1
|
Zhang Y, Pan Y, Zhao C, Lv M, Jiang Q, Wang F, Li Y, Gao S, Shi K. Flow condition mitigates the inhibition of high concentration Cu 2+ on the sulfate reduction performance of microbial electrolysis cell. ENVIRONMENTAL TECHNOLOGY 2025:1-12. [PMID: 40106715 DOI: 10.1080/09593330.2025.2478183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Microbial electrolysis cells (MECs) are promising for treating acidic mine drainage (AMD) containing high concentrations of sulfates and heavy metals. However, the performance of MEC cathodic biofilms is influenced not only by high heavy metals concentrations but also by hydrodynamic mixing conditions. Yet, there is a lack of precise assessment on the impact of hydrodynamic mixing conditions on MEC treating sulfate-laden wastewater under high heavy metal stress, and the defense mechanisms of MECs remain unclear. This study investigated the effects of different hydrodynamic conditions (EG, flow condition; CG, stationary condition) on the performance of MECs treating sulfate wastewater under high heavy metal stress, delving into microbial activity, community composition, electrochemical performance, and microbial defense capabilities against heavy metals. The results indicated that under heavy metal stress, microbial cells underwent severe deformation and death, with the assimilatory sulfate reduction pathway severely impaired, leading to a decline in MEC performance, and the reduction rate of CG group was finally reduced to 14.47%. In contrast, under flow conditions, the EG group exhibited increased extracellular polymeric substances (EPS) composition, enhanced biofilm community diversity, and elevated levels of copper resistance genes, significantly mitigating the inhibitory effects of Cu2+ on microorganisms, ultimately maintaining a performance of 47.18%. Ultimately, Cu2+ in the system was removed through bioprecipitation and biosorption, forming CuS and Cu(OH)2. This work provides critical insights for scaling up MEC technology to address co-contamination challenges in acid mine drainage remediation, particularly for environments with hydrodynamic mixing conditions and elevated heavy metal concentrations.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, People's Republic of China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, People's Republic of China
| | - Yubing Pan
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Cheng Zhao
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, People's Republic of China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, People's Republic of China
| | - Minghui Lv
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, People's Republic of China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, People's Republic of China
| | - Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Feng Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Yanan Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Shuai Gao
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, People's Republic of China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, People's Republic of China
| | - Ke Shi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
2
|
Zhou Z, Tran PQ, Cowley ES, Trembath-Reichert E, Anantharaman K. Diversity and ecology of microbial sulfur metabolism. Nat Rev Microbiol 2025; 23:122-140. [PMID: 39420098 DOI: 10.1038/s41579-024-01104-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
Sulfur plays a pivotal role in interactions within the atmosphere, lithosphere, pedosphere, hydrosphere and biosphere, and the functioning of living organisms. In the Earth's crust, mantle, and atmosphere, sulfur undergoes geochemical transformations due to natural and anthropogenic factors. In the biosphere, sulfur participates in the formation of amino acids, proteins, coenzymes and vitamins. Microorganisms in the biosphere are crucial for cycling sulfur compounds through oxidation, reduction and disproportionation reactions, facilitating their bioassimilation and energy generation. Microbial sulfur metabolism is abundant in both aerobic and anaerobic environments and is interconnected with biogeochemical cycles of important elements such as carbon, nitrogen and iron. Through metabolism, competition or cooperation, microorganisms metabolizing sulfur can drive the consumption of organic carbon, loss of fixed nitrogen and production of climate-active gases. Given the increasing significance of sulfur metabolism in environmental alteration and the intricate involvement of microorganisms in sulfur dynamics, a timely re-evaluation of the sulfur cycle is imperative. This Review explores our understanding of microbial sulfur metabolism, primarily focusing on the transformations of inorganic sulfur. We comprehensively overview the sulfur cycle in the face of rapidly changing ecosystems on Earth, highlighting the importance of microbially-mediated sulfur transformation reactions across different environments, ecosystems and microbiomes.
Collapse
Affiliation(s)
- Zhichao Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Elise S Cowley
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Data Science and AI, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
3
|
Peng LT, Tian SQ, Guo WX, Chen XW, Wu JH, Liu YL, Peng B. α-Ketoglutarate downregulates thiosulphate metabolism to enhance antibiotic killing. Int J Antimicrob Agents 2024; 64:107214. [PMID: 38795933 DOI: 10.1016/j.ijantimicag.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Potentiation of the effects of currently available antibiotics is urgently required to tackle the rising antibiotics resistance. The pyruvate (P) cycle has been shown to play a critical role in mediating aminoglycoside antibiotic killing, but the mechanism remains unexplored. In this study, we investigated the effects of intermediate metabolites of the P cycle regarding the potentiation of gentamicin. We found that α-ketoglutarate (α-KG) has the best synergy with gentamicin compared to the other metabolites. This synergistic killing effect was more effective with aminoglycosides than other types of antibiotics, and it was effective against various types of bacterial pathogens. Using fish and mouse infection models, we confirmed that the synergistic killing effect occurred in vivo. Furthermore, functional proteomics showed that α-KG downregulated thiosulphate metabolism. Upregulation of thiosulphate metabolism by exogenous thiosulphate counteracted the killing effect of gentamicin. The role of thiosulphate metabolism in antibiotic resistance was further confirmed using thiosulphate reductase knockout mutants. These mutants were more sensitive to gentamicin killing, and less tolerant to antibiotics compared to their parental strain. Thus, our study highlights a strategy for potentiating antibiotic killing by using a metabolite that reduces antibiotic resistance.
Collapse
Affiliation(s)
- Liao-Tian Peng
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Si-Qi Tian
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Wei-Xu Guo
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan-Wei Chen
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Jia-Han Wu
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ying-Li Liu
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Bo Peng
- State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
4
|
D'Ermo G, Audebert S, Camoin L, Planer-Friedrich B, Casiot-Marouani C, Delpoux S, Lebrun R, Guiral M, Schoepp-Cothenet B. Quantitative proteomics reveals the Sox system's role in sulphur and arsenic metabolism of phototroph Halorhodospira halophila. Environ Microbiol 2024; 26:e16655. [PMID: 38897608 DOI: 10.1111/1462-2920.16655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
The metabolic process of purple sulphur bacteria's anoxygenic photosynthesis has been primarily studied in Allochromatium vinosum, a member of the Chromatiaceae family. However, the metabolic processes of purple sulphur bacteria from the Ectothiorhodospiraceae and Halorhodospiraceae families remain unexplored. We have analysed the proteome of Halorhodospira halophila, a member of the Halorhodospiraceae family, which was cultivated with various sulphur compounds. This analysis allowed us to reconstruct the first comprehensive sulphur-oxidative photosynthetic network for this family. Some members of the Ectothiorhodospiraceae family have been shown to use arsenite as a photosynthetic electron donor. Therefore, we analysed the proteome response of Halorhodospira halophila when grown under arsenite and sulphide conditions. Our analyses using ion chromatography-inductively coupled plasma mass spectrometry showed that thioarsenates are chemically formed under these conditions. However, they are more extensively generated and converted in the presence of bacteria, suggesting a biological process. Our quantitative proteomics revealed that the SoxAXYZB system, typically dedicated to thiosulphate oxidation, is overproduced under these growth conditions. Additionally, two electron carriers, cytochrome c551/c5 and HiPIP III, are also overproduced. Electron paramagnetic resonance spectroscopy suggested that these transporters participate in the reduction of the photosynthetic Reaction Centre. These results support the idea of a chemically and biologically formed thioarsenate being oxidized by the Sox system, with cytochrome c551/c5 and HiPIP III directing electrons towards the Reaction Centre.
Collapse
Affiliation(s)
- Giulia D'Ermo
- Aix-Marseille Université, CNRS, BIP-UMR 7281, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Luc Camoin
- Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Centre for Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
| | | | - Sophie Delpoux
- Laboratoire HydroSciences Montpellier, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Régine Lebrun
- Aix-Marseille Université, CNRS, IMM-FR3479, Marseille Protéomique, Marseille, France
| | - Marianne Guiral
- Aix-Marseille Université, CNRS, BIP-UMR 7281, Marseille, France
| | | |
Collapse
|
5
|
Tong T, Tong J, Xue K, Li Y, Yu J, Wei Y. Microbial community structure and functional prediction in five full-scale industrial park wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166529. [PMID: 37625722 DOI: 10.1016/j.scitotenv.2023.166529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The development of industrial parks has become an important global trend contributing significantly to economic and industrial growth. However, this growth comes at a cost, as the treatment of multisource industrial wastewater generated in these parks can be difficult owing to its complex composition. Microorganisms play a critical role in pollutant removal during industrial park wastewater treatment. Therefore, our study focused on the microbial communities in five full-scale industrial park wastewater treatment plants (WWTPs) with similar treatment processes and capacities. The results showed that denitrifying bacteria were dominant in almost every process section of all the plants, with heterotrophic denitrification being the main pathway. Moreover, autotrophic sulfur denitrification and methane oxidation denitrification may contribute to total nitrogen (TN) removal. In plants where the influent had low levels of COD and TN, dominant bacteria included oligotrophic microorganisms like Prosthecobacter (2.88 % ~ 10.02 %) and hgcI_clade (2.05 % ~ 9.49 %). Heavy metal metabolizing microorganisms, such as Norank_f__PHOS-HE36 (3.96 % ~ 5.36 %) and Sediminibacterium (1.86 % ~ 5.34 %), were prevalent in oxidation ditch and secondary settling tanks in certain plants. Functional Annotation of Prokaryotic Taxa (FAPROTAX) revealed that microbial communities in the regulation and hydrolysis tanks exhibited higher potential activity in the nitrogen (N) and sulfur (S) cycles than those in the oxidation ditch. Sulfate/sulfite reduction was common in most plants, whereas the potential occurrence of sulfide compounds and thiosulfate oxidation tended to be higher in plants with a relatively high sulfate concentration and low COD content in their influent. Our study provides a new understanding of the microbial community in full-scale industrial park WWTPs and highlights the critical role of microorganisms in the treatment of industrial wastewater.
Collapse
Affiliation(s)
- Tujun Tong
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China; China Energy Conservation and Environmental Protection Group, Beijing 100082, China
| | - Juan Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Keni Xue
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanan Li
- Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiangze Yu
- University of Chinese Academy of Sciences, Beijing 100049, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Ye H, Borusak S, Eberl C, Krasenbrink J, Weiss AS, Chen SC, Hanson BT, Hausmann B, Herbold CW, Pristner M, Zwirzitz B, Warth B, Pjevac P, Schleheck D, Stecher B, Loy A. Ecophysiology and interactions of a taurine-respiring bacterium in the mouse gut. Nat Commun 2023; 14:5533. [PMID: 37723166 PMCID: PMC10507020 DOI: 10.1038/s41467-023-41008-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/21/2023] [Indexed: 09/20/2023] Open
Abstract
Taurine-respiring gut bacteria produce H2S with ambivalent impact on host health. We report the isolation and ecophysiological characterization of a taurine-respiring mouse gut bacterium. Taurinivorans muris strain LT0009 represents a new widespread species that differs from the human gut sulfidogen Bilophila wadsworthia in its sulfur metabolism pathways and host distribution. T. muris specializes in taurine respiration in vivo, seemingly unaffected by mouse diet and genotype, but is dependent on other bacteria for release of taurine from bile acids. Colonization of T. muris in gnotobiotic mice increased deconjugation of taurine-conjugated bile acids and transcriptional activity of a sulfur metabolism gene-encoding prophage in other commensals, and slightly decreased the abundance of Salmonella enterica, which showed reduced expression of galactonate catabolism genes. Re-analysis of metagenome data from a previous study further suggested that T. muris can contribute to protection against pathogens by the commensal mouse gut microbiota. Together, we show the realized physiological niche of a key murine gut sulfidogen and its interactions with selected gut microbiota members.
Collapse
Affiliation(s)
- Huimin Ye
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Sabrina Borusak
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Claudia Eberl
- Max-von-Pettenkofer Institute, Ludwig Maximilian University Munich, Munich, Germany
| | - Julia Krasenbrink
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Anna S Weiss
- Max-von-Pettenkofer Institute, Ludwig Maximilian University Munich, Munich, Germany
| | - Song-Can Chen
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Buck T Hanson
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Te Kura Pūtaiao Koiora, School of Biological Sciences, Te Whare Wānanga o Waitaha, University of Canterbury, Christchurch, New Zealand
| | - Manuel Pristner
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria
| | - Benjamin Zwirzitz
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| | - Petra Pjevac
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - David Schleheck
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Bärbel Stecher
- Max-von-Pettenkofer Institute, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Ludwig Maximilian University Munich, Munich, Germany
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Mo S, Yan B, Gao T, Li J, Kashif M, Song J, Bai L, Yu D, Liao J, Jiang C. Sulfur metabolism in subtropical marine mangrove sediments fundamentally differs from other habitats as revealed by SMDB. Sci Rep 2023; 13:8126. [PMID: 37208450 PMCID: PMC10199032 DOI: 10.1038/s41598-023-34995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
Shotgun metagenome sequencing provides the opportunity to recover underexplored rare populations and identify difficult-to-elucidate biochemical pathways. However, information on sulfur genes, including their sequences, is scattered in public databases. Here, we introduce SMDB ( https://smdb.gxu.edu.cn/ )-a manually curated database of sulfur genes based on an in-depth review of the scientific literature and orthology database. The SMDB contained a total of 175 genes and covered 11 sulfur metabolism processes with 395,737 representative sequences affiliated with 110 phyla and 2340 genera of bacteria/archaea. The SMDB was applied to characterize the sulfur cycle from five habitats and compared the microbial diversity of mangrove sediments with that of other habitats. The structure and composition of microorganism communities and sulfur genes were significantly different among the five habitats. Our results show that microorganism alpha diversity in mangrove sediments was significantly higher than in other habitats. Genes involved in dissimilatory sulfate reduction were abundant in subtropical marine mangroves and deep-sea sediments. The neutral community model results showed that microbial dispersal was higher in the marine mangrove ecosystem than in others habitats. The Flavilitoribacter of sulfur-metabolizing microorganism becomes a reliable biomarker in the five habitats. SMDB will assist researchers to analyze genes of sulfur cycle from the metagenomic efficiently.
Collapse
Affiliation(s)
- Shuming Mo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Bing Yan
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, 536000, China
| | - Tingwei Gao
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, 536000, China
| | - Jinhui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Muhammad Kashif
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jingjing Song
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Lirong Bai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Dahui Yu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China.
| | - Jianping Liao
- Guangxi Key Lab of Human-Machine Interaction and Intelligent Decision, Nanning Normal University, Nanning, 530299, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| | - Chengjian Jiang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China.
| |
Collapse
|
8
|
Martin AJ, Serebrinsky-Duek K, Riquelme E, Saa PA, Garrido D. Microbial interactions and the homeostasis of the gut microbiome: the role of Bifidobacterium. MICROBIOME RESEARCH REPORTS 2023; 2:17. [PMID: 38046822 PMCID: PMC10688804 DOI: 10.20517/mrr.2023.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 12/05/2023]
Abstract
The human gut is home to trillions of microorganisms that influence several aspects of our health. This dense microbial community targets almost all dietary polysaccharides and releases multiple metabolites, some of which have physiological effects on the host. A healthy equilibrium between members of the gut microbiota, its microbial diversity, and their metabolites is required for intestinal health, promoting regulatory or anti-inflammatory immune responses. In contrast, the loss of this equilibrium due to antibiotics, low fiber intake, or other conditions results in alterations in gut microbiota composition, a term known as gut dysbiosis. This dysbiosis can be characterized by a reduction in health-associated microorganisms, such as butyrate-producing bacteria, enrichment of a small number of opportunistic pathogens, or a reduction in microbial diversity. Bifidobacterium species are key species in the gut microbiome, serving as primary degraders and contributing to a balanced gut environment in various ways. Colonization resistance is a fundamental property of gut microbiota for the prevention and control of infections. This community competes strongly with foreign microorganisms, such as gastrointestinal pathogens, antibiotic-resistant bacteria, or even probiotics. Resistance to colonization is based on microbial interactions such as metabolic cross-feeding, competition for nutrients, or antimicrobial-based inhibition. These interactions are mediated by metabolites and metabolic pathways, representing the inner workings of the gut microbiota, and play a protective role through colonization resistance. This review presents a rationale for how microbial interactions provide resistance to colonization and gut dysbiosis, highlighting the protective role of Bifidobacterium species.
Collapse
Affiliation(s)
- Alberto J.M. Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8580702, Chile
| | - Kineret Serebrinsky-Duek
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| | - Erick Riquelme
- Department of Respiratory Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Pedro A. Saa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| |
Collapse
|
9
|
Takemura K, Kato J, Kato S, Fujii T, Wada K, Iwasaki Y, Aoi Y, Matsushika A, Morita T, Murakami K, Nakashimada Y. Enhancing acetone production from H 2 and CO 2 using supplemental electron acceptors in an engineered Moorella thermoacetica. J Biosci Bioeng 2023:S1389-1723(23)00112-3. [PMID: 37100649 DOI: 10.1016/j.jbiosc.2023.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/08/2023] [Accepted: 04/02/2023] [Indexed: 04/28/2023]
Abstract
Acetogens grow autotrophically and use hydrogen (H2) as the energy source to fix carbon dioxide (CO2). This feature can be applied to gas fermentation, contributing to a circular economy. A challenge is the gain of cellular energy from H2 oxidation, which is substantially low, especially when acetate formation coupled with ATP production is diverted to other chemicals in engineered strains. Indeed, an engineered strain of the thermophilic acetogen Moorella thermoacetica that produces acetone lost autotrophic growth on H2 and CO2. We aimed to recover autotrophic growth and enhance acetone production, in which ATP production was assumed to be a limiting factor, by supplementing with electron acceptors. Among the four selected electron acceptors, thiosulfate and dimethyl sulfoxide (DMSO) enhanced both bacterial growth and acetone titers. DMSO was the most effective and was further analyzed. We showed that DMSO supplementation enhanced intracellular ATP levels, leading to increased acetone production. Although DMSO is an organic compound, it functions as an electron acceptor, not a carbon source. Thus, supplying electron acceptors is a potential strategy to complement the low ATP production caused by metabolic engineering and to improve chemical production from H2 and CO2.
Collapse
Affiliation(s)
- Kaisei Takemura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Junya Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Setsu Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Tatsuya Fujii
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Keisuke Wada
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yuki Iwasaki
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Yoshiteru Aoi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Akinori Matsushika
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan; National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Tomotake Morita
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Katsuji Murakami
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan.
| |
Collapse
|
10
|
Yang Y, Xie Z, Wang J, Chen M. Thiosulfate driving bio-reduction mechanisms of scorodite in groundwater environment. CHEMOSPHERE 2023; 311:136956. [PMID: 36280119 DOI: 10.1016/j.chemosphere.2022.136956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/29/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Reductive dissolution of scorodite results in the release and migration of arsenic (As) in groundwater. The purpose of this study was to explore the possible abiotic and biotic reduction of scorodite in groundwater environment and the effect of microbial-mediated sulfur cycling on the bio-reduction of scorodite. Microcosm experiments consisting of scorodite with bacterium Citrobacter sp. JH012-1 or free sulfide were carried out to determine the effects of thiosulfate on the mobilization of As/Fe. The results show arsenic release is positively correlated with iron reduction. The arsenate [As(V)] released can agglomerate with Fe(II) on the surface of scorodite to form crystalline parasymplesite, while no parasymplesite was detected in the abiotic reduction of scorodite by sulfide. The reduction of scorodite and As(V) was affected by thiosulfate. When 0.5 mM thiosulfate was added, the Fe(III) reduction rate increased from 32% to 82%, and the As(V) reduction rate rose from 54% to 64%. When the addition of thiosulfate was increased from 0.5 mM to 2 mM and 5 mM, Fe(III) reduction rate added 4% and 8%, and As(V) reduction rate increased 11% and 16%, respectively. In addition, the presence of thiosulfate promoted the scorodite almost completely converting to parasymplesite. Therefore, the effect of microbial-mediated sulfur cycling should be considered in arsenic migration and reduction from scorodite.
Collapse
Affiliation(s)
- Yang Yang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Zuoming Xie
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.
| | - Jia Wang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Mengna Chen
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
11
|
Liang J, Huang H, Wang Y, Li L, Yi J, Wang S. A Cytoplasmic NAD(P)H-Dependent Polysulfide Reductase with Thiosulfate Reductase Activity from the Hyperthermophilic Bacterium Thermotoga maritima. Microbiol Spectr 2022; 10:e0043622. [PMID: 35762779 PMCID: PMC9431562 DOI: 10.1128/spectrum.00436-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022] Open
Abstract
Thermotoga maritima is an anaerobic hyperthermophilic bacterium that efficiently produces H2 by fermenting carbohydrates. High concentration of H2 inhibits the growth of T. maritima, and S0 could eliminate the inhibition and stimulate the growth through its reduction. The mechanism of T. maritima sulfur reduction, however, has not been fully understood. Herein, based on its similarity with archaeal NAD(P)H-dependent sulfur reductases (NSR), the ORF THEMA_RS02810 was identified and expressed in Escherichia coli, and the recombinant protein was characterized. The purified flavoprotein possessed NAD(P)H-dependent S0 reductase activity (1.3 U/mg for NADH and 0.8 U/mg for NADPH), polysulfide reductase activity (0.32 U/mg for NADH and 0.35 U/mg for NADPH), and thiosulfate reductase activity (2.3 U/mg for NADH and 2.5 U/mg for NADPH), which increased 3~4-folds by coenzyme A stimulation. Quantitative RT-PCR analysis showed that nsr was upregulated together with the mbx, yeeE, and rnf genes when the strain grew in S0- or thiosulfate-containing medium. The mechanism for sulfur reduction in T. maritima was discussed, which may affect the redox balance and energy metabolism of T. maritima. Genome search revealed that NSR homolog is widely distributed in thermophilic bacteria and archaea, implying its important role in the sulfur cycle of geothermal environments. IMPORTANCE The reduction of S0 and thiosulfate is essential in the sulfur cycle of geothermal environments, in which thermophiles play an important role. Despite previous research on some sulfur reductases of thermophilic archaea, the mechanism of sulfur reduction in thermophilic bacteria is still not clearly understood. Herein, we confirmed the presence of a cytoplasmic NAD(P)H-dependent polysulfide reductase (NSR) from the hyperthermophile T. maritima, with S0, polysulfide, and thiosulfate reduction activities, in contrast to other sulfur reductases. When grown in S0- or thiosulfate-containing medium, its expression was upregulated. And the putative membrane-bound MBX and Rnf may also play a role in the metabolism, which might influence the redox balance and energy metabolism of T. maritima. This is distinct from the mechanism of sulfur reduction in mesophiles such as Wolinella succinogenes. NSR homologs are widely distributed among heterotrophic thermophiles, suggesting that they may be vital in the sulfur cycle in geothermal environments.
Collapse
Affiliation(s)
- Jiyu Liang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Haiyan Huang
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Yubo Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Lexin Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Jihong Yi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| | - Shuning Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, People’s Republic of China
| |
Collapse
|
12
|
Kazemzadeh P, Khorram S, Mahmoudzadeh M, Ehsani A. Effect of atmospheric cold plasma (ACP) on chlorine adapted Salmonella enterica on spring onion. Lett Appl Microbiol 2022; 75:1307-1318. [PMID: 35930630 DOI: 10.1111/lam.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
One of the main drawbacks of chlorine disinfectants is the emergence of chlorine adapted (CA) or resistant microbial cells. This research aimed to investigate the effect of chlorine adaptation on resistance of Salmonella enterica upon atmospheric cold plasma (ACP) application at different voltages (6, 8, and 11 kV) and times (5, 10, and 15 min). Due to higher conversion efficiency and reduced dielectric barrier discharge (DBD) power consumption, this method was used for cold plasma generation in this study. A higher lethality effect was observed from a higher voltage and longest times (11 kV-15 min) on CA S. enterica than non-CA (p<0.05). Still, it induced higher percentages of injured cells in CA (58.77%) than non-CA (0.61%) (p<0.05). The highest ACP effect on the inactivation of the indigenous natural flora of onion leaves was observed at the lowest voltage (p<0.05). More than 3 log CFU/g reduction (p<0.05) was observed at 6 kV after 5 and 10 min. ACP reduced CA and non-CA S. enterica cells on onion leaf surface to a lower extent than pure treated cells in broth media. Nevertheless similar to broth media, a high percentage of injury (61.03%) was induced on CA cells at higher voltage (11 kV-10 min) compared to non-CA (2.15%) (p<0.05). Biofilm results revealed ACP application (6 kV-5 min) reduced average ODs in CA and non-CA cells (p<0.05). Chlorine adaptation and ACP treatment influenced the antibiotic resistance pattern according to applied voltage, time, and antibiotic type. The finding showed despite highest lethality of high voltages and long times (11 kV-15 min), given the high percentages of injured cells, lower voltages may offer acceptable inactivation of pathogenic bacteria with lower injury induction. In conclusion, ACP has the potential ability to eliminate CA cells of S. enterica, which is predominant in fresh-cut vegetable outbreaks.
Collapse
Affiliation(s)
- Parisa Kazemzadeh
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sirous Khorram
- Physics Faculty, University of Tabriz, 51666-, 16471, Tabriz, Iran.,Research Institute for Applied Physics and Astronomy, Applied and Industrial Plasma Lab., University of Tabriz, 51666-, 16471, Tabriz, Iran
| | - Maryam Mahmoudzadeh
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Williams TJ, Allen MA, Panwar P, Cavicchioli R. Into the darkness: the ecologies of novel 'microbial dark matter' phyla in an Antarctic lake. Environ Microbiol 2022; 24:2576-2603. [PMID: 35466505 PMCID: PMC9324843 DOI: 10.1111/1462-2920.16026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Uncultivated microbial clades ('microbial dark matter') are inferred to play important but uncharacterized roles in nutrient cycling. Using Antarctic lake (Ace Lake, Vestfold Hills) metagenomes, 12 metagenome-assembled genomes (MAGs; 88%-100% complete) were generated for four 'dark matter' phyla: six MAGs from Candidatus Auribacterota (=Aureabacteria, SURF-CP-2), inferred to be hydrogen- and sulfide-producing fermentative heterotrophs, with individual MAGs encoding bacterial microcompartments (BMCs), gas vesicles, and type IV pili; one MAG (100% complete) from Candidatus Hinthialibacterota (=OLB16), inferred to be a facultative anaerobe capable of dissimilatory nitrate reduction to ammonia, specialized for mineralization of complex organic matter (e.g. sulfated polysaccharides), and encoding BMCs, flagella, and Tad pili; three MAGs from Candidatus Electryoneota (=AABM5-125-24), previously reported to include facultative anaerobes capable of dissimilatory sulfate reduction, and here inferred to perform sulfite oxidation, reverse tricarboxylic acid cycle for autotrophy, and possess numerous proteolytic enzymes; two MAGs from Candidatus Lernaellota (=FEN-1099), inferred to be capable of formate oxidation, amino acid fermentation, and possess numerous enzymes for protein and polysaccharide degradation. The presence of 16S rRNA gene sequences in public metagenome datasets (88%-100% identity) suggests these 'dark matter' phyla contribute to sulfur cycling, degradation of complex organic matter, ammonification and/or chemolithoautotrophic CO2 fixation in diverse global environments.
Collapse
Affiliation(s)
- Timothy J. Williams
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSW2052Australia
| | - Michelle A. Allen
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSW2052Australia
| | - Pratibha Panwar
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSW2052Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSW2052Australia
| |
Collapse
|
14
|
Zhou H, Zhao D, Zhang S, Xue Q, Zhang M, Yu H, Zhou J, Li M, Kumar S, Xiang H. Metagenomic insights into the environmental adaptation and metabolism of Candidatus Haloplasmatales, one archaeal order thriving in saline lakes. Environ Microbiol 2022; 24:2239-2258. [PMID: 35048500 DOI: 10.1111/1462-2920.15899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 02/01/2023]
Abstract
The KTK 4A-related Thermoplasmata thrives in the sediment of saline lakes; however, systematic research on its taxonomy, environmental adaptation and metabolism is lacking. Here, we detected this abundant lineage in the sediment of five artificially separated ponds (salinity 7.0%-33.0%) within a Chinese soda-saline lake using culture-independent metagenomics and archaeal 16S rRNA gene amplicons. The phylogenies based on the 16S rRNA gene, and 122 archaeal ubiquitous single-copy proteins and genome-level identity analyses among the metagenome-assembled genomes demonstrate this lineage forming a novel order, Candidatus Haloplasmatales, comprising four genera affiliated with the identical family. Isoelectric point profiles of predicted proteomes suggest that most members adopt the energetically favourable 'salt-in' strategy. Functional prediction indicates the lithoheterotrophic nature with the versatile metabolic potentials for carbohydrate and organic acids as well as carbon monoxide and hydrogen utilization. Additionally, hydrogenase genes hdrABC-mvhADG are linked with incomplete reductive citrate cycle genes in the genomes, suggesting their functional connection. Comparison with the coupling of HdrABC-MvhADG and methanogenesis pathway provides new insights into the compatibility of laterally acquired methanogenesis with energy metabolism in the related order Methanomassiliicoccales. Globally, our research sheds light on the taxonomy, environmental adaptative mechanisms, metabolic potentials and evolutional significance of Ca. Haloplasmatales.
Collapse
Affiliation(s)
- Heng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Manqi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sumit Kumar
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Allochromatium tepidum, sp. nov., a hot spring species of purple sulfur bacteria. Arch Microbiol 2022; 204:115. [PMID: 34984587 DOI: 10.1007/s00203-021-02715-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022]
Abstract
We describe a new species of purple sulfur bacteria (Chromatiaceae, anoxygenic phototrophic bacteria) isolated from a microbial mat in the sulfidic geothermal outflow of a hot spring in Rotorua, New Zealand. This phototroph, designated as strain NZ, grew optimally near 45 °C but did not show an absorption maximum at 915 nm for the light-harvesting-reaction center core complex (LH1-RC) characteristic of other thermophilic purple sulfur bacteria. Strain NZ had a similar carotenoid composition as Thermochromatium tepidum, but unlike Tch. tepidum, grew photoheterotrophically on acetate in the absence of sulfide and metabolized thiosulfate. The genome of strain NZ was significantly larger than that of Tch. tepidum but slightly smaller than that of Allochromatium vinosum. Strain NZ was phylogenetically more closely related to mesophilic purple sulfur bacteria of the genus Allochromatium than to Tch. tepidum. This conclusion was reached from phylogenetic analyses of strain NZ genes encoding 16S rRNA and the photosynthetic functional gene pufM, from phylogenetic analyses of entire genomes, and from a phylogenetic tree constructed from the concatenated sequence of 1090 orthologous proteins. Moreover, average nucleotide identities and digital DNA:DNA hybridizations of the strain NZ genome against those of related species of Chromatiaceae supported the phylogenetic analyses. From this collection of properties, we describe strain NZ here as the first thermophilic species of the genus Allochromatium, Allochromatium tepidum NZT, sp. nov.
Collapse
|
16
|
Seregina TA, Lobanov KV, Shakulov RS, Mironov AS. Enhancement of the Bactericidal Effect of Antibiotics by Inhibition of Enzymes Involved in Production of Hydrogen Sulfide in Bacteria. Mol Biol 2022; 56:638-648. [PMID: 36217334 PMCID: PMC9534473 DOI: 10.1134/s0026893322050120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022]
Abstract
Counteraction of the origin and distribution of multidrug-resistant pathogens responsible for intra-hospital infections is a worldwide issue in medicine. In this brief review, we discuss the results of our recent investigations, which argue that many antibiotics, along with inactivation of their traditional biochemical targets, can induce oxidative stress (ROS production), thus resulting in increased bactericidal efficiency. As we previously showed, hydrogen sulfide, which is produced in the cells of different pathogens protects them not only against oxidative stress but also against bactericidal antibiotics. Next, we clarified the interplay of oxidative stress, cysteine metabolism, and hydrogen sulfide production. Finally, demonstrated that small molecules, which inhibit a bacterial enzyme involved in hydrogen sulfide production, potentiate bactericidal antibiotics including quinolones, beta-lactams, and aminoglycosides against bacterial pathogens in in vitro and in mouse models of infection. These inhibitors also suppress bacterial tolerance to antibiotics by disrupting the biofilm formation and substantially reducing the number of persister bacteria, which survive the antibiotic treatment. We hypothesise that agents which limit hydrogen sulfide biosynthesis are effective tools to counteract the origin and distribution of multidrug-resistant pathogens.
Collapse
Affiliation(s)
- T. A. Seregina
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - K. V. Lobanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - R. S. Shakulov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - A. S. Mironov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| |
Collapse
|
17
|
Modularity of membrane-bound charge-translocating protein complexes. Biochem Soc Trans 2021; 49:2669-2685. [PMID: 34854900 DOI: 10.1042/bst20210462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023]
Abstract
Energy transduction is the conversion of one form of energy into another; this makes life possible as we know it. Organisms have developed different systems for acquiring energy and storing it in useable forms: the so-called energy currencies. A universal energy currency is the transmembrane difference of electrochemical potential (Δμ~). This results from the translocation of charges across a membrane, powered by exergonic reactions. Different reactions may be coupled to charge-translocation and, in the majority of cases, these reactions are catalyzed by modular enzymes that always include a transmembrane subunit. The modular arrangement of these enzymes allows for different catalytic and charge-translocating modules to be combined. Thus, a transmembrane charge-translocating module can be associated with different catalytic subunits to form an energy-transducing complex. Likewise, the same catalytic subunit may be combined with a different membrane charge-translocating module. In this work, we analyze the modular arrangement of energy-transducing membrane complexes and discuss their different combinations, focusing on the charge-translocating module.
Collapse
|
18
|
Chen Z, Liu WS, Zhong X, Zheng M, Fei YH, He H, Ding K, Chao Y, Tang YT, Wang S, Qiu R. Genome- and community-level interaction insights into the ecological role of archaea in rare earth element mine drainage in South China. WATER RESEARCH 2021; 201:117331. [PMID: 34153824 DOI: 10.1016/j.watres.2021.117331] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Microbial communities play crucial roles in mine drainage generation and remediation. Despite the wide distribution of archaea in the mine ecosystem, their diversity and ecological roles remain less understood than bacteria. Here, we retrieved 56 archaeal metagenome-assembled genomes from a river impacted by rare earth element (REE) mining activities in South China. Genomic analysis showed that archaea represented four distinct lineages, including phyla of Thaumarchaeota, Micrarchaeota, Nanoarchaeota and Thermoplasmata. These archaea represented a considerable fraction (up to 40%) of the total prokaryote community, which might contribute to nitrogen and sulfur cycling in the REE mine drainage. Reconstructed metabolic potential among diverse archaea taxa revealed that archaea were involved in the network of ammonia oxidation, denitrification, sulfate redox reaction, and required substrates supplied by other community members. As the dominant driver of ammonia oxidation, Thaumarchaeota might provide substrates to support the survival of two nano-sized archaea belonging to Micrarchaeota and Nanoarchaeota. Despite the absence of biosynthesis pathways for amino acids and nucleotides, the potential capacity for nitrite reduction (nirD) was observed in Micrarchaeota, indicating that these nano-sized archaea encompassed diverse metabolisms. Moreover, Thermoplasmata, as keystone taxa in community, might be the main genetic donor for the other three archaeal phyla, transferring many environmental resistance related genes (e.g., V/A-type ATPase and Vitamin B12-transporting ATPase). The genetic interactions within archaeal community through horizontal gene transfer might be the key to the formation of archaeal resistance and functional partitioning. This study provides putative metabolic and genetic insights into the diverse archaea taxa from community-level perspectives, and highlights the ecological roles of archaea in REE contaminated aquatic environment.
Collapse
Affiliation(s)
- Ziwu Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Xi Zhong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Mengyuan Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying-Heng Fei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huan He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Kengbo Ding
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Staicu LC, Barton LL. Selenium respiration in anaerobic bacteria: Does energy generation pay off? J Inorg Biochem 2021; 222:111509. [PMID: 34118782 DOI: 10.1016/j.jinorgbio.2021.111509] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/30/2021] [Indexed: 01/03/2023]
Abstract
Selenium (Se) respiration in bacteria was revealed for the first time at the end of 1980s. Although thermodynamically-favorable, energy-dense and documented in phylogenetically-diverse bacteria, this metabolic process appears to be accompanied by a number of challenges and numerous unanswered questions. Selenium oxyanions, SeO42- and SeO32-, are reduced to elemental Se (Se0) through anaerobic respiration, the end product being solid and displaying a considerable size (up to 500 nm) at the bacterial scale. Compared to other electron acceptors used in anaerobic respiration (e.g. N, S, Fe, Mn, and As), Se is one of the few elements whose end product is solid. Furthermore, unlike other known bacterial intracellular accumulations such as volutin (inorganic polyphosphate), S0, glycogen or magnetite, Se0 has not been shown to play a nutritional or ecological role for its host. In the context of anaerobic respiration of Se oxyanions, biogenic Se0 appears to be a by-product, a waste that needs proper handling, and this raises the question of the evolutionary implications of this process. Why would bacteria use a respiratory substrate that is useful, in the first place, and then highly detrimental? Interestingly, in certain artificial ecosystems (e.g. upflow bioreactors) Se0 might help bacterial cells to increase their density and buoyancy and thus avoid biomass wash-out, ensuring survival. This review article provides an in-depth analysis of selenium respiration (model selenium respiring bacteria, thermodynamics, respiratory enzymes, and genetic determinants), complemented by an extensive discussion about the evolutionary implications and the properties of biogenic Se0 using published and original/unpublished results.
Collapse
Affiliation(s)
- Lucian C Staicu
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Larry L Barton
- Department of Biology, University of New Mexico, MSCO3 2020, Albuquerque, NM 87131, USA
| |
Collapse
|
20
|
Saraiva MMS, Rodrigues Alves LB, Monte DFM, Ferreira TS, Benevides VP, Barbosa FO, Freitas Neto OC, Almeida AM, Barrow PA, Berchieri Junior A. Deciphering the role of ttrA and pduA genes for Salmonella enterica serovars in a chicken infection model. Avian Pathol 2021; 50:1-12. [PMID: 33779420 DOI: 10.1080/03079457.2021.1909703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Salmonella enterica serovars use self-induced intestinal inflammation to increase electron acceptor availability and to obtain a growth advantage in the host gut. There is evidence suggesting that the ability of Salmonella to use tetrathionate and 1,2-propanediol provides an advantage in murine infection. Thus, we present here the first study to evaluate both systemic infection and faecal excretion in commercial poultry challenged by Salmonella Enteritidis (SE) and S. Typhimurium (STM) harbouring deletions in ttrA and pduA genes, which are crucial to the metabolism of tetrathionate and 1,2-propanediol, respectively. Mutant strains were excreted at higher rates when compared to the wild-type strains. The highest rates were observed with white egg-layer and brown egg-layer chicks (67.5%), and broiler chicks (56.7%) challenged by SEΔttrAΔpduA, and brown egg-layer chicks (64.8%) challenged by STMΔttrAΔpduA. SEΔttrAΔpduA presented higher bacterial counts in the liver and spleen of the three chicken lineages and caecal contents from the broiler chickens, whereas STMΔttrAΔpduA presented higher counts in the liver and spleen of the broiler and brown-egg chickens for 28 days post-infection (P < 0.05). The ttrA and pduA genes do not appear to be major virulence determinants in faecal excretion or invasiveness for SE and STM in chickens. RESEARCH HIGHLIGHTSttrA and pudA do not impair gut colonization or systemic infection in chicks.Mutant strains were present in higher numbers in broilers than in laying chicks.Mutants of SE and STM showed greater pathogenicity in broiler chicks than layers.
Collapse
Affiliation(s)
- M M S Saraiva
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| | - L B Rodrigues Alves
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| | - D F M Monte
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| | - T S Ferreira
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| | - V P Benevides
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| | - F O Barbosa
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| | - O C Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - A M Almeida
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| | - P A Barrow
- School of Veterinary Medicine and Science, University of Surrey, Guildford, UK
| | - A Berchieri Junior
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| |
Collapse
|
21
|
Calisto F, Sousa FM, Sena FV, Refojo PN, Pereira MM. Mechanisms of Energy Transduction by Charge Translocating Membrane Proteins. Chem Rev 2021; 121:1804-1844. [PMID: 33398986 DOI: 10.1021/acs.chemrev.0c00830] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Life relies on the constant exchange of different forms of energy, i.e., on energy transduction. Therefore, organisms have evolved in a way to be able to harvest the energy made available by external sources (such as light or chemical compounds) and convert these into biological useable energy forms, such as the transmembrane difference of electrochemical potential (Δμ̃). Membrane proteins contribute to the establishment of Δμ̃ by coupling exergonic catalytic reactions to the translocation of charges (electrons/ions) across the membrane. Irrespectively of the energy source and consequent type of reaction, all charge-translocating proteins follow two molecular coupling mechanisms: direct- or indirect-coupling, depending on whether the translocated charge is involved in the driving reaction. In this review, we explore these two coupling mechanisms by thoroughly examining the different types of charge-translocating membrane proteins. For each protein, we analyze the respective reaction thermodynamics, electron transfer/catalytic processes, charge-translocating pathways, and ion/substrate stoichiometries.
Collapse
Affiliation(s)
- Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patricia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
22
|
Gallardo-Benavente C, Campo-Giraldo JL, Castro-Severyn J, Quiroz A, Pérez-Donoso JM. Genomics Insights into Pseudomonas sp. CG01: An Antarctic Cadmium-Resistant Strain Capable of Biosynthesizing CdS Nanoparticles Using Methionine as S-Source. Genes (Basel) 2021; 12:187. [PMID: 33514061 PMCID: PMC7912247 DOI: 10.3390/genes12020187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/23/2022] Open
Abstract
Here, we present the draft genome sequence of Pseudomonas sp. GC01, a cadmium-resistant Antarctic bacterium capable of biosynthesizing CdS fluorescent nanoparticles (quantum dots, QDs) employing a unique mechanism involving the production of methanethiol (MeSH) from methionine (Met). To explore the molecular/metabolic components involved in QDs biosynthesis, we conducted a comparative genomic analysis, searching for the genes related to cadmium resistance and sulfur metabolic pathways. The genome of Pseudomonas sp. GC01 has a 4,706,645 bp size with a 58.61% G+C content. Pseudomonas sp. GC01 possesses five genes related to cadmium transport/resistance, with three P-type ATPases (cadA, zntA, and pbrA) involved in Cd-secretion that could contribute to the extracellular biosynthesis of CdS QDs. Furthermore, it exhibits genes involved in sulfate assimilation, cysteine/methionine synthesis, and volatile sulfur compounds catabolic pathways. Regarding MeSH production from Met, Pseudomonas sp. GC01 lacks the genes E4.4.1.11 and megL for MeSH generation. Interestingly, despite the absence of these genes, Pseudomonas sp. GC01 produces high levels of MeSH. This is probably associated with the metC gene that also produces MeSH from Met in bacteria. This work is the first report of the potential genes involved in Cd resistance, sulfur metabolism, and the process of MeSH-dependent CdS QDs bioproduction in Pseudomonas spp. strains.
Collapse
Affiliation(s)
- Carla Gallardo-Benavente
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, 4780000 Temuco, Chile;
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
| | - Jessica L. Campo-Giraldo
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8320000 Santiago, Chile;
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, 1240000 Antofagasta, Chile;
| | - Andrés Quiroz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
| | - José M. Pérez-Donoso
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8320000 Santiago, Chile;
| |
Collapse
|
23
|
Sulfite oxidation by the quinone-reducing molybdenum sulfite dehydrogenase SoeABC from the bacterium Aquifex aeolicus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148279. [DOI: 10.1016/j.bbabio.2020.148279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 01/26/2023]
|
24
|
Florentino AP, Costa RB, Hu Y, O'Flaherty V, Lens PNL. Long Chain Fatty Acid Degradation Coupled to Biological Sulfidogenesis: A Prospect for Enhanced Metal Recovery. Front Bioeng Biotechnol 2020; 8:550253. [PMID: 33195115 PMCID: PMC7644789 DOI: 10.3389/fbioe.2020.550253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022] Open
Abstract
This research assessed the microbiological suitability of oleate degradation coupled to sulfidogenesis by enriching communities from anaerobic sludge treating dairy products with S0, SO 3 2 - , SO 4 2 - , and S2 O 3 2 - as electron acceptors. The limiting factor hampering highly efficient oleate degradation was investigated in batch reactors. The best sulfidogenic performance coupled to specialization of the enriched bacterial community was obtained for S0- and S2 O 3 2 - -reducing enrichments, with 15.6 (± 0.2) and 9.0 (± 0.0) mM of sulfide production, respectively. Microbial community analyses revealed predominance of Enterobacteraceae (50.6 ± 5.7%), Sulfurospirillum (23.1 ± 0.1%), Bacteroides (7.5 ± 1.5%) and Seleniivibrio (6.9 ± 1.1%) in S0-reducing cultures. In S2 O 3 2 - -reducing enrichments, the genus Desulfurella predominated (49.2 ± 1.2%), followed by the Enterobacterales order (20.9 ± 2.3%). S0-reducing cultures were not affected by oleate concentrations up to 5 mM, while S2 O 3 2 - -reducing cultures could degrade oleate in concentrations up to 10 mM, with no significant impact on sulfidogenesis. In sequencing batch reactors operated with sulfide stripping, the S0-reducing enrichment produced 145.8 mM sulfide, precipitating Zn as ZnS in a separate tank. The S2 O 3 2 - fed bioreactor only produced 23.4 mM of sulfide precipitated as ZnS. The lower sulfide production likely happened due to sulfite toxicity, an intermediate of thiosulfate reduction. Therefore, elemental sulfur reduction represents an excellent alternative to the currently adopted approaches for LCFA degradation. To the best of our knowledge, this is the first report of oleate degradation with the flux of electrons totally diverted toward sulfide production for metal precipitation, showing great efficiency of LCFA degradation coupled to high levels of metals precipitated as metal sulfide.
Collapse
Affiliation(s)
- Anna Patrícya Florentino
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Rachel Biancalana Costa
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, Brazil
| | - Yuansheng Hu
- Department of Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | - Vincent O'Flaherty
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Piet N L Lens
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
25
|
Phillips IL, Everman JL, Bermudez LE, Danelishvili L. Acanthamoeba castellanii as a Screening Tool for Mycobacterium avium Subspecies paratuberculosis Virulence Factors with Relevance in Macrophage Infection. Microorganisms 2020; 8:microorganisms8101571. [PMID: 33066018 PMCID: PMC7601679 DOI: 10.3390/microorganisms8101571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/05/2023] Open
Abstract
The high prevalence of Johne's disease has driven a continuous effort to more readily understand the pathogenesis of the etiological causative bacterium, Mycobacterium avium subsp. paratuberculosis (MAP), and to develop effective preventative measures for infection spread. In this study, we aimed to create an in vivo MAP infection model employing an environmental protozoan host and used it as a tool for selection of bacterial virulence determinants potentially contributing to MAP survival in mammalian host macrophages. We utilized Acanthamoeba castellanii (amoeba) to explore metabolic consequences of the MAP-host interaction and established a correlation between metabolic changes of this phagocytic host and MAP virulence. Using the library of gene knockout mutants, we identified MAP clones that can either enhance or inhibit amoeba metabolism and we discovered that, for most part, it mirrors the pattern of MAP attenuation or survival during infection of macrophages. It was found that MAP mutants that induced an increase in amoeba metabolism were defective in intracellular growth in macrophages. However, MAP clones that exhibited low metabolic alteration in amoeba were able to survive at a greater rate within mammalian cells, highlighting importance of both category of genes in bacterial pathogenesis. Sequencing of MAP mutants has identified several virulence factors previously shown to have a biological relevance in mycobacterial survival and intracellular growth in phagocytic cells. In addition, we uncovered new genetic determinants potentially contributing to MAP pathogenicity. Results of this study support the use of the amoeba model system as a quick initial screening tool for selection of virulence factors of extremely slow-grower MAP that is challenging to study.
Collapse
Affiliation(s)
- Ida L. Phillips
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
| | - Jamie L. Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA;
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
- Correspondence: ; Tel.: +541-737-6544; Fax: +541-737-2730
| |
Collapse
|
26
|
Inoue M, Izumihara H, Fukuyama Y, Omae K, Yoshida T, Sako Y. Carbon monoxide-dependent transcriptional changes in a thermophilic, carbon monoxide-utilizing, hydrogen-evolving bacterium Calderihabitans maritimus KKC1 revealed by transcriptomic analysis. Extremophiles 2020; 24:551-564. [PMID: 32388815 PMCID: PMC7306483 DOI: 10.1007/s00792-020-01175-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
Calderihabitans maritimus KKC1 is a thermophilic, carbon monoxide (CO)-utilizing, hydrogen-evolving bacterium that harbors seven cooS genes for anaerobic CO dehydrogenases and six hyd genes for [NiFe] hydrogenases and capable of using a variety of electron acceptors coupled to CO oxidation. To understand the relationships among these unique features and the transcriptional adaptation of the organism to CO, we performed a transcriptome analysis of C. maritimus KKC1 grown under 100% CO and N2 conditions. Of its 3114 genes, 58 and 32 genes were significantly upregulated and downregulated in the presence of CO, respectively. A cooS–ech gene cluster, an “orphan” cooS gene, and bidirectional hyd genes were upregulated under CO, whereas hydrogen-uptake hyd genes were downregulated. Transcriptional changes in anaerobic respiratory genes supported the broad usage of electron acceptors in C. maritimus KKC1 under CO metabolism. Overall, the majority of the differentially expressed genes were oxidoreductase-like genes, suggesting metabolic adaptation to the cellular redox change upon CO oxidation. Moreover, our results suggest a transcriptional response mechanism to CO that involves multiple transcription factors, as well as a CO-responsive transcriptional activator (CooA). Our findings shed light on the diverse mechanisms for transcriptional and metabolic adaptations to CO in CO-utilizing and hydrogen-evolving bacteria.
Collapse
Affiliation(s)
- Masao Inoue
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hikaru Izumihara
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuto Fukuyama
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kimiho Omae
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshihiko Sako
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
27
|
Florentino AP, Costa RB, Hu Y, O'Flaherty V, Lens PNL. Long Chain Fatty Acid Degradation Coupled to Biological Sulfidogenesis: A Prospect for Enhanced Metal Recovery. Front Bioeng Biotechnol 2020. [PMID: 33195115 DOI: 10.3389/fbioe.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
This research assessed the microbiological suitability of oleate degradation coupled to sulfidogenesis by enriching communities from anaerobic sludge treating dairy products with S0, SO 3 2 - , SO 4 2 - , and S2 O 3 2 - as electron acceptors. The limiting factor hampering highly efficient oleate degradation was investigated in batch reactors. The best sulfidogenic performance coupled to specialization of the enriched bacterial community was obtained for S0- and S2 O 3 2 - -reducing enrichments, with 15.6 (± 0.2) and 9.0 (± 0.0) mM of sulfide production, respectively. Microbial community analyses revealed predominance of Enterobacteraceae (50.6 ± 5.7%), Sulfurospirillum (23.1 ± 0.1%), Bacteroides (7.5 ± 1.5%) and Seleniivibrio (6.9 ± 1.1%) in S0-reducing cultures. In S2 O 3 2 - -reducing enrichments, the genus Desulfurella predominated (49.2 ± 1.2%), followed by the Enterobacterales order (20.9 ± 2.3%). S0-reducing cultures were not affected by oleate concentrations up to 5 mM, while S2 O 3 2 - -reducing cultures could degrade oleate in concentrations up to 10 mM, with no significant impact on sulfidogenesis. In sequencing batch reactors operated with sulfide stripping, the S0-reducing enrichment produced 145.8 mM sulfide, precipitating Zn as ZnS in a separate tank. The S2 O 3 2 - fed bioreactor only produced 23.4 mM of sulfide precipitated as ZnS. The lower sulfide production likely happened due to sulfite toxicity, an intermediate of thiosulfate reduction. Therefore, elemental sulfur reduction represents an excellent alternative to the currently adopted approaches for LCFA degradation. To the best of our knowledge, this is the first report of oleate degradation with the flux of electrons totally diverted toward sulfide production for metal precipitation, showing great efficiency of LCFA degradation coupled to high levels of metals precipitated as metal sulfide.
Collapse
Affiliation(s)
- Anna Patrícya Florentino
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Rachel Biancalana Costa
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, Brazil
| | - Yuansheng Hu
- Department of Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | - Vincent O'Flaherty
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Piet N L Lens
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
28
|
Characterization of thiosulfate reductase from Pyrobaculum aerophilum heterologously produced in Pyrococcus furiosus. Extremophiles 2019; 24:53-62. [PMID: 31278423 DOI: 10.1007/s00792-019-01112-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
The genome of the archaeon Pyrobaculum aerophilum (Topt ~ 100 °C) contains an operon (PAE2859-2861) encoding a putative pyranopterin-containing oxidoreductase of unknown function and metal content. These genes (with one gene modified to encode a His-affinity tag) were inserted into the fermentative anaerobic archaeon, Pyrococcus furiosus (Topt ~ 100 °C). Dye-linked assays of cytoplasmic extracts from recombinant P. furiosus show that the P. aerophilum enzyme is a thiosulfate reductase (Tsr) and reduces thiosulfate but not polysulfide. The enzyme (Tsr-Mo) from molybdenum-grown cells contains Mo (Mo:W = 9:1) while the enzyme (Tsr-W) from tungsten-grown cells contains mainly W (Mo:W = 1:6). Purified Tsr-Mo has over ten times the activity (Vmax = 1580 vs. 141 µmol min-1 mg-1) and twice the affinity for thiosulfate (Km = ~ 100 vs. ~ 200 μM) than Tsr-W and is reduced at a lower potential (Epeak = - 255 vs - 402 mV). Tsr-Mo and Tsr-W proteins are heterodimers lacking the membrane anchor subunit (PAE2861). Recombinant P. furiosus expressing P. aerophilum Tsr could not use thiosulfate as a terminal electron acceptor. P. furiosus contains five pyranopterin-containing enzymes, all of which utilize W. P. aerophilum Tsr-Mo is the first example of an active Mo-containing enzyme produced in P. furiosus.
Collapse
|
29
|
Respiratory Selenite Reductase from Bacillus selenitireducens Strain MLS10. J Bacteriol 2019; 201:JB.00614-18. [PMID: 30642986 DOI: 10.1128/jb.00614-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
The putative respiratory selenite [Se(IV)] reductase (Srr) from Bacillus selenitireducens MLS10 has been identified through a polyphasic approach involving genomics, proteomics, and enzymology. Nondenaturing gel assays were used to identify Srr in cell fractions, and the active band was shown to contain a single protein of 80 kDa. The protein was identified through liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a homolog of the catalytic subunit of polysulfide reductase (PsrA). It was found to be encoded as part of an operon that contains six genes that we designated srrE, srrA, srrB, srrC, srrD, and srrF SrrA is the catalytic subunit (80 kDa), with a twin-arginine translocation (TAT) leader sequence indicative of a periplasmic protein and one putative 4Fe-4S binding site. SrrB is a small subunit (17 kDa) with four putative 4Fe-4S binding sites, SrrC (43 kDa) is an anchoring subunit, and SrrD (24 kDa) is a chaperon protein. Both SrrE (38 kDa) and SrrF (45 kDa) were annotated as rhodanese domain-containing proteins. Phylogenetic analysis revealed that SrrA belonged to the PsrA/PhsA clade but that it did not define a distinct subgroup, based on the putative homologs that were subsequently identified from other known selenite-respiring bacteria (e.g., Desulfurispirillum indicum and Pyrobaculum aerophilum). The enzyme appeared to be specific for Se(IV), showing no activity with selenate, arsenate, or thiosulfate, with a Km of 145 ± 53 μM, a V max of 23 ± 2.5 μM min-1, and a k cat of 23 ± 2.68 s-1 These results further our understanding of the mechanisms of selenium biotransformation and its biogeochemical cycle.IMPORTANCE Selenium is an essential element for life, with Se(IV) reduction a key step in its biogeochemical cycle. This report identifies for the first time a dissimilatory Se(IV) reductase, Srr, from a known selenite-respiring bacterium, the haloalkalophilic Bacillus selenitireducens strain MLS10. The work extends the versatility of the complex iron-sulfur molybdoenzyme (CISM) superfamily in electron transfer involving chalcogen substrates with different redox potentials. Further, it underscores the importance of biochemical and enzymological approaches in establishing the functionality of these enzymes.
Collapse
|
30
|
Abstract
Hydrogenases are metal-containing biocatalysts that reversibly convert protons and electrons to hydrogen gas. This reaction can contribute in different ways to the generation of the proton motive force (PMF) of a cell. One means of PMF generation involves reduction of protons on the inside of the cytoplasmic membrane, releasing H2 gas, which being without charge is freely diffusible across the cytoplasmic membrane, where it can be re-oxidized to release protons. A second route of PMF generation couples transfer of electrons derived from H2 oxidation to quinone reduction and concomitant proton uptake at the membrane-bound heme cofactor. This redox-loop mechanism, as originally formulated by Mitchell, requires a second, catalytically distinct, enzyme complex to re-oxidize quinol and release the protons outside the cell. A third way of generating PMF is also by electron transfer to quinones but on the outside of the membrane while directly drawing protons through the entire membrane. The cofactor-less membrane subunits involved are proposed to operate by a conformational mechanism (redox-linked proton pump). Finally, PMF can be generated through an electron bifurcation mechanism, whereby an exergonic reaction is tightly coupled with an endergonic reaction. In all cases the protons can be channelled back inside through a F1F0-ATPase to convert the 'energy' stored in the PMF into the universal cellular energy currency, ATP. New and exciting discoveries employing these mechanisms have recently been made on the bioenergetics of hydrogenases, which will be discussed here and placed in the context of their contribution to energy conservation.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute of Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany
| |
Collapse
|
31
|
Nesbø CL, Charchuk R, Pollo SMJ, Budwill K, Kublanov IV, Haverkamp THA, Foght J. Genomic analysis of the mesophilic Thermotogae genusMesotogareveals phylogeographic structure and genomic determinants of its distinct metabolism. Environ Microbiol 2018; 21:456-470. [DOI: 10.1111/1462-2920.14477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/15/2018] [Accepted: 11/06/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Camilla L. Nesbø
- Department of Biological Sciences; University of Alberta; Edmonton AB Canada
- BioZone, Department of Chemical Engineering and Applied Chemistry; Wallberg Building, University of Toronto; Toronto ON Canada
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences; University of Oslo; Blindern, Oslo Norway
| | - Rhianna Charchuk
- Department of Biological Sciences; University of Alberta; Edmonton AB Canada
| | - Stephen M. J. Pollo
- Department of Biological Sciences; University of Alberta; Edmonton AB Canada
| | | | - Ilya V. Kublanov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology; Russian Academy of Sciences; Moscow Russia
| | - Thomas H. A. Haverkamp
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences; University of Oslo; Blindern, Oslo Norway
- Norwegian Veterinary Institute; Oslo Norway
| | - Julia Foght
- Department of Biological Sciences; University of Alberta; Edmonton AB Canada
| |
Collapse
|
32
|
Florentino AP, Pereira IAC, Boeren S, van den Born M, Stams AJM, Sánchez-Andrea I. Insight into the sulfur metabolism of Desulfurella amilsii by differential proteomics. Environ Microbiol 2018; 21:209-225. [PMID: 30307104 PMCID: PMC6378623 DOI: 10.1111/1462-2920.14442] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/28/2018] [Accepted: 10/05/2018] [Indexed: 11/30/2022]
Abstract
Many questions regarding proteins involved in microbial sulfur metabolism remain unsolved. For sulfur respiration at low pH, the terminal electron acceptor is still unclear. Desulfurella amilsii is a sulfur-reducing bacterium that respires elemental sulfur (S0 ) or thiosulfate, and grows by S0 disproportionation. Due to its versatility, comparative studies on D. amilsii may shed light on microbial sulfur metabolism. Requirement of physical contact between cells and S0 was analyzed. Sulfide production decreased by around 50% when S0 was trapped in dialysis membranes, suggesting that contact between cells and S0 is beneficial, but not strictly needed. Proteome analysis was performed under the aforementioned conditions. A Mo-oxidoreductase suggested from genome analysis to act as sulfur reductase was not detected in any growth condition. Thiosulfate and sulfite reductases showed increased abundance in thiosulfate-reducing cultures, while rhodanese-like sulfurtransferases were highly abundant in all conditions. DsrE and DsrL were abundantly detected during thiosulfate reduction, suggesting a modified mechanism of sulfite reduction. Proteogenomics suggest a different disproportionation pathway from what has been reported. This work points to an important role of rhodaneses in sulfur processes and these proteins should be considered in searches for sulfur metabolism in broader fields like meta-omics.
Collapse
Affiliation(s)
- Anna P Florentino
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Inês A C Pereira
- Instituto de Tecnologia Quimica e Biologica António Xavier, Universidade Nova de Lisboa, Av. da Republica-EAN, 2780-157, Oeiras, Portugal
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Michael van den Born
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
33
|
The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae. Appl Environ Microbiol 2018; 84:AEM.01241-18. [PMID: 30217845 DOI: 10.1128/aem.01241-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/02/2018] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae is known to grow with thiosulfate as a sulfur source, and it produces more ethanol when using thiosulfate than using sulfate. Here, we report how it assimilates thiosulfate. S. cerevisiae absorbed thiosulfate into the cell through two sulfate permeases, Sul1 and Sul2. Two rhodaneses, Rdl1 and Rdl2, converted thiosulfate to a persulfide and sulfite. The persulfide was reduced by cellular thiols to H2S, and sulfite was reduced by sulfite reductase to H2S. Cysteine synthase incorporated H2S into O-acetyl-l-homoserine to produce l-homocysteine, which is the precursor for cysteine and methionine in S. cerevisiae Several other rhodaneses replaced Rdl1 and Rdl2 for thiosulfate utilization in the yeast. Thus, any organisms with the sulfate assimilation system potentially could use thiosulfate as a sulfur source, since rhodaneses are common in most organisms.IMPORTANCE The complete pathway of thiosulfate assimilation in baker's yeast is determined. The finding reveals the extensive overlap between sulfate and thiosulfate assimilation. Rhodanese is the only additional enzyme for thiosulfate utilization. The common presence of rhodanese in most organisms, including Bacteria, Archaea, and Eukarya, suggests that most organisms with the sulfate assimilation system also use thiosulfate. Since it takes less energy to reduce thiosulfate than sulfate for assimilation, thiosulfate has the potential to become a choice of sulfur in optimized media for industrial fermentation.
Collapse
|
34
|
Insight into Energy Conservation via Alternative Carbon Monoxide Metabolism in Carboxydothermus pertinax Revealed by Comparative Genome Analysis. Appl Environ Microbiol 2018; 84:AEM.00458-18. [PMID: 29728389 DOI: 10.1128/aem.00458-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/28/2018] [Indexed: 11/20/2022] Open
Abstract
Carboxydothermus species are some of the most studied thermophilic carboxydotrophs. Their varied carboxydotrophic growth properties suggest distinct strategies for energy conservation via carbon monoxide (CO) metabolism. In this study, we used comparative genome analysis of the genus Carboxydothermus to show variations in the CO dehydrogenase-energy-converting hydrogenase gene cluster, which is responsible for CO metabolism with H2 production (hydrogenogenic CO metabolism). Indeed, the ability or inability to produce H2 with CO oxidation is explained by the presence or absence of this gene cluster in Carboxydothermus hydrogenoformans, Carboxydothermus islandicus, and Carboxydothermus ferrireducens Interestingly, despite its hydrogenogenic CO metabolism, Carboxydothermus pertinax lacks the Ni-CO dehydrogenase catalytic subunit (CooS-I) and its transcriptional regulator-encoding genes in this gene cluster, probably due to inversion. Transcriptional analysis in C. pertinax showed that the Ni-CO dehydrogenase gene (cooS-II) and distantly encoded energy-converting-hydrogenase-related genes were remarkably upregulated with 100% CO. In addition, when thiosulfate was available as a terminal electron acceptor in 100% CO, the maximum cell density and maximum specific growth rate of C. pertinax were 3.1-fold and 1.5-fold higher, respectively, than when thiosulfate was absent. The amount of H2 produced was only 62% of the amount of CO consumed, less than expected according to hydrogenogenic CO oxidation (CO + H2O → CO2 + H2). Accordingly, C. pertinax would couple CO oxidation by Ni-CO dehydrogenase II with simultaneous reduction of not only H2O but also thiosulfate when grown in 100% CO.IMPORTANCE Anaerobic hydrogenogenic carboxydotrophs are thought to fill a vital niche by scavenging potentially toxic CO and producing H2 as an available energy source for thermophilic microbes. This hydrogenogenic carboxydotrophy relies on a Ni-CO dehydrogenase-energy-converting hydrogenase gene cluster. This feature is thought to be common to these organisms. However, the hydrogenogenic carboxydotroph Carboxydothermus pertinax lacks the gene for the Ni-CO dehydrogenase catalytic subunit encoded in the gene cluster. Here, we performed a comparative genome analysis of the genus Carboxydothermus, a transcriptional analysis, and a cultivation study in 100% CO to prove the hydrogenogenic CO metabolism. Results revealed that C. pertinax could couple Ni-CO dehydrogenase II alternatively to the distal energy-converting hydrogenase. Furthermore, C. pertinax represents an example of the functioning of Ni-CO dehydrogenase that does not always correspond to its genomic context, owing to the versatility of CO metabolism and the low redox potential of CO.
Collapse
|
35
|
Barton LL, Ritz NL, Fauque GD, Lin HC. Sulfur Cycling and the Intestinal Microbiome. Dig Dis Sci 2017; 62:2241-2257. [PMID: 28766244 DOI: 10.1007/s10620-017-4689-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/19/2017] [Indexed: 02/08/2023]
Abstract
In this review, we focus on the activities transpiring in the anaerobic segment of the sulfur cycle occurring in the gut environment where hydrogen sulfide is produced. While sulfate-reducing bacteria are considered as the principal agents for hydrogen sulfide production, the enzymatic desulfhydration of cysteine by heterotrophic bacteria also contributes to production of hydrogen sulfide. For sulfate-reducing bacteria respiration, molecular hydrogen and lactate are suitable as electron donors while sulfate functions as the terminal electron acceptor. Dietary components provide fiber and macromolecules that are degraded by bacterial enzymes to monomers, and these are fermented by intestinal bacteria with the production to molecular hydrogen which promotes the metabolic dominance by sulfate-reducing bacteria. Sulfate is also required by the sulfate-reducing bacteria, and this can be supplied by sulfate- and sulfonate-containing compounds that are hydrolyzed by intestinal bacterial with the release of sulfate. While hydrogen sulfide in the intestinal biosystem may be beneficial to bacteria by increasing resistance to antibiotics, and protecting them from reactive oxygen species, hydrogen sulfide at elevated concentrations may become toxic to the host.
Collapse
Affiliation(s)
- Larry L Barton
- Department of Biology, MSCO3 2020, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Nathaniel L Ritz
- New Mexico VA Health Care System, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Guy D Fauque
- CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Aix-Marseille Université, Université de Toulon, Campus de Luminy, Case 901, 13288, Marseille Cedex 09, France
| | - Henry C Lin
- New Mexico VA Health Care System, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
36
|
Sharrar AM, Flood BE, Bailey JV, Jones DS, Biddanda BA, Ruberg SA, Marcus DN, Dick GJ. Novel Large Sulfur Bacteria in the Metagenomes of Groundwater-Fed Chemosynthetic Microbial Mats in the Lake Huron Basin. Front Microbiol 2017; 8:791. [PMID: 28533768 PMCID: PMC5421297 DOI: 10.3389/fmicb.2017.00791] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/18/2017] [Indexed: 11/25/2022] Open
Abstract
Little is known about large sulfur bacteria (LSB) that inhabit sulfidic groundwater seeps in large lakes. To examine how geochemically relevant microbial metabolisms are partitioned among community members, we conducted metagenomic analysis of a chemosynthetic microbial mat in the Isolated Sinkhole, which is in a deep, aphotic environment of Lake Huron. For comparison, we also analyzed a white mat in an artesian fountain that is fed by groundwater similar to Isolated Sinkhole, but that sits in shallow water and is exposed to sunlight. De novo assembly and binning of metagenomic data from these two communities yielded near complete genomes and revealed representatives of two families of LSB. The Isolated Sinkhole community was dominated by novel members of the Beggiatoaceae that are phylogenetically intermediate between known freshwater and marine groups. Several of these Beggiatoaceae had 16S rRNA genes that contained introns previously observed only in marine taxa. The Alpena fountain was dominated by populations closely related to Thiothrix lacustris and an SM1 euryarchaeon known to live symbiotically with Thiothrix spp. The SM1 genomic bin contained evidence of H2-based lithoautotrophy. Genomic bins of both the Thiothrix and Beggiatoaceae contained genes for sulfur oxidation via the rDsr pathway, H2 oxidation via Ni-Fe hydrogenases, and the use of O2 and nitrate as electron acceptors. Mats at both sites also contained Deltaproteobacteria with genes for dissimilatory sulfate reduction (sat, apr, and dsr) and hydrogen oxidation (Ni-Fe hydrogenases). Overall, the microbial mats at the two sites held low-diversity microbial communities, displayed evidence of coupled sulfur cycling, and did not differ largely in their metabolic potentials, despite the environmental differences. These results show that groundwater-fed communities in an artesian fountain and in submerged sinkholes of Lake Huron are a rich source of novel LSB, associated heterotrophic and sulfate-reducing bacteria, and archaea.
Collapse
Affiliation(s)
- Allison M Sharrar
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| | - Beverly E Flood
- Department of Earth Sciences, University of Minnesota, MinneapolisMN, USA
| | - Jake V Bailey
- Department of Earth Sciences, University of Minnesota, MinneapolisMN, USA
| | - Daniel S Jones
- Department of Earth Sciences, University of Minnesota, MinneapolisMN, USA.,BioTechnology Institute, University of Minnesota, MinneapolisMN, USA
| | - Bopaiah A Biddanda
- Annis Water Resources Institute, Grand Valley State University, MuskegonMI, USA
| | - Steven A Ruberg
- NOAA-Great Lakes Environmental Research Laboratory, Ann ArborMI, USA
| | - Daniel N Marcus
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| |
Collapse
|
37
|
Daeffler KNM, Galley JD, Sheth RU, Ortiz-Velez LC, Bibb CO, Shroyer NF, Britton RA, Tabor JJ. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol Syst Biol 2017; 13:923. [PMID: 28373240 PMCID: PMC5408782 DOI: 10.15252/msb.20167416] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is a groundswell of interest in using genetically engineered sensor bacteria to study gut microbiota pathways, and diagnose or treat associated diseases. Here, we computationally identify the first biological thiosulfate sensor and an improved tetrathionate sensor, both two‐component systems from marine Shewanella species, and validate them in laboratory Escherichia coli. Then, we port these sensors into a gut‐adapted probiotic E. coli strain, and develop a method based upon oral gavage and flow cytometry of colon and fecal samples to demonstrate that colon inflammation (colitis) activates the thiosulfate sensor in mice harboring native gut microbiota. Our thiosulfate sensor may have applications in bacterial diagnostics or therapeutics. Finally, our approach can be replicated for a wide range of bacterial sensors and should thus enable a new class of minimally invasive studies of gut microbiota pathways.
Collapse
Affiliation(s)
| | - Jeffrey D Galley
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ravi U Sheth
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Laura C Ortiz-Velez
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Noah F Shroyer
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, TX, USA .,Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
38
|
Florentino AP, Stams AJM, Sánchez-Andrea I. Genome Sequence of Desulfurella amilsii Strain TR1 and Comparative Genomics of Desulfurellaceae Family. Front Microbiol 2017; 8:222. [PMID: 28265263 PMCID: PMC5317093 DOI: 10.3389/fmicb.2017.00222] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/31/2017] [Indexed: 11/13/2022] Open
Abstract
The acidotolerant sulfur reducer Desulfurella amilsii was isolated from sediments of Tinto River, an extremely acidic environment. Its ability to grow in a broad range of pH and to tolerate certain heavy metals offers potential for metal recovery processes. Here we report its high-quality draft genome sequence and compare it to the available genome sequences of other members of Desulfurellaceae family: D. acetivorans. D. multipotens, Hippea maritima. H. alviniae, H. medeae, and H. jasoniae. For most species, pairwise comparisons for average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH) revealed ANI values from 67.5 to 80% and DDH values from 12.9 to 24.2%. D. acetivorans and D. multipotens, however, surpassed the estimated thresholds of species definition for both DDH (98.6%) and ANI (88.1%). Therefore, they should be merged to a single species. Comparative analysis of Desulfurellaceae genomes revealed different gene content for sulfur respiration between Desulfurella and Hippea species. Sulfur reductase is only encoded in D. amilsii, in which it is suggested to play a role in sulfur respiration, especially at low pH. Polysulfide reductase is only encoded in Hippea species; it is likely that this genus uses polysulfide as electron acceptor. Genes encoding thiosulfate reductase are present in all the genomes, but dissimilatory sulfite reductase is only present in Desulfurella species. Thus, thiosulfate respiration via sulfite is only likely in this genus. Although sulfur disproportionation occurs in Desulfurella species, the molecular mechanism behind this process is not yet understood, hampering a genome prediction. The metabolism of acetate in Desulfurella species can occur via the acetyl-CoA synthetase or via acetate kinase in combination with phosphate acetyltransferase, while in Hippea species, it might occur via the acetate kinase. Large differences in gene sets involved in resistance to acidic conditions were not detected among the genomes. Therefore, the regulation of those genes, or a mechanism not yet known, might be responsible for the unique ability of D. amilsii. This is the first report on comparative genomics of sulfur-reducing bacteria, which is valuable to give insight into this poorly understood metabolism, but of great potential for biotechnological purposes and of environmental significance.
Collapse
Affiliation(s)
- Anna P Florentino
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands; Sub-department of Environmental Technology, Wageningen UniversityWageningen, Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands; Centre of Biological Engineering, University of MinhoBraga, Portugal
| | | |
Collapse
|
39
|
Sorokin DY, Messina E, Smedile F, Roman P, Damsté JSS, Ciordia S, Mena MC, Ferrer M, Golyshin PN, Kublanov IV, Samarov NI, Toshchakov SV, La Cono V, Yakimov MM. Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats. ISME JOURNAL 2017; 11:1245-1260. [PMID: 28106880 PMCID: PMC5437934 DOI: 10.1038/ismej.2016.203] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022]
Abstract
Hypersaline anoxic habitats harbour numerous novel uncultured archaea whose metabolic and ecological roles remain to be elucidated. Until recently, it was believed that energy generation via dissimilatory reduction of sulfur compounds is not functional at salt saturation conditions. Recent discovery of the strictly anaerobic acetotrophic Halanaeroarchaeum compels to change both this assumption and the traditional view on haloarchaea as aerobic heterotrophs. Here we report on isolation and characterization of a novel group of strictly anaerobic lithoheterotrophic haloarchaea, which we propose to classify as a new genus Halodesulfurarchaeum. Members of this previously unknown physiological group are capable of utilising formate or hydrogen as electron donors and elemental sulfur, thiosulfate or dimethylsulfoxide as electron acceptors. Using genome-wide proteomic analysis we have detected the full set of enzymes required for anaerobic respiration and analysed their substrate-specific expression. Such advanced metabolic plasticity and type of respiration, never seen before in haloarchaea, empower the wide distribution of Halodesulfurarchaeum in hypersaline inland lakes, solar salterns, lagoons and deep submarine anoxic brines. The discovery of this novel functional group of sulfur-respiring haloarchaea strengthens the evidence of their possible role in biogeochemical sulfur cycling linked to the terminal anaerobic carbon mineralisation in so far overlooked hypersaline anoxic habitats.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Enzo Messina
- Institute for Coastal Marine Environment, CNR, Messina, Italy
| | | | - Pawel Roman
- Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands.,Wetsus, Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Sergio Ciordia
- Proteomics Unit, National Center for Biotechnology, CSIC, Madrid, Spain
| | - Maria Carmen Mena
- Proteomics Unit, National Center for Biotechnology, CSIC, Madrid, Spain
| | | | - Peter N Golyshin
- School of Biological Sciences, Bangor University, Bangor, UK.,Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nazar I Samarov
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | | | | | - Michail M Yakimov
- Institute for Coastal Marine Environment, CNR, Messina, Italy.,Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
40
|
Connelly KRS, Stevenson C, Kneuper H, Sargent F. Biosynthesis of selenate reductase in Salmonella enterica: critical roles for the signal peptide and DmsD. MICROBIOLOGY-SGM 2016; 162:2136-2146. [PMID: 27902441 PMCID: PMC5203670 DOI: 10.1099/mic.0.000381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative bacterium with a flexible respiratory capability. Under anaerobic conditions, S. enterica can utilize a range of terminal electron acceptors, including selenate, to sustain respiratory electron transport. The S. enterica selenate reductase is a membrane-bound enzyme encoded by the ynfEFGH-dmsD operon. The active enzyme is predicted to comprise at least three subunits where YnfE is a molybdenum-containing catalytic subunit. The YnfE protein is synthesized with an N-terminal twin-arginine signal peptide and biosynthesis of the enzyme is coordinated by a signal peptide binding chaperone called DmsD. In this work, the interaction between S. enterica DmsD and the YnfE signal peptide has been studied by chemical crosslinking. These experiments were complemented by genetic approaches, which identified the DmsD binding epitope within the YnfE signal peptide. YnfE signal peptide residues L24 and A28 were shown to be important for assembly of an active selenate reductase. Conversely, a random genetic screen identified the DmsD V16 residue as being important for signal peptide recognition and selenate reductase assembly.
Collapse
Affiliation(s)
| | - Calum Stevenson
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Holger Kneuper
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Frank Sargent
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
41
|
Xin Y, Liu H, Cui F, Liu H, Xun L. Recombinant Escherichia coli
with sulfide:quinone oxidoreductase and persulfide dioxygenase rapidly oxidises sulfide to sulfite and thiosulfate via a new pathway. Environ Microbiol 2016; 18:5123-5136. [DOI: 10.1111/1462-2920.13511] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/24/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Yufeng Xin
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 People's Republic of China
| | - Honglei Liu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 People's Republic of China
| | - Feifei Cui
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 People's Republic of China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 People's Republic of China
- School of Molecular Biosciences; Washington State University; Pullman WA 991647520 USA
| |
Collapse
|
42
|
Pintscher S, Kuleta P, Cieluch E, Borek A, Sarewicz M, Osyczka A. Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer. J Biol Chem 2016; 291:6872-81. [PMID: 26858251 PMCID: PMC4807273 DOI: 10.1074/jbc.m115.712307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 11/22/2022] Open
Abstract
In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemes b. The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on heme b ligand mutants of cytochrome bc1 in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functional in vivo. This reveals that cytochrome bc1 can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemes b in this cytochrome and in other membranous cytochromes b act as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential.
Collapse
Affiliation(s)
- Sebastian Pintscher
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Patryk Kuleta
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Ewelina Cieluch
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Marcin Sarewicz
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Artur Osyczka
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
43
|
Seitz KW, Lazar CS, Hinrichs KU, Teske AP, Baker BJ. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME JOURNAL 2016; 10:1696-705. [PMID: 26824177 DOI: 10.1038/ismej.2015.233] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 11/04/2015] [Accepted: 11/10/2015] [Indexed: 11/09/2022]
Abstract
Marine and estuary sediments contain a variety of uncultured archaea whose metabolic and ecological roles are unknown. De novo assembly and binning of high-throughput metagenomic sequences from the sulfate-methane transition zone in estuary sediments resulted in the reconstruction of three partial to near-complete (2.4-3.9 Mb) genomes belonging to a previously unrecognized archaeal group. Phylogenetic analyses of ribosomal RNA genes and ribosomal proteins revealed that this group is distinct from any previously characterized archaea. For this group, found in the White Oak River estuary, and previously registered in sedimentary samples, we propose the name 'Thorarchaeota'. The Thorarchaeota appear to be capable of acetate production from the degradation of proteins. Interestingly, they also have elemental sulfur and thiosulfate reduction genes suggesting they have an important role in intermediate sulfur cycling. The reconstruction of these genomes from a deeply branched, widespread group expands our understanding of sediment biogeochemistry and the evolutionary history of Archaea.
Collapse
Affiliation(s)
- Kiley W Seitz
- Department of Marine Science, University of Texas Austin, Marine Science Institute, Port Aransas, TX, USA
| | - Cassandre S Lazar
- Department of Marine Sciences, University of North Carolina, Chapel Hill, NC, USA.,MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,Department of Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, Germany
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Andreas P Teske
- Department of Marine Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Brett J Baker
- Department of Marine Science, University of Texas Austin, Marine Science Institute, Port Aransas, TX, USA
| |
Collapse
|
44
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 6. [PMID: 26442941 DOI: 10.1128/ecosalplus.esp-0005-2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Escherichia coli contains a versatile respiratory chain that oxidizes 10 different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. A large number of respiratory pathways can be established by combining different electron donors and acceptors. The respiratory dehydrogenases use quinones as the electron acceptors that are oxidized by the terminal reductase and oxidases. The enzymes vary largely with respect to their composition, architecture, membrane topology, and the mode of energy conservation. Most of the energy-conserving dehydrogenases (FdnGHI, HyaABC, HybCOAB, and others) and the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox-loop mechanism. Two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases and terminal reductases do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known or can be predicted. The H+/2e- ratios for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and the respiratory chains is described and related to the H+/2e- ratios.
Collapse
|
45
|
Leimkühler S, Iobbi-Nivol C. Bacterial molybdoenzymes: old enzymes for new purposes. FEMS Microbiol Rev 2015; 40:1-18. [PMID: 26468212 DOI: 10.1093/femsre/fuv043] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2015] [Indexed: 02/06/2023] Open
Abstract
Molybdoenzymes are widespread in eukaryotic and prokaryotic organisms where they play crucial functions in detoxification reactions in the metabolism of humans and bacteria, in nitrate assimilation in plants and in anaerobic respiration in bacteria. To be fully active, these enzymes require complex molybdenum-containing cofactors, which are inserted into the apoenzymes after folding. For almost all the bacterial molybdoenzymes, molybdenum cofactor insertion requires the involvement of specific chaperones. In this review, an overview on the molybdenum cofactor biosynthetic pathway is given together with the role of specific chaperones dedicated for molybdenum cofactor insertion and maturation. Many bacteria are involved in geochemical cycles on earth and therefore have an environmental impact. The roles of molybdoenzymes in bioremediation and for environmental applications are presented.
Collapse
Affiliation(s)
- Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476 Potsdam, Germany
| | - Chantal Iobbi-Nivol
- The Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS, Aix Marseille Université, 13402 Marseille cedex 20, France
| |
Collapse
|
46
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
47
|
The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol 2015; 197:1386-93. [PMID: 25666131 DOI: 10.1128/jb.02450-14] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are anaerobic thermophilic bacteria being investigated for their ability to produce biofuels from plant biomass. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is present in these bacteria and has been known to be important for ethanol formation in other anaerobic alcohol producers. This study explores the inactivation of the adhE gene in C. thermocellum and T. saccharolyticum. Deletion of adhE reduced ethanol production by >95% in both T. saccharolyticum and C. thermocellum, confirming that adhE is necessary for ethanol formation in both organisms. In both adhE deletion strains, fermentation products shifted from ethanol to lactate production and resulted in lower cell density and longer time to reach maximal cell density. In T. saccharolyticum, the adhE deletion strain lost >85% of alcohol dehydrogenase (ADH) activity. Aldehyde dehydrogenase (ALDH) activity did not appear to be affected, although ALDH activity was low in cell extracts. Adding ubiquinone-0 to the ALDH assay increased activity in the T. saccharolyticum parent strain but did not increase activity in the adhE deletion strain, suggesting that ALDH activity was inhibited. In C. thermocellum, the adhE deletion strain lost >90% of ALDH and ADH activity in cell extracts. The C. thermocellum adhE deletion strain contained a point mutation in the lactate dehydrogenase gene, which appears to deregulate its activation by fructose 1,6-bisphosphate, leading to constitutive activation of lactate dehydrogenase. IMPORTANCE Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are bacteria that have been investigated for their ability to produce biofuels from plant biomass. They have been engineered to produce higher yields of ethanol, yet questions remain about the enzymes responsible for ethanol formation in these bacteria. The genomes of these bacteria encode multiple predicted aldehyde and alcohol dehydrogenases which could be responsible for alcohol formation. This study explores the inactivation of adhE, a gene encoding a bifunctional alcohol and aldehyde dehydrogenase. Deletion of adhE reduced ethanol production by >95% in both T. saccharolyticum and C. thermocellum, confirming that adhE is necessary for ethanol formation in both organisms. In strains without adhE, we note changes in biochemical activity, product formation, and growth.
Collapse
|
48
|
Abstract
The emergence and spread of drug-resistant pathogens and our inability to develop new antimicrobials to overcome resistance has inspired scientists to consider new targets for drug development. Cellular bioenergetics is an area showing promise for the development of new antimicrobials, particularly in the discovery of new anti-tuberculosis drugs where several new compounds have entered clinical trials. In this review, we have examined the bioenergetics of various bacterial pathogens, highlighting the versatility of electron donor and acceptor utilisation and the modularity of electron transport chain components in bacteria. In addition to re-examining classical concepts, we explore new literature that reveals the intricacies of pathogen energetics, for example, how Salmonella enterica and Campylobacter jejuni exploit host and microbiota to derive powerful electron donors and sinks; the strategies Mycobacterium tuberculosis and Pseudomonas aeruginosa use to persist in lung tissues; and the importance of sodium energetics and electron bifurcation in the chemiosmotic anaerobe Fusobacterium nucleatum. A combination of physiological, biochemical, and pharmacological data suggests that, in addition to the clinically-approved target F1Fo-ATP synthase, NADH dehydrogenase type II, succinate dehydrogenase, hydrogenase, cytochrome bd oxidase, and menaquinone biosynthesis pathways are particularly promising next-generation drug targets. The realisation of cellular energetics as a rich target space for the development of new antimicrobials will be dependent upon gaining increased understanding of the energetic processes utilised by pathogens in host environments and the ability to design bacterial-specific inhibitors of these processes.
Collapse
|
49
|
Tengölics R, Mészáros L, Győri E, Doffkay Z, Kovács KL, Rákhely G. Connection between the membrane electron transport system and Hyn hydrogenase in the purple sulfur bacterium, Thiocapsa roseopersicina BBS. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1691-8. [DOI: 10.1016/j.bbabio.2014.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 07/26/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
|
50
|
Isolation of Salmonella enterica serovar Kentucky strain ST 198 and its H2S-negative variant from a patient: implications for diagnosis. J Clin Microbiol 2014; 52:4090-3. [PMID: 25143568 DOI: 10.1128/jcm.01775-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
H2S-producing multiresistant Salmonella enterica serovar Kentucky strain sequence type (ST) 198 and its non-H2S-producing variant were isolated from a patient. Whole-genome comparison showed a base addition in the gene encoding molybdenum cofactor biosynthesis protein C, which could affect H2S production in the variant. Lack of H2S production has implications for diagnosis of salmonella.
Collapse
|