1
|
Kanthenga HT, Banicod RJS, Ntege W, Njiru MN, Javaid A, Tabassum N, Kim YM, Khan F. Functional diversity of AI-2/LuxS system in lactic acid bacteria: Impacts on biofilm formation and environmental resilience. Res Microbiol 2025:104296. [PMID: 40122434 DOI: 10.1016/j.resmic.2025.104296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
A key component of microbial communication, autoinducer-2 (AI-2) signaling, affects several physiological processes, including environmental adaptation and biofilm formation in lactic acid bacteria (LAB). The multifarious contribution of AI-2, synthesized by LuxS, in improving biofilms and tolerance to hostile conditions in LAB has been investigated in this review. The evolutionary conservation and diversity of AI-2 are shown by a phylogenetic analysis of luxS gene among several LAB species. Furthermore, AI-2 signaling in LAB improves resistance to unfavorable environmental factors, including pH fluctuations, temperature extremes, and antimicrobial agents. Lactic acid bacteria could set off defenses against harmful impacts from environmental stresses.
Collapse
Affiliation(s)
- Hopeful Tusalifye Kanthenga
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; Department of Fisheries, Malawi College of Fisheries, Mangochi, 301401, Malawi
| | - Riza Jane S Banicod
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; Fisheries Postharvest Research and Development Division, National Fisheries Research and Development Institute, Quezon City, 1103, Philippines
| | - Wilson Ntege
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; Fisheries Control Regulation and Quality Assurance, Ministry of Agriculture, Animal Industry and Fisheries, Entebbe, 10101, Uganda
| | - Moses Njeru Njiru
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; Department of Fisheries and Aquaculture, Turkana County Government, Lodwar, 30500, Kenya
| | - Aqib Javaid
- Interdisciplinary Program of Marine and Fisheries Sciences and Convergent Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Interdisciplinary Program of Marine and Fisheries Sciences and Convergent Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan, 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
2
|
Tannock GW. The human gut metacommunity as a conceptual aid in the development of precision medicine. Front Microbiol 2024; 15:1469543. [PMID: 39464395 PMCID: PMC11503762 DOI: 10.3389/fmicb.2024.1469543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024] Open
Abstract
Human gut microbiomes (microbiotas) are highly individualistic in taxonomic composition but nevertheless are functionally similar. Thus, collectively, they comprise a "metacommunity." In ecological terminology, the assembly of human gut microbiomes is influenced by four processes: selection, speciation, drift, and dispersal. As a result of fortuitous events associated with these processes, individual microbiomes are taxonomically "tailor-made" for each host. However, functionally they are "off-the-shelf" because of similar functional outputs resulting from metabolic redundancy developed in host-microbe symbiosis. Because of this, future microbiological and molecular studies of microbiomes should emphasize the metabolic interplay that drives the human gut metacommunity and that results in these similar functional outputs. This knowledge will support the development of remedies for specific functional dysbioses and hence provide practical examples of precision medicine.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Cui Y, Wang D, Zhang L, Qu X. Research progress on the regulatory mechanism of biofilm formation in probiotic lactic acid bacteria. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39244761 DOI: 10.1080/10408398.2024.2400593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Probiotic lactic acid bacteria (LAB) must undergo three key stages of testing, including food processing, storage, and gastrointestinal tract environment, their beneficial effects could exert. The biofilm formation of probiotic LAB is helpful for improving their stress resistances, survival rates, and colonization abilities under adverse environmental conditions, laying an important foundation for their probiotic effects. In this review, the formation process, the composition and function of basic components of probiotic LAB biofilm have been summarized. This review focuses on the regulatory mechanism of probiotic LAB biofilm formation. In addition, the characteristics and related mechanisms of probiotics in biofilm state have been analyzed to guide the application of probiotic LAB biofilms in the field of health and food. The biofilm formation of LAB is an extremely complex process involving multiple regulatory factors. Besides quorum sensing (QS), other regulatory factors are not yet fully understood. The probiotic LAB in biofilm state exhibit superior survival rate, adhesion performance, and immunomodulation ability, attribute to various metabolic processes, including stress response, exopolysaccharide (EPS) metabolism, amino acid and protein metabolisms, etc. The understanding about regulatory mechanism of biofilm formation of different probiotic species and strains will accelerate the development and application of probiotics products.
Collapse
Affiliation(s)
- Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Dongqi Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| |
Collapse
|
4
|
Exploring Bacterial Attributes That Underpin Symbiont Life in the Monogastric Gut. Appl Environ Microbiol 2022; 88:e0112822. [PMID: 36036591 PMCID: PMC9499014 DOI: 10.1128/aem.01128-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large bowel of monogastric animals, such as that of humans, is home to a microbial community (microbiota) composed of a diversity of mostly bacterial species. Interrelationships between the microbiota as an entity and the host are complex and lifelong and are characteristic of a symbiosis. The relationships may be disrupted in association with disease, resulting in dysbiosis. Modifications to the microbiota to correct dysbiosis require knowledge of the fundamental mechanisms by which symbionts inhabit the gut. This review aims to summarize aspects of niche fitness of bacterial species that inhabit the monogastric gut, especially of humans, and to indicate the research path by which progress can be made in exploring bacterial attributes that underpin symbiont life in the gut.
Collapse
|
5
|
Nocturnal Acidification: A Coordinating Cue in the Euprymna scolopes- Vibrio fischeri Symbiosis. Int J Mol Sci 2022; 23:ijms23073743. [PMID: 35409100 PMCID: PMC8999011 DOI: 10.3390/ijms23073743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
The Vibrio fischeri–Euprymna scolopes symbiosis has become a powerful model for the study of specificity, initiation, and maintenance between beneficial bacteria and their eukaryotic partner. In this invertebrate model system, the bacterial symbionts are acquired every generation from the surrounding seawater by newly hatched squid. These symbionts colonize a specialized internal structure called the light organ, which they inhabit for the remainder of the host’s lifetime. The V. fischeri population grows and ebbs following a diel cycle, with high cell densities at night producing bioluminescence that helps the host avoid predation during its nocturnal activities. Rhythmic timing of the growth of the symbionts and their production of bioluminescence only at night is critical for maintaining the symbiosis. V. fischeri symbionts detect their population densities through a behavior termed quorum-sensing, where they secrete and detect concentrations of autoinducer molecules at high cell density when nocturnal production of bioluminescence begins. In this review, we discuss events that lead up to the nocturnal acidification of the light organ and the cues used for pre-adaptive behaviors that both host and symbiont have evolved. This host–bacterium cross talk is used to coordinate networks of regulatory signals (such as quorum-sensing and bioluminescence) that eventually provide a unique yet stable environment for V. fischeri to thrive and be maintained throughout its life history as a successful partner in this dynamic symbiosis.
Collapse
|
6
|
Dai Z, Wu Z, Zhu W, Wu G. Amino Acids in Microbial Metabolism and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:127-143. [PMID: 34807440 DOI: 10.1007/978-3-030-85686-1_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids (AAs) not only serve as building blocks for protein synthesis in microorganisms but also play important roles in their metabolism, survival, inter-species crosstalk, and virulence. Different AAs have their distinct functions in microbes of the digestive tract and this in turn has important impacts on host nutrition and physiology. Deconjugation and re-conjugation of glycine- or taurine- conjugated bile acids in the process of their enterohepatic recycling is a good example of the bacterial adaptation to harsh gut niches, inter-kingdom cross-talk with AA metabolism, and cell signaling as the critical control point. It is also a big challenge for scientists to modulate the homeostasis of the pools of AAs and their metabolites in the digestive tract with the aim to improve nutrition and regulate AA metabolism related to anti-virulence reactions. Diversity of the metabolic pathways of AAs and their multi-functions in modulating bacterial growth and survival in the digestive tract should be taken into consideration in recommending nutrient requirements for animals. Thus, the concept of functional amino acids can guide not only microbiological studies but also nutritional and physiological investigations. Cutting edge discoveries in this research area will help to better understand the mechanisms responsible for host-microbe interactions and develop new strategies for improving the nutrition, health, and well-being of both animals and humans.
Collapse
Affiliation(s)
- Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Weiyun Zhu
- National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, 77843, TX, USA
| |
Collapse
|
7
|
Seneviratne CJ, Suriyanarayanan T, Widyarman AS, Lee LS, Lau M, Ching J, Delaney C, Ramage G. Multi-omics tools for studying microbial biofilms: current perspectives and future directions. Crit Rev Microbiol 2020; 46:759-778. [PMID: 33030973 DOI: 10.1080/1040841x.2020.1828817] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of omics technologies has greatly improved our understanding of microbial biology, particularly in the last two decades. The field of microbial biofilms is, however, relatively new, consolidated in the 1980s. The morphogenic switching by microbes from planktonic to biofilm phenotype confers numerous survival advantages such as resistance to desiccation, antibiotics, biocides, ultraviolet radiation, and host immune responses, thereby complicating treatment strategies for pathogenic microorganisms. Hence, understanding the mechanisms governing the biofilm phenotype can result in efficient treatment strategies directed specifically against molecular markers mediating this process. The application of omics technologies for studying microbial biofilms is relatively less explored and holds great promise in furthering our understanding of biofilm biology. In this review, we provide an overview of the application of omics tools such as transcriptomics, proteomics, and metabolomics as well as multi-omics approaches for studying microbial biofilms in the current literature. We also highlight how the use of omics tools directed at various stages of the biological information flow, from genes to metabolites, can be integrated via multi-omics platforms to provide a holistic view of biofilm biology. Following this, we propose a future artificial intelligence-based multi-omics platform that can predict the pathways associated with different biofilm phenotypes.
Collapse
Affiliation(s)
- Chaminda J Seneviratne
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | - Tanujaa Suriyanarayanan
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | - Armelia Sari Widyarman
- Department of Microbiology, Faculty of Dentistry, Trisakti University, Grogol, West Jakarta, Indonesia
| | - Lye Siang Lee
- Duke-NUS Medical School, Metabolomics Lab, Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Matthew Lau
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre, Singapore, Singapore
| | - Jianhong Ching
- Duke-NUS Medical School, Metabolomics Lab, Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Christopher Delaney
- School of Medicine, Dentistry & Nursing, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| | - Gordon Ramage
- School of Medicine, Dentistry & Nursing, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Ishikawa KH, Mita D, Kawamoto D, Nicoli JR, Albuquerque-Souza E, Lorenzetti Simionato MR, Mayer MPA. Probiotics alter biofilm formation and the transcription of Porphyromonas gingivalis virulence-associated genes. J Oral Microbiol 2020; 12:1805553. [PMID: 32944156 PMCID: PMC7482675 DOI: 10.1080/20002297.2020.1805553] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background and Objective The potential of probiotics on the prevention and control of periodontitis and other chronic inflammatory conditions has been suggested. Lactobacillus and Bifidobacterium species influence P. gingivalis interaction with gingival epithelial cells (GECs) but may not act in a unique way. In order to select the most appropriate probiotic against P. gingivalis, we aimed to evaluate the effect of several strains on Porphyromonas gingivalis biofilm formation and transcription virulence-associated factors (PgVAFs). Methods Cell-free pH neutralized supernatants (CFS) and living Lactobacillus spp. and Bifidobacterium spp. were tested against P. gingivalis ATCC 33277 and W83, in mono- and multi-species (with Streptococcus oralis and S. gordonii) biofilms. Relative transcription of P. gingivalis genes (fimA, mfa1, kgp, rgp, ftsH and luxS) was determined in biofilms and under GECs co-infection. Results Probiotics CFS reduced P. gingivalis ATCC 33277 levels in mono-species biofilms and living probiotics reduced P. gingivalis abundance in multi-species biofilms. L. acidophilus LA5 down-regulated transcription of most PgVAFs in biofilms and GECs. Conclusions Probiotics affect P. gingivalis biofilm formation by down-regulating overall PgVAFs with the most pronounced effect observed for L. acidophilus LA5.
Collapse
Affiliation(s)
- Karin Hitomi Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Mita
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jacques Robert Nicoli
- Department of Microbiology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Emmanuel Albuquerque-Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Milovic A, Bassam K, Shao H, Chatzistamou I, Tufts DM, Diuk-Wasser M, Barbour AG. Lactobacilli and other gastrointestinal microbiota of Peromyscus leucopus, reservoir host for agents of Lyme disease and other zoonoses in North America. PLoS One 2020; 15:e0231801. [PMID: 32817657 PMCID: PMC7446861 DOI: 10.1371/journal.pone.0231801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/15/2020] [Indexed: 11/19/2022] Open
Abstract
The cricetine rodent Peromyscus leucopus is an important reservoir for several human zoonoses, including Lyme disease, in North America. Akin to hamsters, the white-footed deermouse has been unevenly characterized in comparison to the murid Mus musculus. To further understanding of P. leucopus' total genomic content, we investigated gut microbiomes of an outbred colony of P. leucopus, inbred M. musculus, and a natural population of P. leucopus. Metagenome and whole genome sequencing were combined with microbiology and microscopy approaches. A focus was the genus Lactobacillus, four diverse species of which were isolated from forestomach and feces of colony P. leucopus. Three of the species-L. animalis, L. reuteri, and provisionally-named species "L. peromysci"-were identified in fecal metagenomes of wild P. leucopus but not discernibly in samples from M. musculus. L. johnsonii, the fourth species, was common in M. musculus but absent or sparse in wild P. leucopus. Also identified in both colony and natural populations were a Helicobacter sp. in feces but not stomach, and a Tritrichomonas sp. protozoan in cecum or feces. The gut metagenomes of colony P. leucopus were similar to those of colony M. musculus at the family or higher level and for major subsystems. But there were multiple differences between species and sexes within each species in their gut metagenomes at orthologous gene level. These findings provide a foundation for hypothesis-testing of functions of individual microbial species and for interventions, such as bait vaccines based on an autochthonous bacterium and targeting P. leucopus for transmission-blocking.
Collapse
Affiliation(s)
- Ana Milovic
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Khalil Bassam
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hanjuan Shao
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States of America
| | - Danielle M. Tufts
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, United States of America
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, United States of America
| | - Alan G. Barbour
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
10
|
Kelly SM, Lanigan N, O'Neill IJ, Bottacini F, Lugli GA, Viappiani A, Turroni F, Ventura M, van Sinderen D. Bifidobacterial biofilm formation is a multifactorial adaptive phenomenon in response to bile exposure. Sci Rep 2020; 10:11598. [PMID: 32665665 PMCID: PMC7360559 DOI: 10.1038/s41598-020-68179-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
In the current study, we show that biofilm formation by various strains and species belonging to Bifidobacterium, a genus that includes gut commensals with reported health-promoting activities, is induced by high concentrations of bile (0.5% (w/v) or higher) and individual bile salts (20 mM or higher), rather than by acid or osmotic stress. The transcriptomic response of a bifidobacterial prototype Bifidobacterium breve UCC2003 to such high bile concentrations was investigated and a random transposon bank of B. breve UCC2003 was screened for mutants that affect biofilm formation in order to identify genes involved in this adaptive process. Eleven mutants affected in their ability to form a biofilm were identified, while biofilm formation capacity of an insertional mutation in luxS and an exopolysaccharide (EPS) negative B. breve UCC2003 was also studied. Reduced capacity to form biofilm also caused reduced viability when exposed to porcine bile. We propose that bifidobacterial biofilm formation is an adaptive response to high concentrations of bile in order to avoid bactericidal effects of high bile concentrations in the gastrointestinal environment. Biofilm formation appears to be a multi-factorial process involving EPS production, proteins and extracellular DNA release, representing a crucial strategy in response to bile stress in order to enhance fitness in the gut environment.
Collapse
Affiliation(s)
- Sandra M Kelly
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Noreen Lanigan
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Ian J O'Neill
- APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Western Road, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland.
| |
Collapse
|
11
|
Blanco-Míguez A, Fdez-Riverola F, Sánchez B, Lourenço A. Resources and tools for the high-throughput, multi-omic study of intestinal microbiota. Brief Bioinform 2020; 20:1032-1056. [PMID: 29186315 DOI: 10.1093/bib/bbx156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/23/2017] [Indexed: 12/18/2022] Open
Abstract
The human gut microbiome impacts several aspects of human health and disease, including digestion, drug metabolism and the propensity to develop various inflammatory, autoimmune and metabolic diseases. Many of the molecular processes that play a role in the activity and dynamics of the microbiota go beyond species and genic composition and thus, their understanding requires advanced bioinformatics support. This article aims to provide an up-to-date view of the resources and software tools that are being developed and used in human gut microbiome research, in particular data integration and systems-level analysis efforts. These efforts demonstrate the power of standardized and reproducible computational workflows for integrating and analysing varied omics data and gaining deeper insights into microbe community structure and function as well as host-microbe interactions.
Collapse
Affiliation(s)
| | | | | | - Anália Lourenço
- Dpto. de Informática - Universidade de Vigo, ESEI - Escuela Superior de Ingeniería Informática, Edificio politécnico, Campus Universitario As Lagoas s/n, 32004 Ourense, Spain
| |
Collapse
|
12
|
O’Donnell ST, Ross RP, Stanton C. The Progress of Multi-Omics Technologies: Determining Function in Lactic Acid Bacteria Using a Systems Level Approach. Front Microbiol 2020; 10:3084. [PMID: 32047482 PMCID: PMC6997344 DOI: 10.3389/fmicb.2019.03084] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Lactic Acid Bacteria (LAB) have long been recognized as having a significant impact ranging from commercial to health domains. A vast amount of research has been carried out on these microbes, deciphering many of the pathways and components responsible for these desirable effects. However, a large proportion of this functional information has been derived from a reductionist approach working with pure culture strains. This provides limited insight into understanding the impact of LAB within intricate systems such as the gut microbiome or multi strain starter cultures. Whole genome sequencing of strains and shotgun metagenomics of entire systems are powerful techniques that are currently widely used to decipher function in microbes, but they also have their limitations. An available genome or metagenome can provide an image of what a strain or microbiome, respectively, is potentially capable of and the functions that they may carry out. A top-down, multi-omics approach has the power to resolve the functional potential of an ecosystem into an image of what is being expressed, translated and produced. With this image, it is possible to see the real functions that members of a system are performing and allow more accurate and impactful predictions of the effects of these microorganisms. This review will discuss how technological advances have the potential to increase the yield of information from genomics, transcriptomics, proteomics and metabolomics. The potential for integrated omics to resolve the role of LAB in complex systems will also be assessed. Finally, the current software approaches for managing these omics data sets will be discussed.
Collapse
Affiliation(s)
- Shane Thomas O’Donnell
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- Department of Microbiology, University College Cork – National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - R. Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- Department of Microbiology, University College Cork – National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
13
|
Yao Z, Guo Z, Wang Y, Li W, Fu Y, Lin Y, Lin W, Lin X. Integrated Succinylome and Metabolome Profiling Reveals Crucial Role of S-Ribosylhomocysteine Lyase in Quorum Sensing and Metabolism of Aeromonas hydrophila. Mol Cell Proteomics 2019; 18:200-215. [PMID: 30352804 PMCID: PMC6356075 DOI: 10.1074/mcp.ra118.001035] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/27/2018] [Indexed: 01/21/2023] Open
Abstract
Protein modification by lysine succinylation is a newly identified post-translational modification (PTM) of lysine residues and plays an important role in diverse physiological functions, although their associated biological characteristics are still largely unknown. Here, we investigated the effects of lysine succinylation on the physiological regulation within a well-known fish pathogen, Aeromonas hydrophila A high affinity purification method was used to enrich peptides with lysine succinylation in A. hydrophila ATCC 7966, and a total of 2,174 lysine succinylation sites were identified on 666 proteins using LC-MS/MS. Gene ontology analysis indicated that these succinylated proteins are involved in diverse metabolic pathways and biological processes, including translation, protein export, and central metabolic pathways. The modifications of several selected candidates were further validated by Western blotting. Using site-directed mutagenesis, we observed that the succinylation of lysines on S-ribosylhomocysteine lyase (LuxS) at the K23 and K30 sites positively regulate the production of the quorum sensing autoinducer AI-2, and that these PTMs ultimately alter its competitiveness with another pathogen, Vibrio alginolyticus Moreover, subsequent metabolomic analyses indicated that K30 succinylation on LuxS may suppress the activated methyl cycle (AMC) and that both the K23 and K30 sites are involved in amino acid metabolism. Taken together, the results from this study provide significant insights into the functions of lysine succinylation and its critical roles on LuxS in regulating the cellular physiology of A. hydrophila.
Collapse
Affiliation(s)
- Zujie Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China;; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, PR China
| | - Zhuang Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Wanxin Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Yuying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Yuexu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China;.
| |
Collapse
|
14
|
Heinrich AK, Hirschmann M, Neubacher N, Bode HB. LuxS-dependent AI-2 production is not involved in global regulation of natural product biosynthesis in Photorhabdus and Xenorhabdus. PeerJ 2017; 5:e3471. [PMID: 28663937 PMCID: PMC5488855 DOI: 10.7717/peerj.3471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/26/2017] [Indexed: 01/06/2023] Open
Abstract
The Gram-negative bacteria Photorhabdus and Xenorhabdus are known to produce a variety of different natural products (NP). These compounds play different roles since the bacteria live in symbiosis with nematodes and are pathogenic to insect larvae in the soil. Thus, a fine tuned regulatory system controlling NP biosynthesis is indispensable. Global regulators such as Hfq, Lrp, LeuO and HexA have been shown to influence NP production of Photorhabdus and Xenorhabdus. Additionally, photopyrones as quorum sensing (QS) signals were demonstrated to be involved in the regulation of NP production in Photorhabdus. In this study, we investigated the role of another possible QS signal, autoinducer-2 (AI-2), in regulation of NP production. The AI-2 synthase (LuxS) is widely distributed within the bacterial kingdom and has a dual role as a part of the activated methyl cycle pathway, as well as being responsible for AI-2 precursor production. We deleted luxS in three different entomopathogenic bacteria and compared NP levels in the mutant strains to the wild type (WT) but observed no difference to the WT strains. Furthermore, the absence of the small regulatory RNA micA, which is encoded directly upstream of luxS, did not influence NP levels. Phenotypic differences between the P. luminescens luxS deletion mutant and an earlier described luxS deficient strain of P. luminescens suggested that two phenotypically different strains have evolved in different laboratories.
Collapse
Affiliation(s)
- Antje K. Heinrich
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Merle Hirschmann
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Nick Neubacher
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Helge B. Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Schwartzman JA, Ruby EG. Stress as a Normal Cue in the Symbiotic Environment. Trends Microbiol 2016; 24:414-424. [PMID: 27004825 DOI: 10.1016/j.tim.2016.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
All multicellular hosts form associations with groups of microorganisms. These microbial communities can be taxonomically diverse and dynamic, and their persistence is due to robust, and sometimes coevolved, host-microbe and microbe-microbe interactions. Chemical and physical sources of stress are prominently situated in this molecular exchange, as cues for cellular responses in symbiotic microbes. Stress in the symbiotic environment may arise from three sources: host tissues, microbe-induced immune responses, or other microbes in the host environment. The responses of microbes to these stresses can be general or highly specialized, and collectively may contribute to the stability of the symbiotic system. In this review, we highlight recent work that emphasizes the role of stress as a cue in the symbiotic environment of plants and animals.
Collapse
Affiliation(s)
- Julia A Schwartzman
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Edward G Ruby
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA; Kewalo Marine Laboratory, University of Hawaii, Manoa, Honolulu, HI, USA
| |
Collapse
|
16
|
Affiliation(s)
- W Gary Mallard
- Teal Consulting, 7905 Cypress Place, Chevy Chase, MD, 20815, USA,
| |
Collapse
|
17
|
Bottacini F, Ventura M, van Sinderen D, O'Connell Motherway M. Diversity, ecology and intestinal function of bifidobacteria. Microb Cell Fact 2014; 13 Suppl 1:S4. [PMID: 25186128 PMCID: PMC4155821 DOI: 10.1186/1475-2859-13-s1-s4] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The human gastrointestinal tract represents an environment which is a densely populated home for a microbiota that has evolved to positively contribute to host health. At birth the essentially sterile gastrointestinal tract (GIT) is rapidly colonized by microorganisms that originate from the mother and the surrounding environment. Within a short timeframe a microbiota establishes within the (breastfed) infant's GIT where bifidobacteria are among the dominant members, although their numerical dominance disappears following weaning. The numerous health benefits associated with bifidobacteria, and the consequent commercial relevance resulting from their incorporation into functional foods, has led to intensified research aimed at the molecular understanding of claimed probiotic attributes of this genus. In this review we provide the current status on the diversity and ecology of bifidobacteria. In addition, we will discuss the molecular mechanisms that allow this intriguing group of bacteria to colonize and persist in the GIT, so as to facilitate interaction with its host.
Collapse
|
18
|
Lactobacillus reuteri 100-23 modulates urea hydrolysis in the murine stomach. Appl Environ Microbiol 2014; 80:6104-13. [PMID: 25063664 DOI: 10.1128/aem.01876-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Comparisons of in vivo (mouse stomach) and in vitro (laboratory culture) transcriptomes of Lactobacillus reuteri strain 100-23 were made by microarray analysis. These comparisons revealed the upregulation of genes associated with acid tolerance, including urease production, in the mouse stomach. Inactivation of the ureC gene reduced the acid tolerance of strain 100-23 in vitro, and the mutant was outcompeted by the wild type in the gut of ex-Lactobacillus-free mice. Urine analysis showed that stable isotope-labeled urea, administered by gavage, was metabolized to a greater extent in Lactobacillus-free mice than animals colonized by strain 100-23. This surprising observation was associated with higher levels of urease activity and fecal-type bacteria in the stomach digesta of Lactobacillus-free mice. Despite the modulation of urea hydrolysis in the stomach, recycling of urea nitrogen in the murine host was not affected since the essential amino acid isoleucine, labeled with a stable isotope, was detected in the livers of both Lactobacillus-free and 100-23-colonized animals. Therefore, our experiments reveal a new and unexpected impact of Lactobacillus colonization on urea hydrolysis in the murine gut.
Collapse
|
19
|
Lowery CA, Matamouros S, Niessen S, Zhu J, Scolnick J, Lively JM, Cravatt BF, Miller SI, Kaufmann GF, Janda KD. A chemical biology approach to interrogate quorum-sensing regulated behaviors at the molecular and cellular level. ACTA ACUST UNITED AC 2014; 20:903-11. [PMID: 23890008 DOI: 10.1016/j.chembiol.2013.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 05/08/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
Small molecule probes have been used extensively to explore biologic systems and elucidate cellular signaling pathways. In this study, we use an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering unrecognized processes regulated by AI-2-based quorum-sensing (QS), a mechanism of bacterial intercellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intercellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation.
Collapse
Affiliation(s)
- Colin A Lowery
- The Skaggs Institute for Chemical Biology, Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Christiaen SEA, O'Connell Motherway M, Bottacini F, Lanigan N, Casey PG, Huys G, Nelis HJ, van Sinderen D, Coenye T. Autoinducer-2 plays a crucial role in gut colonization and probiotic functionality of Bifidobacterium breve UCC2003. PLoS One 2014; 9:e98111. [PMID: 24871429 PMCID: PMC4037206 DOI: 10.1371/journal.pone.0098111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/29/2014] [Indexed: 01/13/2023] Open
Abstract
In the present study we show that luxS of Bifidobacterium breve UCC2003 is involved in the production of the interspecies signaling molecule autoinducer-2 (AI-2), and that this gene is essential for gastrointestinal colonization of a murine host, while it is also involved in providing protection against Salmonella infection in Caenorhabditis elegans. We demonstrate that a B. breve luxS-insertion mutant is significantly more susceptible to iron chelators than the WT strain and that this sensitivity can be partially reverted in the presence of the AI-2 precursor DPD. Furthermore, we show that several genes of an iron starvation-induced gene cluster, which are downregulated in the luxS-insertion mutant and which encodes a presumed iron-uptake system, are transcriptionally upregulated under in vivo conditions. Mutation of two genes of this cluster in B. breve UCC2003 renders the derived mutant strains sensitive to iron chelators while deficient in their ability to confer gut pathogen protection to Salmonella-infected nematodes. Since a functional luxS gene is present in all tested members of the genus Bifidobacterium, we conclude that bifidobacteria operate a LuxS-mediated system for gut colonization and pathogen protection that is correlated with iron acquisition.
Collapse
Affiliation(s)
| | - Mary O'Connell Motherway
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Francesca Bottacini
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Noreen Lanigan
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Pat G. Casey
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Geert Huys
- Laboratory of Microbiology & BCCM/LMG Bacteria Collection, Ghent University, Ghent, Belgium
| | - Hans J. Nelis
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
21
|
Tannock GW, Taylor C, Lawley B, Loach D, Gould M, Dunn AC, McLellan AD, Black MA, McNoe L, Dekker J, Gopal P, Collett MA. Altered transcription of murine genes induced in the small bowel by administration of probiotic strain Lactobacillus rhamnosus HN001. Appl Environ Microbiol 2014; 80:2851-9. [PMID: 24584241 PMCID: PMC3993288 DOI: 10.1128/aem.00336-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/21/2014] [Indexed: 02/06/2023] Open
Abstract
Lactobacillus rhamnosus HN001 is a probiotic strain reported to increase resistance to epithelium-adherent and -invasive intestinal pathogens in experimental animals. To increase understanding of the relationship between strain HN001 and the bowel, transcription of selected genes in the mucosa of the murine small bowel was measured. Mice previously naive to lactobacilli (Lactobacillus-free mice) were examined after daily exposure to HN001 in drinking water. Comparisons were made to results from matched Lactobacillus-free mice. Infant and adult mice were investigated to provide a temporal view of gene expression in response to exposure to HN001. Genes sgk1, angptl4, and hspa1b, associated with the apoptosis pathway, were selected for investigation by reverse transcription-quantitative PCR on the basis of a preliminary duodenal DNA microarray screen. Normalized to gapdh gene transcription, these three genes were upregulated after 6 to 10 days exposure of adult mice to HN001. Angptl4 was shown by immunofluorescence to be upregulated in duodenal epithelial cells of mucosal samples. Epithelial cell migration was faster in HN001-exposed mice than in the Lactobacillus-free controls. Transcriptional responses in infant mice differed according to bowel region and age. For example, sgk1 was upregulated in duodenal, jejunal, and ileal mucosa of mice less than 25 days old, whereas angptl4 and hspa1b were upregulated at 10 days in the duodenum but downregulated in the jejunal mucosa until mice were 25 days old. Overall, the results provide links between a probiotic strain, mucosal gene expression, and host phenotype, which may be useful in delineating mechanisms of probiotic action.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Riddet Institute Centre of Research Excellence, Palmerston North, New Zealand
| | - Corinda Taylor
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Blair Lawley
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Diane Loach
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Maree Gould
- Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand
| | - Amy C. Dunn
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Alexander D. McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Les McNoe
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - James Dekker
- Fonterra Research and Development Centre, Palmerston North, New Zealand
| | - Pramod Gopal
- Fonterra Research and Development Centre, Palmerston North, New Zealand
| | | |
Collapse
|
22
|
Mhatre E, Monterrosa RG, Kovács AT. From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria. J Basic Microbiol 2014; 54:616-32. [PMID: 24771632 DOI: 10.1002/jobm.201400175] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/30/2014] [Indexed: 12/22/2022]
Abstract
Bacterial lifestyle is influenced by environmental signals, and many differentiation processes in bacteria are governed by the threshold concentrations of molecules present in their niche. Biofilm is one such example where bacteria in their sessile state adapt to a lifestyle that causes several adaptive alterations in the population. Here, a brief overview is given on a variety of environmental signals that bias biofilm development in Gram-positive bacteria, including nutrient conditions, self- and heterologously produced substances, like quorum sensing and host produced molecules. The Gram-positive model organism, Bacillus subtilis is a superb example to illustrate how distinct signals activate sensor proteins that integrate the environmental signals towards global regulators related to biofilm formation. The role of reduced oxygen level, polyketides, antimicrobials, plant secreted carbohydrates, plant cell derived polymers, glycerol, and osmotic conditions are discussed during the transcriptional activation of biofilm related genes in B. subtilis.
Collapse
Affiliation(s)
- Eisha Mhatre
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | | | | |
Collapse
|
23
|
Su MSW, Gänzle MG. Novel two-component regulatory systems play a role in biofilm formation of Lactobacillus reuteri rodent isolate 100-23. MICROBIOLOGY-SGM 2014; 160:795-806. [PMID: 24509500 DOI: 10.1099/mic.0.071399-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study characterized the two-component regulatory systems encoded by bfrKRT and cemAKR, and assessed their influence on biofilm formation by Lactobacillus reuteri 100-23. A method for deletion of multiple genes was employed to disrupt the genetic loci of two-component systems. The operons bfrKRT and cemAKR showed complementary organization. Genes bfrKRT encode a histidine kinase, a response regulator and an ATP-binding cassette-type transporter with a bacteriocin-processing peptidase domain, respectively. Genes cemAKR code for a signal peptide, a histidine kinase and a response regulator, respectively. Deletion of single or multiple genes in the operons bfrKRT and cemAKR did not affect cell morphology, growth or the sensitivity to various stressors. However, gene disruption affected biofilm formation; this effect was dependent on the carbon source. Deletion of bfrK or cemA increased sucrose-dependent biofilm formation in vitro. Glucose-dependent biofilm formation was particularly increased by deletion of cemK. The expression of cemK and cemR was altered by deletion of bfrK, indicating cross-talk between these two regulatory systems. These results may contribute to our understanding of the genetic factors related to the biofilm formation and competitiveness of L. reuteri in intestinal ecosystems.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
24
|
Sun Z, He X, Brancaccio VF, Yuan J, Riedel CU. Bifidobacteria exhibit LuxS-dependent autoinducer 2 activity and biofilm formation. PLoS One 2014; 9:e88260. [PMID: 24505453 PMCID: PMC3914940 DOI: 10.1371/journal.pone.0088260] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/08/2014] [Indexed: 12/26/2022] Open
Abstract
Autoinducer-2 (AI-2) molecules are one class of signalling molecules involved in gene regulation dependent on population density in a mechanism commonly referred to as quorum sensing (QS). AI-2 is produced by the methylthioadenosine/S-adenosyl-homocysteine nucleosidase LuxS. In the present study, we characterise the function of bifidobacterial LuxS proteins to address the question whether these economically important bacteria are able to perform QS communication. All publically available genome sequences of bifidobacteria harbour putative luxS genes. The deduced amino acid sequences are well conserved in the genus and show good homology to the LuxS protein of the prototypical AI-2 producer Vibrio harveyi. The luxS genes of three bifidobacterial strains were successfully expressed in AI-2-negative Escherichia coli DH5α. Supernatants of these recombinant E. coli strains contained significant AI-2 activity. In initial experiments, we failed to detect AI-2 activity in supernatants of bifidobacteria grown in MRSc. High concentration of glucose as well as acidic pH had strong inhibitory effects on AI-2 activity. AI-2 activity could be detected when lower volumes of supernatants were used in the assay. Homologous overexpression of luxS in Bifidobacterium longum NCC2705 increased AI-2 levels in the supernatant. Furthermore, over-expression of luxS or supplementation with AI-2-containing supernatants enhanced biofilm formation of B. longum NCC2705. Collectively, these results suggest that bifidobacteria indeed harbour functional luxS genes that are involved in the production of AI-2-like molecules. To the best of our knowledge, this represents the first report on AI-2 activity produced by bifidobacteria. Self-produced AI-2 activity as well as AI-2-like molecules of other bacteria of the intestinal tract may have a regulatory function in biofilm formation and host colonization by bifidobacteria.
Collapse
Affiliation(s)
- Zhongke Sun
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Xiang He
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | | | - Jing Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (CUR); (JY)
| | - Christian U. Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
- * E-mail: (CUR); (JY)
| |
Collapse
|
25
|
Karim MM, Hisamoto T, Matsunaga T, Asahi Y, Noiri Y, Ebisu S, Kato A, Azakami H. LuxS affects biofilm maturation and detachment of the periodontopathogenic bacterium Eikenella corrodens. J Biosci Bioeng 2013; 116:313-8. [DOI: 10.1016/j.jbiosc.2013.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/08/2013] [Accepted: 03/19/2013] [Indexed: 01/25/2023]
|
26
|
Affiliation(s)
- Melissa Ivey
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Mara Massel
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Trevor G. Phister
- Division of Food Science, Brewing Science Program, School of Biological Sciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom;
| |
Collapse
|
27
|
Shao C, Shang W, Yang Z, Sun Z, Li Y, Guo J, Wang X, Zou D, Wang S, Lei H, Cui Q, Yin Z, Li X, Wei X, Liu W, He X, Jiang Z, Du S, Liao X, Huang L, Wang Y, Yuan J. LuxS-Dependent AI-2 Regulates Versatile Functions in Enterococcus faecalis V583. J Proteome Res 2012; 11:4465-75. [DOI: 10.1021/pr3002244] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Changlin Shao
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
- The Key Laboratory of Industrial
Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Wei Shang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
- The Key Laboratory of Industrial
Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Zhan Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
| | - Zhongke Sun
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
| | - Yunmei Li
- College of Food Science and Engineering, Northwest A & F University, 712100 Yangling, China
| | - Jing Guo
- College of Food Science and Engineering, Northwest A & F University, 712100 Yangling, China
| | - Xuesong Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
| | - DaYang Zou
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
| | - Simiao Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
| | - Hong Lei
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
| | - Qian Cui
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
| | - Zhitao Yin
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
| | - Xuelian Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
| | - Xiao Wei
- The Key Laboratory of Industrial
Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Wei Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
| | - Xiang He
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
| | - Zheng Jiang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
| | - Shuangkui Du
- College of Food Science and Engineering, Northwest A & F University, 712100 Yangling, China
| | - Xiangru Liao
- The Key Laboratory of Industrial
Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Liuyu Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
| | - Yufei Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
| | - Jing Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071 Beijing, China
| |
Collapse
|