the principal causes of morbidity and mortality in the world. Relevant authorities including the WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. They have also reaffirmed the urgent need for investment in the discovery and development of new antibiotics and therapeutic approaches to treat multidrug resistant (MDR) bacteria. The extensive use of antimicrobial compounds in diverse environments, including farming and healthcare, has been identified as one of the main causes for the emergence of MDR bacteria. Induced selective pressure has led bacteria to develop new strategies of defense against these chemicals. Bacteria can accomplish this by several mechanisms, including enzymatic inactivation of the target compound; decreased cell permeability; target protection and/or overproduction; altered target site/enzyme and increased efflux due to over-expression of efflux pumps. Efflux pumps can be specific for a single substrate or can confer resistance to multiple antimicrobials by facilitating the extrusion of a broad range of compounds including antibiotics, heavy metals, biocides and others, from the bacterial cell. To overcome antimicrobial resistance caused by active efflux, efforts are required to better understand the fundamentals of drug efflux mechanisms. There is also a need to elucidate how these mechanisms are regulated and how they respond upon exposure to antimicrobials. Understanding these will allow the development of combined therapies using efflux inhibitors together with antibiotics to act on Gram-negative bacteria, such as the emerging globally disseminated MDR pathogen Escherichia coli ST131 (O25:H4). This review will summarize the current knowledge on resistance-nodulation-cell division efflux mechanisms in E. coli, a bacteria responsible for community and hospital-acquired infections, as well as foodborne outbreaks worldwide.
Collapse
Affiliation(s)
- João Anes
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin Dublin, Ireland
| | - Matthew P McCusker
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin Dublin, Ireland
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin Dublin, Ireland
| | - Marta Martins
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin Dublin, Ireland
| |
Collapse
|
24
|
Opperman TJ, Nguyen ST. Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol 2015; 6:421. [PMID: 25999939 PMCID: PMC4419859 DOI: 10.3389/fmicb.2015.00421] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/21/2015] [Indexed: 12/25/2022] Open
Abstract
Multidrug resistance (MDR) in Gram-negative pathogens, such as the Enterobacteriaceae and Pseudomonas aeruginosa, poses a significant threat to our ability to effectively treat infections caused by these organisms. A major component in the development of the MDR phenotype in Gram-negative bacteria is overexpression of Resistance-Nodulation-Division (RND)-type efflux pumps, which actively pump antibacterial agents and biocides from the periplasm to the outside of the cell. Consequently, bacterial efflux pumps are an important target for developing novel antibacterial treatments. Potent efflux pump inhibitors (EPIs) could be used as adjunctive therapies that would increase the potency of existing antibiotics and decrease the emergence of MDR bacteria. Several potent inhibitors of RND-type efflux pump have been reported in the literature, and at least three of these EPI series were optimized in a pre-clinical development program. However, none of these compounds have been tested in the clinic. One of the major hurdles to the development of EPIs has been the lack of biochemical, computational, and structural methods that could be used to guide rational drug design. Here, we review recent reports that have advanced our understanding of the mechanism of action of several potent EPIs against RND-type pumps.
Collapse
|
25
|
Yamaguchi A, Nakashima R, Sakurai K. Structural basis of RND-type multidrug exporters. Front Microbiol 2015; 6:327. [PMID: 25941524 PMCID: PMC4403515 DOI: 10.3389/fmicb.2015.00327] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/01/2015] [Indexed: 12/29/2022] Open
Abstract
Bacterial multidrug exporters are intrinsic membrane transporters that act as cellular self-defense mechanism. The most notable characteristics of multidrug exporters is that they export a wide range of drugs and toxic compounds. The overexpression of these exporters causes multidrug resistance. Multidrug-resistant pathogens have become a serious problem in modern chemotherapy. Over the past decade, investigations into the structure of bacterial multidrug exporters have revealed the multidrug recognition and export mechanisms. In this review, we primarily discuss RND-type multidrug exporters particularly AcrAB-TolC, major drug exporter in Gram-negative bacteria. RND-type drug exporters are tripartite complexes comprising a cell membrane transporter, an outer membrane channel and an adaptor protein. Cell membrane transporters and outer membrane channels are homo-trimers; however, there is no consensus on the number of adaptor proteins in these tripartite complexes. The three monomers of a cell membrane transporter have varying conformations (access, binding, and extrusion) during transport. Drugs are exported following an ordered conformational change in these three monomers, through a functional rotation mechanism coupled with the proton relay cycle in ion pairs, which is driven by proton translocation. Multidrug recognition is based on a multisite drug-binding mechanism, in which two voluminous multidrug-binding pockets in cell membrane exporters recognize a wide range of substrates as a result of permutations at numerous binding sites that are specific for the partial structures of substrate molecules. The voluminous multidrug-binding pocket may have numerous binding sites even for a single substrate, suggesting that substrates may move between binding sites during transport, an idea named as multisite-drug-oscillation hypothesis. This hypothesis is consistent with the apparently broad substrate specificity of cell membrane exporters and their highly efficient ejection of drugs from the cell. Substrates are transported through dual multidrug-binding pockets via the peristaltic motion of the substrate translocation channel. Although there are no clinically available inhibitors of bacterial multidrug exporters, efforts to develop inhibitors based on structural information are underway.
Collapse
Affiliation(s)
- Akihito Yamaguchi
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University Ibaraki, Japan
| | - Ryosuke Nakashima
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University Ibaraki, Japan
| | - Keisuke Sakurai
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University Ibaraki, Japan
| |
Collapse
|
26
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 1016] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
27
|
AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity. Proc Natl Acad Sci U S A 2015; 112:3511-6. [PMID: 25737552 DOI: 10.1073/pnas.1419939112] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The incidence of multidrug-resistant bacterial infections is increasing globally and the need to understand the underlying mechanisms is paramount to discover new therapeutics. The efflux pumps of Gram-negative bacteria have a broad substrate range and transport antibiotics out of the bacterium, conferring intrinsic multidrug resistance (MDR). The genomes of pre- and posttherapy MDR clinical isolates of Salmonella Typhimurium from a patient that failed antibacterial therapy and died were sequenced. In the posttherapy isolate we identified a novel G288D substitution in AcrB, the resistance-nodulation division transporter in the AcrAB-TolC tripartite MDR efflux pump system. Computational structural analysis suggested that G288D in AcrB heavily affects the structure, dynamics, and hydration properties of the distal binding pocket altering specificity for antibacterial drugs. Consistent with this hypothesis, recreation of the mutation in standard Escherichia coli and Salmonella strains showed that G288D AcrB altered substrate specificity, conferring decreased susceptibility to the fluoroquinolone antibiotic ciprofloxacin by increased efflux. At the same time, the substitution increased susceptibility to other drugs by decreased efflux. Information about drug transport is vital for the discovery of new antibacterials; the finding that one amino acid change can cause resistance to some drugs, while conferring increased susceptibility to others, could provide a basis for new drug development and treatment strategies.
Collapse
|
28
|
A fluorescent microplate assay quantifies bacterial efflux and demonstrates two distinct compound binding sites in AcrB. Antimicrob Agents Chemother 2015; 59:2388-97. [PMID: 25645845 DOI: 10.1128/aac.05112-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A direct assay of efflux by Escherichia coli AcrAB-TolC and related multidrug pumps would have great value in discovery of new Gram-negative antibiotics. The current understanding of how efflux is affected by the chemical structure and physical properties of molecules is extremely limited, derived from antibacterial data for compounds that inhibit growth of wild-type E. coli. We adapted a previously described fluorescent efflux assay to a 96-well microplate format that measured the ability of test compounds to compete for efflux with Nile Red (an environment-sensitive fluor), independent of antibacterial activity. We show that Nile Red and the lipid-sensitive probe DiBAC4-(3) [bis-(1,3-dibutylbarbituric acid)-trimethine oxonol] can quantify efflux competition in E. coli. We extend the previous findings that the tetracyclines compete with Nile Red and show that DiBAC4-(3) competes with macrolides. The extent of the competition shows a modest correlation with the effect of the acrB deletion on MICs within the compound sets for both dyes. Crystallographic studies identified at least two substrate binding sites in AcrB, the proximal and distal pockets. High-molecular-mass substrates bound the proximal pocket, while low-mass substrates occupied the distal pocket. As DiBAC4-(3) competes with macrolides but not with Nile Red, we propose that DiBAC4-(3) binds the proximal pocket and Nile Red likely binds the distal site. In conclusion, competition with fluorescent probes can be used to study the efflux process for diverse chemical structures and may provide information as to the site of binding and, in some cases, enable rank-ordering a series of related compounds by efflux.
Collapse
|
29
|
Wang Z, Zhong M, Lu W, Chai Q, Wei Y. Repressive mutations restore function-loss caused by the disruption of trimerization in Escherichia coli multidrug transporter AcrB. Front Microbiol 2015; 6:4. [PMID: 25657644 PMCID: PMC4303003 DOI: 10.3389/fmicb.2015.00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/03/2015] [Indexed: 11/13/2022] Open
Abstract
AcrAB-TolC and their homologs are major multidrug efflux systems in Gram-negative bacteria. The inner membrane component AcrB functions as a trimer. Replacement of Pro223 by Gly in AcrB decreases the trimer stability and drastically reduces the drug efflux activity. The goal of this study is to identify suppressor mutations that restore function to mutant AcrBP223G and explore the mechanism of function recovery. Two methods were used to introduce random mutations into the plasmid of AcrBP223G. Mutants with elevated drug efflux activity were identified, purified, and characterized to examine their expression level, trimer stability, interaction with AcrA, and substrate binding. Nine single-site repressor mutations were identified, including T199M, D256N, A209V, G257V, M662I, Q737L, D788K, P800S, and E810K. Except for M662I, all other mutations located in the docking region of the periplasmic domain. While three mutations, T199M, A209V, and D256N, significantly increased the trimer stability, none of them restored the trimer affinity to the wild type level. M662, the only site of mutation that located in the porter domain, was involved in substrate binding. Our results suggest that the function loss resulted from compromised AcrB trimerization could be restored through various mechanisms involving the compensation of trimer stability and substrate binding.
Collapse
Affiliation(s)
- Zhaoshuai Wang
- Department of Chemistry, University of Kentucky Lexington, KY, USA
| | - Meng Zhong
- Department of Chemistry, University of Kentucky Lexington, KY, USA
| | - Wei Lu
- Department of Chemistry, University of Kentucky Lexington, KY, USA
| | - Qian Chai
- Department of Chemistry, University of Kentucky Lexington, KY, USA
| | - Yinan Wei
- Department of Chemistry, University of Kentucky Lexington, KY, USA
| |
Collapse
|
30
|
Mingardon F, Clement C, Hirano K, Nhan M, Luning EG, Chanal A, Mukhopadhyay A. Improving olefin tolerance and production in E. coli using native and evolved AcrB. Biotechnol Bioeng 2015; 112:879-88. [PMID: 25450012 PMCID: PMC4406151 DOI: 10.1002/bit.25511] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/16/2014] [Accepted: 11/25/2014] [Indexed: 01/10/2023]
Abstract
Microorganisms can be engineered for the production of chemicals utilized in the polymer industry. However many such target compounds inhibit microbial growth and might correspondingly limit production levels. Here, we focus on compounds that are precursors to bioplastics, specifically styrene and representative alpha-olefins; 1-hexene, 1-octene, and 1-nonene. We evaluated the role of the Escherichia coli efflux pump, AcrAB-TolC, in enhancing tolerance towards these olefin compounds. AcrAB-TolC is involved in the tolerance towards all four compounds in E. coli. Both styrene and 1-hexene are highly toxic to E. coli. Styrene is a model plastics precursor with an established route for production in E. coli (McKenna and Nielsen, 2011). Though our data indicates that AcrAB-TolC is important for its optimal production, we observed a strong negative selection against the production of styrene in E. coli. Thus we used 1-hexene as a model compound to implement a directed evolution strategy to further improve the tolerance phenotype towards this alpha-olefin. We focused on optimization of AcrB, the inner membrane domain known to be responsible for substrate binding, and found several mutations (A279T, Q584R, F617L, L822P, F927S, and F1033Y) that resulted in improved tolerance. Several of these mutations could also be combined in a synergistic manner. Our study shows efflux pumps to be an important mechanism in host engineering for olefins, and one that can be further improved using strategies such as directed evolution, to increase tolerance and potentially production. Biotechnol. Bioeng. 2015;112: 879–888. © 2015 The Authors. Biotechnology and Bioengineering Published by John Wiley & Periodicals, Inc.
Collapse
|
31
|
Phillips JL, Gnanakaran S. A data-driven approach to modeling the tripartite structure of multidrug resistance efflux pumps. Proteins 2014; 83:46-65. [PMID: 24957790 DOI: 10.1002/prot.24632] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 01/26/2023]
Abstract
Many bacterial pathogens are becoming increasingly resistant to antibiotic treatments, and a detailed understanding of the molecular basis of antibiotic resistance is critical for the development of next-generation approaches for combating bacterial infections. Studies focusing on pathogens have revealed the profile of resistance in these organisms to be due primarily to the presence of multidrug resistance efflux pumps: tripartite protein complexes which span the periplasm bridging the inner and outer membranes of Gram-negative bacteria. An atomic-level resolution tripartite structure remains imperative to advancing our understanding of the molecular mechanisms of pump function using both theoretical and experimental approaches. We develop a fast and consistent method for constructing tripartite structures which leverages existing data-driven models and provide molecular modeling approaches for constructing tripartite structures of multidrug resistance efflux pumps. Our modeling studies reveal that conformational changes in the inner membrane component responsible for drug translocation have limited impact on the conformations of the other pump components, and that two distinct models derived from conflicting experimental data are both consistent with all currently available measurements. Additionally, we investigate putative drug translocation pathways via geometric simulations based on the available crystal structures of the inner membrane pump component, AcrB, bound to two drugs which occupy distinct binding sites: doxorubicin and linezolid. These simulations suggest that smaller drugs may enter the pump through a channel from the cytoplasmic leaflet of the inner membrane, while both smaller and larger drug molecules may enter through a vestibule accessible from the periplasm.
Collapse
Affiliation(s)
- Joshua L Phillips
- Theoretical Biology and Biophysics Group (T-6), Los Alamos National Laboratory, Los Alamos, New Mexico, 87545; Department of Computer Science, Middle Tennessee State University, Murfreesboro, Tennessee, 37132
| | | |
Collapse
|
32
|
Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors. Antimicrob Agents Chemother 2014; 58:6224-34. [PMID: 25114133 DOI: 10.1128/aac.03283-14] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efflux pumps of the resistance nodulation division (RND) superfamily, such as AcrB, make a major contribution to multidrug resistance in Gram-negative bacteria. The development of inhibitors of the RND pumps would improve the efficacy of current and next-generation antibiotics. To date, however, only one inhibitor has been cocrystallized with AcrB. Thus, in silico structure-based analysis is essential for elucidating the interaction between other inhibitors and the efflux pumps. In this work, we used computer docking and molecular dynamics simulations to study the interaction between AcrB and the compound MBX2319, a novel pyranopyridine efflux pump inhibitor with potent activity against RND efflux pumps of Enterobacteriaceae species, as well as other known inhibitors (D13-9001, 1-[1-naphthylmethyl]-piperazine, and phenylalanylarginine-β-naphthylamide) and the binding of doxorubicin to the efflux-defective F610A variant of AcrB. We also analyzed the binding of a substrate, minocycline, for comparison. Our results show that MBX2319 binds very tightly to the lower part of the distal pocket in the B protomer of AcrB, strongly interacting with the phenylalanines lining the hydrophobic trap, where the hydrophobic portion of D13-9001 was found to bind by X-ray crystallography. Additionally, MBX2319 binds to AcrB in a manner that is similar to the way in which doxorubicin binds to the F610A variant of AcrB. In contrast, 1-(1-naphthylmethyl)-piperazine and phenylalanylarginine-β-naphthylamide appear to bind to somewhat different areas of the distal pocket in the B protomer of AcrB than does MBX2319. However, all inhibitors (except D13-9001) appear to distort the structure of the distal pocket, impairing the proper binding of substrates.
Collapse
|
33
|
MexY-promoted aminoglycoside resistance in Pseudomonas aeruginosa: involvement of a putative proximal binding pocket in aminoglycoside recognition. mBio 2014; 5:e01068. [PMID: 24757215 PMCID: PMC3994515 DOI: 10.1128/mbio.01068-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The resistance-nodulation-division (RND) family multidrug efflux system MexXY-OprM is a major determinant of aminoglycoside resistance in Pseudomonas aeruginosa, although the details of aminoglycoside recognition and export by MexY, the substrate-binding RND component of this efflux system, have not been elucidated. To identify regions/residues of MexY important for aminoglycoside resistance, plasmid-borne mexY was mutagenized and mutations that impaired MexY-promoted aminoglycoside (streptomycin) resistance were identified in a ΔmexY strain of P. aeruginosa. Sixty-one streptomycin-sensitive mexY mutants were recovered; among these, 7 unique mutations that yielded wild-type levels of MexY expression were identified. These mutations compromised resistance to additional aminoglycosides and to other antimicrobials and occurred in both the transmembrane and periplasmic regions of the protein. Mapping of the mutated residues onto a 3-dimensional structure of MexY modeled on Escherichia coli AcrB revealed that these tended to occur in regions implicated in general pump operation (transmembrane domain) and MexY trimer assembly (docking domain) and, thus, did not provide insights into aminoglycoside recognition. A region corresponding to a proximal binding pocket connected to a periplasm-linked cleft, part of a drug export pathway of AcrB, was identified in MexY and proposed to play a role in aminoglycoside recognition. To test this, selected residues (K79, D133, and Y613) within this pocket were mutagenized and the impact on aminoglycoside resistance was assessed. Mutations of D133 and Y613 compromised aminoglycoside resistance, while, surprisingly, the K79 mutation enhanced aminoglycoside resistance, confirming a role for this putative proximal binding pocket in aminoglycoside recognition and export. IMPORTANCE Bacterial RND pumps do not typically accommodate highly hydrophilic agents such as aminoglycosides, and it is unclear how those, such as MexY, which accommodate these unique substrates, do so. The results presented here indicate that aminoglycosides are likely not captured and exported by this RND pump component in a unique manner but rather utilize a previously defined export pathway that involves a proximal drug-binding pocket that is also implicated in the export of nonaminoglycosides. The observation, too, that a mutation in this pocket enhances MexY-mediated aminoglycoside resistance (K79A), an indication that it is not optimally designed to accommodate these agents, lends further support to earlier proposals that antimicrobials are not the intended pump substrates.
Collapse
|
34
|
Lu W, Zhong M, Chai Q, Wang Z, Yu L, Wei Y. Functional relevance of AcrB Trimerization in pump assembly and substrate binding. PLoS One 2014; 9:e89143. [PMID: 24551234 PMCID: PMC3925222 DOI: 10.1371/journal.pone.0089143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/15/2014] [Indexed: 12/26/2022] Open
Abstract
AcrB is a multidrug transporter in the inner membrane of Escherichia coli. It is an obligate homotrimer and forms a tripartite efflux complex with AcrA and TolC. AcrB is the engine of the efflux machinery and determines substrate specificity. Active efflux depends on several functional features including proton translocation across the inner membrane through a proton relay pathway in the transmembrane domain of AcrB; substrate binding and migration through the substrate translocation pathway; the interaction of AcrB with AcrA and TolC; and the formation of AcrB homotrimer. Here we investigated two aspects of the inter-correlation between these functional features, the dependence of AcrA-AcrB interaction on AcrB trimerization, and the reliance of substrate binding and penetration on protein-protein interaction. Interaction between AcrA and AcrB was investigated through chemical crosslinking, and a previously established in vivo fluorescent labeling method was used to probe substrate binding. Our data suggested that dissociation of the AcrB trimer drastically decreased its interaction with AcrA. In addition, while substrate binding with AcrB seemed to be irrelevant to the presence or absence of AcrA and TolC, the capability of trimerization and conduction of proton influx did affect substrate binding at selected sites along the substrate translocation pathway in AcrB.
Collapse
Affiliation(s)
- Wei Lu
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Meng Zhong
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Qian Chai
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaoshuai Wang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Linliang Yu
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
35
|
Foo JL, Leong SSJ. Directed evolution of an E. coli inner membrane transporter for improved efflux of biofuel molecules. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:81. [PMID: 23693002 PMCID: PMC3680313 DOI: 10.1186/1754-6834-6-81] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 05/16/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND The depletion of fossil fuels and the rising need to meet global energy demands have led to a growing interest in microbial biofuel synthesis, particularly in Escherichia coli, due to its tractable characteristics. Besides engineering more efficient metabolic pathways for synthesizing biofuels, efforts to improve production yield by engineering efflux systems to overcome toxicity problems is also crucial. This study aims to enhance hydrocarbon efflux capability in E. coli by engineering a native inner membrane transporter, AcrB, using the directed evolution approach. RESULTS We developed a selection platform based on competitive growth using a toxic substrate surrogate, which allowed rapid selection of AcrB variants showing enhanced efflux of linear and cyclic fuel molecule candidates, n-octane and α-pinene. Two mutants exhibiting increased efflux efficiency for n-octane and α-pinene by up to 47% and 400%, respectively, were isolated. Single-site mutants based on the mutations found in the isolated variants were synthesized and the amino acid substitutions N189H, T678S, Q737L and M844L were identified to have conferred improvement in efflux efficiency. The locations of beneficial mutations in AcrB suggest their contributions in widening the substrate channel, altering the dynamics of substrate efflux and promoting the assembly of AcrB with the outer membrane channel protein TolC for more efficient substrate export. It is interesting to note that three of the four beneficial mutations were located relatively distant from the known substrate channels, thus exemplifying the advantage of directed evolution over rational design. CONCLUSIONS Using directed evolution, we have isolated AcrB mutants with improved efflux efficiency for n-octane and α-pinene. The utilization of such optimized native efflux pumps will increase productivity of biofuels synthesis and alleviate toxicity and difficulties in production scale-up in current microbial platforms.
Collapse
Affiliation(s)
- Jee Loon Foo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Susanna Su Jan Leong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
36
|
Hung LW, Kim HB, Murakami S, Gupta G, Kim CY, Terwilliger TC. Crystal structure of AcrB complexed with linezolid at 3.5 Å resolution. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2013; 14:71-5. [PMID: 23673416 PMCID: PMC3679416 DOI: 10.1007/s10969-013-9154-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/04/2013] [Indexed: 01/07/2023]
Abstract
AcrB is an inner membrane resistance-nodulation-cell division efflux pump and is part of the AcrAB-TolC tripartite efflux system. We have determined the crystal structure of AcrB with bound Linezolid at a resolution of 3.5 Å. The structure shows that Linezolid binds to the A385/F386 loops of the symmetric trimer of AcrB. A conformational change of a loop in the bottom of the periplasmic cleft is also observed.
Collapse
Affiliation(s)
- Li-Wei Hung
- Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | - Heung-Bok Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | - Satoshi Murakami
- Life Science Department, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, J2-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503 Japan
| | - Goutam Gupta
- Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | - Chang-Yub Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | | |
Collapse
|
37
|
Collu F, Vargiu AV, Dreier J, Cascella M, Ruggerone P. Recognition of imipenem and meropenem by the RND-transporter MexB studied by computer simulations. J Am Chem Soc 2012; 134:19146-58. [PMID: 23146101 DOI: 10.1021/ja307803m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Basic understanding of the means by which multidrug efflux systems can efficiently recognize and transport drugs constitutes a fundamental step toward development of compounds able to tackle the continuous outbreak of new bacterial strains resistant to traditional antibiotics. We applied a series of computational techniques, from molecular docking to molecular dynamics simulations and free energy estimate methods, to determine the differences in the binding properties of imipenem and meropenem, two potent antibiotics of the carbapenem family, to MexB, the RND transporter of the major efflux system of Pseudomonas aeruginosa. We identified and characterized two affinity sites in the periplasmic domain of the transporter, sharing strong similarities with the distal and proximal binding pockets identified in AcrB, the homologue of MexB in Escherichia coli. According to our results, meropenem has a higher affinity to the distal binding pocket than imipenem while both compounds are weakly bound to the proximal pocket. This different behavior is mainly due to the hydration properties of the nonpharmacophore part of the two compounds, being that of imipenem less bulky and hydrophobic. Our data provide for the first time a rationale at molecular level for the experimental evidence indicating meropenem as a compound strongly affected by MexB contrary to imipenem, which is apparently poorly transported by the same pump.
Collapse
Affiliation(s)
- Francesca Collu
- Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc Natl Acad Sci U S A 2012; 109:16696-701. [PMID: 23010927 DOI: 10.1073/pnas.1210093109] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The AcrAB-TolC multidrug efflux pump confers resistance to a wide variety of antibiotics and other compounds in Escherichia coli. Here we show that AcrZ (formerly named YbhT), a 49-amino-acid inner membrane protein, associates with the AcrAB-TolC complex. Co-purification of AcrZ with AcrB, in the absence of both AcrA and TolC, two-hybrid assays and suppressor mutations indicate that this interaction occurs through the inner membrane protein AcrB. The highly conserved acrZ gene is coregulated with acrAB through induction by the MarA, Rob, and SoxS transcription regulators. In addition, mutants lacking AcrZ are sensitive to many, but not all, of the antibiotics transported by AcrAB-TolC. This differential antibiotic sensitivity suggests that AcrZ may enhance the ability of the AcrAB-TolC pump to export certain classes of substrates.
Collapse
|
39
|
Ohene-Agyei T, Lea JD, Venter H. Mutations in MexB that affect the efflux of antibiotics with cytoplasmic targets. FEMS Microbiol Lett 2012; 333:20-7. [PMID: 22568688 DOI: 10.1111/j.1574-6968.2012.02594.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/24/2012] [Accepted: 05/06/2012] [Indexed: 11/30/2022] Open
Abstract
Drug efflux pumps such as MexAB-OprM from Pseudomonas aeruginosa confer resistance to a wide range of chemically different compounds. Within the tripartite assembly, the inner membrane protein MexB is mainly responsible for substrate recognition. Recently, considerable advances have been made in elucidating the drug efflux pathway through the large periplasmic domains of resistance-nodulation-division (RND) transporters. However, little is known about the role of amino acids in other parts of the protein. We have investigated the role of two conserved phenylalanine residues that are aligned around the cytoplasmic side of the central cavity of MexB. The two conserved phenylalanine residues have been mutated to alanine residues (FAFA MexB). The interaction of the wild-type and mutant proteins with a variety of drugs from different classes was investigated by assays of cytotoxicity and drug transport. The FAFA mutation affected the efflux of compounds that have targets inside the cell, but antibiotics that act on cell wall synthesis and membrane probes were unaffected. Combined, our results indicate the presence of a hitherto unidentified cytoplasmic-binding site in RND drug transporters and enhance our understanding of the molecular mechanisms that govern drug resistance in Gram-negative pathogens.
Collapse
|
40
|
Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc Natl Acad Sci U S A 2012; 109:5687-92. [PMID: 22451937 DOI: 10.1073/pnas.1114944109] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AcrAB-TolC is the major efflux protein complex in Escherichia coli extruding a vast variety of antimicrobial agents from the cell. The inner membrane component AcrB is a homotrimer, and it has been postulated that the monomers cycle consecutively through three conformational stages designated loose (L), tight (T), and open (O) in a concerted fashion. Binding of drugs has been shown at a periplasmic deep binding pocket in the T conformation. The initial drug-binding step and transport toward this drug-binding site has been elusive thus far. Here we report high resolution structures (1.9-2.25 Å) of AcrB/designed ankyrin repeat protein (DARPin) complexes with bound minocycline or doxorubicin. In the AcrB/doxorubicin cocrystal structure, binding of three doxorubicin molecules is apparent, with one doxorubicin molecule bound in the deep binding pocket of the T monomer and two doxorubicin molecules in a stacked sandwich arrangement in an access pocket at the lateral periplasmic cleft of the L monomer. This access pocket is separated from the deep binding pocket apparent in the T monomer by a switch-loop. The localization and conformational flexibility of this loop seems to be important for large substrates, because a G616N AcrB variant deficient in macrolide transport exhibits an altered conformation within this loop region. Transport seems to be a stepwise process of initial drug uptake in the access pocket of the L monomer and subsequent accommodation of the drug in the deep binding pocket during the L to T transition to the internal deep binding pocket of the T monomer.
Collapse
|