1
|
Swingle D, Epstein L, Aymon R, Isiorho EA, Abzalimov RR, Favaro DC, Gardner KH. Variations in kinase and effector signaling logic in a bacterial two component signaling network. J Biol Chem 2025; 301:108534. [PMID: 40273983 DOI: 10.1016/j.jbc.2025.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
The general stress response (GSR) protects bacteria from a wide range of stressors. In Alphaproteobacteria, GSR activation is coordinated by HWE/HisKA2 family histidine kinases (HKs), which can exhibit noncanonical structure and function. For example, while most light-oxygen-voltage sensor-containing HKs are light-activated dimers, the Rubellimicrobium thermophilum RT-HK has inverted "dark on, light off" signaling logic with a tunable monomer/dimer equilibrium. Here, we further investigate these atypical behaviors of RT-HK and characterize its downstream signaling network. Using hydrogen-deuterium exchange mass spectrometry, we find that RT-HK uses a signal transduction mechanism similar to light-activated systems, despite its inverted logic. Mutagenesis reveals that RT-HK autophosphorylates in trans, with changes to the Jα helix linking sensor and kinase domains affecting autophosphorylation levels. Exploring downstream effects of RT-HK, we identified two GSR genetic regions, each encoding a copy of the central regulator PhyR. In vitro measurements of phosphotransfer from RT-HK to the two putative PhyRs revealed that RT-HK signals only to one and does so at an increased intensity in the dark, consistent with its reversed logic. X-ray crystal structures of both PhyRs revealed a substantial shift within the receiver domain of one, suggesting a basis for RT-HK specificity. We probed further down the pathway using nuclear magnetic resonance to determine that the single NepR homolog interacts with both unphosphorylated PhyRs, and this interaction is decoupled from activation in one PhyR. This work expands our understanding of HWE/HisKA2 family signal transduction, revealing marked variations from signaling mechanisms previously identified in other GSR networks.
Collapse
Affiliation(s)
- Danielle Swingle
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA; PhD. Program in Biochemistry, The Graduate Center - City University of New York, New York, New York, USA
| | - Leah Epstein
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA; PhD. Program in Biochemistry, The Graduate Center - City University of New York, New York, New York, USA
| | - Ramisha Aymon
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA; Department of Chemistry and Biochemistry, City College of New York, New York, New York, USA
| | - Eta A Isiorho
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
| | - Rinat R Abzalimov
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
| | - Denize C Favaro
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA; Department of Chemistry and Biochemistry, City College of New York, New York, New York, USA; PhD. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center - City University of New York, New York, New York, USA.
| |
Collapse
|
2
|
Swingle D, Epstein L, Aymon R, Isiorho EA, Abzalimov RR, Favaro DC, Gardner KH. Variations in kinase and effector signaling logic in a bacterial two component signaling network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621962. [PMID: 39574756 PMCID: PMC11580852 DOI: 10.1101/2024.11.04.621962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The general stress response (GSR) protects bacteria from a wide range of stressors. In Alphaproteobacteria, GSR activation is coordinated by HWE/HisKA2 family histidine kinases (HKs), which can exhibit non-canonical structure and function. For example, while most light-oxygen-voltage sensor-containing HKs are light activated dimers, the Rubellimicrobium thermophilum RT-HK has inverted "dark on, light off" signaling logic with a tunable monomer/dimer equilibrium. Here, we further investigate these atypical behaviors of RT-HK and characterize its downstream signaling network. Using hydrogen-deuterium exchange mass spectrometry, we find that RT-HK uses a signal transduction mechanism similar to light-activated systems, despite its inverted logic. Mutagenesis reveals that RT-HK autophosphorylates in trans, with changes to the Jα helix linking sensor and kinase domains affecting autophosphorylation levels. Exploring downstream effects of RT-HK, we identified two GSR genetic regions, each encoding a copy of the central regulator PhyR. In vitro measurements of phosphotransfer from RT-HK to the two putative PhyRs revealed that RT-HK signals only to one, and does so at an increased intensity in the dark, consistent with its reversed logic. X-ray crystal structures of both PhyRs revealed a substantial shift within the receiver domain of one, suggesting a basis for RT-HK specificity. We probed further down the pathway using nuclear magnetic resonance to determine that the single NepR homolog interacts with both unphosphorylated PhyRs, and this interaction is decoupled from activation in one PhyR. This work expands our understanding of HWE/HisKA2 family signal transduction, revealing marked variations from signaling mechanisms previously identified in other GSR networks.
Collapse
Affiliation(s)
- Danielle Swingle
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Ph.D. Program in Biochemistry, The Graduate Center – City University of New York, New York, NY 10016
| | - Leah Epstein
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Ph.D. Program in Biochemistry, The Graduate Center – City University of New York, New York, NY 10016
| | - Ramisha Aymon
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
| | - Eta A. Isiorho
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Rinat R. Abzalimov
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Denize C. Favaro
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Kevin H. Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
- Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center – City University of New York, New York, NY 10016
| |
Collapse
|
3
|
Kaczmarczyk A, van Vliet S, Jakob RP, Teixeira RD, Scheidat I, Reinders A, Klotz A, Maier T, Jenal U. A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution. Nat Commun 2024; 15:3920. [PMID: 38724508 PMCID: PMC11082216 DOI: 10.1038/s41467-024-48295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Monitoring changes of signaling molecules and metabolites with high temporal resolution is key to understanding dynamic biological systems. Here, we use directed evolution to develop a genetically encoded ratiometric biosensor for c-di-GMP, a ubiquitous bacterial second messenger regulating important biological processes like motility, surface attachment, virulence and persistence. The resulting biosensor, cdGreen2, faithfully tracks c-di-GMP in single cells and with high temporal resolution over extended imaging times, making it possible to resolve regulatory networks driving bimodal developmental programs in different bacterial model organisms. We further adopt cdGreen2 as a simple tool for in vitro studies, facilitating high-throughput screens for compounds interfering with c-di-GMP signaling and biofilm formation. The sensitivity and versatility of cdGreen2 could help reveal c-di-GMP dynamics in a broad range of microorganisms with high temporal resolution. Its design principles could also serve as a blueprint for the development of similar, orthogonal biosensors for other signaling molecules, metabolites and antibiotics.
Collapse
Affiliation(s)
- Andreas Kaczmarczyk
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| | - Simon van Vliet
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Roman Peter Jakob
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | | | - Inga Scheidat
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Alberto Reinders
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Alexander Klotz
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Urs Jenal
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| |
Collapse
|
4
|
Wang X, Wang L, Wang Y, Fu X, Wang X, Wu H, Wang H, Lu Z. sRNA molecules participate in hyperosmotic stress response regulation in Sphingomonas melonis TY. Appl Environ Microbiol 2024; 90:e0215823. [PMID: 38289134 PMCID: PMC10880617 DOI: 10.1128/aem.02158-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 02/22/2024] Open
Abstract
Drought and salinity are ubiquitous environmental factors that pose hyperosmotic threats to microorganisms and impair their efficiency in performing environmental functions. However, bacteria have developed various responses and regulatory systems to cope with these abiotic challenges. Posttranscriptional regulation plays vital roles in regulating gene expression and cellular homeostasis, as hyperosmotic stress conditions can lead to the induction of specific small RNA molecules (sRNAs) that participate in stress response regulation. Here, we report a candidate functional sRNA landscape of Sphingomonas melonis TY under hyperosmotic stress, and 18 sRNAs were found with a clear response to hyperosmotic stress. These findings will help in the comprehensive analysis of sRNA regulation in Sphingomonas species. Weighted correlation network analysis revealed a 263 nucleotide sRNA, SNC251, which was transcribed from its own promoter and showed the most significant correlation with hyperosmotic response factors. Deletion of snc251 affected biofilm formation and multiple cellular processes, including ribosome-related pathways, aromatic compound degradation, and the nicotine degradation capacity of S. melonis TY, while overexpression of SNC251 facilitated biofilm formation by TY under hyperosmotic stress. Two genes involved in the TonB system were further verified to be activated by SNC251, which also indicated that SNC251 is a trans-acting sRNA. Briefly, this research reports a landscape of sRNAs participating in the hyperosmotic stress response in S. melonis and reveals a novel sRNA, SNC251, which contributes to the S. melonis TY biofilm formation and thus enhances its hyperosmotic stress response ability.IMPORTANCESphingomonas species play a vital role in plant defense and pollutant degradation and survive extensively under drought or salinity. Previous studies have focused on the transcriptional and translational responses of Sphingomonas under hyperosmotic stress, but the posttranscriptional regulation of small RNA molecules (sRNAs) is also crucial for quickly modulating cellular processes to adapt dynamically to osmotic environments. In addition, the current knowledge of sRNAs in Sphingomonas is extremely scarce. This research revealed a novel sRNA landscape of Sphingomonas melonis and will greatly enhance our understanding of sRNAs' acting mechanisms in the hyperosmotic stress response.
Collapse
Affiliation(s)
- Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yihan Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xueni Fu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Wang X, Wu H, Wang L, Wang Y, Wang X, Wang H, Lu Z. Global transcriptional and translational regulation of Sphingomonas melonis TY in response to hyperosmotic stress. ENVIRONMENTAL RESEARCH 2023; 219:115014. [PMID: 36549482 DOI: 10.1016/j.envres.2022.115014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Hyperosmotic stress is one of the most ubiquitous stress factors in microbial habitats and impairs the efficiency of bacteria performing vital biochemical tasks. Sphingomonas serves as a 'superstar' of plant defense and pollutant degradation, and is widely existed in the environment. However, it is still unclear that how Sphingomonas sp. survives under hyperosmotic stress conditions. In this study, multiomics profiling analysis was conducted with S. melonis TY under hyperosmotic conditions to investigate the intracellular hyperosmotic responses. The transcriptome and proteome revealed that sensing systems, including most membrane protein coding genes were upregulated, genes related to two-component systems were tiered adjusted to reset the whole system, other stress response regulators such as sigma-70 were also significantly tiered upregulated. In addition, transport systems together with compatible solute biosynthesis related genes were significantly upregulated to accumulate intracellular nutrients and compatible solutes. When treated with hyperosmotic stress, redox-stress response systems were triggered and mechanosensitive channels together with ion transporters were induced to maintain cellular ion homeostasis. In addition, cellular concentration of c-di-guanosine monophosphate synthetase (c-di-GMP) was reduced, followed by negative influences on genes involved in flagellar assembly and chemotaxis pathways, leading to severe damage to the athletic ability of S. melonis TY, and causing detachments of biofilms. Briefly, this research revealed a comprehensive response mechanism of S. melonis TY exposure to hyperosmotic stress, and emphasized that flagellar assembly and biofilm formation were vulnerable to hyperosmotic conditions. Importance. Sphingomonas, a genus with versatile functions survives extensively, lauded for its prominent role in plant protection and environmental remediation. Current evidence shows that hyperosmotic stress as a ubiquitous environmental factor, usually threatens the survival of microbes and thus impairs the efficiency of their environmental functions. Thus, it is essential to explore the cellular responses to hyperosmotic stress. Hence, this research will greatly enhance our understanding of the global transcriptional and translational regulation of S. melonis TY in response to hyperosmotic stress, leading to broader perspectives on the impacts of stressful environments.
Collapse
Affiliation(s)
- Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yihan Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Wülser J, Ernst C, Vetsch D, Emmenegger B, Michel A, Lutz S, Ahrens CH, Vorholt JA, Ledermann R, Fischer HM. Salt- and Osmo-Responsive Sensor Histidine Kinases Activate the Bradyrhizobium diazoefficiens General Stress Response to Initiate Functional Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:604-615. [PMID: 35322688 DOI: 10.1094/mpmi-02-22-0051-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The general stress response (GSR) enables bacteria to sense and overcome a variety of environmental stresses. In alphaproteobacteria, stress-perceiving histidine kinases of the HWE and HisKA_2 families trigger a signaling cascade that leads to phosphorylation of the response regulator PhyR and, consequently, to activation of the GSR σ factor σEcfG. In the nitrogen-fixing bacterium Bradyrhizobium diazoefficiens, PhyR and σEcfG are crucial for tolerance against a variety of stresses under free-living conditions and also for efficient infection of its symbiotic host soybean. However, the molecular players involved in stress perception and activation of the GSR remained largely unknown. In this work, we first showed that a mutant variant of PhyR where the conserved phosphorylatable aspartate residue D194 was replaced by alanine (PhyRD194A) failed to complement the ΔphyR mutant in symbiosis, confirming that PhyR acts as a response regulator. To identify the PhyR-activating kinases in the nitrogen-fixing symbiont, we constructed in-frame deletion mutants lacking single, distinct combinations, or all of the 11 predicted HWE and HisKA_2 kinases, which we named HRXXN histidine kinases HhkA through HhkK. Phenotypic analysis of the mutants and complemented derivatives identified two functionally redundant kinases, HhkA and HhkE, that are required for nodulation competitiveness and during initiation of symbiosis. Using σEcfG-activity reporter strains, we further showed that both HhkA and HhkE activate the GSR in free-living cells exposed to salt and hyperosmotic stress. In conclusion, our data suggest that HhkA and HhkE trigger GSR activation in response to osmotically stressful conditions which B. diazoefficiens encounters during soybean host infection.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Janine Wülser
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Chantal Ernst
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Dominik Vetsch
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | | | - Anja Michel
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Stefanie Lutz
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, CH-8820 Wädenswil, Switzerland
| | - Christian H Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, CH-8820 Wädenswil, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
7
|
Ding C, Zhang W, Wang Y, Ding M, Wang X, Li A, Liang D, Su X. Study on the differences of phyllosphere microorganisms between poplar hybrid offspring and their parents. PeerJ 2022; 10:e12915. [PMID: 35310169 PMCID: PMC8932310 DOI: 10.7717/peerj.12915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
The females and males of dioecious plants have evolved sex-specific characteristics in terms of their morphological and physiological properties. However, the differentiation of phyllosphere microorganism of dioecious plants between parents and hybrid offspring remain largely unexplored. Here, the phyllosphere bacterial and fungal community diversity and composition of female (Populus nigra 'DH5' (PNDH5)), male (P. simonii 'DH4' (PSDH4)), and the hybrid offspring (P. simonii × P. nigra 'DH1' (PSPNDH1), P. simonii × P. nigra 'DH2' (PSPNDH2), P. simonii × P. nigra 'DH3' (PSPNDH3)) were investigated using 16S rDNA/ITS rDNA gene-based Illumina NovaSeq 6000 sequencing. There was considerable variation of plant height, diameter at breast height, leaf area, length of petioles, leaf moisture content, and starch among different samples, and PSDH2 owned the highest plant height, diameter at breast height, and length of petioles. No distinct differences of phyllosphere bacterial community diversity were observed among PSDH4, PNDH5, PSPNDH1, PSPNDH2, and PSPNDH3; while, PSPNDH2 owned the highest fungal Pielou_e index, Shannon index, and Simpson index. Firmicutes and Ascomycota were the predominant phyllosphere bacterial and fungal community at the phylum level, respectively. Bacilli and Gammaproteobacteria were the two most dominant bacterial classes regardless of parent and the hybrid offspring. The predominant phyllosphere fungal community was Dothideomycetes at the class level. The NMDS demonstrated that phyllosphere microbial community obviously differed between parents and offspring, while the phyllosphere microbial community presented some similarities under different hybrid progeny. Also, leaf characteristics contributed to the differentiation of phyllosphere bacterial and fungal communities between parents and hybrid offspring. These results highlighted the discrimination of phyllosphere microorganisms on parent and hybrid offspring, which provided clues to potential host-related species in the phyllosphere environment.
Collapse
Affiliation(s)
- Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yanbo Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Mi Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiaojiang Wang
- Inner Mongolia Academy of Forestry Sciences, Hohhot, Inner Mongolia, China
| | - Aiping Li
- Inner Mongolia Academy of Forestry Sciences, Hohhot, Inner Mongolia, China
| | - Dejun Liang
- Liaoning Provincial Poplar Institute, Gaizhou, Liaoning, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
8
|
de Dios R, Santero E, Reyes-Ramírez F. The functional differences between paralogous regulators define the control of the General Stress Response in Sphingopyxis granuli TFA. Environ Microbiol 2022; 24:1918-1931. [PMID: 35049124 PMCID: PMC9303464 DOI: 10.1111/1462-2920.15907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
Sphingopyxis granuli TFA is a contaminant degrading alphaproteobacterium that responds to adverse conditions by inducing the general stress response (GSR), an adaptive response that controls the transcription of a variety of genes to overcome adverse conditions. The core GSR regulators (the response regulator PhyR, the anti‐σ factor NepR and the σ factor EcfG) are duplicated in TFA, being PhyR1 and PhyR2, NepR1 and NepR2 and EcfG1 and EcfG2. Based on multiple genetic, phenotypical and biochemical evidences including in vitro transcription assays, we have assigned distinct functional features to each paralogue and assessed their contribution to the GSR regulation, dictating its timing and the intensity. We show that different stress signals are differentially integrated into the GSR by PhyR1 and PhyR2, therefore producing different levels of GSR activation. We demonstrate in vitro that both NepR1 and NepR2 bind EcfG1 and EcfG2, although NepR1 produces a more stable interaction than NepR2. Conversely, NepR2 interacts with phosphorylated PhyR1 and PhyR2 more efficiently than NepR1. We propose an integrative model where NepR2 would play a dual negative role: it would directly inhibit the σ factors upon activation of the GSR and it would modulate the GSR activity indirectly by titrating the PhyR regulators.
Collapse
Affiliation(s)
- Rubén de Dios
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Francisca Reyes-Ramírez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| |
Collapse
|
9
|
Liu L, Lu L, Li H, Meng Z, Dong T, Peng C, Xu X. Divergence of Phyllosphere Microbial Communities Between Females and Males of the Dioecious Populus cathayana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:351-361. [PMID: 33290085 DOI: 10.1094/mpmi-07-20-0178-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Females and males of dioecious plants have evolved sex-specific characteristics in terms of their morphological and physiological properties. However, the differentiation of phyllosphere microbiota in dioecious plants remains largely unexplored. Here, the diversity and composition of female and male Populus cathayana phyllosphere bacterial and fungal communities were investigated using 16S rRNA/ITS1 gene-based MiSeq sequencing. The divergences of bacterial and fungal community compositions occurred between females and males. Both females and males had their unique phyllosphere bacterial and fungal microbiota, such as bacterial Gemmata spp. (5.41%) and fungal Pringsheimia spp. (0.03%) in females and bacterial Chitinophaga spp. (0.009%) and fungal Phaeococcomyces spp. (0.02%) in males. Significant differences in the relative abundance of phyla Proteobacteria and Planctomycetes bacteria and phyla Ascomycota and Basidiomycota fungi (P < 0.05) were also found between females and males. Some bacterial species of genera Spirosoma and Amnibacterium and fungal genera Venturia, Suillus, and Elmerina spp. were significantly enriched in males (P < 0.05). In contrast, levels of fungal genera Phoma and Aureobasidium spp. were significantly higher in females than in males (P < 0.05). The mineral, inorganic, and organic nutrients content contributed differently to the divergence of female and male phyllosphere microbial communities, with 87.08 and 45.17% of the variations being explained for bacterial and fungal communities, respectively. These results highlight the sexual discrimination of phyllosphere microbes on the dioecious plants and provide hints on the potential host-associated species in phyllosphere environments.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Liling Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Lu Lu
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Huilin Li
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Zhensi Meng
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Tingfa Dong
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Chao Peng
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Xiao Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| |
Collapse
|
10
|
Regulation of Bacterial Cell Cycle Progression by Redundant Phosphatases. J Bacteriol 2020; 202:JB.00345-20. [PMID: 32571969 DOI: 10.1128/jb.00345-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Abstract
In the model organism Caulobacter crescentus, a network of two-component systems involving the response regulators CtrA, DivK, and PleD coordinates cell cycle progression with differentiation. Active phosphorylated CtrA prevents chromosome replication in G1 cells while simultaneously regulating expression of genes required for morphogenesis and development. At the G1-S transition, phosphorylated DivK (DivK∼P) and PleD (PleD∼P) accumulate to indirectly inactivate CtrA, which triggers DNA replication initiation and concomitant cellular differentiation. The phosphatase PleC plays a pivotal role in this developmental program by keeping DivK and PleD phosphorylation levels low during G1, thereby preventing premature CtrA inactivation. Here, we describe CckN as a second phosphatase akin to PleC that dephosphorylates DivK∼P and PleD∼P in G1 cells. However, in contrast to PleC, no kinase activity was detected with CckN. The effects of CckN inactivation are largely masked by PleC but become evident when PleC and DivJ, the major kinase for DivK and PleD, are absent. Accordingly, mild overexpression of cckN restores most phenotypic defects of a pleC null mutant. We also show that CckN and PleC are proteolytically degraded in a ClpXP-dependent way before the onset of the S phase. Surprisingly, known ClpX adaptors are dispensable for PleC and CckN proteolysis, raising the possibility that as yet unidentified proteolytic adaptors are required for the degradation of both phosphatases. Since cckN expression is induced in stationary phase, depending on the stress alarmone (p)ppGpp, we propose that CckN acts as an auxiliary factor responding to environmental stimuli to modulate CtrA activity under suboptimal conditions.IMPORTANCE Two-component signal transduction systems are widely used by bacteria to adequately respond to environmental changes by adjusting cellular parameters, including the cell cycle. In Caulobacter crescentus, PleC acts as a phosphatase that indirectly protects the response regulator CtrA from premature inactivation during the G1 phase of the cell cycle. Here, we provide genetic and biochemical evidence that PleC is seconded by another phosphatase, CckN. The activity of PleC and CckN phosphatases is restricted to the G1 phase since both proteins are degraded by ClpXP protease before the G1-S transition. Degradation is independent of any known proteolytic adaptors and relies, in the case of CckN, on an unsuspected N-terminal degron. Our work illustrates a typical example of redundant functions between two-component proteins.
Collapse
|
11
|
de Dios R, Rivas-Marin E, Santero E, Reyes-Ramírez F. Two paralogous EcfG σ factors hierarchically orchestrate the activation of the General Stress Response in Sphingopyxis granuli TFA. Sci Rep 2020; 10:5177. [PMID: 32198475 PMCID: PMC7083833 DOI: 10.1038/s41598-020-62101-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Under ever-changing environmental conditions, the General Stress Response (GSR) represents a lifesaver for bacteria in order to withstand hostile situations. In α-proteobacteria, the EcfG-type extracytoplasmic function (ECF) σ factors are the key activators of this response at the transcriptional level. In this work, we address the hierarchical function of the ECF σ factor paralogs EcfG1 and EcfG2 in triggering the GSR in Sphingopyxis granuli TFA and describe the role of EcfG2 as global switch of this response. In addition, we define a GSR regulon for TFA and use in vitro transcription analysis to study the relative contribution of each EcfG paralog to the expression of selected genes. We show that the features of each promoter ultimately dictate this contribution, though EcfG2 always produced more transcripts than EcfG1 regardless of the promoter. These first steps in the characterisation of the GSR in TFA suggest a tight regulation to orchestrate an adequate protective response in order to survive in conditions otherwise lethal.
Collapse
Affiliation(s)
- Rubén de Dios
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Francisca Reyes-Ramírez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain.
| |
Collapse
|
12
|
Physiological effects of overexpressed sigma factors on fermentative stress response of Zymomonas mobilis. Braz J Microbiol 2019; 51:65-75. [PMID: 31701383 DOI: 10.1007/s42770-019-00158-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
Zymomonas mobilis is a bacterium of industrial interest due to its high ethanol productivity and high tolerance to stresses. Although the physiological parameters of fermentation are well characterized, there are few studies on the molecular mechanisms that regulate the response to fermentative stress. Z. mobilis ZM4 presents five different sigma factors identified in the genome annotation, but the absence of sigma 38 leads to the questioning of which sigma factors are responsible for its mechanism of fermentative stress response. Thus, in this study, factors sigma 32 and sigma 24, traditionally related to heat shock, were tested for their influence on the response to osmotic and ethanol stress. The overexpression of these sigma factors in Z. mobilis ZM4 strain confirmed that both are associated with heat shock response, as described in other bacteria. Moreover, sigma 32 has also a role in the adaptation to osmotic stress, increasing both growth rate and glucose influx rate. The same strain that overexpresses sigma 32 also showed a decrease in ethanol tolerance, suggesting an antagonism between these two mechanisms. It was not possible to conclude if sigma 24 really affects ethanol tolerance in Z. mobilis, but the overexpression of this sigma factor led to a decrease in ethanol productivity.
Collapse
|
13
|
Gottschlich L, Geiser P, Bortfeld-Miller M, Field CM, Vorholt JA. Complex general stress response regulation in Sphingomonas melonis Fr1 revealed by transcriptional analyses. Sci Rep 2019; 9:9404. [PMID: 31253827 PMCID: PMC6599016 DOI: 10.1038/s41598-019-45788-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/12/2019] [Indexed: 01/31/2023] Open
Abstract
The general stress response (GSR) represents an important trait to survive in the environment by leading to multiple stress resistance. In alphaproteobacteria, the GSR is under the transcriptional control of the alternative sigma factor EcfG. Here we performed transcriptome analyses to investigate the genes controlled by EcfG of Sphingomonas melonis Fr1 and the plasticity of this regulation under stress conditions. We found that EcfG regulates genes for proteins that are typically associated with stress responses. Moreover, EcfG controls regulatory proteins, which likely fine-tune the GSR. Among these, we identified a novel negative GSR feedback regulator, termed NepR2, on the basis of gene reporter assays, phenotypic analyses, and biochemical assays. Transcriptional profiling of signaling components upstream of EcfG under complex stress conditions showed an overall congruence with EcfG-regulated genes. Interestingly however, we found that the GSR is transcriptionally linked to the regulation of motility and biofilm formation via the single domain response regulator SdrG and GSR-activating histidine kinases. Altogether, our findings indicate that the GSR in S. melonis Fr1 underlies a complex regulation to optimize resource allocation and resilience in stressful and changing environments.
Collapse
Affiliation(s)
- Lisa Gottschlich
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Petra Geiser
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Miriam Bortfeld-Miller
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Christopher M Field
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
| |
Collapse
|
14
|
A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria. mBio 2018; 9:mBio.00809-18. [PMID: 29789370 PMCID: PMC5964349 DOI: 10.1128/mbio.00809-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The alphaproteobacterial general stress response is governed by a conserved partner-switching mechanism that is triggered by phosphorylation of the response regulator PhyR. In the model organism Caulobacter crescentus, PhyR was proposed to be phosphorylated by the histidine kinase PhyK, but biochemical evidence in support of such a role of PhyK is missing. Here, we identify a single-domain response regulator, MrrA, that is essential for general stress response activation in C. crescentus We demonstrate that PhyK does not function as a kinase but accepts phosphoryl groups from MrrA and passes them on to PhyR, adopting the role of a histidine phosphotransferase. MrrA is phosphorylated by at least six histidine kinases that likely serve as stress sensors. MrrA also transfers phosphate to LovK, a histidine kinase involved in C. crescentus holdfast production and attachment, which also negatively regulates the general stress response. We show that LovK together with the response regulator LovR acts as a phosphate sink to redirect phosphate flux away from the PhyKR branch. In agreement with the biochemical data, an mrrA mutant is unable to activate the general stress response and shows a hyperattachment phenotype, which is linked to decreased expression of the major holdfast inhibitory protein HfiA. We propose that MrrA serves as a central phosphorylation hub that coordinates the general stress response with C. crescentus development and other adaptive behaviors. The characteristic bow-tie architecture of this phosphorylation network with MrrA as the central knot may expedite the evolvability and species-specific niche adaptation of this group of bacteria.IMPORTANCE Two-component systems (TCSs) consisting of a histidine kinase and a cognate response regulator are predominant signal transduction systems in bacteria. To avoid cross talk, TCSs are generally thought to be highly insulated from each other. However, this notion is based largely on studies of the HisKA subfamily of histidine kinases, while little information is available for the HWE and HisKA2 subfamilies. The latter have been implicated in the alphaproteobacterial general stress response. Here, we show that in the model organism Caulobacter crescentus an atypical FATGUY-type single-domain response regulator, MrrA, is highly promiscuous in accepting and transferring phosphoryl groups from and to multiple up- and downstream kinases, challenging the current view of strictly insulated TCSs. Instead, we propose that FATGUY response regulators have evolved in alphaproteobacteria as central phosphorylation hubs to broadly sample information and distribute phosphoryl groups between the general stress response pathway and other TCSs, thereby coordinating multiple cellular behaviors.
Collapse
|
15
|
Ledermann R, Bartsch I, Müller B, Wülser J, Fischer HM. A Functional General Stress Response of Bradyrhizobium diazoefficiens Is Required for Early Stages of Host Plant Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:537-547. [PMID: 29278144 DOI: 10.1094/mpmi-11-17-0284-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phylogenetically diverse bacteria respond to various stress conditions by mounting a general stress response (GSR) resulting in the induction of protection or damage repair functions. In α-proteobacteria, the GSR is induced by a regulatory cascade consisting of the extracytoplasmic function (ECF) σ factor σEcfG, its anti-σ factor NepR, and the anti-anti-σ factor PhyR. We have reported previously that σEcfG and PhyR of Bradyrhizobium diazoefficiens (formerly named Bradyrhizobium japonicum), the nitrogen-fixing root nodule symbiont of soybean and related legumes, are required for efficient symbiosis; however, the precise role of the GSR remained undefined. Here, we analyze the symbiotic defects of a B. diazoefficiens mutant lacking σEcfG by comparing distinct infection stages of enzymatically or fluorescently tagged wild-type and mutant bacteria. Although root colonization and root hair curling were indistinguishable, the mutant was not competitive, and showed delayed development of emerging nodules and only a few infection threads. Consequently, many of the mutant-induced nodules were aborted, empty, or partially colonized. Congruent with these results, we found that σEcfG was active in bacteria present in root-hair-entrapped microcolonies and infection threads but not in root-associated bacteria and nitrogen-fixing bacteroids. We conclude that GSR-controlled functions are crucial for synchronization of infection thread formation, colonization, and nodule development.
Collapse
Affiliation(s)
- Raphael Ledermann
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Ilka Bartsch
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Barbara Müller
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Janine Wülser
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Hans-Martin Fischer
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| |
Collapse
|
16
|
Gottschlich L, Bortfeld-Miller M, Gäbelein C, Dintner S, Vorholt JA. Phosphorelay through the bifunctional phosphotransferase PhyT controls the general stress response in an alphaproteobacterium. PLoS Genet 2018; 14:e1007294. [PMID: 29652885 PMCID: PMC5898713 DOI: 10.1371/journal.pgen.1007294] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/06/2018] [Indexed: 11/19/2022] Open
Abstract
Two-component systems constitute phosphotransfer signaling pathways and enable adaptation to environmental changes, an essential feature for bacterial survival. The general stress response (GSR) in the plant-protecting alphaproteobacterium Sphingomonas melonis Fr1 involves a two-component system consisting of multiple stress-sensing histidine kinases (Paks) and the response regulator PhyR; PhyR in turn regulates the alternative sigma factor EcfG, which controls expression of the GSR regulon. While Paks had been shown to phosphorylate PhyR in vitro, it remained unclear if and under which conditions direct phosphorylation happens in the cell, as Paks also phosphorylate the single domain response regulator SdrG, an essential yet enigmatic component of the GSR signaling pathway. Here, we analyze the role of SdrG and investigate an alternative function of the membrane-bound PhyP (here re-designated PhyT), previously assumed to act as a PhyR phosphatase. In vitro assays show that PhyT transfers a phosphoryl group from SdrG to PhyR via phosphoryl transfer on a conserved His residue. This finding, as well as complementary GSR reporter assays, indicate the participation of SdrG and PhyT in a Pak-SdrG-PhyT-PhyR phosphorelay. Furthermore, we demonstrate complex formation between PhyT and PhyR. This finding is substantiated by PhyT-dependent membrane association of PhyR in unstressed cells, while the response regulator is released from the membrane upon stress induction. Our data support a model in which PhyT sequesters PhyR, thereby favoring Pak-dependent phosphorylation of SdrG. In addition, PhyT assumes the role of the SdrG-phosphotransferase to activate PhyR. Our results place SdrG into the GSR signaling cascade and uncover a dual role of PhyT in the GSR.
Collapse
Affiliation(s)
| | | | | | | | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Luebke JL, Eaton DS, Sachleben JR, Crosson S. Allosteric control of a bacterial stress response system by an anti-σ factor. Mol Microbiol 2018; 107:164-179. [PMID: 29052909 PMCID: PMC5760481 DOI: 10.1111/mmi.13868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 11/28/2022]
Abstract
Bacterial signal transduction systems commonly use receiver (REC) domains, which regulate adaptive responses to the environment as a function of their phosphorylation state. REC domains control cell physiology through diverse mechanisms, many of which remain understudied. We have defined structural features that underlie activation of the multi-domain REC protein, PhyR, which functions as an anti-anti-σ factor and regulates transcription of genes required for stress adaptation and host-microbe interactions in Alphaproteobacteria. Though REC phosphorylation is necessary for PhyR function in vivo, we did not detect expected changes in inter-domain interactions upon phosphorylation by solution X-ray scattering. We sought to understand this result by defining additional molecular requirements for PhyR activation. We uncovered specific interactions between unphosphorylated PhyR and an intrinsically disordered region (IDR) of the anti-σ factor, NepR, by solution NMR spectroscopy. Our data support a model whereby nascent NepR(IDR)-PhyR interactions and REC phosphorylation coordinately impart the free energy to shift PhyR to an open, active conformation that binds and inhibits NepR. This mechanism ensures PhyR is activated only when NepR and an activating phosphoryl signal are present. Our study provides new structural understanding of the molecular regulatory logic underlying a conserved environmental response system.
Collapse
Affiliation(s)
- Justin L. Luebke
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | - Daniel S. Eaton
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | - Joseph R. Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, Illinois, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
Correlated production and consumption of chloromethane in the Arabidopsis thaliana phyllosphere. Sci Rep 2017; 7:17589. [PMID: 29242530 PMCID: PMC5730606 DOI: 10.1038/s41598-017-17421-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/24/2017] [Indexed: 11/24/2022] Open
Abstract
Chloromethane (CH3Cl) is a toxic gas mainly produced naturally, in particular by plants, and its emissions contribute to ozone destruction in the stratosphere. Conversely, CH3Cl can be degraded and used as the sole carbon and energy source by specialised methylotrophic bacteria, isolated from a variety of environments including the phyllosphere, i.e. the aerial parts of vegetation. The potential role of phyllospheric CH3Cl-degrading bacteria as a filter for plant emissions of CH3Cl was investigated using variants of Arabidopsis thaliana with low, wild-type and high expression of HOL1 methyltransferase previously shown to be responsible for most of CH3Cl emissions by A. thaliana. Presence and expression of the bacterial chloromethane dehalogenase cmuA gene in the A. thaliana phyllosphere correlated with HOL1 genotype, as shown by qPCR and RT-qPCR. Production of CH3Cl by A. thaliana paralleled HOL1 expression, as assessed by a fluorescence-based bioreporter. The relation between plant production of CH3Cl and relative abundance of CH3Cl-degrading bacteria in the phyllosphere suggests that CH3Cl-degrading bacteria co-determine the extent of plant emissions of CH3Cl to the atmosphere.
Collapse
|
19
|
Herrou J, Crosson S, Fiebig A. Structure and function of HWE/HisKA2-family sensor histidine kinases. Curr Opin Microbiol 2017; 36:47-54. [PMID: 28193573 DOI: 10.1016/j.mib.2017.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 02/01/2023]
Abstract
Sensor histidine kinases regulate adaptive cellular responses to changes in the chemical or physical state of the environment. HWE/HisKA2-family kinases comprise a subset of histidine kinases that is defined by unique sequence motifs in both the catalytic and non-catalytic regions. Recent crystal structures have defined conserved intramolecular interactions that inform models of kinase regulation that are unique to the HWE/HisKA2 superfamily. Emerging genetic, biochemical and genomic data indicate that, unlike typical histidine kinases, HWE/HisKA2 kinases do not generally signal via classical DNA-binding response regulators. Rather, these unusual kinases are often part of atypical regulatory pathways that control changes in gene expression via modulation of protein-protein interactions or transcription anti-termination.
Collapse
Affiliation(s)
- Julien Herrou
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA; Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Müller DB, Vogel C, Bai Y, Vorholt JA. The Plant Microbiota: Systems-Level Insights and Perspectives. Annu Rev Genet 2016; 50:211-234. [DOI: 10.1146/annurev-genet-120215-034952] [Citation(s) in RCA: 408] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel B. Müller
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| | - Christine Vogel
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| | - Yang Bai
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| |
Collapse
|
21
|
Willett JW, Herrou J, Czyz DM, Cheng JX, Crosson S. Brucella abortus ΔrpoE1 confers protective immunity against wild type challenge in a mouse model of brucellosis. Vaccine 2016; 34:5073-5081. [PMID: 27591954 DOI: 10.1016/j.vaccine.2016.08.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 11/28/2022]
Abstract
The Brucella abortus general stress response (GSR) system regulates activity of the alternative sigma factor, σ(E1), which controls transcription of approximately 100 genes and is required for persistence in a BALB/c mouse chronic infection model. We evaluated the host response to infection by a B. abortus strain lacking σ(E1) (ΔrpoE1), and identified pathological and immunological features that distinguish ΔrpoE1-infected mice from wild-type (WT), and that correspond with clearance of ΔrpoE1 from the host. ΔrpoE1 infection was indistinguishable from WT in terms of splenic bacterial burden, inflammation and histopathology up to 6weeks post-infection. However, Brucella-specific serum IgG levels in ΔrpoE1-infected mice were 5 times higher than WT by 4weeks post-infection, and remained significantly higher throughout the course of a 12-week infection. Total IgG and Brucella-specific IgG levels peaked strongly in ΔrpoE1-infected mice at 6weeks, which correlated with reduced splenomegaly and bacterial burden relative to WT-infected mice. Given the difference in immune response to infection with wild-type and ΔrpoE1, we tested whether ΔrpoE1 confers protective immunity to wild-type challenge. Mice immunized with ΔrpoE1 completely resisted WT infection and had significantly higher serum titers of Brucella-specific IgG, IgG2a and IFN-γ after WT challenge relative to age-matched naïve mice. We conclude that immunization of BALB/c mice with the B. abortus GSR pathway mutant, ΔrpoE1, elicits an adaptive immune response that confers significant protective immunity against WT infection.
Collapse
Affiliation(s)
- Jonathan W Willett
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Howard Taylor Ricketts Laboratory, University of Chicago, Argonne National Laboratory, Argonne, IL, USA
| | - Julien Herrou
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Howard Taylor Ricketts Laboratory, University of Chicago, Argonne National Laboratory, Argonne, IL, USA
| | - Daniel M Czyz
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Howard Taylor Ricketts Laboratory, University of Chicago, Argonne National Laboratory, Argonne, IL, USA
| | - Jason X Cheng
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Howard Taylor Ricketts Laboratory, University of Chicago, Argonne National Laboratory, Argonne, IL, USA.,Department of Microbiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
22
|
Campagne S, Dintner S, Gottschlich L, Thibault M, Bortfeld-Miller M, Kaczmarczyk A, Francez-Charlot A, Allain FHT, Vorholt JA. Role of the PFXFATG[G/Y] Motif in the Activation of SdrG, a Response Regulator Involved in the Alphaproteobacterial General Stress Response. Structure 2016; 24:1237-1247. [PMID: 27396826 DOI: 10.1016/j.str.2016.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 11/19/2022]
Abstract
Two-component systems are major signal transduction pathways, which consist of histidine kinases and response regulators that communicate through phosphorylation. Here, we highlight a distinct class of single-domain response regulators containing the PFXFATG[G/Y] motif that are activated by a mechanism distinct from the Y-T coupling described for prototypical receiver domains. We first solved the structures of inactive and active SdrG, a representative of the FAT GUY family, and then biochemically and genetically characterized variants in which residues in this motif were mutated. Our results support a model of activation mainly driven by a conserved lysine and reveal that the rotation of the threonine induces the reorganization of several aromatic residues in and around the PFXFATG[G/Y] motif to generate intermediates resembling those occurring during classical Y-T coupling. Overall, this helps define a new subfamily of response regulators that emerge as important players in physiological adaptation.
Collapse
Affiliation(s)
- Sébastien Campagne
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland; Institute of Molecular Biology and Biophysics, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland.
| | - Sebastian Dintner
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Lisa Gottschlich
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Maxence Thibault
- Institute of Molecular Biology and Biophysics, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Miriam Bortfeld-Miller
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Andreas Kaczmarczyk
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Anne Francez-Charlot
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| |
Collapse
|
23
|
Multiple σEcfG and NepR Proteins Are Involved in the General Stress Response in Methylobacterium extorquens. PLoS One 2016; 11:e0152519. [PMID: 27028226 PMCID: PMC4814048 DOI: 10.1371/journal.pone.0152519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/26/2016] [Indexed: 11/19/2022] Open
Abstract
In Alphaproteobacteria, the general stress response (GSR) is controlled by a conserved partner switch composed of the sigma factor σEcfG, its anti-sigma factor NepR and the anti-sigma factor antagonist PhyR. Many species possess paralogues of one or several components of the system, but their roles remain largely elusive. Among Alphaproteobacteria that have been genome-sequenced so far, the genus Methylobacterium possesses the largest number of σEcfG proteins. Here, we analyzed the six σEcfG paralogues of Methylobacterium extorquens AM1. We show that these sigma factors are not truly redundant, but instead exhibit major and minor contributions to stress resistance and GSR target gene expression. We identify distinct levels of regulation for the different sigma factors, as well as two NepR paralogues that interact with PhyR. Our results suggest that in M. extorquens AM1, ecfG and nepR paralogues have diverged in order to assume new roles that might allow integration of positive and negative feedback loops in the regulatory system. Comparison of the core elements of the GSR regulatory network in Methylobacterium species provides evidence for high plasticity and rapid evolution of the GSR core network in this genus.
Collapse
|
24
|
Characterization of the general stress response in Bartonella henselae. Microb Pathog 2015; 92:1-10. [PMID: 26724735 DOI: 10.1016/j.micpath.2015.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 11/20/2022]
Abstract
Bacteria utilize a general stress response system to combat stresses from their surrounding environments. In alpha-proteobacteria, the general stress response uses an alternate sigma factor as the main regulator and incorporates it with a two-component system into a unique regulatory circuit. This system has been described in several alpha-proteobacterial species, including the pathogens Bartonella quintana and Brucella abortus. Most of the studies have focused on characterizing the PhyR anti-anti-sigma factor, the NepR anti-sigma factor, and the alternate sigma factor. However, not enough attention is directed toward studying the role of histidine kinases in the general stress response. Our study identifies the general stress response system in Bartonella henselae, where the gene synteny is conserved and both the PhyR and alternate sigma factor have similar sequence and domain structures with other alpha-proteobacteria. Our data showed that the general stress response genes are up-regulated under conditions that mimic the cat flea vector. Furthermore, we showed that both RpoE and PhyR positively regulate this system and that RpoE also affects transcription of genes encoding heme-binding proteins and the gene encoding the BadA adhesin. Finally, we identified a histidine kinase, annotated as BH13820 that can potentially phosphorylate PhyR.
Collapse
|
25
|
Abstract
The Alphaproteobacteria uniquely integrate features of two-component signal transduction and alternative σ factor regulation to control transcription of genes that ensure growth and survival across a range of stress conditions. Research over the past decade has led to the discovery of the key molecular players of this general stress response (GSR) system, including the sigma factor σ(EcfG), its anti-σ factor NepR, and the anti-anti-σ factor PhyR. The central molecular event of GSR activation entails aspartyl phosphorylation of PhyR, which promotes its binding to NepR and thereby releases σ(EcfG) to associate with RNAP and direct transcription. Recent studies are providing a new understanding of complex, multilayered sensory networks that activate and repress this central protein partner switch. This review synthesizes our structural and functional understanding of the core GSR regulatory proteins and highlights emerging data that are defining the systems that regulate GSR transcription in a variety of species.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637;
| | - Julien Herrou
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637;
| | - Jonathan Willett
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637;
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
26
|
Abstract
The anti-σ factor NepR plays a central role in regulation of the general stress response (GSR) in alphaproteobacteria. This small protein has two known interaction partners: its cognate extracytoplasmic function (ECF) σ factor and the anti-anti-σ factor, PhyR. Stress-dependent phosphorylation of PhyR initiates a protein partner switch that promotes phospho-PhyR binding to NepR, which frees ECF σ to activate transcription of genes required for cell survival under adverse or fluctuating conditions. We have defined key functional roles for structured and intrinsically disordered domains of Caulobacter crescentus NepR in partner binding and activation of GSR transcription. We further demonstrate that NepR strongly stimulates the rate of PhyR phosphorylation in vitro and that this effect requires the structured and disordered domains of NepR. This result provides evidence for an additional layer of GSR regulation in which NepR directly influences activation of its binding partner, PhyR, as an anti-anti-σ factor. We conclude that structured and intrinsically disordered domains of NepR coordinately control multiple functions in the GSR signaling pathway, including core protein partner switch interactions and pathway activation by phosphorylation. Anti-σ factors are key molecular participants in a range of adaptive responses in bacteria. The anti-σ factor NepR plays a vital role in a multiprotein partner switch that governs general stress response (GSR) transcription in alphaproteobacteria. We have defined conserved and unconserved features of NepR structure that determine its function as an anti-σ factor and uncovered a functional role for intrinsically disordered regions of NepR in partner binding events required for GSR activation. We further demonstrate a novel function for NepR as an enhancer of PhyR phosphorylation; this activity also requires the disordered domains of NepR. Our results provide evidence for a new layer of GSR regulatory control in which NepR directly modulates PhyR phosphorylation and, hence, activation of the GSR.
Collapse
|
27
|
Francez-Charlot A, Kaczmarczyk A, Vorholt JA. The branched CcsA/CckA-ChpT-CtrA phosphorelay of Sphingomonas melonis controls motility and biofilm formation. Mol Microbiol 2015; 97:47-63. [PMID: 25825287 DOI: 10.1111/mmi.13011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2015] [Indexed: 11/29/2022]
Abstract
The CckA-ChpT-CtrA phosphorelay is central to the regulation of the cell cycle in Caulobacter crescentus. The three proteins are conserved in Alphaproteobacteria, but little is known about their roles in most members of this class. Here, we characterized the system in Sphingomonas melonis. We found that the transcription factor CtrA is the master regulator of flagella synthesis genes, the hierarchical transcriptional organization of which is herein described. CtrA also regulates genes involved in exopolysaccharide synthesis and cyclic-di-GMP signaling, and is important for biofilm formation. In addition, the ctrA mutant exhibits an aberrant morphology, suggesting a role for CtrA in cell division. An analysis of the regulation of CtrA indicates that the phosphorelay composed of CckA and ChpT is conserved and that the absence of the bifunctional kinase/phosphatase CckA apparently results in overactivation of CtrA through ChpT. Suppressors of this phenotype identified the hybrid histidine kinase CcsA. Phosphorelays initiated by CckA or CcsA were reconstituted in vitro, suggesting that in S. melonis, CtrA phosphorylation is controlled by a branched pathway upstream of ChpT. This study thus suggests that signals can directly converge at the level of ChpT phosphorylation through multiple hybrid kinases to coordinate a number of important physiological processes.
Collapse
Affiliation(s)
| | | | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
28
|
Schada von Borzyskowski L, Remus-Emsermann M, Weishaupt R, Vorholt JA, Erb TJ. A set of versatile brick vectors and promoters for the assembly, expression, and integration of synthetic operons in Methylobacterium extorquens AM1 and other alphaproteobacteria. ACS Synth Biol 2015; 4:430-43. [PMID: 25105793 DOI: 10.1021/sb500221v] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The discipline of synthetic biology requires standardized tools and genetic elements to construct novel functionalities in microorganisms; yet, many model systems still lack such tools. Here, we describe a novel set of vectors that allows the convenient construction of synthetic operons in Methylobacterium extorquens AM1, an important alphaproteobacterial model organism for methylotrophy and a promising platform organism for methanol-based biotechnology. In addition, we provide a set of constitutive alphaproteobacterial promoters of different strengths that were characterized in detail by two approaches: on the single-cell scale and on the cell population level. Finally, we describe a straightforward strategy to deliver synthetic constructs to the genome of M. extorquens AM1 and other Alphaproteobacteria. This study defines a new standard to systematically characterize genetic parts for their use in M. extorquens AM1 by using single-cell fluorescence microscopy and opens the toolbox for synthetic biological applications in M. extorquens AM1 and other alphaproteobacterial model systems.
Collapse
Affiliation(s)
- Lennart Schada von Borzyskowski
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg
4, 8093 Zurich, Switzerland
| | - Mitja Remus-Emsermann
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg
4, 8093 Zurich, Switzerland
| | - Ramon Weishaupt
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg
4, 8093 Zurich, Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg
4, 8093 Zurich, Switzerland
| | - Tobias J. Erb
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg
4, 8093 Zurich, Switzerland
| |
Collapse
|
29
|
Allen MS, Hurst GB, Lu TYS, Perry LM, Pan C, Lankford PK, Pelletier DA. Rhodopseudomonas palustris CGA010 Proteome Implicates Extracytoplasmic Function Sigma Factor in Stress Response. J Proteome Res 2015; 14:2158-68. [PMID: 25853567 DOI: 10.1021/pr5012558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopseudomonas palustris encodes 16 extracytoplasmic function (ECF) σ factors. To begin to investigate the regulatory network of one of these ECF σ factors, the whole proteome of R. palustris CGA010 was quantitatively analyzed by tandem mass spectrometry from cultures episomally expressing the ECF σ(RPA4225) (ecfT) versus a WT control. Among the proteins with the greatest increase in abundance were catalase KatE, trehalose synthase, a DPS-like protein, and several regulatory proteins. Alignment of the cognate promoter regions driving expression of several upregulated proteins suggested a conserved binding motif in the -35 and -10 regions with the consensus sequence GGAAC-18N-TT. Additionally, the putative anti-σ factor RPA4224, whose gene is contained in the same predicted operon as RPA4225, was identified as interacting directly with the predicted response regulator RPA4223 by mass spectrometry of affinity-isolated protein complexes. Furthermore, another gene (RPA4226) coding for a protein that contains a cytoplasmic histidine kinase domain is located immediately upstream of RPA4225. The genomic organization of orthologs for these four genes is conserved in several other strains of R. palustris as well as in closely related α-Proteobacteria. Taken together, these data suggest that ECF σ(RPA4225) and the three additional genes make up a sigma factor mimicry system in R. palustris.
Collapse
Affiliation(s)
- Michael S Allen
- §Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017, United States.,∥Center for Biosafety and Biosecurity Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | | | | | - Leslie M Perry
- §Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017, United States
| | | | | | | |
Collapse
|
30
|
Iguchi H, Yurimoto H, Sakai Y. Interactions of Methylotrophs with Plants and Other Heterotrophic Bacteria. Microorganisms 2015; 3:137-51. [PMID: 27682083 PMCID: PMC5023238 DOI: 10.3390/microorganisms3020137] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/18/2015] [Accepted: 03/27/2015] [Indexed: 01/19/2023] Open
Abstract
Methylotrophs, which can utilize methane and/or methanol as sole carbon and energy sources, are key players in the carbon cycle between methane and CO2, the two most important greenhouse gases. This review describes the relationships between methylotrophs and plants, and between methanotrophs (methane-utilizers, a subset of methylotrophs) and heterotrophic bacteria. Some plants emit methane and methanol from their leaves, and provide methylotrophs with habitats. Methanol-utilizing methylotrophs in the genus Methylobacterium are abundant in the phyllosphere and have the ability to promote the growth of some plants. Methanotrophs also inhabit the phyllosphere, and methanotrophs with high methane oxidation activities have been found on aquatic plants. Both plant and environmental factors are involved in shaping the methylotroph community on plants. Methanotrophic activity can be enhanced by heterotrophic bacteria that provide growth factors (e.g., cobalamin). Information regarding the biological interaction of methylotrophs with other organisms will facilitate a better understanding of the carbon cycle that is driven by methylotrophs.
Collapse
Affiliation(s)
- Hiroyuki Iguchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
31
|
The general stress response in Alphaproteobacteria. Trends Microbiol 2015; 23:164-71. [DOI: 10.1016/j.tim.2014.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/18/2022]
|
32
|
Two-tiered histidine kinase pathway involved in heat shock and salt sensing in the general stress response of Sphingomonas melonis Fr1. J Bacteriol 2015; 197:1466-77. [PMID: 25666137 DOI: 10.1128/jb.00019-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The general stress response (GSR) allows bacteria to monitor and defend against a broad set of unrelated, adverse environmental conditions. In Alphaproteobacteria, the key step in GSR activation is phosphorylation of the response regulator PhyR. In Sphingomonas melonis Fr1, seven PhyR-activating kinases (Paks), PakA to PakG, are thought to directly phosphorylate PhyR under different stress conditions, but the nature of the activating signals remains obscure. PakF, a major sensor of NaCl and heat shock, lacks a putative sensor domain but instead harbors a single receiver (REC) domain (PakFREC) N-terminal to its kinase catalytic core. Such kinases are called "hybrid response regulators" (HRRs). How HRRs are able to perceive signals in the absence of a true sensor domain has remained largely unexplored. In the present work, we show that stresses are actually sensed by another kinase, KipF (kinase of PakF), which phosphorylates PakFREC and thereby activates PakF. KipF is a predicted transmembrane kinase, harboring a periplasmic CHASE3 domain flanked by two transmembrane helices in addition to its cytoplasmic kinase catalytic core. We demonstrate that KipF senses different salts through its CHASE3 domain but is not a sensor of general osmotic stress. While salt sensing depends on the CHASE3 domain, heat shock sensing does not, suggesting that these stresses are perceived by different mechanisms. In summary, our results establish a two-tiered histidine kinase pathway involved in activation of the GSR in S. melonis Fr1 and provide the first experimental evidence for the so far uncharacterized CHASE3 domain as a salt sensor. IMPORTANCE Hybrid response regulators (HRRs) represent a particular class of histidine kinases harboring an N-terminal receiver (REC) domain instead of a true sensor domain. This suggests that the actual input for HRRs may be phosphorylation of the REC domain. In the present study, we addressed this question by using the HRR PakF. Our results suggest that PakF is activated through phosphorylation of its REC domain and that this is achieved by another kinase, KipF. KipF senses heat shock and salt stress, with the latter requiring the periplasmic CHASE3 domain. This work not only suggests that HRRs work in two-tiered histidine kinase pathways but also provides the first experimental evidence for a role of the so far uncharacterized CHASE3 domain in salt sensing.
Collapse
|
33
|
Sycz G, Carrica MC, Tseng TS, Bogomolni RA, Briggs WR, Goldbaum FA, Paris G. LOV Histidine Kinase Modulates the General Stress Response System and Affects the virB Operon Expression in Brucella abortus. PLoS One 2015; 10:e0124058. [PMID: 25993430 PMCID: PMC4438053 DOI: 10.1371/journal.pone.0124058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
Brucella is the causative agent of the zoonotic disease brucellosis, and its success as an intracellular pathogen relies on its ability to adapt to the harsh environmental conditions that it encounters inside the host. The Brucella genome encodes a sensor histidine kinase containing a LOV domain upstream from the kinase, LOVHK, which plays an important role in light-regulated Brucella virulence. In this report we study the intracellular signaling pathway initiated by the light sensor LOVHK using an integrated biochemical and genetic approach. From results of bacterial two-hybrid assays and phosphotransfer experiments we demonstrate that LOVHK functionally interacts with two response regulators: PhyR and LovR, constituting a functional two-component signal-transduction system. LOVHK contributes to the activation of the General Stress Response (GSR) system in Brucella via PhyR, while LovR is proposed to be a phosphate-sink for LOVHK, decreasing its phosphorylation state. We also show that in the absence of LOVHK the expression of the virB operon is down-regulated. In conclusion, our results suggest that LOVHK positively regulates the GSR system in vivo, and has an effect on the expression of the virB operon. The proposed regulatory network suggests a similar role for LOVHK in other microorganisms.
Collapse
Affiliation(s)
- Gabriela Sycz
- Laboratorio de Inmunología y Microbiología Molecular, Fundación Instituto Leloir (IIBBA-CONICET), Buenos Aires, Argentina
| | - Mariela Carmen Carrica
- Laboratorio de Inmunología y Microbiología Molecular, Fundación Instituto Leloir (IIBBA-CONICET), Buenos Aires, Argentina
| | - Tong-Seung Tseng
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Roberto A. Bogomolni
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Winslow R. Briggs
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Fernando A. Goldbaum
- Laboratorio de Inmunología y Microbiología Molecular, Fundación Instituto Leloir (IIBBA-CONICET), Buenos Aires, Argentina
| | - Gastón Paris
- Laboratorio de Inmunología y Microbiología Molecular, Fundación Instituto Leloir (IIBBA-CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
34
|
Complex two-component signaling regulates the general stress response in Alphaproteobacteria. Proc Natl Acad Sci U S A 2014; 111:E5196-204. [PMID: 25404331 DOI: 10.1073/pnas.1410095111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The general stress response (GSR) in Alphaproteobacteria was recently shown to be controlled by a partner-switching mechanism that is triggered by phosphorylation of the response regulator PhyR. Activation of PhyR ultimately results in release of the alternative extracytoplasmic function sigma factor σ(EcfG), which redirects transcription toward the GSR. Little is known about the signal transduction pathway(s) controlling PhyR phosphorylation. Here, we identified the single-domain response regulator (SDRR) SdrG and seven histidine kinases, PakA to PakG, belonging to the HWE/HisKA2 family as positive modulators of the GSR in Sphingomonas melonis Fr1. Phenotypic analyses, epistasis experiments, and in vitro phosphorylation assays indicate that Paks directly phosphorylate PhyR and SdrG, and that SdrG acts upstream of or in concert with PhyR, modulating its activity in a nonlinear pathway. Furthermore, we found that additional SDRRs negatively affect the GSR in a way that strictly requires PhyR and SdrG. Finally, analysis of GSR activation by thermal, osmotic, and oxidative stress indicates that Paks display different degrees of redundancy and that a specific kinase can sense multiple stresses, suggesting that the GSR senses a particular condition as a combination of, rather than individual, molecular cues. This study thus establishes the alphaproteobacterial GSR as a complex and interlinked network of two-component systems, in which multiple histidine kinases converge to PhyR, the phosphorylation of which is, in addition, subject to regulation by several SDRRs. Our finding that most HWE/HisKA2 kinases contribute to the GSR in S. melonis Fr1 opens the possibility that this notion might also be true for other Alphaproteobacteria.
Collapse
|
35
|
Kim HS, Willett JW, Jain-Gupta N, Fiebig A, Crosson S. The Brucella abortus virulence regulator, LovhK, is a sensor kinase in the general stress response signalling pathway. Mol Microbiol 2014; 94:913-25. [PMID: 25257300 DOI: 10.1111/mmi.12809] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 12/11/2022]
Abstract
In the intracellular pathogen Brucella abortus, the general stress response (GSR) signalling system determines survival under acute stress conditions in vitro, and is required for long-term residence in a mammalian host. To date, the identity of the Brucella sensor kinase(s) that function to perceive stress and directly activate GSR signalling have remained undefined. We demonstrate that the flavin-binding sensor histidine kinase, LovhK (bab2_0652), functions as a primary B. abortus GSR sensor. LovhK rapidly and specifically phosphorylates the central GSR regulator, PhyR, and activates transcription of a set of genes that closely overlaps the known B. abortus GSR regulon. Deletion of lovhK severely compromises cell survival under defined oxidative and acid stress conditions. We further show that lovhK is required for cell survival during the early phase of mammalian cell infection and for establishment of long-term residence in a mouse infection model. Finally, we present evidence that particular regions of primary structure within the two N-terminal PAS domains of LovhK have distinct sensory roles under specific environmental conditions. This study elucidates new molecular components of a conserved signalling pathway that regulates B. abortus stress physiology and infection biology.
Collapse
Affiliation(s)
- Hye-Sook Kim
- The Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne National Laboratory, Argonne, IL, USA
| | | | | | | | | |
Collapse
|
36
|
Synthetic vanillate-regulated promoter for graded gene expression in Sphingomonas. Sci Rep 2014; 4:6453. [PMID: 25262659 PMCID: PMC5377333 DOI: 10.1038/srep06453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/03/2014] [Indexed: 11/08/2022] Open
Abstract
Regulated promoters are an important basic genetic tool allowing, for example, gene-dosage and gene depletion studies. We have previously described a cumate-inducible promoter (PQ5) that is functional in diverse Alphaproteobacteria. This promoter has been engineered by combining a synthetic minimal promoter, Psyn2, and operator sites and the repressor of the Pseudomonas putida F1 cym/cmt system. In the present study, we engineered a vanillate-regulated promoter using Psyn2 and the regulatory elements of the Caulobacter crescentusvanR-vanAB system. We show that the resulting promoter, which we called PV10, responds rapidly to the inducer vanillate with an induction ratio of about two orders of magnitude in Sphingomonas melonis Fr1. In contrast to the switch-like behavior of PQ5, PV10 shows a linear dose-response curve at intermediate vanillate concentrations, allowing graded gene expression. PV10 is functionally compatible with and independent of PQ5 and cumate, and viceversa, suggesting that both systems can be used simultaneously.
Collapse
|
37
|
Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2. Appl Microbiol Biotechnol 2014; 98:8235-52. [DOI: 10.1007/s00253-014-5858-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 12/12/2022]
|
38
|
Hentschel E, Mack C, Gätgens C, Bott M, Brocker M, Frunzke J. Phosphatase activity of the histidine kinases ensures pathway specificity of the ChrSA and HrrSA two-component systems in Corynebacterium glutamicum. Mol Microbiol 2014; 92:1326-42. [PMID: 24779520 DOI: 10.1111/mmi.12633] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2014] [Indexed: 11/29/2022]
Abstract
The majority of bacterial genomes encode a high number of two-component systems controlling gene expression in response to a variety of different stimuli. The Gram-positive soil bacterium Corynebacterium glutamicum contains two homologous two-component systems (TCS) involved in the haem-dependent regulation of gene expression. Whereas the HrrSA system is crucial for utilization of haem as an alternative iron source, ChrSA is required to cope with high toxic haem levels. In this study, we analysed the interaction of HrrSA and ChrSA in C. glutamicum. Growth of TCS mutant strains, in vitro phosphorylation assays and promoter assays of P(hrtBA) and P(hmuO) fused to eyfp revealed cross-talk between both systems. Our studies further indicated that both kinases exhibit a dual function as kinase and phosphatase. Mutation of the conserved glutamine residue in the putative phosphatase motif DxxxQ of HrrS and ChrS resulted in a significantly increased activity of their respective target promoters (P(hmuO) and P(hrtBA) respectively). Remarkably, phosphatase activity of both kinases was shown to be specific only for their cognate response regulators. Altogether our data suggest the phosphatase activity of HrrS and ChrS as key mechanism to ensure pathway specificity and insulation of these two homologous systems.
Collapse
Affiliation(s)
- Eva Hentschel
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | | | | | | | | | | |
Collapse
|
39
|
A putative bifunctional histidine kinase/phosphatase of the HWE family exerts positive and negative control on the Sinorhizobium meliloti general stress response. J Bacteriol 2014; 196:2526-35. [PMID: 24794560 DOI: 10.1128/jb.01623-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The EcfG-type sigma factor RpoE2 is the regulator of the general stress response in Sinorhizobium meliloti. RpoE2 activity is negatively regulated by two NepR-type anti-sigma factors (RsiA1/A2), themselves under the control of two anti-anti-sigma factors (RsiB1/B2) belonging to the PhyR family of response regulators. The current model of RpoE2 activation suggests that in response to stress, RsiB1/B2 are activated by phosphorylation of an aspartate residue in their receiver domain. Once activated, RsiB1/B2 become able to interact with the anti-sigma factors and release RpoE2, which can then associate with the RNA polymerase to transcribe its target genes. The purpose of this work was to identify and characterize proteins involved in controlling the phosphorylation status of RsiB1/B2. Using in vivo approaches, we show that the putative histidine kinase encoded by the rsiC gene (SMc01507), located downstream from rpoE2, is able to both positively and negatively regulate the general stress response. In addition, our data suggest that the negative action of RsiC results from inhibition of RsiB1/B2 phosphorylation. From these observations, we propose that RsiC is a bifunctional histidine kinase/phosphatase responsible for RsiB1/B2 phosphorylation or dephosphorylation in the presence or absence of stress, respectively. Two proteins were previously proposed to control PhyR phosphorylation in Caulobacter crescentus and Sphingomonas sp. strain FR1. However, these proteins contain a Pfam:HisKA_2 domain of dimerization and histidine phosphotransfer, whereas S. meliloti RsiC harbors a Pfam:HWE_HK domain instead. Therefore, this is the first report of an HWE_HK-containing protein controlling the general stress response in Alphaproteobacteria.
Collapse
|
40
|
Campagne S, Marsh ME, Capitani G, Vorholt JA, Allain FHT. Structural basis for -10 promoter element melting by environmentally induced sigma factors. Nat Struct Mol Biol 2014; 21:269-76. [PMID: 24531660 DOI: 10.1038/nsmb.2777] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/22/2014] [Indexed: 12/12/2022]
Abstract
Bacterial transcription is controlled by sigma factors, the RNA polymerase subunits that act as initiation factors. Although a single housekeeping sigma factor enables transcription from thousands of promoters, environmentally induced sigma factors redirect gene expression toward small regulons to carry out focused responses. Using structural and functional analyses, we determined the molecular basis of -10 promoter element recognition by Escherichia coli σ(E), which revealed an unprecedented way to achieve promoter melting. Group IV sigma factors induced strand separation at the -10 element by flipping out a single nucleotide from the nontemplate-strand DNA base stack. Unambiguous selection of this critical base was driven by a dynamic protein loop, which can be substituted to modify specificity of promoter recognition. This mechanism of promoter melting explains the increased promoter-selection stringency of environmentally induced sigma factors.
Collapse
Affiliation(s)
- Sébastien Campagne
- 1] Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland. [2] Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - May E Marsh
- Paul Scherrer Institut, Villigen, Switzerland
| | | | - Julia A Vorholt
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Jans A, Vercruysse M, Gao S, Engelen K, Lambrichts I, Fauvart M, Michiels J. Canonical and non-canonical EcfG sigma factors control the general stress response in Rhizobium etli. Microbiologyopen 2013; 2:976-87. [PMID: 24311555 PMCID: PMC3892343 DOI: 10.1002/mbo3.137] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/16/2013] [Accepted: 09/23/2013] [Indexed: 01/14/2023] Open
Abstract
A core component of the α-proteobacterial general stress response (GSR) is the extracytoplasmic function (ECF) sigma factor EcfG, exclusively present in this taxonomic class. Half of the completed α-proteobacterial genome sequences contain two or more copies of genes encoding σEcfG-like sigma factors, with the primary copy typically located adjacent to genes coding for a cognate anti-sigma factor (NepR) and two-component response regulator (PhyR). So far, the widespread occurrence of additional, non-canonical σEcfG copies has not satisfactorily been explained. This study explores the hierarchical relation between Rhizobium etli σEcfG1 and σEcfG2, canonical and non-canonical σEcfG proteins, respectively. Contrary to reports in other species, we find that σEcfG1 and σEcfG2 act in parallel, as nodes of a complex regulatory network, rather than in series, as elements of a linear regulatory cascade. We demonstrate that both sigma factors control unique yet also shared target genes, corroborating phenotypic evidence. σEcfG1 drives expression of rpoH2, explaining the increased heat sensitivity of an ecfG1 mutant, while katG is under control of σEcfG2, accounting for reduced oxidative stress resistance of an ecfG2 mutant. We also identify non-coding RNA genes as novel σEcfG targets. We propose a modified model for GSR regulation in R. etli, in which σEcfG1 and σEcfG2 function largely independently. Based on a phylogenetic analysis and considering the prevalence of α-proteobacterial genomes with multiple σEcfG copies, this model may also be applicable to numerous other species.
Collapse
Affiliation(s)
- Ann Jans
- Centre of Microbial and Plant Genetics, KU Leuven, Heverlee, B-3001, Belgium
| | | | | | | | | | | | | |
Collapse
|
42
|
Iguchi H, Sato I, Yurimoto H, Sakai Y. Stress resistance and C1 metabolism involved in plant colonization of a methanotroph Methylosinus sp. B4S. Arch Microbiol 2013; 195:717-26. [PMID: 24037422 DOI: 10.1007/s00203-013-0922-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/08/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
Methanotrophs are widespread and have been isolated from various environments including the phyllosphere. In this study, we characterized the plant colonization by Methylosinus sp. B4S, an α-proteobacterial methanotroph isolated from plant leaf. The gfp-tagged Methylosinus sp. B4S cells were observed to colonize Arabidopsis leaf surfaces by forming aggregates. We cloned and sequenced the general stress response genes, phyR, nepR and ecfG, from Methylosinus sp. B4S. In vitro analysis showed that the phyR expression level was increased after heat shock challenge, and phyR was shown to be involved in resistance to heat shock and UV light. In the phyllospheric condition, the gene expression level of phyR as well as mmoX and mxaF was found to be relatively high, compared with methane-grown liquid cultures. The phyR-deletion strain as well as the wild-type strain inoculated on Arabidopsis leaves proliferated at the initial phase and then gradually decreased during plant colonization. These results have shed light firstly on the importance of general stress resistance and C1 metabolism in methanotroph living in the phyllosphere.
Collapse
Affiliation(s)
- Hiroyuki Iguchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | |
Collapse
|
43
|
Cumate-inducible gene expression system for sphingomonads and other Alphaproteobacteria. Appl Environ Microbiol 2013; 79:6795-802. [PMID: 23995928 DOI: 10.1128/aem.02296-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Tunable promoters represent a pivotal genetic tool for a wide range of applications. Here we present such a system for sphingomonads, a phylogenetically diverse group of bacteria that have gained much interest for their potential in bioremediation and their use in industry and for which no dedicated inducible gene expression system has been described so far. A strong, constitutive synthetic promoter was first identified through a genetic screen and subsequently combined with the repressor and the operator sites of the Pseudomonas putida F1 cym/cmt system. The resulting promoter, termed PQ5, responds rapidly to the inducer cumate and shows a maximal induction ratio of 2 to 3 orders of magnitude in the different sphingomonads tested. Moreover, it was also functional in other Alphaproteobacteria, such as the model organisms Caulobacter crescentus, Paracoccus denitrificans, and Methylobacterium extorquens. In the noninduced state, expression from PQ5 is low enough to allow gene depletion analysis, as demonstrated with the essential gene phyP of Sphingomonas sp. strain Fr1. A set of PQ5-based plasmids has been constructed allowing fusions to affinity tags or fluorescent proteins.
Collapse
|
44
|
Fluorescence-based bacterial bioreporter for specific detection of methyl halide emissions in the environment. Appl Environ Microbiol 2013; 79:6561-7. [PMID: 23956392 DOI: 10.1128/aem.01738-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Methyl halides are volatile one-carbon compounds responsible for substantial depletion of stratospheric ozone. Among them, chloromethane (CH3Cl) is the most abundant halogenated hydrocarbon in the atmosphere. Global budgets of methyl halides in the environment are still poorly understood due to uncertainties in their natural sources, mainly from vegetation, and their sinks, which include chloromethane-degrading bacteria. A bacterial bioreporter for the detection of methyl halides was developed on the basis of detailed knowledge of the physiology and genetics of Methylobacterium extorquens CM4, an aerobic alphaproteobacterium which utilizes chloromethane as the sole source of carbon and energy. A plasmid construct with the promoter region of the chloromethane dehalogenase gene cmuA fused to a promotorless yellow fluorescent protein gene cassette resulted in specific methyl halide-dependent fluorescence when introduced into M. extorquens CM4. The bacterial whole-cell bioreporter allowed detection of methyl halides at femtomolar levels and quantification at concentrations above 10 pM (approximately 240 ppt). As shown for the model chloromethane-producing plant Arabidopsis thaliana in particular, the bioreporter may provide an attractive alternative to analytical chemical methods to screen for natural sources of methyl halide emissions.
Collapse
|
45
|
Metzger LC, Francez-Charlot A, Vorholt JA. Single-domain response regulator involved in the general stress response of Methylobacterium extorquens. Microbiology (Reading) 2013; 159:1067-1076. [DOI: 10.1099/mic.0.066068-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lisa C. Metzger
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
46
|
The Bartonella quintana extracytoplasmic function sigma factor RpoE has a role in bacterial adaptation to the arthropod vector environment. J Bacteriol 2013; 195:2662-74. [PMID: 23564167 DOI: 10.1128/jb.01972-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bartonella quintana is a vector-borne bacterial pathogen that causes fatal disease in humans. During the infectious cycle, B. quintana transitions from the hemin-restricted human bloodstream to the hemin-rich body louse vector. Because extracytoplasmic function (ECF) sigma factors often regulate adaptation to environmental changes, we hypothesized that a previously unstudied B. quintana ECF sigma factor, RpoE, is involved in the transition from the human host to the body louse vector. The genomic context of B. quintana rpoE identified it as a member of the ECF15 family of sigma factors found only in alphaproteobacteria. ECF15 sigma factors are believed to be the master regulators of the general stress response in alphaproteobacteria. In this study, we examined the B. quintana RpoE response to two stressors that are encountered in the body louse vector environment, a decreased temperature and an increased hemin concentration. We determined that the expression of rpoE is significantly upregulated at the body louse (28°C) versus the human host (37°C) temperature. rpoE expression also was upregulated when B. quintana was exposed to high hemin concentrations. In vitro and in vivo analyses demonstrated that RpoE function is regulated by a mechanism involving the anti-sigma factor NepR and the response regulator PhyR. The ΔrpoE ΔnepR mutant strain of B. quintana established that RpoE-mediated transcription is important in mediating the tolerance of B. quintana to high hemin concentrations. We present the first analysis of an ECF15 sigma factor in a vector-borne human pathogen and conclude that RpoE has a role in the adaptation of B. quintana to the hemin-rich arthropod vector environment.
Collapse
|
47
|
Kim HS, Caswell CC, Foreman R, Roop RM, Crosson S. The Brucella abortus general stress response system regulates chronic mammalian infection and is controlled by phosphorylation and proteolysis. J Biol Chem 2013; 288:13906-16. [PMID: 23546883 DOI: 10.1074/jbc.m113.459305] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Virulence of pathogenic bacteria is often determined by their ability to adapt to stress. RESULTS The Brucella abortus general stress response (GSR) system is required for chronic mammalian infection and is regulated by phosphorylation and proteolysis. CONCLUSION The B. abortus GSR signaling pathway has multiple layers of post-translational control and is a determinant of chronic infection. SIGNIFICANCE This study provides new, molecular level insight into chronic Brucella infection. Brucella spp. are adept at establishing a chronic infection in mammals. We demonstrate that core components of the α-proteobacterial general stress response (GSR) system, PhyR and σ(E1), are required for Brucella abortus stress survival in vitro and maintenance of chronic murine infection in vivo. ΔphyR and ΔrpoE1 null mutants exhibit decreased survival under acute oxidative and acid stress but are not defective in infection of primary murine macrophages or in initial colonization of BALB/c mouse spleens. However, ΔphyR and ΔrpoE1 mutants are attenuated in spleens beginning 1 month postinfection. Thus, the B. abortus GSR system is dispensable for colonization but is required to maintain chronic infection. A genome-scale analysis of the B. abortus GSR regulon identified stress response genes previously linked to virulence and genes that affect immunomodulatory components of the cell envelope. These data support a model in which the GSR system affects both stress survival and the interface between B. abortus and the host immune system. We further demonstrate that PhyR proteolysis is a unique feature of GSR control in B. abortus. Proteolysis of PhyR provides a mechanism to avoid spurious PhyR protein interactions that inappropriately activate GSR-dependent transcription. We conclude that the B. abortus GSR system regulates acute stress adaptation and long term survival within a mammalian host and that PhyR proteolysis is a novel regulatory feature in B. abortus that ensures proper control of GSR transcription.
Collapse
Affiliation(s)
- Hye-Sook Kim
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
48
|
Mascher T. Signaling diversity and evolution of extracytoplasmic function (ECF) σ factors. Curr Opin Microbiol 2013; 16:148-55. [DOI: 10.1016/j.mib.2013.02.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/30/2013] [Accepted: 02/03/2013] [Indexed: 11/16/2022]
|
49
|
The general stress response factor EcfG regulates expression of the C-2 hopanoid methylase HpnP in Rhodopseudomonas palustris TIE-1. J Bacteriol 2013; 195:2490-8. [PMID: 23524612 DOI: 10.1128/jb.00186-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid molecules preserved in sedimentary rocks facilitate the reconstruction of events that have shaped the evolution of the Earth's biosphere. A key limitation for the interpretation of many of these molecular fossils is that their biological roles are still poorly understood. Here, we use Rhodopseudomonas palustris TIE-1 to identify factors that induce biosynthesis of 2-methyl hopanoids (2-MeBHPs), progenitors of 2-methyl hopanes, one of the most abundant biomarkers in the rock record. This is the first dissection of the regulation of hpnP, the gene encoding the C-2 hopanoid methylase, at the molecular level. We demonstrate that EcfG, the general stress response factor of alphaproteobacteria, regulates expression of hpnP under a variety of challenges, including high temperature, pH stress, and presence of nonionic osmolytes. Although higher hpnP transcription levels did not always result in higher amounts of total methylated hopanoids, the fraction of a particular kind of hopanoid, 2-methyl bacteriohopanetetrol, was consistently higher in the presence of most stressors in the wild type, but not in the ΔecfG mutant, supporting a beneficial role for 2-MeBHPs in stress tolerance. The ΔhpnP mutant, however, did not exhibit a growth defect under the stress conditions tested except in acidic medium. This indicates that the inability to make 2-MeBHPs under most of these conditions can readily be compensated. Although stress is necessary to regulate 2-MeBHP production, the specific conditions under which 2-MeBHP biosynthesis is essential remain to be determined.
Collapse
|
50
|
Abstract
Our knowledge of the microbiology of the phyllosphere, or the aerial parts of plants, has historically lagged behind our knowledge of the microbiology of the rhizosphere, or the below-ground habitat of plants, particularly with respect to fundamental questions such as which microorganisms are present and what they do there. In recent years, however, this has begun to change. Cultivation-independent studies have revealed that a few bacterial phyla predominate in the phyllosphere of different plants and that plant factors are involved in shaping these phyllosphere communities, which feature specific adaptations and exhibit multipartite relationships both with host plants and among community members. Insights into the underlying structural principles of indigenous microbial phyllosphere populations will help us to develop a deeper understanding of the phyllosphere microbiota and will have applications in the promotion of plant growth and plant protection.
Collapse
Affiliation(s)
- Julia A Vorholt
- Institute of Microbiology, ETH Zurich (Swiss Federal Institute of Technology Zurich), Wolfgang-Pauli-Strasse 10, HCI F429, 8093 Zurich, Switzerland.
| |
Collapse
|