1
|
Galès G, Hennart M, Hannoun M, Postec A, Erauso G. Metabolic versatility and nitrate reduction pathways of a new thermophilic bacterium of the Deferrivibrionaceae: Deferrivibrio metallireducens sp. nov isolated from hot sediments of Vulcano Island, Italy. PLoS One 2025; 20:e0315093. [PMID: 40067810 PMCID: PMC11896075 DOI: 10.1371/journal.pone.0315093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/20/2024] [Indexed: 03/15/2025] Open
Abstract
A novel thermophilic (optimum growth temperature ~ 60 °C) anaerobic Gram-negative bacterium, designated strain V6Fe1T, was isolated from sediments heated by the hydrothermal circulation of the Aeolian Islands (Vulcano, Italy) on the seafloor. Strain V6Fe1T belongs to the recently described family Deferrivibrionaceae in the phylum Deferribacterota. It grows chemoorganotrophically by fermentation of proteinaceous substrates and organic acids or by respiration of organic compounds using fumarate, nitrate, Fe(III), S°, and Mn(IV) as electron acceptors. The strain V6Fe1T can also grow chemolithoautotrophically using H2 as an electron donor and nitrate, nitrous oxide, Fe(III), Mn(IV), or sulfur as an electron acceptor. Stable isotope probing showed that V6Fe1T performs denitrification with nitrate reduction to dinitrogen and Dissimilatory Nitrate Reduction to Ammonium (DNRA). Culture experiments with RT-qPCR analysis of target genes revealed that strain V6Fe1T performs DNRA with the nitrite reductase formate-dependent NrfA and denitrification with an Hcp protein and other redox partners yet to be identified. Genomic analysis and experimental data suggest that strain V6Fe1T performs autotrophic carbon fixation via the recently discovered reversed oxidative TCA cycle (roTCA cycle). Based on genomic (ANI) and phenotypic properties, strain V6Fe1T ( = DSM 27501T = JCM 39088T) is proposed to be the type strain of a novel species named Deferrivibrio metallireducens.
Collapse
Affiliation(s)
- Grégoire Galès
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Mélanie Hennart
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Maverick Hannoun
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Anne Postec
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Gaël Erauso
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| |
Collapse
|
2
|
Belvin BR, Musayev FN, Escalante CR, Lewis JP. Full-length structure and heme binding in the transcriptional regulator HcpR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611725. [PMID: 39282349 PMCID: PMC11398531 DOI: 10.1101/2024.09.06.611725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
HcpR is a CRP-family transcriptional regulator found in many Gram-negative anaerobic bacteria. In the perio-pathogen Porphyromonas gingivalis, HcpR is crucial for the response to reactive nitrogen species such as nitric oxide (NO). Binding of NO to the heme group of HcpR leads to transcription of the redox enzyme Hcp. However, the molecular mechanisms of heme binding to HcpR remain unknown. In this study we present the 2.3 Å structure of the P. gingivalis HcpR. Interdomain interactions present in the structure help to form a hydrophobic pocket in the N-terminal sensing domain. A comparison analysis with other CRP-family members reveals that the molecular mechanisms of HcpR-mediated regulation may be distinct from other family members. Using docking studies, we identify a putative heme binding site in the sensing domain. In vitro complementation and mutagenesis studies verify Met68 as an important residue in activation of HcpR. Finally, heme binding studies with purified forms of recombinant HcpR support Met68 and His149 residues as important for proper heme coordination in HcpR.
Collapse
|
3
|
Blancas-Luciano BE, Becker-Fauser I, Zamora-Chimal J, Jiménez-García L, Lara-Martínez R, Pérez-Torres A, González del Pliego M, Aguirre-Benítez EL, Fernández-Presas AM. Cystatin C: immunoregulation role in macrophages infected with Porphyromonas gingivalis. PeerJ 2024; 12:e17252. [PMID: 38708345 PMCID: PMC11067906 DOI: 10.7717/peerj.17252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Background Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory response and a progressive loss of the supporting tissues of the teeth. Porphyromonas gingivalis is a key etiologic agent in periodontitis. Cystatin C is an antimicrobial salivary peptide that inhibits the growth of P. gingivalis. This study aimed to evaluate the antimicrobial activity of this peptide and its effect on cytokine production, nitric oxide (NO) release, reactive oxygen species (ROS) production, and programmed cell death in human macrophages infected with P. gingivalis. Methods Monocyte-derived macrophages generated from peripheral blood were infected with P. gingivalis (MOI 1:10) and stimulated with cystatin C (2.75 µg/ml) for 24 h. The intracellular localization of P. gingivalis and cystatin C was determined by immunofluorescence and transmission electron microscopy (TEM). The intracellular antimicrobial activity of cystatin C in macrophages was assessed by counting Colony Forming Units (CFU). ELISA assay was performed to assess inflammatory (TNFα, IL-1β) and anti-inflammatory (IL-10) cytokines. The production of nitrites and ROS was analyzed by Griess reaction and incubation with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. Programmed cell death was assessed with the TUNEL assay, Annexin-V, and caspase activity was also determined. Results Our results showed that cystatin C inhibits the extracellular growth of P. gingivalis. In addition, this peptide is internalized in the infected macrophage, decreases the intracellular bacterial load, and reduces the production of inflammatory cytokines and NO. Interestingly, peptide treatment increased ROS production and substantially decreased bacterial-induced macrophage apoptosis. Conclusions Cystatin C has antimicrobial and immuno-regulatory activity in macrophages infected with P. gingivalis. These findings highlight the importance of understanding the properties of cystatin C for its possible therapeutic use against oral infections such as periodontitis.
Collapse
Affiliation(s)
- Blanca Esther Blancas-Luciano
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Microbiología y Parasitologia, Facultad de Medicina, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ingeborg Becker-Fauser
- Unidad de Investigación en Medicina Experimental, Hospital General de México, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Hospital General de México, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Jiménez-García
- Departamento de Biología Celular. Facultad de Ciencias, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Reyna Lara-Martínez
- Departamento de Biología Celular. Facultad de Ciencias, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Margarita González del Pliego
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elsa Liliana Aguirre-Benítez
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitologia, Facultad de Medicina, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Investigación en Ciencias de la Salud, Huixquilucan, Universidad Anáhuac, Estado de México, México
| |
Collapse
|
4
|
Egas RA, Kurth JM, Boeren S, Sousa DZ, Welte CU, Sánchez-Andrea I. A novel mechanism for dissimilatory nitrate reduction to ammonium in Acididesulfobacillus acetoxydans. mSystems 2024; 9:e0096723. [PMID: 38323850 PMCID: PMC10949509 DOI: 10.1128/msystems.00967-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
The biological route of nitrate reduction has important implications for the bioavailability of nitrogen within ecosystems. Nitrate reduction via nitrite, either to ammonium (ammonification) or to nitrous oxide or dinitrogen (denitrification), determines whether nitrogen is retained within the system or lost as a gas. The acidophilic sulfate-reducing bacterium (aSRB) Acididesulfobacillus acetoxydans can perform dissimilatory nitrate reduction to ammonium (DNRA). While encoding a Nar-type nitrate reductase, A. acetoxydans lacks recognized nitrite reductase genes. In this study, A. acetoxydans was cultivated under conditions conducive to DNRA. During cultivations, we monitored the production of potential nitrogen intermediates (nitrate, nitrite, nitric oxide, hydroxylamine, and ammonium). Resting cell experiments were performed with nitrate, nitrite, and hydroxylamine to confirm their reduction to ammonium, and formed intermediates were tracked. To identify the enzymes involved in DNRA, comparative transcriptomics and proteomics were performed with A. acetoxydans growing under nitrate- and sulfate-reducing conditions. Nitrite is likely reduced to ammonia by the previously undescribed nitrite reductase activity of the NADH-linked sulfite reductase AsrABC, or by a putatively ferredoxin-dependent homolog of the nitrite reductase NirA (DEACI_1836), or both. We identified enzymes and intermediates not previously associated with DNRA and nitrosative stress in aSRB. This increases our knowledge about the metabolism of this type of bacteria and helps the interpretation of (meta)genome data from various ecosystems on their DNRA potential and the nitrogen cycle.IMPORTANCENitrogen is crucial to any ecosystem, and its bioavailability depends on microbial nitrogen-transforming reactions. Over the recent years, various new nitrogen-transforming reactions and pathways have been identified, expanding our view on the nitrogen cycle and metabolic versatility. In this study, we elucidate a novel mechanism employed by Acididesulfobacillus acetoxydans, an acidophilic sulfate-reducing bacterium, to reduce nitrate to ammonium. This finding underscores the diverse physiological nature of dissimilatory reduction to ammonium (DNRA). A. acetoxydans was isolated from acid mine drainage, an extremely acidic environment where nitrogen metabolism is poorly studied. Our findings will contribute to understanding DNRA potential and variations in extremely acidic environments.
Collapse
Affiliation(s)
- Reinier A. Egas
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Julia M. Kurth
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Microcosm Earth Centre, Philipps-Universität Marburg & Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Diana Z. Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands
| | - Cornelia U. Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Environmental Sciences for Sustainability, IE University, Segovia, Spain
| |
Collapse
|
5
|
Blancas-Luciano BE, Zamora-Chimal J, da Silva-de Rosenzweig PG, Ramos-Mares M, Fernández-Presas AM. Macrophages immunomodulation induced by Porphyromonas gingivalis and oral antimicrobial peptides. Odontology 2023; 111:778-792. [PMID: 36897441 PMCID: PMC10492884 DOI: 10.1007/s10266-023-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen associated with periodontitis development, a chronic inflammatory pathology characterized by the destruction of the supporting teeth structure. Macrophages are recruited cells in the inflammatory infiltrate from patients with periodontitis. They are activated by the P. gingivalis virulence factors arsenal, promoting an inflammatory microenvironment characterized by cytokine production (TNF-α, IL-1β, IL-6), prostaglandins, and metalloproteinases (MMPs) that foster the tissular destruction characteristic of periodontitis. Furthermore, P. gingivalis suppresses the generation of nitric oxide, a potent antimicrobial molecule, through its degradation, and incorporating its byproducts as a source of energy. Oral antimicrobial peptides can contribute to controlling the disease due to their antimicrobial and immunoregulatory activity, which allows them to maintain homeostasis in the oral cavity. This study aimed to analyze the immunopathological role of macrophages activated by P. gingivalis in periodontitis and suggested using antimicrobial peptides as therapeutic agents to treat the disease.
Collapse
Affiliation(s)
- Blanca Esther Blancas-Luciano
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Edificio D, 1° Piso, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis, 148 Col. Doctores, Del. Cuauhtémoc, C.P. 06726, Mexico City, Mexico
| | - Pablo Gomes da Silva-de Rosenzweig
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Mariana Ramos-Mares
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico.
| |
Collapse
|
6
|
Ximinies AD, Dou Y, Mishra A, Zhang K, Deivanayagam C, Wang C, Fletcher HM. The Oxidative Stress-Induced Hypothetical Protein PG_0686 in Porphyromonas gingivalis W83 Is a Novel Diguanylate Cyclase. Microbiol Spectr 2023; 11:e0441122. [PMID: 36719196 PMCID: PMC10101095 DOI: 10.1128/spectrum.04411-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023] Open
Abstract
The survival/adaptation of Porphyromonas gingivalis to the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. Several functional classes of genes, depending on the severity and duration of the exposure, were induced in P. gingivalis under H2O2-induced oxidative stress. The PG_0686 gene was highly upregulated under prolonged oxidative stress. PG_0686, annotated as a hypothetical protein of unknown function, is a 60 kDa protein that carries several domains including hemerythrin, PAS10, and domain of unknown function (DUF)-1858. Although PG_0686 showed some relatedness to several diguanylate cyclases (DGCs), it is missing the classical conserved, active site sequence motif (GGD[/E]EF), commonly observed in other bacteria. PG_0686-related proteins are observed in other anaerobic bacterial species. The isogenic mutant P. gingivalis FLL361 (ΔPG_0686::ermF) showed increased sensitivity to H2O2, and decreased gingipain activity compared to the parental strain. Transcriptome analysis of P. gingivalis FLL361 showed the dysregulation of several gene clusters/operons, known oxidative stress resistance genes, and transcriptional regulators, including PG_2212, CdhR and PG_1181 that were upregulated under normal anaerobic conditions. The intracellular level of c-di-GMP in P. gingivalis FLL361 was significantly decreased compared to the parental strain. The purified recombinant PG_0686 (rPG_0686) protein catalyzed the formation of c-di-GMP from GTP. Collectively, our data suggest a global regulatory property for PG_0686 that may be part of an unconventional second messenger signaling system in P. gingivalis. Moreover, it may coordinately regulate a pathway(s) vital for protection against environmental stress, and is significant in the pathogenicity of P. gingivalis and other anaerobes. IMPORTANCE Porphyromonas gingivalis is an important etiological agent in periodontitis and other systemic diseases. There is still a gap in our understanding of the mechanisms that P. gingivalis uses to survive the inflammatory microenvironment of the periodontal pocket. The hypothetical PG_0686 gene was highly upregulated under prolonged oxidative stress. Although the tertiary structure of PG_0686 showed little relatedness to previously characterized diguanylate cyclases (DGCs), and does not contain the conserved GGD(/E)EF catalytic domain motif sequence, an ability to catalyze the formation of c-di-GMP from GTP is demonstrated. The second messenger pathway for c-di-GMP was previously predicted to be absent in P. gingivalis. PG_0686 paralogs are identified in other anaerobic bacteria. Thus, PG_0686 may represent a novel class of DGCs, which is yet to be characterized. In conclusion, we have shown, for the first time, evidence for the presence of c-di-GMP signaling with environmental stress protective function in P. gingivalis.
Collapse
Affiliation(s)
- Alexia D. Ximinies
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Yuetan Dou
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Arunima Mishra
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Kangling Zhang
- Department of Pharmacology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Champion Deivanayagam
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama, USA
| | - Charles Wang
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Hansel M. Fletcher
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
7
|
Blancas-Luciano BE, Becker-Fauser I, Zamora-Chimal J, Delgado-Domínguez J, Ruíz-Remigio A, Leyva-Huerta ER, Portilla-Robertson J, Fernández-Presas AM. Antimicrobial and anti-inflammatory activity of Cystatin C on human gingival fibroblast incubated with Porphyromonas gingivalis. PeerJ 2022; 10:e14232. [PMID: 36312752 PMCID: PMC9615962 DOI: 10.7717/peerj.14232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023] Open
Abstract
Background Periodontal disease is considered one of the most prevalent chronic infectious diseases, often leading to the disruption of tooth-supporting tissues, including alveolar bone, causing tooth mobility and loss. Porphyromonas gingivalis is considered the major etiological agent of this disease, having a plethora of virulence factors, including, lipopolysaccharides (LPS), hemolysins, and proteinases. Antimicrobial peptides are one of the main components of the innate immune response that inhibit the growth of P. gingivalis. The aim of this study was to analyze the antimicrobial activity of cystatin C and to assess the effect on the inflammatory and anti-inflammatory cytokines, the production of reactive oxygen species, and in the release of nitric oxide by human gingival fibroblasts incubated with P. gingivalis in the presence and absence of cystatin C. Methods P. gingivalis ATCC 33277 was exposed to cystatin C for 24h and co-cultured with human gingival fibroblasts (HGFs) ATCC CRL-2014. The effect of cystatin on growth of P. gingivalis and HGFs was evaluated. Pro-inflammatory (TNFα, IL-1β) and anti-inflammatory (IL-10) cytokines were determined by ELISA in the supernatants of HGFs incubated with P. gingivalis exposed to cystatin C. Additionally, nitrites and reactive oxygen species (ROS) production were evaluated. Results Cystatin Cinhibited the growth of P. gingivalis without affecting HGFs. Incubation of HGFs with P. gingivalis led to a significant increase of TNF-α and IL-1β. In contrast, HGFs incubated with P. gingivalis exposed to cystatin C showed a decreased production of both cytokines, whereas IL-10 was enhanced. Incubation of HGFs with P. gingivalis led to an increase of nitric oxide (NO) and ROS production, which was reduced in the presence of the peptide. Conclusions Cystatin C inhibits the growth of P. gingivalis and decreases the inflammatory cytokines, ROS, and NO production during infection of HGFs with P. gingivalis. Knowledge on the antimicrobial and immunomodulatory properties of cystatin C could aid in the design of new therapeutic approaches to facilitate the elimination of this bacterium to improve the treatment of periodontal disease.
Collapse
Affiliation(s)
| | - Ingeborg Becker-Fauser
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - José Delgado-Domínguez
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Adriana Ruíz-Remigio
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Elba Rosa Leyva-Huerta
- Departmento de Medicina Oral y Patología, División de Posgrado, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Javier Portilla-Robertson
- Departmento de Medicina Oral y Patología, División de Posgrado, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Mexico City, México,Centro de investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Mexico City, México
| |
Collapse
|
8
|
|
9
|
Huffines JT, Stoner SN, Baty JJ, Scoffield JA. Nitrite Triggers Reprogramming of the Oral Polymicrobial Metabolome by a Commensal Streptococcus. Front Cell Infect Microbiol 2022; 12:833339. [PMID: 35300375 PMCID: PMC8923425 DOI: 10.3389/fcimb.2022.833339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
Commensal streptococci regulate health and homeostasis within oral polymicrobial communities. Remarkably, high salivary nitrite concentrations have also been associated with improved health in the oral cavity. We previously demonstrated that nitrite assists hydrogen peroxide-producing oral commensal streptococci in regulating homeostasis via the generation of reactive nitrogen species (RNS), which have antimicrobial activity on oral pathogens. However, it is unknown how nitrite and commensal streptococci work in concert to influence the metabolome of oral polymicrobial communities. In this study, we report that nitrite aids commensal streptococci in the inhibition of multi-kingdom pathogens that reside in distinct oral niches, which supports commensal dominance. More importantly, we show that commensal streptococci utilize nitrite to drive the metabolic signature of multispecies biofilms in a manner that supports commensal metabolism and resistance to RNS, and restricts metabolic processes that are required for pathogen virulence. Taken together, our study provides insight into how commensal streptococci use nitrite to trigger shifts in the oral polymicrobial metabolome to support health and homeostasis.
Collapse
Affiliation(s)
| | | | | | - Jessica A. Scoffield
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Masamba P, Kappo AP. Parasite Survival and Disease Persistence in Cystic Fibrosis, Schistosomiasis and Pathogenic Bacterial Diseases: A Role for Universal Stress Proteins? Int J Mol Sci 2021; 22:10878. [PMID: 34639223 PMCID: PMC8509486 DOI: 10.3390/ijms221910878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Universal stress proteins (USPs) were originally discovered in Escherichia coli over two decades ago and since then their presence has been detected in various organisms that include plants, archaea, metazoans, and bacteria. As their name suggests, they function in a series of various cellular responses in both abiotic and biotic stressful conditions such as oxidative stress, exposure to DNA damaging agents, nutrient starvation, high temperature and acidic stress, among others. Although a highly conserved group of proteins, the molecular and biochemical aspects of their functions are largely evasive. This is concerning, as it was observed that USPs act as essential contributors to the survival/persistence of various infectious pathogens. Their ubiquitous nature in various organisms, as well as their augmentation during conditions of stress, is a clear indication of their direct or indirect importance in providing resilience against such conditions. This paper seeks to clarify what has already been reported in the literature on the proposed mechanism of action of USPs in pathogenic organisms.
Collapse
Affiliation(s)
- Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Kingsway Campus, University of Johannesburg, Auckland Park 2006, South Africa;
| | | |
Collapse
|
11
|
Cole JA. Anaerobic bacterial response to nitric oxide stress: Widespread misconceptions and physiologically relevant responses. Mol Microbiol 2021; 116:29-40. [PMID: 33706420 DOI: 10.1111/mmi.14713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/27/2022]
Abstract
How anaerobic bacteria protect themselves against nitric oxide-induced stress is controversial, not least because far higher levels of stress were used in the experiments on which most of the literature is based than bacteria experience in their natural environments. This results in chemical damage to enzymes that inactivates their physiological function. This review illustrates how transcription control mechanisms reveal physiological roles of the encoded gene products. Evidence that the hybrid cluster protein, Hcp, is a major high affinity NO reductase in anaerobic bacteria is reviewed: if so, its trans-nitrosation activity is a nonspecific secondary consequence of chemical inactivation. Whether the flavorubredoxin, NorV, is equally effective at such low [NO] is unknown. YtfE is proposed to be an enzyme rather than a source of iron for the repair of iron-sulfur proteins damaged by nitrosative stress. Any reaction catalyzed by YtfE needs to be revealed. The concentration of NO that accumulates in the cytoplasm of anaerobic bacteria is unknown, but indirect evidence indicates that it is in the pM to low nM range. Also unknown are the functions of the NO-inducible cytoplasmic proteins YgbA, YeaR, or YoaG. Experiments to resolve some of these questions are proposed.
Collapse
Affiliation(s)
- J A Cole
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Belvin BR, Musayev FN, Burgner J, Scarsdale JN, Escalante CR, Lewis JP. Nitrosative stress sensing in Porphyromonas gingivalis: structure of and heme binding by the transcriptional regulator HcpR. Acta Crystallogr D Struct Biol 2019; 75:437-450. [PMID: 30988260 PMCID: PMC6465984 DOI: 10.1107/s205979831900264x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/21/2019] [Indexed: 11/10/2022] Open
Abstract
Although the HcpR regulator plays a vital step in initiation of the nitrosative stress response in many Gram-negative anaerobic bacteria, the molecular mechanisms that it uses to mediate gas sensing are not well understood. Here, a 2.6 Å resolution crystal structure of the N-terminal sensing domain of the anaerobic periodontopathogen Porphyromonas gingivalis HcpR is presented. The protein has classical features of the regulators belonging to the FNR-CRP family and contains a hydrophobic pocket in its N-terminal sensing domain. It is shown that heme bound to HcpR exhibits heme iron as a hexacoordinate system in the absence of nitric oxide (NO) and that upon nitrosylation it transitions to a pentacoordinate system. Finally, small-angle X-ray scattering experiments on full-length HcpR reveal that the C-terminal DNA-binding domain of HcpR has a high degree of interdomain flexibility.
Collapse
Affiliation(s)
- B. Ross Belvin
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Faik N. Musayev
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- The Institute for Structural Biology, Drug Discovery, and Development, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - John Burgner
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J. Neel Scarsdale
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- The Institute for Structural Biology, Drug Discovery, and Development, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Carlos R. Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Janina P. Lewis
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
13
|
The Porphyromonas gingivalis Hybrid Cluster Protein Hcp Is Required for Growth with Nitrite and Survival with Host Cells. Infect Immun 2019; 87:IAI.00572-18. [PMID: 30670550 DOI: 10.1128/iai.00572-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/11/2019] [Indexed: 12/13/2022] Open
Abstract
Although the periodontal pathogen Porphyromonas gingivalis must withstand high levels of nitrosative stress while in the oral cavity, the mechanisms of nitrosative stress defense are not well understood in this organism. Previously we showed that the transcriptional regulator HcpR plays a significant role in defense, and here we further defined its regulon. Our study shows that hcp (PG0893), a putative nitric oxide (NO) reductase, is the only gene significantly upregulated in response to nitrite (NO2) and that this regulation is dependent on HcpR. An isogenic mutant deficient in hcp is not able to grow with 200 μM nitrite, demonstrating that the sensitivity of the HcpR mutant is mediated through Hcp. We further define the molecular mechanisms of HcpR interaction with the hcp promoter through mutational analysis of the inverted repeat present within the promoter. Although other putative nitrosative stress protection mechanisms present on the nrfAH operon are also found in the P. gingivalis genome, we show that their gene products play no role in growth of the bacterium with nitrite. As growth of the hcp-deficient strain was also significantly diminished in the presence of a nitric oxide-producing compound, S-nitrosoglutathione (GSNO), Hcp appears to be the primary means by which P. gingivalis responds to NO2 --based stress. Finally, we show that Hcp is required for survival with host cells but that loss of Hcp has no effect on association and entry of P. gingivalis into human oral keratinocytes.
Collapse
|
14
|
Miller DP, Hutcherson JA, Wang Y, Nowakowska ZM, Potempa J, Yoder-Himes DR, Scott DA, Whiteley M, Lamont RJ. Genes Contributing to Porphyromonas gingivalis Fitness in Abscess and Epithelial Cell Colonization Environments. Front Cell Infect Microbiol 2017; 7:378. [PMID: 28900609 PMCID: PMC5581868 DOI: 10.3389/fcimb.2017.00378] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Porphyromonas gingivalis is an important cause of serious periodontal diseases, and is emerging as a pathogen in several systemic conditions including some forms of cancer. Initial colonization by P. gingivalis involves interaction with gingival epithelial cells, and the organism can also access host tissues and spread haematogenously. To better understand the mechanisms underlying these properties, we utilized a highly saturated transposon insertion library of P. gingivalis, and assessed the fitness of mutants during epithelial cell colonization and survival in a murine abscess model by high-throughput sequencing (Tn-Seq). Transposon insertions in many genes previously suspected as contributing to virulence showed significant fitness defects in both screening assays. In addition, a number of genes not previously associated with P. gingivalis virulence were identified as important for fitness. We further examined fitness defects of four such genes by generating defined mutations. Genes encoding a carbamoyl phosphate synthetase, a replication-associated recombination protein, a nitrosative stress responsive HcpR transcription regulator, and RNase Z, a zinc phosphodiesterase, showed a fitness phenotype in epithelial cell colonization and in a competitive abscess infection. This study verifies the importance of several well-characterized putative virulence factors of P. gingivalis and identifies novel fitness determinants of the organism.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| | - Justin A Hutcherson
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| | - Yan Wang
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| | - Zuzanna M Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian UniversityKrakow, Poland
| | | | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| | - Marvin Whiteley
- Department of Molecular Biosciences, University of Texas at AustinAustin, TX, United States
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| |
Collapse
|
15
|
Liu YF, Hsieh CW, Chang YS, Wung BS. Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation. BMC Biotechnol 2017; 17:63. [PMID: 28764759 PMCID: PMC5540488 DOI: 10.1186/s12896-017-0385-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/25/2017] [Indexed: 02/03/2023] Open
Abstract
Background Acetic acid is a predominant by-product of lignocellulosic biofuel process, which inhibits microbial biocatalysts. Development of bacterial strains that are tolerant to acetic acid is challenging due to poor understanding of the underlying molecular mechanisms. Results In this study, we generated and characterized two acetic acid-tolerant strains of Zymomonas mobilis using N-methyl-N′-nitro-N-nitrosoguanidine (NTG)-acetate adaptive breeding. Two mutants, ZMA-142 and ZMA-167, were obtained, showing a significant growth rate at a concentration of 244 mM sodium acetate, while the growth of Z. mobilis ATCC 31823 were completely inhibited in presence of 195 mM sodium acetate. Our data showed that acetate-tolerance of ZMA-167 was attributed to a co-transcription of nhaA from ZMO0117, whereas the co-transcription was absent in ATCC 31823 and ZMA-142. Moreover, ZMA-142 and ZMA-167 exhibited a converstion rate (practical ethanol yield to theorical ethanol yield) of 90.16% and 86% at 195 mM acetate-pH 5 stress condition, respectively. We showed that acid adaptation of ZMA-142 and ZMA-167 to 146 mM acetate increased ZMA-142 and ZMA-167 resulted in an increase in ethanol yield by 32.21% and 21.16% under 195 mM acetate-pH 5 stress condition, respectively. Conclusion The results indicate the acetate-adaptive seed culture of acetate-tolerant strains, ZMA-142 and ZMA-167, could enhance the ethanol production during fermentation.
Collapse
Affiliation(s)
- Yu-Fan Liu
- Division of Allergy, Department of Pediatrics, Chung-Shan Medical University Hospital, Taichung, Taiwan.,Department of Biomedical Sciences, College of Medicine Sciences and Technology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Wen Hsieh
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi, Taiwan.
| | - Yao-Sheng Chang
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi, Taiwan
| | - Being-Sun Wung
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
16
|
Nies F, Wörner S, Wunsch N, Armant O, Sharma V, Hesselschwerdt A, Falk F, Weber N, Weiß J, Trautmann A, Posten C, Prakash T, Lamparter T. Characterization of Phormidium lacuna strains from the North Sea and the Mediterranean Sea for biotechnological applications. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Romero-Lastra P, Sánchez MC, Ribeiro-Vidal H, Llama-Palacios A, Figuero E, Herrera D, Sanz M. Comparative gene expression analysis of Porphyromonas gingivalis ATCC 33277 in planktonic and biofilms states. PLoS One 2017; 12:e0174669. [PMID: 28369099 PMCID: PMC5378342 DOI: 10.1371/journal.pone.0174669] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/13/2017] [Indexed: 11/24/2022] Open
Abstract
Background and objective Porphyromonas gingivalis is a keystone pathogen in the onset and progression of periodontitis. Its pathogenicity has been related to its presence and survival within the subgingival biofilm. The aim of the present study was to compare the genome-wide transcription activities of P. gingivalis in biofilm and in planktonic growth, using microarray technology. Material and methods P. gingivalis ATCC 33277 was incubated in multi-well culture plates at 37°C for 96 hours under anaerobic conditions using an in vitro static model to develop both the planktonic and biofilm states (the latter over sterile ceramic calcium hydroxyapatite discs). The biofilm development was monitored by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM). After incubation, the bacterial cells were harvested and total RNA was extracted and purified. Three biological replicates for each cell state were independently hybridized for transcriptomic comparisons. A linear model was used for determining differentially expressed genes and reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to confirm differential expression. The filtering criteria of ≥ ±2 change in gene expression and significance p-values of <0.05 were selected. Results A total of 92 out of 1,909 genes (4.8%) were differentially expressed by P. gingivalis growing in biofilm compared to planktonic. The 54 up-regulated genes in biofilm growth were mainly related to cell envelope, transport, and binding or outer membranes proteins. Thirty-eight showed decreased expression, mainly genes related to transposases or oxidative stress. Conclusion The adaptive response of P. gingivalis in biofilm growth demonstrated a differential gene expression.
Collapse
Affiliation(s)
- P. Romero-Lastra
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - MC. Sánchez
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - H. Ribeiro-Vidal
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - A. Llama-Palacios
- Laboratory of Dental Research, University Complutense, Madrid, Spain
| | - E. Figuero
- Laboratory of Dental Research, University Complutense, Madrid, Spain
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| | - D. Herrera
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| | - M. Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
- * E-mail:
| |
Collapse
|
18
|
Cadby IT, Ibrahim SA, Faulkner M, Lee DJ, Browning D, Busby SJ, Lovering AL, Stapleton MR, Green J, Cole JA. Regulation, sensory domains and roles of twoDesulfovibrio desulfuricansATCC27774 Crp family transcription factors, HcpR1 and HcpR2, in response to nitrosative stress. Mol Microbiol 2016; 102:1120-1137. [DOI: 10.1111/mmi.13540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Ian T. Cadby
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Susan A. Ibrahim
- Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Matthew Faulkner
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - David J. Lee
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Douglas Browning
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Stephen J. Busby
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Andrew L. Lovering
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| | - Melanie R. Stapleton
- Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Jeffrey Green
- Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Jeffrey A. Cole
- Institute of Microbiology & Infection, School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| |
Collapse
|
19
|
Pezzotti G, Bock RM, McEntire BJ, Jones E, Boffelli M, Zhu W, Baggio G, Boschetto F, Puppulin L, Adachi T, Yamamoto T, Kanamura N, Marunaka Y, Bal BS. Silicon Nitride Bioceramics Induce Chemically Driven Lysis in Porphyromonas gingivalis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3024-35. [PMID: 26948186 DOI: 10.1021/acs.langmuir.6b00393] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Organisms of Gram-negative phylum bacteroidetes, Porphyromonas gingivalis, underwent lysis on polished surfaces of silicon nitride (Si3N4) bioceramics. The antibacterial activity of Si3N4 was mainly the result of chemically driven principles. The lytic activity, although not osmotic in nature, was related to the peculiar pH-dependent surface chemistry of Si3N4. A buffering effect via the formation of ammonium ions (NH4(+)) (and their modifications) was experimentally observed by pH microscopy. Lysis was confirmed by conventional fluorescence spectroscopy, and the bacteria's metabolism was traced with the aid of in situ Raman microprobe spectroscopy. This latter technique revealed the formation of peroxynitrite within the bacterium itself. Degradation of the bacteria's nucleic acid, drastic reduction in phenilalanine, and reduction of lipid concentration were observed due to short-term exposure (6 days) to Si3N4. Altering the surface chemistry of Si3N4 by either chemical etching or thermal oxidation influenced peroxynitrite formation and affected bacteria metabolism in different ways. Exploiting the peculiar surface chemistry of Si3N4 bioceramics could be helpful in counteracting Porphyromonas gingivalis in an alkaline pH environment.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology , Sakyo-ku, Matsugasaki, 606-8126 Kyoto, Japan
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ryan M Bock
- Amedica Corporation, 1885 West 2100 South, Salt Lake City, Utah 84119, United States
| | - Bryan J McEntire
- Amedica Corporation, 1885 West 2100 South, Salt Lake City, Utah 84119, United States
| | - Erin Jones
- Amedica Corporation, 1885 West 2100 South, Salt Lake City, Utah 84119, United States
| | - Marco Boffelli
- Ceramic Physics Laboratory, Kyoto Institute of Technology , Sakyo-ku, Matsugasaki, 606-8126 Kyoto, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kamigyo-ku, Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Department of Medical Engineering for Treatment of Bone and Joint Disorders, Osaka University , 2-2 Yamadaoka, Suita, Osaka 565-0854, Japan
| | - Greta Baggio
- Ceramic Physics Laboratory, Kyoto Institute of Technology , Sakyo-ku, Matsugasaki, 606-8126 Kyoto, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kamigyo-ku, Kyoto 602-8566, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology , Sakyo-ku, Matsugasaki, 606-8126 Kyoto, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kamigyo-ku, Kyoto 602-8566, Japan
| | - Leonardo Puppulin
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kamigyo-ku, Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kamigyo-ku, Kyoto 602-8566, Japan
| | - B Sonny Bal
- Amedica Corporation, 1885 West 2100 South, Salt Lake City, Utah 84119, United States
- Department of Orthopaedic Surgery, University of Missouri , Columbia, Missouri 65212, United States
| |
Collapse
|
20
|
Wang J, Vine CE, Balasiny BK, Rizk J, Bradley CL, Tinajero-Trejo M, Poole RK, Bergaust LL, Bakken LR, Cole JA. The roles of the hybrid cluster protein, Hcp and its reductase, Hcr, in high affinity nitric oxide reduction that protects anaerobic cultures ofEscherichia coliagainst nitrosative stress. Mol Microbiol 2016; 100:877-92. [DOI: 10.1111/mmi.13356] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Jing Wang
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham; Birmingham B15 2TT UK
| | - Claire E. Vine
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham; Birmingham B15 2TT UK
| | - Basema K. Balasiny
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham; Birmingham B15 2TT UK
| | - John Rizk
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham; Birmingham B15 2TT UK
| | - Charlene L. Bradley
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham; Birmingham B15 2TT UK
| | - Mariana Tinajero-Trejo
- Department of Molecular Biology & Biotechnology; University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | - Robert K. Poole
- Department of Molecular Biology & Biotechnology; University of Sheffield, Firth Court, Western Bank; Sheffield S10 2TN UK
| | | | - Lars R. Bakken
- Norwegian University of Life Science; PO box 5003 N-1432 Ås Norway
| | - Jeffrey A. Cole
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham; Birmingham B15 2TT UK
| |
Collapse
|
21
|
Boutrin MC, Yu Y, Wang C, Aruni W, Dou Y, Shi L, Fletcher HM. A putative TetR regulator is involved in nitric oxide stress resistance in Porphyromonas gingivalis. Mol Oral Microbiol 2015; 31:340-53. [PMID: 26332057 DOI: 10.1111/omi.12128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 02/02/2023]
Abstract
To survive in the periodontal pocket, Porphyromonas gingivalis, the main causative agent of periodontal disease, must overcome oxidative and nitric oxide (NO) stress. Previously, we reported that, in the presence of NO comparable to stress conditions, the transcriptome of P. gingivalis was differentially expressed, and genes belonging to the PG1178-81 cluster were significantly upregulated. To further evaluate their role(s) in NO stress resistance, these genes were inactivated by allelic exchange mutagenesis. Isogenic mutants P. gingivalis FLL460 (ΔPG1181::ermF) and FLL461 (ΔPG1178-81::ermF) were black-pigmented, with gingipain and hemolytic activities comparable to that of the wild-type strain. Whereas the recovery of these isogenic mutants from NO stress was comparable to the wild-type, there was increased sensitivity to hydrogen peroxide-induced stress. RNA-Seq analysis under conditions of NO stress showed that approximately 5 and 8% of the genome was modulated in P. gingivalis FLL460 and FLL461, respectively. The PG1178-81 gene cluster was shown to be part of the same transcriptional unit and is inducible in response to NO stress. In the presence of NO, PG1181, a putative transcriptional regulator, was shown to bind to its own promoter region and that of several other NO responsive genes including PG0214 an extracytoplasmic function σ factor, PG0893 and PG1236. Taken together, the data suggest that PG1181 is a NO responsive transcriptional regulator that may play an important role in the NO stress resistance regulatory network in P. gingivalis.
Collapse
Affiliation(s)
- M-C Boutrin
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Y Yu
- School of Pharmacy, Fudan University, Shanghai, China
| | - C Wang
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - W Aruni
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Y Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - L Shi
- School of Pharmacy, Fudan University, Shanghai, China
| | - H M Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Institute of Oral Biology, Kyung Hee University, Seoul, Korea
| |
Collapse
|
22
|
Proteomics of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates. Sci Rep 2015; 5:13794. [PMID: 26387727 PMCID: PMC4585668 DOI: 10.1038/srep13794] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/05/2015] [Indexed: 12/15/2022] Open
Abstract
Organohalide respiration is an environmentally important but poorly characterized type of anaerobic respiration. We compared the global proteome of the versatile organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans grown with different electron acceptors (fumarate, nitrate, or tetrachloroethene [PCE]). The most significant differences in protein abundance were found for gene products of the organohalide respiration region. This genomic region encodes the corrinoid and FeS cluster containing PCE reductive dehalogenase PceA and other proteins putatively involved in PCE metabolism such as those involved in corrinoid biosynthesis. The latter gene products as well as PceA and a putative quinol dehydrogenase were almost exclusively detected in cells grown with PCE. This finding suggests an electron flow from the electron donor such as formate or pyruvate via the quinone pool and a quinol dehydrogenase to PceA and the terminal electron acceptor PCE. Two putative accessory proteins, an IscU-like protein and a peroxidase-like protein, were detected with PCE only and might be involved in PceA maturation. The proteome of cells grown with pyruvate instead of formate as electron donor indicates a route of electrons from reduced ferredoxin via an Epsilonproteobacterial complex I and the quinone pool to PCE.
Collapse
|
23
|
Cheng WH, Huang KY, Huang PJ, Hsu JH, Fang YK, Chiu CH, Tang P. Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion. Parasit Vectors 2015. [PMID: 26205151 PMCID: PMC4513698 DOI: 10.1186/s13071-015-1000-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Iron plays a pivotal role in the pathogenesis of Trichomonas vaginalis, the causative agent of highly prevalent human trichomoniasis. T. vaginalis resides in the vaginal region, where the iron concentration is constantly changing. Hence, T. vaginalis must adapt to variations in iron availability to establish and maintain an infection. The free radical signaling molecules reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been proven to participate in iron deficiency in eukaryotes. However, little is known about the roles of these molecules in iron-deficient T. vaginalis. Methods T. vaginalis cultured in iron-rich and -deficient conditions were collected for all experiments in this study. Next generation RNA sequencing was conducted to investigate the impact of iron on transcriptome of T. vaginalis. The cell viabilities were monitored after the trophozoites treated with the inhibitors of nitric oxide (NO) synthase (L-NG-monomethyl arginine, L-NMMA) and proteasome (MG132). Hydrogenosomal membrane potential was measured using JC-1 staining. Results We demonstrated that NO rather than ROS accumulates in iron-deficient T. vaginalis. The level of NO was blocked by MG132 and L-NMMA, indicating that NO production is through a proteasome and arginine dependent pathway. We found that the inhibition of proteasome activity shortened the survival of iron-deficient cells compared with untreated iron-deficient cells. Surprisingly, the addition of arginine restored both NO level and the survival of proteasome-inhibited cells, suggesting that proteasome-derived NO is crucial for cell survival under iron-limited conditions. Additionally, NO maintains the hydrogenosomal membrane potential, a determinant for cell survival, emphasizing the cytoprotective effect of NO on iron-deficient T. vaginalis. Collectively, we determined that NO produced by the proteasome prolonged the survival of iron-deficient T. vaginalis via maintenance of the hydrogenosomal functions. Conclusion The findings in this study provide a novel role of NO in adaptation to iron-deficient stress in T. vaginalis and shed light on a potential therapeutic strategy for trichomoniasis. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1000-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei-Hung Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Kuo-Yang Huang
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Po-Jung Huang
- Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Bioinformatics Center, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Jo-Hsuan Hsu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Yi-Kai Fang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| | - Petrus Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Bioinformatics Center, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
24
|
Frederick RE, Caranto JD, Masitas CA, Gebhardt LL, MacGowan CE, Limberger RJ, Kurtz DM. Dioxygen and nitric oxide scavenging by Treponema denticola flavodiiron protein: a mechanistic paradigm for catalysis. J Biol Inorg Chem 2015; 20:603-13. [PMID: 25700637 PMCID: PMC4768905 DOI: 10.1007/s00775-015-1248-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/13/2015] [Indexed: 10/24/2022]
Abstract
Flavodiiron proteins (FDPs) contain a unique active site consisting of a non-heme diiron carboxylate site proximal to a flavin mononucleotide (FMN). FDPs serve as the terminal components for reductive scavenging of dioxygen (to water) or nitric oxide (to nitrous oxide), which combats oxidative or nitrosative stress in many bacteria. Characterizations of FDPs from spirochetes or from any oral microbes have not been previously reported. Here, we report characterization of an FDP from the anaerobic spirochete, Treponema (T.) denticola, which is associated with chronic periodontitis. The isolated T. denticola FDP exhibited efficient four-electron dioxygen reductase activity and lower but significant anaerobic nitric oxide reductase activity. A mutant T. denticola strain containing the inactivated FDP-encoding gene was significantly more air-sensitive than the wild-type strain. Single turnover reactions of the four-electron-reduced FDP (FMNH2-Fe(II)Fe(II)) (FDPred) with O2 monitored on the milliseconds to seconds time scale indicated initial rapid formation of a spectral feature consistent with a cis-μ-1,2-peroxo-diferric intermediate, which triggered two-electron oxidation of FMNH2. Reaction of FDPred with NO showed apparent cooperativity between binding of the first and second NO to the diferrous site. The resulting diferrous dinitrosyl complex triggered two-electron oxidation of the FMNH2. Our cumulative results on this and other FDPs indicate that smooth two-electron FMNH2 oxidation triggered by the FDPred/substrate complex and overall four-electron oxidation of FDPred to FDPox constitutes a mechanistic paradigm for both dioxygen and nitric oxide reductase activities of FDPs. Four-electron reductive O2 scavenging by FDPs could contribute to oxidative stress protection in many other oral bacteria.
Collapse
Affiliation(s)
- Rosanne E. Frederick
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jonathan D. Caranto
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Cesar A. Masitas
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Linda L. Gebhardt
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Charles E. MacGowan
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Ronald J. Limberger
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Donald M. Kurtz
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
25
|
Sfeatcu R, Luculescu C, Ciobanu L, Balan A, Gatin E, Patrascu I. Dental Enamel Quality and Black Tooth Stain: A New Approach and Explanation by using Raman and AFM Techniques. PARTICULATE SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1080/02726351.2014.994081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Skeff MA, Brito GAC, de Oliveira MG, Braga CM, Cavalcante MM, Baldim V, Holanda-Afonso RC, Silva-Boghossian CM, Colombo AP, Ribeiro RA, Moura-Neto V, Leitão RFC. S-nitrosoglutathione accelerates recovery from 5-fluorouracil-induced oral mucositis. PLoS One 2014; 9:e113378. [PMID: 25478918 PMCID: PMC4257535 DOI: 10.1371/journal.pone.0113378] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022] Open
Abstract
Introduction Mucositis induced by anti-neoplastic drugs is an important, dose-limiting and costly side-effect of cancer therapy. Aim To evaluate the effect of the topical application of S-nitrosoglutathione (GSNO), a nitric oxide donor, on 5-fluorouracil (5-FU)-induced oral mucositis in hamsters. Materials and Methods Oral mucositis was induced in male hamsters by two intraperitoneal administrations of 5-FU on the first and second days of the experiment (60 and 40 mg/kg, respectively) followed by mechanical trauma on the fourth day. Animals received saline, HPMC or HPMC/GSNO (0.1, 0.5 or 2.0 mM) 1 h prior to the 5-FU injection and twice a day for 10 or 14 days. Samples of cheek pouches were harvested for: histopathological analysis, TNF-α and IL-1β levels, immunohistochemical staining for iNOS, TNF-α, IL-1β, Ki67 and TGF-β RII and a TUNEL assay. The presence and levels of 39 bacterial taxa were analyzed using the Checkerboard DNA-DNA hybridization method. The profiles of NO released from the HPMC/GSNO formulations were characterized using chemiluminescence. Results The HPMC/GSNO formulations were found to provide sustained release of NO for more than 4 h at concentration-dependent rates of 14 to 80 nmol/mL/h. Treatment with HPMC/GSNO (0.5 mM) significantly reduced mucosal damage, inflammatory alterations and cell death associated with 5-FU-induced oral mucositis on day 14 but not on day 10. HPMC/GSNO administration also reversed the inhibitory effect of 5-FU on cell proliferation on day 14. In addition, we observed that the chemotherapy significantly increased the levels and/or prevalence of several bacterial species. Conclusion Topical HPMC/GSNO accelerates mucosal recovery, reduces inflammatory parameters, speeds up re-epithelization and decreases levels of periodontopathic species in mucosal ulcers.
Collapse
Affiliation(s)
- Maria Adriana Skeff
- Laboratory of Cell Morphogenesis, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Gerly A. C. Brito
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Cintia M. Braga
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Matheus M. Cavalcante
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Victor Baldim
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Rosenilde C. Holanda-Afonso
- Laboratory of Cell Morphogenesis, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carina M. Silva-Boghossian
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Faculty of Dentistry, University of Grande Rio, Duque de Caxias, RJ, Brazil
| | - Ana Paula Colombo
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ronaldo A. Ribeiro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Vivaldo Moura-Neto
- Laboratory of Cell Morphogenesis, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, RJ, Brazil
| | - Renata F. C. Leitão
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
- * E-mail:
| |
Collapse
|
27
|
Robinson JL, Adolfsen KJ, Brynildsen MP. Deciphering nitric oxide stress in bacteria with quantitative modeling. Curr Opin Microbiol 2014; 19:16-24. [PMID: 24983704 DOI: 10.1016/j.mib.2014.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/02/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022]
Abstract
Many pathogens depend on nitric oxide (NO•) detoxification and repair to establish an infection, and inhibitors of these systems are under investigation as next-generation antibiotics. Because of the broad reactivity of NO• and its derivatives with biomolecules, a deep understanding of how pathogens sense and respond to NO•, as an integrated system, has been elusive. Quantitative kinetic modeling has been proposed as a method to enhance analysis and understanding of NO• stress at the systems-level. Here we review the motivation for, current state of, and future prospects of quantitative modeling of NO• stress in bacteria, and suggest that such mathematical approaches would prove equally useful in the study of other broadly reactive antimicrobials, such as hydrogen peroxide (H2O2).
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Kristin J Adolfsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
28
|
Henry LG, Boutrin MC, Aruni W, Robles A, Ximinies A, Fletcher HM. Life in a Diverse Oral Community - Strategies for Oxidative Stress Survival. J Oral Biosci 2014; 56:63-71. [PMID: 26744578 DOI: 10.1016/j.job.2014.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND While the oral cavity harbors more than 680 bacterial species, the interaction and association of selected bacterial species play a role in periodontal diseases. Bacterial species including Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia, a consortium previously designated as the "red complex" is now being expanded to include other new emerging pathogens that are significantly associated with periodontal disease. HIGHLIGHT In addition to novel mechanisms for oxidative resistance of individual species, community dynamics may lead to an overall strategy for survival in the inflammatory environment of the periodontal pocket. Complex systems controlled by response regulators protect against oxidative and nitrosative stress. CONCLUSION The combination of these multifaceted strategies would provide a comprehensive defense and support system against the repetitive host immune response to promote microbial persistence and disease.
Collapse
Affiliation(s)
- Leroy G Henry
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Marie-Claire Boutrin
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Wilson Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Antonette Robles
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Alexia Ximinies
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Hansel M Fletcher
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| |
Collapse
|
29
|
Abstract
The most common prokaryotic signal transduction mechanisms are the one-component systems in which a single polypeptide contains both a sensory domain and a DNA-binding domain. Among the >20 classes of one-component systems, the TetR family of regulators (TFRs) are widely associated with antibiotic resistance and the regulation of genes encoding small-molecule exporters. However, TFRs play a much broader role, controlling genes involved in metabolism, antibiotic production, quorum sensing, and many other aspects of prokaryotic physiology. There are several well-established model systems for understanding these important proteins, and structural studies have begun to unveil the mechanisms by which they bind DNA and recognize small-molecule ligands. The sequences for more than 200,000 TFRs are available in the public databases, and genomics studies are identifying their target genes. Three-dimensional structures have been solved for close to 200 TFRs. Comparison of these structures reveals a common overall architecture of nine conserved α helices. The most important open question concerning TFR biology is the nature and diversity of their ligands and how these relate to the biochemical processes under their control.
Collapse
|
30
|
Investigation of in vivo toxicity of hydroxylamine sulfate and the efficiency of intoxication treatment by α-tocopherol acetate and methylene blue. Food Chem Toxicol 2013; 61:227-32. [DOI: 10.1016/j.fct.2013.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/01/2013] [Accepted: 07/10/2013] [Indexed: 11/20/2022]
|
31
|
MacGregor BJ, Biddle JF, Harbort C, Matthysse AG, Teske A. Sulfide oxidation, nitrate respiration, carbon acquisition, and electron transport pathways suggested by the draft genome of a single orange Guaymas Basin Beggiatoa (Cand. Maribeggiatoa) sp. filament. Mar Genomics 2013; 11:53-65. [PMID: 24012537 DOI: 10.1016/j.margen.2013.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/27/2022]
Abstract
A near-complete draft genome has been obtained for a single vacuolated orange Beggiatoa (Cand. Maribeggiatoa) filament from a Guaymas Basin seafloor microbial mat, the third relatively complete sequence for the Beggiatoaceae. Possible pathways for sulfide oxidation; nitrate respiration; inorganic carbon fixation by both Type II RuBisCO and the reductive tricarboxylic acid cycle; acetate and possibly formate uptake; and energy-generating electron transport via both oxidative phosphorylation and the Rnf complex are discussed here. A role in nitrite reduction is suggested for an abundant orange cytochrome produced by the Guaymas strain; this has a possible homolog in Beggiatoa (Cand. Isobeggiatoa) sp. PS, isolated from marine harbor sediment, but not Beggiatoa alba B18LD, isolated from a freshwater rice field ditch. Inferred phylogenies for the Calvin-Benson-Bassham (CBB) cycle and the reductive (rTCA) and oxidative (TCA) tricarboxylic acid cycles suggest that genes encoding succinate dehydrogenase and enzymes for carboxylation and/or decarboxylation steps (including RuBisCO) may have been introduced to (or exported from) one or more of the three genomes by horizontal transfer, sometimes by different routes. Sequences from the two marine strains are generally more similar to each other than to sequences from the freshwater strain, except in the case of RuBisCO: only the Guaymas strain encodes a Type II enzyme, which (where studied) discriminates less against oxygen than do Type I RuBisCOs. Genes subject to horizontal transfer may represent key steps for adaptation to factors such as oxygen and carbon dioxide concentration, organic carbon availability, and environmental variability.
Collapse
Affiliation(s)
- Barbara J MacGregor
- Department of Marine Sciences, University of North Carolina - Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
32
|
HcpR of Porphyromonas gingivalis is required for growth under nitrosative stress and survival within host cells. Infect Immun 2012; 80:3319-31. [PMID: 22778102 DOI: 10.1128/iai.00561-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although the Gram-negative, anaerobic periodontopathogen Porphyromonas gingivalis must withstand nitrosative stress, which is particularly high in the oral cavity, the mechanisms allowing for protection against such stress are not known in this organism. In this study, microarray analysis of P. gingivalis transcriptional response to nitrite and nitric oxide showed drastic upregulation of the PG0893 gene coding for hybrid cluster protein (Hcp), which is a putative hydroxylamine reductase. Although regulation of hcp has been shown to be OxyR dependent in Escherichia coli, here we show that in P. gingivalis its expression is dependent on the Fnr-like regulator designated HcpR. Growth of the isogenic mutant V2807, containing an ermF-ermAM insertion within the hcpR (PG1053) gene, was significantly reduced in the presence of nitrite (P < 0.002) and nitric oxide-generating nitrosoglutathione (GSNO) (P < 0.001), compared to that of the wild-type W83 strain. Furthermore, the upregulation of PG0893 (hcp) was abrogated in V2807 exposed to nitrosative stress. In addition, recombinant HcpR bound DNA containing the hcp promoter sequence, and the binding was hemin dependent. Finally, V2807 was not able to survive with host cells, demonstrating that HcpR plays an important role in P. gingivalis virulence. This work gives insight into the molecular mechanisms of protection against nitrosative stress in P. gingivalis and shows that the regulatory mechanisms differ from those in E. coli.
Collapse
|